JP2018184902A - Multistage turbo supercharger system - Google Patents

Multistage turbo supercharger system Download PDF

Info

Publication number
JP2018184902A
JP2018184902A JP2017087451A JP2017087451A JP2018184902A JP 2018184902 A JP2018184902 A JP 2018184902A JP 2017087451 A JP2017087451 A JP 2017087451A JP 2017087451 A JP2017087451 A JP 2017087451A JP 2018184902 A JP2018184902 A JP 2018184902A
Authority
JP
Japan
Prior art keywords
pressure
pressure stage
low
valve
waste gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017087451A
Other languages
Japanese (ja)
Other versions
JP6785712B2 (en
Inventor
次雄 吉岡
Tsugio Yoshioka
次雄 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2017087451A priority Critical patent/JP6785712B2/en
Publication of JP2018184902A publication Critical patent/JP2018184902A/en
Application granted granted Critical
Publication of JP6785712B2 publication Critical patent/JP6785712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a multistage turbo supercharger system capable of avoiding generation of a high pressure stage side surge in the case of sudden speed reduction and/or sudden load decrease (cutoff) of an engine.SOLUTION: The present invention relates to a multistage turbo supercharger system in which a small-sized side high pressure stage turbo supercharger 50 and a large-sized side low pressure stage turbo supercharger 60 are connected in series from the side of an engine body 10. The multistage turbo supercharger system comprises: a low pressure stage exhaust bypass path 33 bypassing a low pressure stage turbine 61 of the low pressure stage turbo supercharger 60; a low pressure stage waste gate valve WG2 opening/closing the low pressure stage exhaust bypass path 33; and high pressure stage side surge avoiding means 90 by which, in a case where an actuation condition that a suction pressure P1 at an upstream side of a high pressure stage compressor 52 of the high pressure stage turbo supercharger 50 is higher than a suction pressure P2 at a downstream side of the high pressure stage compressor 52 is satisfied, the low pressure stage waste gate valve WG2 is opened.SELECTED DRAWING: Figure 2

Description

本発明は、エンジン本体側から小形側の高圧段ターボ過給機、大形側の低圧段ターボ過給機が直列に接続された多段式ターボ過給システムに関する。   The present invention relates to a multi-stage turbocharger system in which a small-sized high-pressure turbocharger and a large-sized low-pressure turbocharger are connected in series from the engine body side.

この種の多段式ターボ過給システムは、例えば、特許文献1に示すように、低圧段ターボ過給機の低圧段コンプレッサにて空気を圧縮し、高圧段ターボ過給機の高圧段コンプレッサにて更に空気を圧縮してエンジン本体に過給するものであり、エンジンの平常運転状態では、高圧段コンプレッサの上流側の吸気圧が高圧段コンプレッサの下流側の吸気圧よりも小となる吸気圧関係となっている。   In this type of multi-stage turbocharger system, for example, as shown in Patent Document 1, air is compressed by a low-pressure stage compressor of a low-pressure stage turbocharger, and a high-pressure stage compressor of a high-pressure stage turbocharger. In addition, the air is compressed and supercharged to the engine body. In normal engine operation, the intake pressure relationship is such that the intake pressure upstream of the high-pressure compressor is lower than the intake pressure downstream of the high-pressure compressor. It has become.

特開2009−270470号公報JP 2009-270470 A

ところで、大形側の低圧段ターボ過給機は、小形側の高圧段ターボ過給機よりもイナーシャが大きい。
そのため、このような多段式ターボ過給システムでは、高圧段コンプレッサの上流側の吸気圧が高圧段コンプレッサの下流側の吸気圧よりも小となる平常運転状態からエンジンが急減速、および、または、急負荷減少(遮断)した際に、イナーシャの大きい大形側の低圧段ターボ過給機がイナーシャの小さい低圧段ターボ過給機よりも減速されずに慣性回転し、高圧段コンプレッサの上流側の吸気圧が上昇して上流側の吸気圧と下流側の吸気圧との関係が逆転する場合がある。
そして、このように、高圧段コンプレッサの上流側の吸気圧と下流側の吸気圧との関係が逆転し、上流側の吸気圧が下流側の吸気圧よりも大となると、高圧段コンプレッサが必要以上に回されて、サージ(以下、高圧段側サージと言う。)が発生する虞がある。
By the way, the large-sized low-pressure turbocharger has a larger inertia than the small-sized high-pressure turbocharger.
Therefore, in such a multi-stage turbocharging system, the engine suddenly decelerates from a normal operation state in which the intake pressure upstream of the high-pressure compressor is smaller than the intake pressure downstream of the high-pressure compressor, and / or When sudden load decreases (shuts off), the large-pressure low-pressure turbocharger with large inertia rotates inertially more slowly than the low-pressure turbocharger with small inertia, and the upstream side of the high-pressure compressor In some cases, the intake pressure rises and the relationship between the upstream intake pressure and the downstream intake pressure is reversed.
In this way, when the relationship between the upstream intake pressure and the downstream intake pressure of the high-pressure compressor is reversed and the upstream intake pressure becomes larger than the downstream intake pressure, a high-pressure compressor is required. There is a risk that a surge (hereinafter referred to as a high-voltage stage side surge) may occur due to the rotation as described above.

なお、特許文献1には、吸入空気量の減少などから高圧段側サージの発生が予測される場合に、高圧段コンプレッサの空気圧縮比(高圧段コンプレッサの出口/入口圧力比)を下げることが記載されているが、この技術は、高圧段コンプレッサの空気圧縮比が高すぎる場合に発生する高圧段側サージを回避しようとする技術であり、エンジンが急減速、および、または、急負荷減少(遮断)した際に、上述したイナーシャの差に起因して、高圧段コンプレッサの上流側の吸気圧(入口圧力)が下流側の吸気圧(出口圧力)よりも大となった場合に、高圧段コンプレッサが圧縮負荷のない空転状態で回されて発生する高圧段側サージは想定されていない。   In Patent Document 1, when the occurrence of a high-pressure stage side surge is predicted due to a decrease in the intake air amount or the like, the air compression ratio of the high-pressure stage compressor (the outlet / inlet pressure ratio of the high-pressure stage compressor) is reduced. Although described, this technique is a technique for avoiding a high-pressure stage side surge that occurs when the air compression ratio of the high-pressure stage compressor is too high, and the engine is suddenly decelerated and / or the load is reduced ( When the intake pressure (inlet pressure) on the upstream side of the high-pressure stage compressor becomes larger than the intake pressure (outlet pressure) on the downstream side due to the difference in inertia described above, A high-pressure stage surge that occurs when the compressor is rotated in an idling state without a compression load is not expected.

この実情に鑑み、本発明の主たる課題は、エンジンが急減速、および、または、急負荷減少(遮断)した際に、大形側の低圧段ターボ過給機が小形側の高圧段ターボ過給機よりもイナーシャが大きいことに起因して高圧段側サージが発生するのを回避することのできる多段式ターボ過給システムを提供する点にある。   In view of this situation, the main problem of the present invention is that when the engine is suddenly decelerated and / or sudden load is reduced (cut off), the large-sized low-pressure turbocharger is replaced with the small-sized high-pressure turbocharger. The purpose of the present invention is to provide a multistage turbocharging system capable of avoiding the occurrence of a high-pressure stage side surge due to the fact that the inertia is larger than that of the machine.

本発明の第1特徴構成は、エンジン本体側から小形側の高圧段ターボ過給機、大形側の低圧段ターボ過給機が直列に接続された多段式ターボ過給システムであって、
前記低圧段ターボ過給機の低圧段タービンをバイパスする低圧段排気パイパス路と、
前記低圧段排気パイパス路を開閉する低圧段ウェイストゲートバルブと、
前記高圧段ターボ過給機の高圧段コンプレッサの上流側の吸気圧が前記高圧段コンプレッサの下流側の吸気圧よりも大となる作動条件が成立する場合に、前記低圧段ウェイストゲートバルブを開弁する高圧段側サージ回避手段と、を備えて構成されている点にある。
A first characteristic configuration of the present invention is a multi-stage turbocharging system in which a small-sized high-pressure turbocharger and a large-sized low-pressure turbocharger are connected in series from the engine body side,
A low-pressure stage exhaust bypass that bypasses the low-pressure stage turbine of the low-pressure stage turbocharger;
A low pressure stage waste gate valve that opens and closes the low pressure stage exhaust bypass path;
The low pressure stage waste gate valve is opened when an operating condition is established in which the intake pressure upstream of the high pressure stage compressor of the high pressure turbocharger is greater than the intake pressure downstream of the high pressure stage compressor. And a high-voltage stage side surge avoiding means.

本構成によれば、エンジンが急減速、および、または、急負荷減少(遮断)した際に、大形側の低圧段ターボ過給機が小形側の高圧段ターボ過給機よりもイナーシャが大きいことに起因して高圧段コンプレッサの上流側の吸気圧と下流側の吸気圧との関係が逆転し、高圧段コンプレッサの上流側の吸気圧が下流側の吸気圧よりも大となって高圧段側サージの発生の虞のある吸気圧関係になると、高圧段側サージ回避手段の作動条件が成立し、高圧段側サージ回避手段が前記低圧段ウェイストゲートバルブを開弁する。この低圧段ウェイストゲートバルブの開弁により、排気パイパス通路を通じて排気ガスをバイパスさせる形態で低圧段タービンに流入する排気ガス量を低減することができ、高圧段ターボ過給機よりもイナーシャが大きい大形側の低圧段の慣性回転を減速させることができる。   According to this configuration, when the engine suddenly decelerates and / or sudden load decreases (cuts off), the large-sized low-pressure turbocharger has a larger inertia than the small-sized high-pressure turbocharger. As a result, the relationship between the intake pressure on the upstream side of the high-pressure stage compressor and the intake pressure on the downstream side reverses, and the intake pressure on the upstream side of the high-pressure stage compressor becomes larger than the intake pressure on the downstream side. When the intake pressure relationship is likely to cause a side surge, the operating condition of the high pressure stage surge avoidance means is established, and the high pressure stage surge avoidance means opens the low pressure stage waste gate valve. By opening the low-pressure stage waste gate valve, the amount of exhaust gas flowing into the low-pressure stage turbine can be reduced by bypassing the exhaust gas through the exhaust bypass passage, and the inertia is larger than that of the high-pressure stage turbocharger. The inertial rotation of the low pressure stage on the shape side can be decelerated.

よって、エンジンが急減速、および、または、急負荷減少(遮断)した際に、高圧段コンプレッサの上流側の吸気圧と下流側の吸気圧との関係が逆転し、高圧段側サージの発生の虞のある吸気圧関係(高圧段コンプレッサの上流側の吸気圧が下流側の吸気圧よりも大となる関係)になった場合でも、高圧段側サージの発生の虞のない元の適正な吸気圧関係(上流側の吸気圧が下流側の吸気圧以下となる関係)に迅速に戻すことができる。
したがって、エンジンが急減速、および、または、急負荷減少(遮断)した際に、大形側の低圧段ターボ過給機が小形側の高圧段ターボ過給機よりもイナーシャが大きいことに起因して高圧段側サージが発生するのを回避することができる。
Therefore, when the engine suddenly decelerates and / or sudden load decreases (cuts off), the relationship between the intake pressure on the upstream side of the high-pressure compressor and the intake pressure on the downstream side reverses, causing the occurrence of a high-pressure-side surge. Even if there is a risk of an intake pressure relationship (a relationship where the intake pressure on the upstream side of the high-pressure compressor is greater than the intake pressure on the downstream side) It is possible to quickly return to the atmospheric pressure relationship (a relationship in which the upstream intake pressure is equal to or lower than the downstream intake pressure).
Therefore, when the engine suddenly decelerates and / or sudden load decreases (cuts off), the large-sized low-pressure turbocharger has a larger inertia than the small-sized high-pressure turbocharger. Thus, it is possible to avoid occurrence of a high-voltage stage side surge.

本発明の第2特徴構成は、前記上流側の吸気圧を駆動力として前記低圧段ウェイストゲートバルブに前記上流側の吸気圧に応じた開弁操作力を付与する圧力式弁操作機構が備えられ、
前記高圧段側サージ回避手段は、電力を駆動力として前記低圧段ウェイストゲートバルブに開弁操作力を付与する電動式弁操作機構を備え、前記作動条件が成立する場合に、前記圧力式弁操作機構の開弁操作力に前記電動式弁操作機構の開弁操作力を追加して前記低圧段ウェイストゲートバルブを開弁可能に構成されている点にある。
The second characteristic configuration of the present invention is provided with a pressure type valve operating mechanism that applies a valve opening operating force according to the upstream intake pressure to the low pressure stage waste gate valve using the upstream intake pressure as a driving force. ,
The high-pressure stage side surge avoiding means includes an electric valve operating mechanism that applies a valve-opening operation force to the low-pressure stage waste gate valve using electric power as a driving force, and the pressure-type valve operation is performed when the operating condition is satisfied. The valve opening operating force of the electric valve operating mechanism is added to the valve opening operating force of the mechanism to open the low pressure stage waste gate valve.

本構成によれば、高圧段側サージ回避手段は、前記作動条件が成立する場合に、圧力式弁操作機構の開弁操作力を利用して低圧段ウェイストゲートバルブを開弁することができる。よって、電動式弁操作機構にて低圧段ウェイストゲートバルブに開弁操作力を付与するための駆動電力を低く抑えることができ、電動式弁操作機構に電力を供給する電源の小型化等を図ることができる。   According to this configuration, the high-pressure stage side surge avoiding means can open the low-pressure stage waste gate valve using the valve-opening operating force of the pressure-type valve operating mechanism when the operating condition is satisfied. Therefore, the drive power for applying the valve opening operating force to the low pressure stage waste gate valve by the electric valve operating mechanism can be kept low, and the power supply for supplying power to the electric valve operating mechanism can be downsized. be able to.

本発明の第3特徴構成は、前記低圧段ウェイストゲートバルブに操作力を伝達して前記低圧段ウェイストゲートバルブを開閉する揺動レバーが備えられ、
前記圧力式弁操作機構は、圧力式側リンクを介して前記揺動レバーを開弁方向に揺動操作可能な圧力式アクチュエータを備えて構成され、
前記電動式弁操作機構は、電動式側リンクを介して前記揺動レバーを開弁方向に揺動操作可能な電動式アクチュエータを備えて構成されている点にある。
The third characteristic configuration of the present invention is provided with a swing lever that transmits an operating force to the low-pressure stage wastegate valve to open and close the low-pressure stage wastegate valve,
The pressure type valve operating mechanism includes a pressure type actuator capable of swinging the swing lever in a valve opening direction via a pressure side link,
The electric valve operating mechanism includes an electric actuator capable of swinging the swing lever in a valve opening direction via an electric side link.

本構成によれば、圧力式アクチュエータにて圧力式側リンクを介して揺動レバーを開弁方向に揺動操作することにより、圧力式弁操作機構の開弁操作力を低圧段ウェイストゲートバルブに適切に作用させることができる。また、電動式アクチュエータにて電動式側リンクを介して同一の揺動レバーを開弁方向に揺動操作することにより、電動式弁操作機構の開弁操作力を低圧段ウェイストゲートバルブに適切に作用させることができる。
よって、前記作動条件が成立する場合に、低圧段側の圧力式弁操作機構の開弁作動力と電動式弁操作機構の開弁作動力の協働により、低圧段ウェイストゲートバルブを効率良く開弁することができる。
According to this configuration, the valve-operating force of the pressure-type valve operating mechanism is applied to the low-pressure stage wastegate valve by swinging the swing lever in the valve opening direction via the pressure-type side link with the pressure-type actuator. It can work properly. In addition, by operating the same swing lever in the valve opening direction via the motorized side link with the electric actuator, the valve opening operating force of the electric valve operating mechanism is appropriately applied to the low-pressure stage wastegate valve. Can act.
Therefore, when the operating condition is satisfied, the low pressure stage waste gate valve is efficiently opened by the cooperation of the valve opening operating force of the pressure type valve operating mechanism on the low pressure stage side and the valve opening operating force of the electric valve operating mechanism. Can be said.

平常運転状態を示すエンジンのブロック図Engine block diagram showing normal operation 平常運転状態から急減速、および、または、急負荷減少(遮断)した状態を示すエンジンのブロック図Block diagram of the engine showing a sudden deceleration and / or a sudden load decrease (cut off) from the normal operation state 平常運転状態から急減速、および、または、急負荷減少(遮断)した場合のエンジンの状態の変遷を示す状態変遷図State transition diagram showing the transition of the engine state when sudden deceleration and / or sudden load decrease (cut off) from normal operation state 低圧段側の圧力式弁操作機構及び電動式弁操作機構を示す図The figure which shows the pressure type valve operating mechanism and electric valve operating mechanism of the low pressure stage side 低圧段ウェイストゲートバルブの作動特性を示す図Diagram showing the operating characteristics of the low-pressure stage wastegate valve

本発明に係る多段式ターボ過給システムの実施形態を図面に基づいて説明する。
図1、図2は、本発明に係る多段式ターボ過給システムを有するエンジンのブロック図であり、図中のブロック状の矢印は吸排気の流れを示している。また、図1は平常運転状態を示し、図2は平常運転状態から急減速、および、または、急負荷減少(遮断)した状態を示している。
An embodiment of a multistage turbocharging system according to the present invention will be described with reference to the drawings.
FIG. 1 and FIG. 2 are block diagrams of an engine having a multistage turbocharging system according to the present invention, and the block-shaped arrows in the drawings indicate the flow of intake and exhaust. Further, FIG. 1 shows a normal operation state, and FIG. 2 shows a state where sudden deceleration and / or sudden load decrease (cut off) are performed from the normal operation state.

(エンジンの全体構成)
図1に示すように、エンジン1は、例えば、ディーゼルエンジンとして構成することができ、燃焼室(図示省略)を有するエンジン本体10、燃焼室に新気を導入する吸気路20、燃焼室から排気ガスを排出する排気路30、エンジン1の運転状態を制御するECU(エンジンコントロールユニット)40等を備えて構成されている。
また、このエンジン1は、エンジン本体10側から小形側の高圧段ターボ過給機50、大形側の低圧段ターボ過給機60を直列に接続して構成されている。大形側の低圧段ターボ過給機60にて空気を圧縮し、小形側の高圧段ターボ過給機50にて更に空気を圧縮してエンジン本体10に過給することができる。
(Entire engine configuration)
As shown in FIG. 1, the engine 1 can be configured as a diesel engine, for example, and has an engine body 10 having a combustion chamber (not shown), an intake passage 20 for introducing fresh air into the combustion chamber, and exhaust from the combustion chamber. An exhaust passage 30 for discharging gas, an ECU (engine control unit) 40 for controlling the operating state of the engine 1, and the like are provided.
Further, the engine 1 is configured by connecting a small-sized high-pressure turbocharger 50 and a large-sized low-pressure turbocharger 60 in series from the engine body 10 side. The air can be compressed by the large-sized low-pressure turbocharger 60 and further compressed by the small-sized high-pressure turbocharger 50 to be supercharged to the engine body 10.

低圧段ターボ過給機60は、低圧段タービン61と、低圧段コンプレッサ62と、これらを同期回転自在に接続するシャフト63とを備えて構成されている。
低圧段タービン61は、排気路30の下流側に配置され、排気ガスのエネルギを利用して回転するように構成されている。低圧段コンプレッサ62は、吸気路20の内部の上流側に配置され、低圧段タービン61の回転に伴って回転し、外部側から空気を吸入して圧縮するように構成されている。
The low-pressure stage turbocharger 60 includes a low-pressure stage turbine 61, a low-pressure stage compressor 62, and a shaft 63 that connects these in a freely rotating manner.
The low-pressure turbine 61 is arranged on the downstream side of the exhaust passage 30 and is configured to rotate using the energy of the exhaust gas. The low-pressure stage compressor 62 is arranged on the upstream side inside the intake passage 20 and is configured to rotate with the rotation of the low-pressure stage turbine 61 and to suck in air from the outside and compress it.

高圧段ターボ過給機50は、高圧段タービン51と、高圧段コンプレッサ52と、これらを同期回転自在に接続するシャフト53とを備えて構成されている。
高圧段タービン51は、排気路30における低圧段タービン61の上流側に配置され、低圧段タービン61の上流側にて排気ガスのエネルギを利用して回転するように構成されている。高圧段コンプレッサ52は、吸気路20おける低圧段コンプレッサ62の下流側に配置され、高圧段タービン51の回転に伴って回転し、低圧段コンプレッサ62で圧縮された空気を更に圧縮するように構成されている。
The high-pressure turbocharger 50 includes a high-pressure turbine 51, a high-pressure compressor 52, and a shaft 53 that connects these in a freely rotating manner.
The high-pressure stage turbine 51 is disposed on the upstream side of the low-pressure stage turbine 61 in the exhaust passage 30 and is configured to rotate using the energy of the exhaust gas on the upstream side of the low-pressure stage turbine 61. The high-pressure stage compressor 52 is disposed on the downstream side of the low-pressure stage compressor 62 in the intake passage 20, and is configured to rotate with the rotation of the high-pressure stage turbine 51 and further compress the air compressed by the low-pressure stage compressor 62. ing.

前記吸気路20は、外部側から低圧段コンプレッサ62、高圧段コンプレッサ52、給気マニホールド20Aを順番に通る風路として構成されている。
前記排気路30は、エンジン本体10側から排気マニホールド30A、高圧段タービン51、低圧段タービン61を順番に通る主排気路31と、高圧段コンプレッサ52をバイパスする高圧段排気バイパス路32と、低圧段コンプレッサ62をバイパスする低圧段排気バイパス路33とを備えて構成されている。
The intake passage 20 is configured as an air passage that sequentially passes through the low pressure stage compressor 62, the high pressure stage compressor 52, and the air supply manifold 20A from the outside.
The exhaust passage 30 includes a main exhaust passage 31 that sequentially passes through the exhaust manifold 30A, the high-pressure turbine 51, and the low-pressure turbine 61 from the engine body 10 side, a high-pressure exhaust passage 32 that bypasses the high-pressure compressor 52, and a low pressure. A low-pressure stage exhaust bypass passage 33 that bypasses the stage compressor 62 is provided.

高圧段排気バイパス路32は、主排気路31における排気マニホールド30Aと高圧段タービン51の間の部位と、主排気路31における高圧段タービン51と低圧段タービン61の間の部位とを連通する。
低圧段排気バイパス路33は、主排気路31における高圧段タービン51と低圧段タービン61の間の部位と、主排気路31における低圧段タービン61の下流側の部位とを連通する。
The high-pressure stage exhaust bypass path 32 communicates a part between the exhaust manifold 30 </ b> A and the high-pressure stage turbine 51 in the main exhaust path 31 and a part between the high-pressure stage turbine 51 and the low-pressure stage turbine 61 in the main exhaust path 31.
The low-pressure stage exhaust bypass path 33 communicates a part between the high-pressure stage turbine 51 and the low-pressure stage turbine 61 in the main exhaust path 31 and a part on the downstream side of the low-pressure stage turbine 61 in the main exhaust path 31.

高圧段排気バイパス路32には、当該高圧段排気バイパス路32を開閉する高圧段ウェイストゲートバルブWG1が備えられている。また、この高圧段ウェイストゲートバルブWG1に開弁操作力を付与する高圧段側の圧力式弁操作機構70が備えられている。   The high-pressure stage exhaust bypass path 32 is provided with a high-pressure stage waste gate valve WG1 that opens and closes the high-pressure stage exhaust bypass path 32. In addition, a high-pressure stage side pressure type valve operating mechanism 70 is provided that applies a valve opening operating force to the high-pressure stage waste gate valve WG1.

高圧段側の圧力式弁操作機構70は、電力を利用しない機械式に構成されており、高圧段コンプレッサ52の下流側の吸気圧P2(高圧段コンプレッサ52の吐出圧)を駆動力として高圧段ウェイストゲートバルブWG1に対して高圧段コンプレッサ52の下流側の吸気圧P2に応じた開弁操作力を付与するように構成されている。高圧段側の圧力式弁操作機構70は、高圧段コンプレッサ52の下流側の吸気圧P2が設定吸気圧を超える場合に自動的に高圧段ウェイストゲートバルブWG1を開弁する。   The high pressure stage pressure type valve operating mechanism 70 is configured as a mechanical type that does not use electric power, and the high pressure stage is driven by the intake pressure P2 (the discharge pressure of the high pressure stage compressor 52) downstream of the high pressure stage compressor 52 as a driving force. The waste gate valve WG1 is configured to apply a valve opening operation force corresponding to the intake pressure P2 on the downstream side of the high-pressure compressor 52. The pressure type valve operating mechanism 70 on the high pressure stage side automatically opens the high pressure stage waste gate valve WG1 when the intake pressure P2 on the downstream side of the high pressure stage compressor 52 exceeds the set intake pressure.

例えば、高圧段側の圧力式弁操作機構70は、エンジン1の平常運転状態において、高圧段コンプレッサ52の下流側の吸気圧P2が設定吸気圧を超えたときに高圧段ウェイストゲートバルブWG1を自動的に開弁し、高圧段排気バイパス路32に排気ガスの一部を通流させる形態で高圧段タービン51の回転を抑え、高圧段コンプレッサ52の下流側の吸気圧P2を設定範囲に戻す。   For example, the pressure type valve operating mechanism 70 on the high pressure stage side automatically activates the high pressure stage waste gate valve WG1 when the intake pressure P2 on the downstream side of the high pressure stage compressor 52 exceeds the set intake pressure in the normal operation state of the engine 1. Thus, the rotation of the high-pressure turbine 51 is suppressed in such a manner that a part of the exhaust gas is allowed to flow through the high-pressure stage exhaust bypass passage 32, and the intake pressure P2 on the downstream side of the high-pressure stage compressor 52 is returned to the set range.

なお、高圧段側の圧力式弁操作機構70は、図示は省略するが、例えば、高圧段ウェイストゲートバルブWG1に操作力を伝達して高圧段ウェイストゲートバルブWG1を開閉する揺動レバーを開弁方向に揺動操作可能なダイアフラム式アクチュエータ等の圧力式アクチュエータ等を備えて構成することができる。   Although not shown in the figure, the high pressure stage pressure type valve operating mechanism 70 opens, for example, a swing lever that opens and closes the high pressure stage waste gate valve WG1 by transmitting an operating force to the high pressure stage waste gate valve WG1. A pressure actuator such as a diaphragm actuator capable of swinging in the direction can be provided.

低圧段排気バイパス路33には、当該低圧段排気バイパス路33を開閉する低圧段ウェイストゲートバルブWG2が備えられている。また、この低圧段ウェイストゲートバルブWG2に開弁操作力を付与する低圧段側の圧力式弁操作機構80が備えられている。   The low-pressure stage exhaust bypass path 33 is provided with a low-pressure stage waste gate valve WG2 that opens and closes the low-pressure stage exhaust bypass path 33. In addition, a low pressure stage side pressure type valve operating mechanism 80 is provided which applies a valve opening operating force to the low pressure stage waste gate valve WG2.

低圧段側の圧力式弁操作機構80は、電力を利用しない機械式に構成されており、低圧段コンプレッサ62の下流側(高圧段コンプレッサ52の上流側)の吸気圧P1(低圧段コンプレッサ62の吐出圧)を駆動力として低圧段ウェイストゲートバルブWG2に低圧段コンプレッサ62の下流側の吸気圧P1に応じた開弁操作力を付与するように構成されている。低圧段側の圧力式弁操作機構80は、低圧段コンプレッサ62の下流側の吸気圧P1が設定吸気圧を超える場合に自動的に低圧段ウェイストゲートバルブWG2を開弁する。   The pressure-type valve operating mechanism 80 on the low-pressure stage side is configured as a mechanical type that does not use electric power, and the intake pressure P1 (on the low-pressure stage compressor 62) on the downstream side of the low-pressure stage compressor 62 (upstream side of the high-pressure stage compressor 52). The valve opening operation force according to the intake pressure P1 downstream of the low-pressure stage compressor 62 is applied to the low-pressure stage waste gate valve WG2 using the discharge pressure as a driving force. The pressure type valve operating mechanism 80 on the low pressure stage side automatically opens the low pressure stage waste gate valve WG2 when the intake pressure P1 on the downstream side of the low pressure stage compressor 62 exceeds the set intake pressure.

例えば、低圧段側の圧力式弁操作機構80は、エンジン1の平常運転状態において、低圧段コンプレッサ62の下流側の吸気圧P1が設定吸気圧を超えたときに低圧段ウェイストゲートバルブWG2を自動的に開弁し、低圧段排気バイパス路33に排気ガスの一部を通流させる形態で低圧段タービン61の回転を抑え、低圧段コンプレッサ62の下流側吸気圧を設定範囲に戻す。なお、低圧段側の圧力式弁操作機構80の具体的構成等は後述する。   For example, the pressure type valve operating mechanism 80 on the low pressure stage side automatically activates the low pressure stage waste gate valve WG2 when the intake pressure P1 on the downstream side of the low pressure stage compressor 62 exceeds the set intake pressure in the normal operation state of the engine 1. Thus, the rotation of the low-pressure turbine 61 is suppressed in a form in which a part of the exhaust gas is allowed to flow through the low-pressure stage exhaust bypass passage 33, and the downstream side intake pressure of the low-pressure stage compressor 62 is returned to the set range. The specific configuration of the pressure type valve operating mechanism 80 on the low pressure stage side will be described later.

このように構成されたエンジン1では、高圧段コンプレッサ52の上流側の吸気圧P1が高圧段コンプレッサ52の下流側の吸気圧P2以下となる平常運転状態から急減速、および、または、急負荷減少(遮断)した際に、イナーシャの大きい大形側の低圧段ターボ過給機60がイナーシャの小さい高圧段ターボ過給機50よりも慣性回転して高圧段コンプレッサ52の上流側の吸気圧P1が上昇し、高圧段コンプレッサ52の上流側の吸気圧P1と下流側の吸気圧P2との関係が逆転する場合がある。そして、このように高圧段コンプレッサ52の上流側の吸気圧P1と下流側の吸気圧P2との関係が逆転し、上流側の吸気圧P1が下流側の吸気圧P2よりも大となると、高圧段コンプレッサ52が必要以上に回されて高圧段側サージが発生する虞がある。   In the engine 1 configured as described above, sudden deceleration and / or sudden load decrease from a normal operation state in which the intake pressure P1 upstream of the high-pressure compressor 52 is equal to or lower than the intake pressure P2 downstream of the high-pressure compressor 52. (Shut off), the large-pressure low-pressure turbocharger 60 having a large inertia rotates more inertially than the high-pressure turbocharger 50 having a small inertia, and the intake pressure P1 upstream of the high-pressure compressor 52 is increased. In some cases, the relationship between the intake pressure P1 on the upstream side and the intake pressure P2 on the downstream side of the high-pressure compressor 52 is reversed. When the relationship between the upstream intake pressure P1 and the downstream intake pressure P2 of the high-pressure compressor 52 is reversed in this way, and the upstream intake pressure P1 becomes larger than the downstream intake pressure P2, the high pressure There is a possibility that the stage compressor 52 is rotated more than necessary and a high-pressure stage surge occurs.

そこで、このエンジン1では、平常運転状態から急減速、および、または、急負荷減少(遮断)した際に高圧段側サージが発生する虞のある条件である、高圧段コンプレッサ52の下流側の吸気圧P2が上流側の吸気圧P1よりも大となる作動条件が成立する場合に、図2に示すように、低圧段ウェイストゲートバルブWG2を開弁して、高圧段側サージが発生するのを回避する高圧段側サージ回避手段90が備えられている。以下、高圧段側サージ回避手段90について説明を加える。   In view of this, in the engine 1, the suction on the downstream side of the high-pressure stage compressor 52, which is a condition that may cause a high-pressure stage side surge when suddenly decelerating and / or suddenly reducing (cutting off) the load from the normal operation state. When an operating condition is established in which the pressure P2 is greater than the upstream intake pressure P1, the low pressure stage waste gate valve WG2 is opened to generate a high pressure stage surge as shown in FIG. A high-pressure-stage surge avoiding means 90 for avoiding is provided. Hereinafter, the high-pressure stage side surge avoiding means 90 will be described.

(高圧段側サージ回避手段の作動タイミング)
図3は、エンジン1が平常時の運転状態から急減速、および、または、急負荷減少(遮断)した場合の状態の変遷を示す図であり、図中の上段にはエンジン回転数を示し、図中の中段には高圧段コンプレッサ52の下流側の吸気圧P2と上流側の吸気圧P1の関係(P2−P1)を示し、図中の下段には低圧段ウェイストゲートバルブWG2の開閉状態を示している。
(Operation timing of high-pressure stage surge avoidance means)
FIG. 3 is a diagram showing the transition of the state when the engine 1 suddenly decelerates and / or sudden load decreases (cuts off) from the normal operating state, and the upper part of the figure shows the engine speed, The middle stage in the figure shows the relationship (P2-P1) between the intake pressure P2 on the downstream side of the high pressure compressor 52 and the intake pressure P1 on the upstream side, and the lower stage in the figure shows the open / closed state of the low pressure stage waste gate valve WG2. Show.

この図3に示すように、高圧段側サージ回避手段90は、高圧段コンプレッサ52の上流側の吸気圧P1が下流側の吸気圧P2以下(図3中で正(+)側の位置)となる平常運転状態からエンジン1が急減速、および、または、急負荷減少(遮断)し、高圧段コンプレッサ52の上流側の吸気圧P1が下流側の吸気圧P2よりも大(図3中で負(−)側の位置)となる吸気圧関係の逆転が生じて作動条件が成立すると、低圧段ウェイストゲートバルブWG2を自動的に開弁する。   As shown in FIG. 3, the high-pressure stage surge avoiding means 90 is configured such that the upstream side intake pressure P1 of the high-pressure stage compressor 52 is equal to or lower than the downstream side intake pressure P2 (the position on the positive (+) side in FIG. 3). The engine 1 suddenly decelerates and / or sudden load decreases (cuts off) from the normal operating state, and the intake pressure P1 on the upstream side of the high-pressure compressor 52 is greater than the intake pressure P2 on the downstream side (negative in FIG. 3). When a reverse operation of the intake air pressure relation (position on the (−) side) occurs and the operating condition is satisfied, the low pressure stage waste gate valve WG2 is automatically opened.

この低圧段ウェイストゲートバルブWG2の開弁により、低圧段排気バイパス路33にて排気ガスの一部をバイパスさせる形態で低圧段タービン61に流入する排気ガス量を低減し、高圧段側サージの発生の虞のない元の適正な吸気圧関係(上流側の吸気圧P1が下流側の吸気圧P2以下となる関係)に戻す。そして、高圧段側サージ回避手段90は、高圧段側サージの発生の虞のない元の吸気圧関係に戻ると、低圧段ウェイストゲートバルブWG2を自動的に閉弁する。   By opening the low-pressure stage waste gate valve WG2, the amount of exhaust gas flowing into the low-pressure stage turbine 61 is reduced in such a manner that a part of the exhaust gas is bypassed in the low-pressure stage exhaust bypass passage 33, and a high-pressure stage side surge is generated. To the original appropriate intake pressure relationship (a relationship in which the upstream intake pressure P1 is equal to or lower than the downstream intake pressure P2). The high pressure stage side surge avoiding means 90 automatically closes the low pressure stage waste gate valve WG2 when returning to the original intake pressure relationship where there is no possibility of occurrence of the high pressure stage side surge.

(高圧段側サージ回避手段の構成)
図2に示すように、高圧段側サージ回避手段90は、電力を駆動力として低圧段ウェイストゲートバルブWG2に開弁操作力を付与する電動式弁操作機構91、当該電動式弁操作機構の作動を制御するECU40等から構成されている。高圧段側サージ回避手段90は、前記作動条件が成立する場合にECU40から電動式弁操作機構91に作動指令を出力して電動式弁操作機構91を作動させることで、低圧段ウェイストゲートバルブWG2を開弁する。
(Configuration of high pressure stage surge avoidance means)
As shown in FIG. 2, the high-pressure stage side surge avoiding means 90 is an electric valve operating mechanism 91 that applies a valve opening operating force to the low-pressure stage waste gate valve WG2 using electric power as a driving force, and the operation of the electric valve operating mechanism. It is comprised from ECU40 etc. which control this. The high pressure stage side surge avoiding means 90 outputs an operation command from the ECU 40 to the electric valve operating mechanism 91 to operate the electric valve operating mechanism 91 when the operating condition is satisfied, thereby operating the low pressure stage waste gate valve WG2. Open the valve.

吸気路20において、高圧段コンプレッサ52の上流側の吸気圧P1を検出する第1吸気圧センサS1、及び、高圧段コンプレッサ52の下流側の吸気圧P2を検出する第2吸気圧センサS2が備えられている。これらの第1吸気圧センサS1及び第2吸気圧センサS2にて検出した吸気圧P1,P2がECU40に入力されるように構成されている。   In the intake passage 20, a first intake pressure sensor S 1 that detects an intake pressure P 1 upstream of the high pressure compressor 52 and a second intake pressure sensor S 2 that detects an intake pressure P 2 downstream of the high pressure compressor 52 are provided. It has been. The intake pressures P1, P2 detected by the first intake pressure sensor S1 and the second intake pressure sensor S2 are input to the ECU 40.

第1吸気圧センサS1は、吸気路20における低圧段コンプレッサ62と高圧段コンプレッサ52の間の部位、具体的には、低圧段コンプレッサ62の下流側で低圧段コンプレッサ62の近傍の部位に備えられ、当該部位の圧力を高圧段コンプレッサ52の上流側の吸気圧P1として検出する。   The first intake pressure sensor S <b> 1 is provided in the portion of the intake passage 20 between the low pressure compressor 62 and the high pressure compressor 52, specifically, in the vicinity of the low pressure compressor 62 on the downstream side of the low pressure compressor 62. Then, the pressure of the part is detected as the intake pressure P1 on the upstream side of the high-pressure compressor 52.

第2吸気圧センサS2は、吸気路20における高圧段コンプレッサ52の下流側の部位、具体的には、給気マニホールド20Aに備えられ、給気マニホールド20Aの圧力を高圧段コンプレッサ52の下流側の吸気圧P2として検出する。   The second intake pressure sensor S2 is provided on the downstream side of the high-pressure compressor 52 in the intake passage 20, specifically, in the supply manifold 20A, and the pressure of the supply manifold 20A is adjusted downstream of the high-pressure compressor 52. Detected as intake pressure P2.

そして、ECU40は、第1吸気圧センサS1及び第2吸気圧センサS2から入力された上流側の吸気圧P1と下流側の吸気圧P2を比較し、上流側の吸気圧P1が下流側の吸気圧P2よりも大となる前記作動条件が成立すると、低圧段ウェイストゲートバルブWG2に開弁操作力を付与する作動指令を電動式弁操作機構91に出力する。このECU40からの作動指令により電動式弁操作機構91が作動し、低圧段ウェイストゲートバルブWG2が開弁される。
上流側の吸気圧P1が下流側の吸気圧P2以下となり作動条件が成立しなくなると、ECU40から作動指令が出力されなくなり、電動式弁操作機構91が停止して低圧段ウェイストゲートバルブWG2が閉弁される。
Then, the ECU 40 compares the upstream intake pressure P1 input from the first intake pressure sensor S1 and the second intake pressure sensor S2 with the downstream intake pressure P2, and the upstream intake pressure P1 is compared with the downstream intake pressure P2. When the operating condition that is greater than the atmospheric pressure P2 is satisfied, an operating command for applying a valve opening operating force to the low pressure stage waste gate valve WG2 is output to the electric valve operating mechanism 91. The electric valve operating mechanism 91 is operated by the operation command from the ECU 40, and the low-pressure stage waste gate valve WG2 is opened.
When the upstream intake pressure P1 becomes lower than the downstream intake pressure P2 and the operation condition is not satisfied, the operation command is not output from the ECU 40, the electric valve operating mechanism 91 is stopped, and the low pressure stage waste gate valve WG2 is closed. To be spoken.

また、この高圧段側サージ回避手段90は、前記作動条件が成立した場合に、低圧段側の圧力式弁操作機構80の開弁操作力に電動式弁操作機構91の開弁操作力を追加して低圧段ウェイストゲートバルブWG2を開弁可能に構成されている。
このように構成することで、電動式弁操作機構91にて低圧段ウェイストゲートバルブWG2に開弁操作力を付与するための駆動電力を低く抑えることができ、電動式弁操作機構91に駆動電力を供給する電源の小型化を図ることができる。
Further, the high pressure stage side surge avoiding means 90 adds the valve opening operating force of the electric valve operating mechanism 91 to the valve opening operating force of the pressure type valve operating mechanism 80 on the low pressure stage side when the operating condition is satisfied. Thus, the low-pressure stage waste gate valve WG2 can be opened.
With this configuration, the driving power for applying the valve opening operating force to the low-pressure stage waste gate valve WG2 by the electric valve operating mechanism 91 can be kept low, and the electric power is supplied to the electric valve operating mechanism 91. It is possible to reduce the size of the power supply that supplies the power.

図4は、低圧段側の圧力式弁操作機構80及び電動式弁操作機構91を示す図であり、
低圧段ウェイストゲートバルブWG2(図1参照)を閉弁した状態から低圧段側の圧力式弁操作機構80及び電動式弁操作機構91が図中の点線矢印のように作動して低圧段ウェイストゲートバルブWG2を開弁(全開)した状態を示している。
FIG. 4 is a view showing a pressure type valve operating mechanism 80 and an electric valve operating mechanism 91 on the low pressure stage side.
When the low pressure stage waste gate valve WG2 (see FIG. 1) is closed, the pressure type valve operating mechanism 80 and the electric valve operating mechanism 91 on the low pressure stage side are operated as indicated by the dotted arrows in the figure, and the low pressure stage waste gate is operated. A state in which the valve WG2 is opened (fully opened) is shown.

図4に示すように、低圧段ウェイストゲートバルブWG2に操作力を伝達して低圧段ウェイストゲートバルブWG2を開閉する揺動レバー81が備えられている。揺動レバー81は、それの中央側において低圧段ウェイストゲートバルブWG2の作動軸Aに接続されている。
低圧段側の圧力式弁操作機構80は、例えば、揺動レバー81の一端側(図4中の下端側)に配置された圧力式側リンク82を介して、前記揺動レバー81を開弁方向に揺動操作可能なダイアフラム式アクチュエータ等の圧力式アクチュエータ83を備えて構成されている。
As shown in FIG. 4, there is provided a swing lever 81 that transmits an operating force to the low pressure stage waste gate valve WG2 to open and close the low pressure stage waste gate valve WG2. The swing lever 81 is connected to the operating shaft A of the low-pressure stage waste gate valve WG2 on the center side thereof.
The pressure-type valve operating mechanism 80 on the low-pressure stage side opens the swing lever 81 via a pressure-type side link 82 disposed on one end side (the lower end side in FIG. 4) of the swing lever 81, for example. A pressure actuator 83 such as a diaphragm actuator that can be swung in a direction is provided.

このように構成された低圧段側の圧力式弁操作機構80は、低圧段ウェイストゲートバルブWG2を閉弁した状態から、高圧段コンプレッサ52の上流側の吸気圧P1を利用して圧力式アクチュエータ83のロッドで揺動レバー81の一端側を圧力式アクチュエータ83とは反対側(図中点線矢印で示す右側)に押し込むことで、揺動レバー81を図中Rに示す開弁方向に揺動操作し、揺動レバーに接続された作動軸Aを図中Rに示す開弁方向に回転させる。   The pressure type valve operating mechanism 80 on the low pressure stage side configured as described above uses the intake pressure P1 on the upstream side of the high pressure stage compressor 52 from the state where the low pressure stage waste gate valve WG2 is closed, to the pressure type actuator 83. The swing lever 81 is swung in the valve opening direction indicated by R in the figure by pushing one end side of the swing lever 81 into the opposite side of the pressure actuator 83 (the right side indicated by the dotted arrow in the figure). Then, the operating shaft A connected to the swing lever is rotated in the valve opening direction indicated by R in the figure.

これに対して、電動式弁操作機構91は、例えば、作動軸Aを基準に圧力式側リンク82とは反対側となる揺動レバー81の他端側(図4中の上端側)に配置された電動式側リンク92を介して前記揺動レバー81を開弁方向に揺動操作可能な電動式アクチュエータ93を備えて構成されている。   On the other hand, the electric valve operating mechanism 91 is disposed, for example, on the other end side (upper end side in FIG. 4) of the swing lever 81 on the opposite side of the pressure-type side link 82 with respect to the operating axis A. An electric actuator 93 that can swing the swing lever 81 in the valve opening direction via the electrically driven side link 92 is provided.

このように構成された電動式弁操作機構91は、前記作動条件が成立する場合のECU40からの作動指令により、低圧段ウェイストゲートバルブWG2を閉弁した状態から、電動式アクチュエータ93のロッドで揺動レバー81の他端側を電動式アクチュエータ93側(図中点線矢印で示す左側)に引き寄せることで、低圧段側の圧力式弁操作機構80と同じく、揺動レバー81を図中Rに示す開弁方向に揺動操作し、揺動レバーに接続された作動軸Aを図中Rに示す開弁方向に回転させる。
なお、低圧段ウェイストゲートバルブWG2を全開させた図4に示す状態において、電動式弁操作機構91の開弁操作力(電動式リンク92の引き寄せ力)が、作動軸Aと電動式リンク92とを結ぶ線分に対して直角に作用して最大となるように、電動式アクチュエータ93と作動軸Aと電動式リンク92の相対位置が設定されている。
The electric valve operating mechanism 91 configured as described above is swung by the rod of the electric actuator 93 from the state where the low-pressure stage waste gate valve WG2 is closed according to the operation command from the ECU 40 when the operation condition is satisfied. By pulling the other end side of the moving lever 81 toward the electric actuator 93 side (the left side indicated by the dotted line arrow in the figure), the swing lever 81 is indicated by R in the figure as in the pressure type valve operating mechanism 80 on the low pressure stage side. A swing operation is performed in the valve opening direction, and the operating shaft A connected to the swing lever is rotated in the valve opening direction indicated by R in the figure.
In the state shown in FIG. 4 in which the low-pressure stage waste gate valve WG2 is fully opened, the valve opening operating force of the electric valve operating mechanism 91 (the pulling force of the electric link 92) is applied to the operating shaft A and the electric link 92. The relative positions of the electric actuator 93, the operating shaft A, and the electric link 92 are set so as to act at a right angle with respect to the line segment connecting the two.

つまり、前記作動条件が成立する場合に、低圧段ウェイストゲートバルブWG2を閉弁した状態から、低圧段側の圧力式弁操作機構80の圧力式アクチュエータ83で揺動レバー81の一端側を圧力式アクチュエータ83とは反対側に押し込むのに加えて、電動式弁操作機構91の電動式アクチュエータ93で揺動レバー81の他端側を電動式アクチュエータ93側に引き寄せることで、低圧段側の圧力式弁操作機構80の開弁作動力と電動式弁操作機構91の開弁作動力の協働により、揺動レバー81に接続された作動軸Aを図中Rに示す開弁方向に回転させて図4に示す状態にすることができ、低圧段ウェイストゲートバルブWG2を効率良く開弁することができる。
また、この協働時には、揺動レバー81の一端側に押し込み力が作用し、揺動レバー81の他端側に引き寄せ力が作用するので、揺動レバー81の中央側に接続された作動軸Aに負荷される倒れ方向の曲げモーメントが小さくなり、作動軸Aの作動をスムーズにすることができる。
なお、揺動レバー81、圧力式側リンク82、電動側リンク92は、低圧段側の圧力式弁操作機構80と電動式弁操作機構91を連携させる連携機構を構成する。
That is, when the operating condition is satisfied, the pressure actuator 83 of the pressure type valve operating mechanism 80 on the low pressure stage side is used to press the one end side of the swing lever 81 from the state where the low pressure stage waste gate valve WG2 is closed. In addition to pushing to the side opposite to the actuator 83, the electric actuator 93 of the electric valve operating mechanism 91 pulls the other end of the swing lever 81 toward the electric actuator 93, so that the pressure type on the low pressure stage side. By the cooperation of the valve opening operating force of the valve operating mechanism 80 and the valve opening operating force of the electric valve operating mechanism 91, the operating shaft A connected to the swing lever 81 is rotated in the valve opening direction indicated by R in the figure. The state shown in FIG. 4 can be achieved, and the low-pressure stage waste gate valve WG2 can be opened efficiently.
At the time of this cooperation, a pushing force acts on one end side of the swing lever 81 and a pulling force acts on the other end side of the swing lever 81, so that the operating shaft connected to the center side of the swing lever 81 The bending moment in the falling direction applied to A is reduced, and the operation of the operating shaft A can be made smooth.
The swing lever 81, the pressure-type side link 82, and the electric-side link 92 constitute a linkage mechanism that links the low-pressure stage pressure-type valve operation mechanism 80 and the electric valve operation mechanism 91.

次に、図5を参照して、圧力式弁操作機構80と電動式弁操作機構91による低圧段ウェイストゲートバルブWG2の開弁作動について説明する。
図5は、低圧段ウェイストゲートバルブWG2の作動特性を示す図であり、縦軸に低圧段ウェイストゲートバルブWG2に作用する圧力式弁操作機構80の開弁操作力(吸気圧P1による開弁操作圧力)を示し、横軸に低圧段ウェイストゲートバルブWG2のリフト量(開弁作動量)を示している。
図5中、Paは定格運転時の吸気圧P1により低圧段ウェイストゲートバルブWG2に作用する圧力式弁操作機構80の開弁操作力を示し、Pbは低圧段ウェイストゲートバルブWG2の開弁開始時の圧力式弁操作機構80の開弁操作力を示し、Pcは低圧段ウェイストゲートバルブWG2の全開時の圧力式弁操作機構80の開弁操作力を示している。
Next, the opening operation of the low-pressure stage waste gate valve WG2 by the pressure type valve operating mechanism 80 and the electric valve operating mechanism 91 will be described with reference to FIG.
FIG. 5 is a diagram showing the operating characteristics of the low-pressure stage waste gate valve WG2. The valve operating force of the pressure-type valve operating mechanism 80 acting on the low-pressure stage waste gate valve WG2 on the vertical axis (the valve opening operation by the intake pressure P1). Pressure), and the abscissa indicates the lift amount (valve opening operation amount) of the low-pressure stage waste gate valve WG2.
In FIG. 5, Pa indicates the valve opening operating force of the pressure type valve operating mechanism 80 that acts on the low pressure stage waste gate valve WG2 by the intake pressure P1 during rated operation, and Pb indicates when the low pressure stage waste gate valve WG2 starts to open. The valve opening operating force of the pressure type valve operating mechanism 80 is shown, and Pc shows the valve opening operating force of the pressure type valve operating mechanism 80 when the low pressure stage waste gate valve WG2 is fully opened.

図5中の太実線部分に示すとおり、エンジン1の平常時の運転状態等において、低圧段コンプレッサ62の下流側の吸気圧P1が設定吸気圧を超えた場合等には、その吸気圧P1よる圧力式弁操作機構80の開弁操作力が低圧段ウェイストゲートバルブWG2の開弁開始時の開弁操作力Pbよりも大となり、圧力式弁操作機構80の開弁操作力のみで低圧段ウェイストゲートバルブWG2が開弁される。
一方、前記作動条件が成立した場合には、電動式弁操作機構91が作動することにより、図5中の太破線矢印に示すように、圧力式弁操作機構80の開弁操作力が如何なる値であっても、低圧段ウェイストゲートバルブWG2を全開にすることが可能となる。
As shown by the thick solid line portion in FIG. 5, when the intake pressure P1 downstream of the low-pressure compressor 62 exceeds the set intake pressure in the normal operation state of the engine 1, the intake pressure P1 depends on the intake pressure P1. The valve opening operating force of the pressure type valve operating mechanism 80 is larger than the valve opening operating force Pb at the start of opening of the low pressure stage waste gate valve WG2, and only the valve opening operating force of the pressure type valve operating mechanism 80 is low pressure stage waste. The gate valve WG2 is opened.
On the other hand, when the operating condition is satisfied, the electric valve operating mechanism 91 is operated, so that the valve opening operating force of the pressure type valve operating mechanism 80 has any value as shown by the thick broken line arrow in FIG. Even so, the low-pressure stage waste gate valve WG2 can be fully opened.

〔別実施形態〕
(1)前述の実施形態では、エンジン本体10側から二段のターボ過給機50、60を直列に接続して構成されている場合を例に示したが、エンジン本体10側から三段以上のターボ過給機を直列に接続して構成してもよい。
[Another embodiment]
(1) In the above-described embodiment, the case where the two-stage turbochargers 50 and 60 are connected in series from the engine body 10 side is shown as an example. These turbochargers may be connected in series.

(2)前述の実施形態では、共通の揺動レバー81を介して、低圧段側の圧力式弁操作機構80の開弁作動力と電動式弁操作機構91の開弁作動力を低圧段ウェイストゲートバルブWG2の作動軸Aに作用させる場合を例に示したが、別々の揺動レバー等を介して、低圧段側の圧力式弁操作機構80の開弁作動力と電動式弁操作機構91の開弁作動力を低圧段ウェイストゲートバルブWG2の作動軸Aに作用させるように構成してもよく、低圧段側の圧力式弁操作機構80と電動式弁操作機構91を連携させる連携機構の具体的構成は適宜に変更することができる。   (2) In the above-described embodiment, the valve opening operating force of the pressure type valve operating mechanism 80 on the low pressure stage side and the valve opening operating force of the electric valve operating mechanism 91 via the common swing lever 81 are reduced to the low pressure stage waste. Although the case of acting on the operating shaft A of the gate valve WG2 has been shown as an example, the valve opening operating force of the low pressure stage side pressure type valve operating mechanism 80 and the electric valve operating mechanism 91 are provided via separate swing levers or the like. May be configured to act on the operating shaft A of the low-pressure stage wastegate valve WG2, and a linkage mechanism that links the pressure-type valve operating mechanism 80 and the electric valve-operating mechanism 91 on the low-pressure stage side. The specific configuration can be changed as appropriate.

(3)前述の実施形態では、高圧段側サージ回避手段が、電動式弁操作機構91を備えて構成され、前記作動条件が成立する場合に、低圧段の圧力式弁操作機構80の開弁操作力に電動式弁操作機構91の開弁操作力を追加して低圧段ウェイストゲートバルブWG2を開弁可能に構成されている場合を例に示したが、電動式弁操作機構91の開弁操作力単独で低圧段ウェイストゲートバルブWG2を開弁可能に構成されていてもよい。また、高圧段側サージ回避手段は、電動式弁操作機構91に代えて別の方式の弁操作機構を備えて構成されていてもよい。   (3) In the above-described embodiment, the high pressure stage side surge avoiding means is configured to include the electric valve operating mechanism 91, and when the operating condition is satisfied, the valve opening of the low pressure stage pressure type valve operating mechanism 80 is opened. The case where the valve opening operating force of the electric valve operating mechanism 91 is added to the operating force to open the low pressure stage waste gate valve WG2 is shown as an example. The low-pressure stage waste gate valve WG2 may be configured to be openable by operating force alone. Further, the high-pressure stage side surge avoiding means may be configured to include another type of valve operation mechanism instead of the electric valve operation mechanism 91.

10 エンジン本体
33 低圧段排気バイパス路
50 高圧段ターボ過給機
51 高圧段タービン
52 高圧段コンプレッサ
60 低圧段ターボ過給機
61 低圧段タービン
62 低圧段コンプレッサ
80 低圧段側の圧力式弁操作機構
81 揺動レバー
82 圧力式側リンク
83 圧力式アクチュエータ
90 高圧段側サージ回避手段
91 電動式弁操作機構
92 電動側リンク
93 電動式アクチュエータ
P1 吸気圧(高圧段コンプレッサ上流側の吸気圧)
P2 吸気圧(高圧段コンプレッサ下流側の吸気圧)
WG2 低圧段ウェイストゲートバルブ
DESCRIPTION OF SYMBOLS 10 Engine body 33 Low pressure stage exhaust bypass 50 High pressure stage turbocharger 51 High pressure stage turbine 52 High pressure stage compressor 60 Low pressure stage turbocharger 61 Low pressure stage turbine 62 Low pressure stage compressor 80 Pressure type valve operating mechanism 81 on the low pressure stage side Swing lever 82 Pressure-type side link 83 Pressure-type actuator 90 High-pressure stage side surge avoiding means 91 Electric valve operating mechanism 92 Electric-side link 93 Electric actuator P1 Intake pressure (intake pressure on the upstream side of the high-pressure stage compressor)
P2 Intake pressure (Intake pressure downstream of high-pressure stage compressor)
WG2 Low pressure stage waste gate valve

Claims (3)

エンジン本体側から小形側の高圧段ターボ過給機、大形側の低圧段ターボ過給機が直列に接続された多段式ターボ過給システムであって、
前記低圧段ターボ過給機の低圧段タービンをバイパスする低圧段排気パイパス路と、
前記低圧段排気パイパス路を開閉する低圧段ウェイストゲートバルブと、
前記高圧段ターボ過給機の高圧段コンプレッサの上流側の吸気圧が前記高圧段コンプレッサの下流側の吸気圧よりも大となる作動条件が成立する場合に、前記低圧段ウェイストゲートバルブを開弁する高圧段側サージ回避手段と、を備えて構成されている多段式ターボ過給システム。
A multi-stage turbocharger system in which a high-pressure turbocharger on the small side from the engine body side and a low-pressure turbocharger on the large side are connected in series,
A low-pressure stage exhaust bypass that bypasses the low-pressure stage turbine of the low-pressure stage turbocharger;
A low pressure stage waste gate valve that opens and closes the low pressure stage exhaust bypass path;
The low pressure stage waste gate valve is opened when an operating condition is established in which the intake pressure upstream of the high pressure stage compressor of the high pressure turbocharger is greater than the intake pressure downstream of the high pressure stage compressor. And a high-pressure stage surge avoiding means.
前記上流側の吸気圧を駆動力として前記低圧段ウェイストゲートバルブに前記上流側の吸気圧に応じた開弁操作力を付与する圧力式弁操作機構が備えられ、
前記高圧段側サージ回避手段は、電力を駆動力として前記低圧段ウェイストゲートバルブに開弁操作力を付与する電動式弁操作機構を備え、前記作動条件が成立する場合に、前記圧力式弁操作機構の開弁操作力に前記電動式弁操作機構の開弁操作力を追加して前記低圧段ウェイストゲートバルブを開弁可能に構成されている請求項1記載の多段式ターボ過給システム。
A pressure-type valve operating mechanism that applies a valve opening operating force according to the upstream intake pressure to the low pressure stage waste gate valve using the upstream intake pressure as a driving force;
The high-pressure stage side surge avoiding means includes an electric valve operating mechanism that applies a valve-opening operation force to the low-pressure stage waste gate valve using electric power as a driving force, and the pressure-type valve operation is performed when the operating condition is satisfied. The multistage turbocharging system according to claim 1, wherein the low pressure stage waste gate valve is configured to be opened by adding a valve opening operation force of the electric valve operation mechanism to a valve opening operation force of the mechanism.
前記低圧段ウェイストゲートバルブに操作力を伝達して前記低圧段ウェイストゲートバルブを開閉する揺動レバーが備えられ、
前記圧力式弁操作機構は、圧力式側リンクを介して前記揺動レバーを開弁方向に揺動操作可能な圧力式アクチュエータを備えて構成され、
前記電動式弁操作機構は、電動式側リンクを介して前記揺動レバーを開弁方向に揺動操作可能な電動式アクチュエータを備えて構成されている請求項2記載の多段式ターボ過給システム。
A swing lever that transmits operating force to the low-pressure stage wastegate valve to open and close the low-pressure stage wastegate valve is provided,
The pressure type valve operating mechanism includes a pressure type actuator capable of swinging the swing lever in a valve opening direction via a pressure side link,
The multistage turbocharging system according to claim 2, wherein the electric valve operating mechanism includes an electric actuator capable of swinging the swing lever in a valve opening direction via an electric side link. .
JP2017087451A 2017-04-26 2017-04-26 Multi-stage turbocharging system Active JP6785712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017087451A JP6785712B2 (en) 2017-04-26 2017-04-26 Multi-stage turbocharging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017087451A JP6785712B2 (en) 2017-04-26 2017-04-26 Multi-stage turbocharging system

Publications (2)

Publication Number Publication Date
JP2018184902A true JP2018184902A (en) 2018-11-22
JP6785712B2 JP6785712B2 (en) 2020-11-18

Family

ID=64356012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017087451A Active JP6785712B2 (en) 2017-04-26 2017-04-26 Multi-stage turbocharging system

Country Status (1)

Country Link
JP (1) JP6785712B2 (en)

Also Published As

Publication number Publication date
JP6785712B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP4885105B2 (en) Fluid switching valve device, exhaust gas control valve and wastegate valve provided with the same
KR101238385B1 (en) Valve regulation for turbocharger
JP4680472B2 (en) Internal combustion engine-turbosupercharger unit for motor vehicles with turbine power control, in particular industrial vehicles
JP2008528860A (en) Twin charger combustion engine and its operation method
JP2013509526A (en) Control method for engine
JP5728943B2 (en) Turbo system and switchable two-stage turbocharger turbo system
JP6785712B2 (en) Multi-stage turbocharging system
JPS60169630A (en) Supercharger for internal-combustion engine
JPH01285619A (en) Engine with supercharger
JPS60166716A (en) Supercharger selective operating method for diesel engine
JPH02112618A (en) Supercharge pressure control device for twin turbo engine
JP5894727B2 (en) Supercharger with supercharge assist
JP2008133808A (en) Multistage supercharged turbo engine
JPH0299723A (en) Supercharging control device for two-stage turbo engine
JP5682163B2 (en) Supercharging device with supercharging assistance and discharge control valve
JP3738653B2 (en) Series two-stage turbocharging system
US10995658B2 (en) Exhaust gas turbocharger system for a multi-row internal combustion engine and method for operating an exhaust gas turbocharger system
JPH0736096Y2 (en) Supercharging pressure controller for 2-stage turbocharged engine
JPH0666151A (en) Supercharger for internal combustion engine
JPH0454222A (en) Control device for engine
JPS61190124A (en) Supercharger of engine
JPH0326826A (en) Supercharger for engine and device therefor
JPS614826A (en) Intake controller for engine associated with supercharger
JPH04347331A (en) Two-stage turbosupercharger
JPS61291728A (en) 2-step type supercharging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200814

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R150 Certificate of patent or registration of utility model

Ref document number: 6785712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150