JPH0299723A - Supercharging control device for two-stage turbo engine - Google Patents

Supercharging control device for two-stage turbo engine

Info

Publication number
JPH0299723A
JPH0299723A JP63250928A JP25092888A JPH0299723A JP H0299723 A JPH0299723 A JP H0299723A JP 63250928 A JP63250928 A JP 63250928A JP 25092888 A JP25092888 A JP 25092888A JP H0299723 A JPH0299723 A JP H0299723A
Authority
JP
Japan
Prior art keywords
pressure
supercharging
stage
outlet side
exhaust bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63250928A
Other languages
Japanese (ja)
Other versions
JP2522359B2 (en
Inventor
Shinobu Ishiyama
忍 石山
Teruo Kumai
熊井 照男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63250928A priority Critical patent/JP2522359B2/en
Priority to US07/415,918 priority patent/US5063744A/en
Priority to DE3933518A priority patent/DE3933518C2/en
Publication of JPH0299723A publication Critical patent/JPH0299723A/en
Application granted granted Critical
Publication of JP2522359B2 publication Critical patent/JP2522359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • F02B37/186Arrangements of actuators or linkage for bypass valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To perform smoothly and securely the switching from the two-stage supercharging condition to the one-stage supercharging condition while maintaining the high supercharging efficiency by providing a valve for switching to various stages in response to the supercharging pressure, in an exhaust bypass passage for deturning an exhaust turbine of a high-pressure stage turbo charger. CONSTITUTION:An exhaust bypass valve 24 switchable to various stages in response to the respective outlet side supercharging pressure of a high-pressure stage compressor 6 and a low-pressure stage compressor 5 is provide din an exhaust bypass passage 14 for deturning a high-pressure stage turbine 4. The exhaust bypass valve 24 is controlled by an exhaust bypass valve driving device 34 so as to open in response to only the outlet side supercharging pressure of the high-pressure stage compressor 6 when the outlet side supercharging pressure of the low-pressure stage compressor 5 is less than the predetermined, and so as to fully open immediately when the outlet side supercharging pressure of the low-pressure stage compressor 5 attains to the predetermined value. Thereby, since the exhausted gas flows through the exhaust bypass passage 14 and deturns the high-pressure stage turbine 4, a high-pressure stage turbo charger becomes the non-supercharging condition and is switched to the one-stage supercharging condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二基のターボチャージャを備え二段に亘って
過給を行わせるようにした二段ターボエンジンの過給制
御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a supercharging control device for a two-stage turbo engine that is equipped with two turbochargers and performs supercharging over two stages.

〔従来の技術〕[Conventional technology]

出力及び燃費向上が益々要求される車両用エンジン等に
あっては、ターボチャージャを付設することにより燃焼
条件の改善が図れそして極めて効果があることから、更
に高過給を低速域から高速域までの広範囲に亘って得る
ために二基のターボチャージャを直列に接続して過給を
行う二段ターボエンジンが実用化されている。
For vehicle engines that are increasingly required to improve output and fuel efficiency, installing a turbocharger can improve combustion conditions and is extremely effective, so even higher supercharging is required from low speed ranges to high speed ranges. In order to obtain a wide range of power, two-stage turbo engines have been put into practical use, in which two turbochargers are connected in series for supercharging.

しかしながら、単にターボチャージャを組み合わせただ
けでは運転状況の変化等によって相互に悪影響を及ぼし
合う場合があるため、低速域では小容量の高圧段ターボ
チャージャと大容量の低圧段ターボチャージャとを共に
作動させ、高速域では大容量の低圧段ターボチャージャ
のみ作動させるように、夫々のターボチャージャの特性
を考慮して適切に使い分けることによりかかる不都合の
改善を図っている(特開昭50−129815号、特開
昭59〜82526号公報参照)。
However, simply combining turbochargers may have an adverse effect on each other due to changes in operating conditions, so in low speed ranges, a small-capacity high-pressure turbocharger and a large-capacity low-pressure turbocharger must be operated together. In order to operate only the large-capacity, low-pressure stage turbocharger in the high-speed range, this inconvenience is improved by considering the characteristics of each turbocharger and using them appropriately (Japanese Patent Application Laid-open No. 129815/1983, (Refer to Japanese Patent Application No. 1982-82526).

ところで、この二段過給から一段過給への切り替えは、
小容量の高圧段ターボチャージャの排気タービンを迂回
するバイパス通路に、この高圧段ターボチャージャのコ
ンプレッサ出口側の過給圧に応動する排気バイパス弁を
設け、これを全開することにより行うのが一般的である
。また、応動性に優れると共に安価であり且つ簡易であ
る等という車両搭載上の様々な要求からこの排気バイパ
ス弁はばねを内蔵した圧力作動式のアクチュエータによ
り開閉駆動されるのが一般的であり、従ってこの駆動系
のばね定数で一元的に定まるリニアな開弁特性を有する
ことになる。
By the way, switching from two-stage supercharging to one-stage supercharging is
This is generally done by installing an exhaust bypass valve that responds to the boost pressure on the compressor outlet side of the high-pressure turbocharger in the bypass passage that bypasses the exhaust turbine of the small-capacity high-pressure turbocharger, and opening this valve fully. It is. In addition, due to various requirements for mounting on vehicles, such as excellent responsiveness, low cost, and simplicity, the exhaust bypass valve is generally driven to open and close by a pressure-operated actuator with a built-in spring. Therefore, it has a linear valve opening characteristic that is centrally determined by the spring constant of this drive system.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の従来の二段ターボエンジンにおいては、
低圧段コンプレッサ出口側の過給圧が目標過給圧となっ
たときに二段過給から一段過給に切り替わる、すなわち
排気バイパス弁が全開となるように、上記のリニアな開
弁特性を有する駆動アクチュエータを所定に設定すると
、このリニアな特性によって第7図に破線で示すように
インクセブト点(A′)が下がり過給圧が全般的に低下
してしまうという問題がある。
However, in the conventional two-stage turbo engine mentioned above,
It has the above-mentioned linear valve opening characteristic so that when the boost pressure on the outlet side of the low-pressure compressor reaches the target boost pressure, it switches from two-stage supercharging to single-stage supercharging, that is, the exhaust bypass valve is fully open. When the drive actuator is set to a predetermined value, there is a problem that due to this linear characteristic, the ink set point (A') is lowered as shown by the broken line in FIG. 7, and the supercharging pressure is lowered overall.

一方、インクセブト点がこれより高くなるように設定す
ると過給切り替え前の低速域における過給圧を全体的に
上昇させることはできるものの、中・高速域における過
給切替時(B点)において排気バイパス弁が確実に全開
状態とならないために高圧段ターボチャージャがその有
効作動範囲を越えてなおも回転し続けその後に過給が切
り替わるという事態となってしまう。このため高圧段タ
ーボチャージャの耐用寿命の点から、そしてこの高圧段
ターボチャージャの余分な回転に起因する背圧上昇によ
り低圧段のターボチャージャに無用の負荷を与えるとい
う点から好ましくない。
On the other hand, if the ink set point is set higher than this, it is possible to increase the overall supercharging pressure in the low speed range before switching to supercharging, but when switching to supercharging in the middle and high speed ranges (point B) Since the bypass valve is not reliably fully opened, the high-pressure turbocharger continues to rotate beyond its effective operating range, resulting in a situation in which supercharging is then switched. This is undesirable from the viewpoint of the service life of the high-pressure stage turbocharger, and from the viewpoint of giving an unnecessary load to the low-pressure stage turbocharger due to an increase in back pressure caused by the extra rotation of the high-pressure stage turbocharger.

以上の点に鑑み本発明においては、インクセブト点を高
(設定でき、従って低速域でも全般的に高い過給効率を
維持できると共に、二段過給状態から一段過給状態への
切り替えが円滑且つ確実に行われそしてターボチャージ
ャ相互に無用の負荷を及ぼすことがない、従って出力性
能及び燃費等の向上が図れる二段ターボエンジンの過給
制御装置を提供することを課題とする。
In view of the above points, in the present invention, the ink set point can be set to a high level, so that overall high supercharging efficiency can be maintained even in the low speed range, and the switching from the two-stage supercharging state to the single-stage supercharging state is smooth. It is an object of the present invention to provide a supercharging control device for a two-stage turbo engine that can perform supercharging reliably and do not impose unnecessary loads on each other, thereby improving output performance, fuel efficiency, etc.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために本発明によれば、吸入空気を
過給する低圧段ターボチャージャと、該低圧段ターボチ
ャージャで過給された空気を更に過給してエンジンに送
る高圧段ターボチャージャとを有する二段ターボエンジ
ンにおいて、上記高圧段ターボチャージャの排気タービ
ンを迂回する排気バイパス通路に、上記高圧段及び低圧
段ターボチャージャのコンプレッサ出口側のそれぞれの
過給圧に応動し多段に開閉し得る排気バイパス弁を設け
、上記排気バイパス弁は上記低圧段ターボチャージャの
コンプレッサ出口側の過給圧が所定値以下のときは上記
高圧段ターボチャージャのコンプレッサ出口側の過給圧
のみに応動して開弁じ、上記低圧段ターボチャージャの
コンプレッサ出口側の過給圧が所定圧に達したときには
直ちに全開するようにしたことを構成上の特徴とする二
段ターボエンジンの過給制御装置が提供される。
In order to solve the above problems, the present invention provides a low-pressure turbocharger that supercharges intake air, and a high-pressure turbocharger that further supercharges the air supercharged by the low-pressure turbocharger and sends it to the engine. In the two-stage turbo engine, an exhaust bypass passage that bypasses the exhaust turbine of the high-pressure turbocharger can be opened and closed in multiple stages in response to respective supercharging pressures on the compressor outlet side of the high-pressure stage and low-pressure stage turbochargers. An exhaust bypass valve is provided, and the exhaust bypass valve opens only in response to the boost pressure on the compressor outlet side of the high pressure turbocharger when the boost pressure on the compressor outlet side of the low pressure turbocharger is below a predetermined value. There is provided a supercharging control device for a two-stage turbo engine, characterized in that the valve is fully opened as soon as the supercharging pressure on the compressor outlet side of the low-pressure turbocharger reaches a predetermined pressure.

〔作 用〕[For production]

低圧段ターボチャージャのコンプレッサ出口側の過給圧
が所定圧に達すると、高圧段ターボチャージャの排気タ
ービンを迂回する排気バイパス通路に設けた排気バイパ
ス弁が直ちに全開する。これにより排気ガスはこの排気
バイパス通路を流れ高圧段の排気タービンを迂回するた
め高圧段ターボチャージャが非過給状態となる、すなわ
ち二段過給状態から一段過給状態への切り替えが円滑か
つ確実に行われる。
When the supercharging pressure on the compressor outlet side of the low-pressure turbocharger reaches a predetermined pressure, an exhaust bypass valve provided in an exhaust bypass passage that bypasses the exhaust turbine of the high-pressure turbocharger immediately opens fully. As a result, the exhaust gas flows through this exhaust bypass passage and bypasses the high-pressure stage exhaust turbine, so the high-pressure stage turbocharger becomes non-supercharged. In other words, the transition from the two-stage supercharging state to the single-stage supercharging state is smooth and reliable. It will be held on.

〔実施例〕 以下、図示実施例に基づき本発明を説明する。〔Example〕 The present invention will be explained below based on illustrated embodiments.

第1図は本発明に係る二段ターボエンジンの過給制御装
置の一実施例の全体概略構成図であり、エンジン1の排
気通路2には直列に低圧段の大容量タービン3及び高圧
段の小容量タービン4が設けられ、これらのタービン3
.4により夫々駆動される低圧段の大容量コンプレッサ
5及び高圧段の小容量コンプレッサ6が吸気通路7に介
装される。8は昇温した過給気を冷却するためのインタ
ーターラである。また、低圧段及び高圧段のタービン3
.4を夫々迂回する排気バイパス通路13゜14が設け
られる。高圧段側の排気バイパス通路13には第1圧力
作動室33aが大気に開放され第2圧力作動室33bが
低圧段コンプレッサ5の出口側に連通されたアクチュエ
ータ33により駆動されるいわゆるウェイストゲートバ
ルブ23が配設される。高圧段側の排気バイパス通路1
4には本発明の要部を成す排気バイパス弁駆動装置34
により駆動される排気バイパス弁24が配設される。
FIG. 1 is an overall schematic configuration diagram of an embodiment of a supercharging control device for a two-stage turbo engine according to the present invention, in which an exhaust passage 2 of an engine 1 is connected in series with a large-capacity turbine 3 of a low-pressure stage and a high-pressure stage of a high-capacity turbine 3. Small capacity turbines 4 are provided, these turbines 3
.. A large capacity compressor 5 at a low pressure stage and a small capacity compressor 6 at a high pressure stage are interposed in the intake passage 7, respectively driven by the compressors 4 and 4. Reference numeral 8 is an interthaler for cooling the heated supercharged air. In addition, the turbine 3 of the low pressure stage and high pressure stage
.. Exhaust bypass passages 13 and 14 are provided to bypass the exhaust gases 4 and 4, respectively. A so-called waste gate valve 23 is driven by an actuator 33 in which a first pressure working chamber 33a is open to the atmosphere and a second pressure working chamber 33b is communicated with the outlet side of the low pressure stage compressor 5 in the exhaust bypass passage 13 on the high pressure stage side. will be placed. High pressure stage side exhaust bypass passage 1
4 is an exhaust bypass valve driving device 34 which is a main part of the present invention.
An exhaust bypass valve 24 is provided which is driven by.

この駆動装置34についての詳細は後述する。The details of this drive device 34 will be described later.

一方、コンプレッサ側には高圧段コンプレッサ6を迂回
する吸気バイパス通路16が設けられ、このバイパス通
路16には吸気バイパス弁26が配設される。吸気バイ
パス弁26は切頭円錐状のプラグ26aとこのプラグ2
6aの斜面と係合する孔26bが形成された仕切部26
cとを有し、このプラグ26aはアクチュエータ36に
よりバイパス流れ方向に往復移動自在である。アクチエ
エータ36は第1及び第2圧力作動室36a、36bを
有する。
On the other hand, an intake bypass passage 16 that bypasses the high-pressure compressor 6 is provided on the compressor side, and an intake bypass valve 26 is disposed in this bypass passage 16. The intake bypass valve 26 includes a truncated conical plug 26a and this plug 2.
Partition part 26 in which a hole 26b that engages with the slope of 6a is formed.
c, and this plug 26a is reciprocally movable in the bypass flow direction by an actuator 36. The actuator 36 has first and second pressure working chambers 36a, 36b.

アクチュエータ36の第1圧力作動室36aと低圧段コ
ンプレッサ5の出口側とを連通ずる第1の通路9には電
磁式の三方弁17が介装される。三方弁17は励磁され
ていないときには例えば白抜きのボート位置をとるよう
に設定でき、このとき第1圧力作動室36aは大気に開
放されるかあるいは負圧源(例えば、吸気マニホルドま
たは吸気管の吸気負圧領域あるいはバキュームポンプ)
に連通され、他方励磁されているときには黒塗りのボー
ト位置をとり第1圧力作動室36aは低圧段コンプレッ
サ5の出口側に連通される。
An electromagnetic three-way valve 17 is interposed in the first passage 9 that communicates the first pressure working chamber 36a of the actuator 36 with the outlet side of the low-pressure compressor 5. When the three-way valve 17 is not energized, it can be set, for example, to assume the white boat position, in which case the first pressure-operating chamber 36a is either open to the atmosphere or connected to a negative pressure source (for example, an intake manifold or intake pipe). (intake negative pressure area or vacuum pump)
On the other hand, when it is energized, it assumes the black boat position and the first pressure working chamber 36a is communicated with the outlet side of the low pressure stage compressor 5.

また、アクチュエータ36の第2圧力作動室36bは第
2の通路10を介して高圧段コンプレッサ6の出口側に
連通され、この通路10には電磁式の三方弁18が介装
される。三方弁18は励磁されていないときには例えば
白抜きのボート位置をとるように設定でき、このとき第
2圧力作動室36bは大気に開放され、他方励磁されて
いるときには黒塗りのボート位置をとり第2圧力作動室
36bは高圧段コンプレツナ6の出口側に連通される。
Further, the second pressure operating chamber 36b of the actuator 36 is communicated with the outlet side of the high-pressure stage compressor 6 via a second passage 10, and an electromagnetic three-way valve 18 is interposed in this passage 10. When the three-way valve 18 is not energized, it can be set to take, for example, a white boat position, at which time the second pressure operating chamber 36b is open to the atmosphere, and on the other hand, when it is energized, it takes a black boat position. The two-pressure working chamber 36b is communicated with the outlet side of the high-pressure compressor 6.

さらに、低圧段コンプレッサ5の出口側の過給圧P5と
高圧段コンプレッサ6の出口側の過給圧P、との圧力の
大小を検出するために例えば圧力平衡式の差圧計41が
設けられ、差圧計41からは過給圧P、及びP6が一致
あるいはいずれが大(または小)であるか等の信号S!
fiが出力され、この信号St。は制御コンピュータ5
Iに入力される。ここで、差圧計41に代えて、過給圧
P、及びP、の絶対値を測定する別個の例えば圧電式の
圧力計(図示せず)を設け、それらからのアナログ信号
に基づきA/Dコンバータ(図示せず)を介して制御コ
ンピュータ51内で比較・演算処理する形式でも一向に
差しつかえない。なお、前述した三方弁17及び18は
制御コンピュータ51からの出力制御信号S、及びS8
により夫々別個に制御される。
Further, in order to detect the magnitude of the pressure between the supercharging pressure P5 on the outlet side of the low-pressure stage compressor 5 and the supercharging pressure P on the outlet side of the high-pressure stage compressor 6, for example, a pressure balanced differential pressure gauge 41 is provided, A signal S from the differential pressure gauge 41 indicates whether the supercharging pressures P and P6 match or which one is larger (or smaller)!
fi is output, and this signal St. is control computer 5
It is input to I. Here, in place of the differential pressure gauge 41, separate, for example, piezoelectric pressure gauges (not shown) for measuring the absolute values of supercharging pressure P and P are provided, and based on the analog signals from these pressure gauges, the A/D There is no problem in a format in which comparison and arithmetic processing are performed within the control computer 51 via a converter (not shown). Note that the aforementioned three-way valves 17 and 18 receive output control signals S and S8 from the control computer 51.
Each is controlled separately.

ここで先に触れた本発明の要部を成す排気バイパス弁2
4を駆動する装置について詳細に説明すると、第21図
はこの排気バイパス弁駆動装置34の第一の実施例の縦
断図面である。第1の圧力作動室61は通路11を介し
て高圧段コンプレッサ6の出口側に連通されており、従
ってこの過給圧P、に応じてフランジ62ひいてはこの
フランジ62に連結されたロッド63が圧縮ばね64の
付勢力に杓ち勝ちながら図では左方向に変位する。
Exhaust bypass valve 2, which forms the main part of the present invention mentioned earlier
4 will be described in detail. FIG. 21 is a longitudinal sectional view of a first embodiment of this exhaust bypass valve driving device 34. The first pressure working chamber 61 is communicated with the outlet side of the high-pressure compressor 6 via the passage 11, and therefore, the flange 62 and the rod 63 connected to the flange 62 are compressed in response to the boost pressure P. It is displaced to the left in the figure while overcoming the biasing force of the spring 64.

このとき耐熱性のある例えば金属製のダイヤフラム65
等により第1圧力作動室61から気密的に隔離されたダ
イヤフラム室66内の空気は、その大部分がロッド63
とこれが貫通する胴部67の穴との隙間、そして胴部6
7のこの穴に形成した内周溝68及びこの内周溝から外
部に延びる通路69を介して大気に開放される。
At this time, a heat-resistant diaphragm 65 made of, for example, metal
Most of the air in the diaphragm chamber 66, which is airtightly isolated from the first pressure operating chamber 61 by the rod 63, is
and the hole in the body 67 through which it passes, and the body 6
It is opened to the atmosphere through an inner circumferential groove 68 formed in this hole of No. 7 and a passage 69 extending outside from this inner circumferential groove.

本駆動装置34は、このような第1の駆動構造に加えて
、さらに次のような第2の駆動構造を有する。すなわち
、第2の圧力作動室71が設けられ、この第2圧力作動
室71は通路12を介して低圧段コンプレッサ5の出口
側に連通される。この通路12内には電磁式の三方弁1
9(第1図参照)が介装され、例えば三方弁19の非励
磁時には第2圧力作動室71を大気開放し、励磁時には
第2圧力作動室71に低圧段コンプレッサ5出口側の過
給圧P、が作用し得るようになっている。
In addition to such a first drive structure, the present drive device 34 further has the following second drive structure. That is, a second pressure working chamber 71 is provided, and this second pressure working chamber 71 is communicated with the outlet side of the low pressure stage compressor 5 via the passage 12. Inside this passage 12 is an electromagnetic three-way valve 1.
For example, when the three-way valve 19 is de-energized, the second pressure working chamber 71 is opened to the atmosphere, and when it is energized, the second pressure working chamber 71 is supplied with supercharging pressure on the outlet side of the low-pressure compressor 5. P, can act.

従って、第1圧力作動室61内に所定の過給圧P、が作
用しロッド63が変位してロッド63上に設けた突起部
63aが例えば図示破線位置Aに移動している場合に、
三方弁19が切り替わり第2圧力作動室71に過給圧P
5が作用すると、耐熱性の例えば金属製のダイヤフラム
75と共にダイヤフラム室76を第2圧力作動室71か
ら気密的に隔離するフランジ72はロッド63上を摺動
する。そして破線位置Aにあるロッド63の突起部63
aと斜面係合しさらに突起部63aを図示破線位iBま
で移動させる、すなわちロッド63が移動することにな
る。このときダイヤフラム室76内の空気はロッド63
とこれが貫通するキャップ77の穴との隙間から大気に
開放される。なお、第2圧力作動室71内の正圧空気は
その極く一部がロッド63とこれが貫通する胴部67の
穴との隙間から漏出するが、それらはロッド63を戻し
方向に作用させるダイヤフラム室66に流入する前に内
周溝68及び通路69を介して大気開放されるため特に
不都合は生じない。
Therefore, when a predetermined supercharging pressure P acts in the first pressure working chamber 61, the rod 63 is displaced, and the protrusion 63a provided on the rod 63 is moved, for example, to the position A shown in the broken line.
The three-way valve 19 switches and the supercharging pressure P is applied to the second pressure working chamber 71.
5, the flange 72, which together with a heat-resistant, e.g. metallic diaphragm 75, hermetically isolates the diaphragm chamber 76 from the second pressure working chamber 71 slides on the rod 63. And the protrusion 63 of the rod 63 located at the broken line position A
a and the protrusion 63a is further moved to the broken line position iB in the figure, that is, the rod 63 is moved. At this time, the air inside the diaphragm chamber 76 is
It is exposed to the atmosphere through a gap between the cap 77 and the hole in the cap 77 through which it passes. Note that a small portion of the positive pressure air in the second pressure operating chamber 71 leaks from the gap between the rod 63 and the hole in the body 67 through which it passes, but this leaks out from the diaphragm that acts on the rod 63 in the return direction. Since the air is exposed to the atmosphere through the inner circumferential groove 68 and the passage 69 before flowing into the chamber 66, no particular inconvenience occurs.

以上のように、本実施例の駆動構造によれば、第1圧力
作動室61内に高圧段コンプレッサ6出口側過給圧P、
を作用させることにより、この圧力に応じてロッド63
をリニアに移動させることができ、従ってこのロッド6
3により図示しないリンク機構を介して排気バイパス弁
24の開度が一元的に制御される。そして、三方弁19
を介して第2圧力作動室71に正圧、例えば低圧段コン
プレッサ5出口側過給圧P5を作用させることにより排
気バイパス弁24の開度を二元的に制御できる。すなわ
ち、低圧段コンプレッサ5出口側過給圧P、が所定圧に
達する前までは高圧段コンプレッサ6の出口側過給圧P
6に応動して排気バイパス弁24の開度を制御し、過給
圧P、が所定圧に達した時点では栄、速に排気バイパス
弁24を全開させる、というような二段階的な弁制御が
可能となる。
As described above, according to the drive structure of this embodiment, the high pressure stage compressor 6 outlet side supercharging pressure P,
By applying this pressure, the rod 63
can be moved linearly, so this rod 6
3, the opening degree of the exhaust bypass valve 24 is centrally controlled via a link mechanism (not shown). And three-way valve 19
The opening degree of the exhaust bypass valve 24 can be controlled dually by applying a positive pressure, for example, the supercharging pressure P5 on the outlet side of the low pressure stage compressor 5, to the second pressure working chamber 71 via the second pressure operating chamber 71. That is, until the supercharging pressure P on the outlet side of the low pressure stage compressor 5 reaches the predetermined pressure, the supercharging pressure P on the outlet side of the high pressure stage compressor 6
6, and when the supercharging pressure P reaches a predetermined pressure, the exhaust bypass valve 24 is immediately fully opened. becomes possible.

次に、排気バイパス弁24を駆動する装置の第二の実施
例について説明する。第3図を参照すると、第1の圧力
作動室81及び第2の圧力作動室91は通路11及び1
2を介してそれぞれ高圧段コンプレッサ6出口側及び低
圧段コンプレッサ5出口側に連通され、通路12内に三
方弁19が介装されるのは前記第一実施例と同様である
(第1図参照)。
Next, a second embodiment of the device for driving the exhaust bypass valve 24 will be described. Referring to FIG. 3, the first pressure working chamber 81 and the second pressure working chamber 91 are connected to passages 11 and 1.
2 to the outlet side of the high-pressure stage compressor 6 and the outlet side of the low-pressure stage compressor 5, respectively, and a three-way valve 19 is interposed in the passage 12, as in the first embodiment (see Fig. 1). ).

耐熱性のベローズ85 、95により第1圧力作動室8
1及び第2圧力作動室91からそれぞれ気密的に隔離さ
れたベローズ室86 、96内には圧縮ばね84゜94
がそれぞれ配置され、ベローズ85 、95を図では右
方向に付勢している。ベローズ85はフランジ82等と
共にピストンロッド83に一体移動自在に連結され、同
様にベローズ95はフランジ92等と共にロッド93に
一体移動自在に連結される。
The first pressure working chamber 8 is formed by heat-resistant bellows 85 and 95.
Compression springs 84 and 94 are installed in bellows chambers 86 and 96, which are airtightly isolated from the first and second pressure working chambers 91, respectively.
are respectively arranged to urge the bellows 85 and 95 to the right in the figure. The bellows 85 is integrally movably connected to the piston rod 83 together with the flange 82 etc. Similarly, the bellows 95 is integrally movably connected to the rod 93 together with the flange 92 etc.

このロッド93は図示しないリンク機構を介して排気バ
イパス弁24に連結されている。
This rod 93 is connected to the exhaust bypass valve 24 via a link mechanism (not shown).

従って、第1圧力作動室81内に所定の高圧段コンプレ
ッサ6出口側の過給圧P、が作用しピストンロッド83
が移動すると、このピストンロッド83の先端部が第2
圧力作動室91内のフランジ92に当接しこれを押圧す
るためロッド93も同様に移動することとなる。このと
きばね84 、94を共に圧縮させるため(ばね84 
、94のばね定数をそれぞれに+  1kgとすると、
共に圧縮させる場合、(kI十に2)のばね定数を有す
るばねを圧縮するのに等しい)、排気バイパス弁24を
開閉させるには相当なる過給圧P6が必要である。また
、このときベローズ室86内の空気はピストンロッド8
3とこれが貫通する基部87の穴との隙間から第2圧力
作動室91を通って大気開放される。
Therefore, a predetermined supercharging pressure P on the outlet side of the high pressure stage compressor 6 acts in the first pressure working chamber 81, and the piston rod 83
When the piston rod 83 moves, the tip of the piston rod 83 moves to the second position.
The rod 93 also moves in the same way to come into contact with and press the flange 92 in the pressure working chamber 91. At this time, in order to compress both springs 84 and 94 (spring 84
, 94 spring constants are each +1 kg, then
If both are compressed, a considerable boost pressure P6 is required to open and close the exhaust bypass valve 24 (equivalent to compressing a spring with a spring constant of kI + 2). Also, at this time, the air in the bellows chamber 86 is removed from the piston rod 8.
3 and the hole in the base 87 through which it passes, the second pressure working chamber 91 is opened to the atmosphere.

同様に、ベローズ室96内の空気はロッド93とこれが
貫通する支持部97の穴との隙間から大気開放される。
Similarly, the air in the bellows chamber 96 is released to the atmosphere through the gap between the rod 93 and the hole in the support portion 97 through which it passes.

このように所定の高圧段コンプレッサ出口側の過給圧P
6が第1圧力作動室81に作用し、ピストンロッド83
ひいてはロッド93が所定量移動している場合に、三方
弁19が切り替わり第2圧力作動室91に過給圧P、が
作用すると、フランジ92、ベローズ95そしてロッド
93がさらに前進することになる。このとき実質的に圧
縮するのばばね定数に2のばね94のみである。また、
このときフランジ82、ベローズ85、ソシテピストン
ロッド83はロッド93の前進に対し追従して前進する
が、第2圧力作動室91内の正圧の空気がピストンロッ
ド83とこれが貫通する基部87の穴との隙間からベロ
ーズ室86内に流入してピストンロッド83の戻り方向
に作用するためピストンロッド83は後退するようにな
る。しかしながら、この動きはロッド93ひいては排気
バイパス弁24の作動に影響するものではなく、特に不
都合はない。
In this way, the supercharging pressure P on the outlet side of the high pressure stage compressor is
6 acts on the first pressure working chamber 81, and the piston rod 83
Furthermore, when the rod 93 has moved by a predetermined amount, when the three-way valve 19 is switched and supercharging pressure P is applied to the second pressure working chamber 91, the flange 92, bellows 95, and rod 93 will move further. At this time, only the spring 94 with a spring constant of 2 is substantially compressed. Also,
At this time, the flange 82, bellows 85, and piston rod 83 move forward following the movement of the rod 93, but the positive pressure air in the second pressure working chamber 91 flows through the piston rod 83 and the hole in the base 87 through which it passes. It flows into the bellows chamber 86 through the gap between the piston rod 83 and acts in the return direction of the piston rod 83, causing the piston rod 83 to retreat. However, this movement does not affect the operation of the rod 93 or the exhaust bypass valve 24, and there is no particular disadvantage.

以上のように、本実施例の駆動構造によれば第1圧力作
動室81内に高圧段コンプレッサ6出口側過給圧P、を
作用させることにより、この圧力に応じてピストンロッ
ド83ひいてはロッド93をリニアに移動させることが
でき(このときの駆動系のばね定数は(kl+ kz)
である)、従って排気バイパス弁24の開度が一元的に
制御される。
As described above, according to the drive structure of this embodiment, by applying the supercharging pressure P on the outlet side of the high pressure stage compressor 6 in the first pressure working chamber 81, the piston rod 83 and the rod 93 can be moved linearly (the spring constant of the drive system at this time is (kl + kz)
), therefore, the opening degree of the exhaust bypass valve 24 is centrally controlled.

そして、三方弁19を介して第2圧力作動室91に正圧
、例えば低圧段コンプレッサ5出口側過給圧P、を作用
させることにより、ピストンロッド83の動きに左右さ
れずにロッド93をより迅速に移動させることができる
(このときの駆動系のばね定数はに、となる)。すなわ
ち、例えばばね94のばね定数に2を予めばね84より
も比較的小さく設定しておくことにより、低圧段コンプ
レッサ5の出口側過給圧P5が所定値に達する前までは
高圧段コンプレッサ6出口側過給圧P6に応動して排気
バイパス24の開度を制御し、過給圧P、が所定圧に達
した時点では急速に排気バイパス弁24を全開させる、
というように前記第1実施例の駆動構造と同様な二段階
的な弁制御が可能となる。
By applying positive pressure, for example, the supercharging pressure P on the outlet side of the low-pressure compressor 5, to the second pressure working chamber 91 via the three-way valve 19, the rod 93 can be moved further without being affected by the movement of the piston rod 83. It can be moved quickly (the spring constant of the drive system at this time is ). That is, for example, by setting the spring constant of the spring 94 to 2 in advance to be relatively smaller than that of the spring 84, the high-pressure compressor 6 outlet is closed until the outlet-side supercharging pressure P5 of the low-pressure compressor 5 reaches a predetermined value. The opening degree of the exhaust bypass 24 is controlled in response to the side boost pressure P6, and when the boost pressure P reaches a predetermined pressure, the exhaust bypass valve 24 is rapidly fully opened.
In this way, two-stage valve control similar to the drive structure of the first embodiment is possible.

次に、排気バイパス弁24を駆動する装置の第三の実施
例について説明する。第4図を参照するに、本実施例に
おいては前記第1及び第2実施例の複動的構造とは異な
り一般的な単動のアクチュエータを用いこれをいわゆる
デユーティ制御nすることにより前記実施例と同様に排
気バイパス弁24を多段階的に開弁制御しようとするも
のである。すなわち、アクチュエータ44の第1圧力作
動室44aを通路21を介して高圧段コンプレッサ6出
口側に連通し、この通路21内に三方弁29を介装し、
非励磁時には白抜きのボート位置、励磁時には黒塗りの
ポート位置をとるように設定する。アクチュエータ44
の第2圧力作動室44bは大気開放され、その内部には
圧縮ばね44eが配置される。従って、三方弁29の非
励磁時にばばね44eの付勢力によりアクチュエータ4
4のロッドそして図、示しないリンク機構を介して排気
バイパス弁24が全閉され、一方励磁時にはこのばね4
4eの付勢力とアクチュエータ44の第1圧力作動室4
4aに作用する高圧段コンプレッサ6出口側の過給圧P
、の大小に基づく駆動力とに応じて排気バイパス弁24
が開弁される。この励磁を断続的に行い弁開度を制御す
ることを一般にデユーティ制御と呼んでおり、三方弁2
9には第5図に示す矩形状の駆動パルスt4が供給され
る。この駆動パルスt、iは一定の周期む。で発生せし
められ、以下t、t /loを駆動パルスのデユーティ
比と称する。駆動パルスLdが発生すると三方弁29の
切換作用によりアクチュエータ44の第1圧力作動室4
4aは高圧段コンプレッサ6出口側に接続され、駆動パ
ルスL4の発生が停止すると今度は大気に開放される。
Next, a third embodiment of a device for driving the exhaust bypass valve 24 will be described. Referring to FIG. 4, in this embodiment, unlike the double-acting structure of the first and second embodiments, a general single-acting actuator is used and this is subjected to so-called duty control. Similarly, the opening of the exhaust bypass valve 24 is controlled in multiple stages. That is, the first pressure operating chamber 44a of the actuator 44 is communicated with the outlet side of the high-pressure compressor 6 through the passage 21, and the three-way valve 29 is interposed in the passage 21.
Set the boat position to be outlined in white when de-energized, and the port position to be indicated in black when energized. Actuator 44
The second pressure working chamber 44b is opened to the atmosphere, and a compression spring 44e is disposed therein. Therefore, when the three-way valve 29 is not energized, the actuator 4 is activated by the biasing force of the spring 44e.
The exhaust bypass valve 24 is fully closed via the rod 4 and a linkage mechanism not shown, while when energized this spring 4
The biasing force of 4e and the first pressure operating chamber 4 of the actuator 44
The supercharging pressure P on the outlet side of the high pressure stage compressor 6 acting on 4a
, the exhaust bypass valve 24 according to the driving force based on the magnitude of
is opened. Controlling the valve opening by performing this excitation intermittently is generally called duty control, and the three-way valve 2
9 is supplied with a rectangular drive pulse t4 shown in FIG. These driving pulses t and i have a constant period. Hereinafter, t and t/lo will be referred to as the duty ratio of the drive pulse. When the drive pulse Ld is generated, the switching action of the three-way valve 29 causes the first pressure operating chamber 4 of the actuator 44 to
4a is connected to the outlet side of the high-pressure compressor 6, and is opened to the atmosphere when the generation of the drive pulse L4 stops.

従って駆動パルスL4の発生している時間が長くなるほ
ど、即ちデユーティ比が大きくなるほど第1圧力作動室
44aが高圧段コンプレッサ6出口側に接続されている
時間が長くなるために第1圧力作動室44a内に作用す
る正圧(過給圧P6)は大きくなり、従って排気パイバ
ス弁24の開度が大きくなる。これに対してデユーティ
比が小さくなると第1圧力作動室44aが大気に開放さ
れている時間が長くなるために第1圧力作動室44a内
の正圧は小さくなり、従って排気バイパス弁24の開度
が小さくなる。なお、排気バイパス弁を急速に全開させ
る必要上、ばね44eを(ばね定数の小さい)弱めに設
定しておく。
Therefore, the longer the driving pulse L4 is generated, that is, the greater the duty ratio, the longer the first pressure working chamber 44a is connected to the outlet side of the high pressure compressor 6. The positive pressure (supercharging pressure P6) that acts inside the exhaust gas increases, and therefore the opening degree of the exhaust pipe bus valve 24 increases. On the other hand, when the duty ratio becomes smaller, the time during which the first pressure working chamber 44a is open to the atmosphere becomes longer, so the positive pressure inside the first pressure working chamber 44a becomes smaller, and therefore the opening degree of the exhaust bypass valve 24 becomes smaller. becomes smaller. In addition, since it is necessary to fully open the exhaust bypass valve rapidly, the spring 44e is set to be weak (having a small spring constant).

従って、本実施例の駆動形式によれば前記第1及び第2
実施例の駆動構造と同様に、低圧段コンプレッサ5出口
側過給圧P、が所定値に達する前までは高圧段コンプレ
ッサ6の出口側過給圧P6に応動して排気バイパス弁2
4の開度を制御し、過給圧P5が所定値に達した時点で
は象、速に排気バイパス弁24を全開させる、というよ
うな多段階的な弁制御が可能である。さらに、本実施例
によればアクチュエータを小型化することもできる。
Therefore, according to the drive type of this embodiment, the first and second
Similar to the drive structure of the embodiment, the exhaust bypass valve 2 is activated in response to the outlet side supercharging pressure P6 of the high pressure compressor 6 until the low pressure stage compressor 5 outlet side supercharging pressure P reaches a predetermined value.
Multi-stage valve control is possible, such as controlling the opening degree of the exhaust bypass valve 24 and immediately fully opening the exhaust bypass valve 24 when the supercharging pressure P5 reaches a predetermined value. Furthermore, according to this embodiment, the actuator can also be downsized.

以上説明した本発明の要部を成す排気バイパス弁24を
駆動する3つの実施例の装置を用い得る本発明に係る二
段ターボエンジンの過給制御装置の作動について第1図
を参照して説明する。
The operation of the supercharging control device for a two-stage turbo engine according to the present invention, which can use the three embodiments of the device for driving the exhaust bypass valve 24 which constitutes the essential part of the present invention described above, will be explained with reference to FIG. do.

先ずエンジン1の低速域においては排気ガス量が全体的
に少なく、従ってこの少ない量の排気ガスのエネルギを
有効に利用するには容量の小さい高圧段タービン4を回
転させこれと一体回転する高圧段コンプレッサ6により
過給を行うのが最も効果的である。この過給は排気バイ
パス弁24が高圧段コンプレッサ6出口側の過給圧P6
に応動しこの圧力が低いために閉弁方向にあり、従って
全量の排気ガスが高圧段タービン4に供給されるという
一連の動きにより達成される。このとき低圧段の大容量
タービン3及びコンプレッサ5は一応作動しているが低
速域であり排気ガス量が少ないことから未だ十分な過給
を行っていない。
First, in the low-speed range of the engine 1, the amount of exhaust gas is generally small, and therefore, in order to effectively utilize the energy of this small amount of exhaust gas, the high-pressure stage turbine 4, which has a small capacity, is rotated, and the high-pressure stage is rotated integrally with the high-pressure stage turbine 4. It is most effective to perform supercharging using the compressor 6. For this supercharging, the exhaust bypass valve 24
This is achieved by a series of movements in which the valve is in the closing direction in response to this pressure being low, and therefore the entire amount of exhaust gas is supplied to the high-pressure turbine 4. At this time, the large-capacity turbine 3 and compressor 5 in the low-pressure stage are operating, but sufficient supercharging has not yet been performed because the speed is in a low speed range and the amount of exhaust gas is small.

次いで、低速から中・高速域にかけては排気ガス量が増
加し大容量の低圧段タービン3及びコンプレッサ5が本
来の過給を徐々に行い始める。従って、前述の如く高圧
段のターボチャージャをいつ不作動状態とする、すなわ
ち二段過給状態から一段過給状態とするかが問題である
が、前述した様々の実施例の排気バイパス弁24を駆動
する装置を用いることにより、低圧段コンプレッサ5出
口側の過給圧P、が目標過給圧に達した時点で排気バイ
パス弁24を一気に全開状態にさせることができる。こ
れによりエンジン1から排出された排気ガスは高圧段タ
ービン4を迂回して排気バイパス通路14を流れるため
に高圧段タービン4は実質的に非作動状態となる。この
とき略同時に吸気バイパス通路16内の吸気バイパス弁
26を同様に全開させる。これにより高圧段のターボチ
ャージャは完全に非過給状態となり、すなわち二段過給
から一段過給への切り替えが完璧に行われたことになる
。このように切り替えることにより、低速域における高
圧段コンプレッサ6による過給効率を何ら犠牲にするこ
となく、すなわちインタセプト点を高く設定できる。し
かも低圧段コンプレッサ5出口側過給圧P5が所定過給
圧となる運転状態のときに排気バイパス弁24を全開に
でき、従って高圧段ターボチャージャを迅速・確実に非
過給状態にすることが一気にできるため、高圧段ターボ
チャージャの有効作動範囲を越えた作動に起因する背圧
の上昇による過給効率の低下ひいては燃費の悪化等とい
う一連の不都合をなくすことができる。
Next, from low speed to medium/high speed range, the amount of exhaust gas increases, and the large-capacity low-pressure turbine 3 and compressor 5 gradually begin to perform the original supercharging. Therefore, as mentioned above, the problem is when to deactivate the high-pressure stage turbocharger, that is, when to change from the two-stage supercharging state to the first-stage supercharging state. By using the driving device, the exhaust bypass valve 24 can be fully opened at once when the supercharging pressure P on the outlet side of the low-pressure compressor 5 reaches the target supercharging pressure. As a result, the exhaust gas discharged from the engine 1 bypasses the high-pressure turbine 4 and flows through the exhaust bypass passage 14, so that the high-pressure turbine 4 is substantially inactive. At this time, the intake bypass valve 26 in the intake bypass passage 16 is similarly fully opened. As a result, the high-pressure stage turbocharger is completely in a non-supercharging state, meaning that the switch from two-stage supercharging to single-stage supercharging has been completed perfectly. By switching in this manner, the intercept point can be set high without sacrificing the supercharging efficiency of the high-pressure compressor 6 in the low speed range. In addition, the exhaust bypass valve 24 can be fully opened when the low-pressure stage compressor 5 outlet side supercharging pressure P5 is at the predetermined supercharging pressure, and therefore the high-pressure stage turbocharger can be brought into the non-supercharging state quickly and reliably. Since this can be done all at once, it is possible to eliminate a series of inconveniences such as a decrease in supercharging efficiency due to an increase in back pressure caused by operation beyond the effective operating range of the high-pressure stage turbocharger, and a deterioration in fuel efficiency.

また、過給切り替え時において高圧段ターボチャージャ
を適切なタイミングで非過給状態にし得るということを
他面から見れば、これは高圧段ターボチャージャの過回
転が防止されることを意味し、従って高圧段ターボチャ
ージャの耐用寿命を向上させることができる。
Also, from another perspective, the fact that the high-pressure turbocharger can be placed in a non-supercharging state at an appropriate timing during supercharging switching means that overspeeding of the high-pressure turbocharger is prevented, and therefore The service life of the high pressure stage turbocharger can be improved.

なお、吸気バイパス通路16に設けた吸気バイパス弁2
6は排気バイパス弁24と略同時に全開するように制御
されるが、その全開前においては洩れ等がないような全
開状態にしておく必要がある。これは次の様に行う。す
なわち、低速域においては、吸気バイパス弁26を開閉
駆動するアクチュエータ36の第1圧ツノ作動室36a
は三方弁17を介して大気に開放(または負圧源に連通
)され、第2圧力作動室36bは三方弁18を介して高
圧段コンプレッサ6の出口側に連通されて内部に過給圧
P、が作用する。このため、吸気パイパス弁26の締め
切り圧(過給気のバイパス流れを阻止する圧力)を極め
て大きく維持でき、従って吸気バイパス弁26からの過
給気の漏れを殆どなくすことができる。このとき、締め
切り圧を増加させる観点から第1圧力作動室36aは三
方弁17を介して負圧源に連通されるようになっている
方が好ましい。
Note that the intake bypass valve 2 provided in the intake bypass passage 16
The exhaust bypass valve 6 is controlled to be fully opened substantially at the same time as the exhaust bypass valve 24, but before the exhaust bypass valve 24 is fully opened, it is necessary to keep it fully open so that there is no leakage. This is done as follows. That is, in the low speed range, the first pressure horn operating chamber 36a of the actuator 36 that opens and closes the intake bypass valve 26
is opened to the atmosphere (or communicated with a negative pressure source) via the three-way valve 17, and the second pressure working chamber 36b is communicated with the outlet side of the high-pressure stage compressor 6 via the three-way valve 18, so that the supercharging pressure P is maintained inside. , acts. Therefore, the closing pressure (pressure that prevents the bypass flow of supercharged air) of the intake bypass valve 26 can be maintained extremely high, and therefore leakage of supercharged air from the intake bypass valve 26 can be almost eliminated. At this time, from the viewpoint of increasing the shutoff pressure, it is preferable that the first pressure working chamber 36a be communicated with a negative pressure source via the three-way valve 17.

そして、中・高速域において吸気バイパス弁26を全開
するときには前述の三方弁17 、18を略同時に切り
換える。アクチュエータ36の第1圧力作動室3(ia
は低圧段コンプレッサ5の出口側に連通されて内部に過
給圧P、が作用し、第2圧力作動室36bは大気に開放
される。このため、アクチュエータ36の第1圧力作動
室36a内の圧力が第2圧力作動室36b内部のばね3
6eによる付勢力に勝るように、過給圧P、とばね36
eの力との関係を予め所定に設定しておくことで、吸気
バイパス弁26の開閉の切り換えを極めて迅速且つ円滑
にでき、しかも吸気バイパス弁26が開く直前まで高い
締め切り圧を維持しながら一気に開くことができ漏れを
生じにくい応動性の優れた吸気バイパス弁26開閉制御
が可能である。なお、第2圧力作動室36bは三方弁1
8を介してエンジンI下流の所定の正圧力を存する排気
通路2に連通されてもよい。
When the intake bypass valve 26 is fully opened in the medium/high speed range, the aforementioned three-way valves 17 and 18 are switched substantially simultaneously. The first pressure operating chamber 3 (ia
is communicated with the outlet side of the low-pressure stage compressor 5, and supercharging pressure P acts therein, and the second pressure working chamber 36b is opened to the atmosphere. Therefore, the pressure in the first pressure working chamber 36a of the actuator 36 is reduced by the spring 3 inside the second pressure working chamber 36b.
6e, the supercharging pressure P and spring 36
By setting the relationship between e and the force in advance, it is possible to switch the opening and closing of the intake bypass valve 26 extremely quickly and smoothly, and moreover, it is possible to switch the opening and closing of the intake bypass valve 26 at once while maintaining a high closing pressure until just before the intake bypass valve 26 opens. It is possible to control the opening and closing of the intake bypass valve 26, which can be opened and has excellent responsiveness that prevents leakage. Note that the second pressure working chamber 36b is the three-way valve 1.
8, the exhaust passage 2 downstream of the engine I and having a predetermined positive pressure may be communicated with the exhaust passage 2.

また、以上説明した本発明に係る過給制御装置の実施例
の構成に、以下に簡単に説明する構成を加えることによ
り実質的に過給を行っていない始動時あるいは軽負荷状
態から高負荷状態までのエンジン運転状態全般に亘って
出力性能及び燃費の向上が達成できる。
In addition, by adding the configuration briefly explained below to the configuration of the embodiment of the supercharging control device according to the present invention described above, it is possible to substantially improve the performance at startup when no supercharging is being performed or from a light load state to a high load state. Improvements in output performance and fuel efficiency can be achieved over all engine operating conditions.

すなわち、第6図を参照すると、低圧段及び高圧段コン
プレッサ5,6を迂回する吸気バイパス通路15とこの
吸気バイパス通路15に介装された吸気バイパス弁25
とを設ける。吸気バイパス弁25は、高圧段コンプレッ
サ6の出口側に通路(図示せず)を介して連通した第1
圧力作動室25aと内部に圧縮ばね25eを具えて大気
開放された第2圧力作動室25bとを有し、第1圧力作
動室25a内の圧力(高圧段コンプレッサ6の過給圧P
That is, referring to FIG. 6, an intake bypass passage 15 bypassing the low-pressure stage and high-pressure stage compressors 5 and 6, and an intake bypass valve 25 interposed in the intake bypass passage 15.
and. The intake bypass valve 25 has a first valve connected to the outlet side of the high-pressure compressor 6 via a passage (not shown).
It has a pressure working chamber 25a and a second pressure working chamber 25b which is equipped with a compression spring 25e and is open to the atmosphere.
.

に略等しい)による力とばね25eの付勢力との大小に
より開閉制御される。
Opening/closing is controlled by the magnitude of the force generated by the spring 25e (approximately equal to ) and the biasing force of the spring 25e.

以上の構成により、エンジン運転状態が例えば軽負荷時
、従って二基のターボチャージャがいずれも実質的に過
給を行っていない状態にあっては高圧段コンプレッサ6
の過給圧P6が低く、従って第2圧力作動室25b内の
ばね25eの付勢力により吸気バイパス弁25は開いた
ままとなる。このため、低圧段及び高圧段コンプレッサ
5及び6を通る給気の流れに加えて、流路抵抗の極めて
小さい吸気バイパス通路15を」−分な量の空気が流れ
エンジン1に供給される結果、エンジンの立ち上がりが
極めて円滑となる。すなわち従来、軽負荷時には排気ガ
ス量が絶対的に少ないためコンプレッサ5,6による過
給が殆ど行われないかあるいは僅かであるため却ってコ
ンプレッサ5,6自体が流路抵抗となりエンジン1への
十分な給気が阻止されがちであったが、吸気バイパス通
路15を設けることでエンジン1には十分な量の給気が
無理なく供給される。
With the above configuration, when the engine operating state is, for example, light load, and therefore, when neither of the two turbochargers is substantially supercharging, the high pressure stage compressor 6
Since the supercharging pressure P6 is low, the intake bypass valve 25 remains open due to the biasing force of the spring 25e in the second pressure working chamber 25b. Therefore, in addition to the flow of supply air through the low-pressure stage and high-pressure stage compressors 5 and 6, a sufficient amount of air flows through the intake bypass passage 15, which has extremely low flow path resistance, and is supplied to the engine 1. The engine starts up extremely smoothly. In other words, conventionally, when the load is light, the amount of exhaust gas is absolutely small, so the compressors 5 and 6 provide little or no supercharging. Although air supply tends to be blocked, by providing the intake bypass passage 15, a sufficient amount of air supply is easily supplied to the engine 1.

そして、エンジン運転状態が徐々に活発化し、過給が進
み高圧段コンプレッサ6出口の過給圧P6が所定値を越
えると、吸気バイパス弁25の第1圧力作動室25aに
作用しばね25eの付勢力に打ち勝つ結果、吸気バイパ
ス弁25が閉じる。以後、過給圧P6が前記所定値以、
トであれば吸気バイパス弁25は閉じたままとなり、本
発明に係る過給制御装置の前記実施例と実質的同一の作
用を有することになる。
When the engine operating condition gradually becomes active and the supercharging progresses and the supercharging pressure P6 at the outlet of the high-pressure stage compressor 6 exceeds a predetermined value, it acts on the first pressure operating chamber 25a of the intake bypass valve 25, causing the spring 25e to As a result of overcoming the force, the intake bypass valve 25 closes. Thereafter, when the supercharging pressure P6 exceeds the predetermined value,
If the supercharging control device is in the above-mentioned state, the intake bypass valve 25 remains closed, and the supercharging control device according to the present invention has substantially the same effect as the above-described embodiment.

以上のように、軽負荷時には吸気バイパス通路15を介
していわゆる自然給気を行い得ると共に、所定以上の負
荷時には吸気バイパス通路15を閉じ、本発明に係る過
給制御装置の前記実施例と同様に過給バランスの調和維
持を図り得ることから、軽負荷から高負荷のエンジン運
転状態全般に亘って極めて効果的に出力性能及び燃費の
向上が達成できる。
As described above, when the load is light, so-called natural air supply can be performed through the intake bypass passage 15, and when the load is higher than a predetermined value, the intake bypass passage 15 is closed, similar to the above embodiment of the supercharging control device according to the present invention. Since the supercharging balance can be maintained in harmony, output performance and fuel efficiency can be extremely effectively improved in all engine operating conditions from light loads to high loads.

なお、排気バイパス弁24を駆動する装置34として3
つの図示実施例を揚げて説明したが、本発明の思想はこ
れらの実施例の駆動形式に何ら限定されるものではなく
、広く他の形式例えば負圧作動式、ステッピングモータ
等の駆動形式を採用することができることは言うまでも
ない。同様に、排気バイパス弁24も図示の如くのバタ
フライバルブに限定されるものではな(、ポペットタイ
プやスプールタイプ等の他の多くの形式のものとするこ
とができる。
Note that 3 is used as the device 34 for driving the exhaust bypass valve 24.
Although the present invention has been described with reference to two illustrated embodiments, the idea of the present invention is not limited to the drive formats of these embodiments, and may widely adopt other drive formats such as a negative pressure operating type, a stepping motor, etc. It goes without saying that you can. Similarly, the exhaust bypass valve 24 is not limited to the butterfly valve shown, but may be of many other types, such as a poppet type or a spool type.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明によれば、低速域での過給効率を高
く維持することができると共に、過給切替時には高圧段
のターボチャージ中を円滑且つ確実に非過給状態にする
ことができるため、低速域から中・高速域のエンジンの
過給運転状態全般に亘って出力性能及び燃費の向上を図
ることができる。
As described above, according to the present invention, it is possible to maintain high supercharging efficiency in the low speed range, and also to smoothly and reliably bring the high pressure stage turbocharging to a non-supercharging state when switching supercharging. Therefore, it is possible to improve the output performance and fuel efficiency over the entire supercharged operation state of the engine from the low speed range to the medium/high speed range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る二段ターボエンジンの過給制御装
置の一実施例の全体概略構成図、第2図は本発明の要部
を成す排気バイパス弁を駆動する装置の第一の実施例を
示す縦断面図、第3図は本発明の要部を成す排気バイパ
ス弁を駆動する装置の第二の実施例を示す縦断面図、第
4図は本発明の要部を成す排気バイパス弁を駆動する装
置の第三の実施例を示す概略構成図、第5図はデユーテ
ィ制御を説明するための図、第6図は二基のターボチャ
ージャを迂回する吸気バイパス通路を設けた二段ターボ
エンジンの過給制御装置の要部概略構成図、 第7図は低圧段及び高圧段コンプレッサ出口側の過給圧
Ps、P−の関係を示す図である。 1・・・エンジン、    2・・・排気通路、3・・
・低圧段タービン、 4・・・高圧段タービン、5・・
・低圧段コンプレッサ、 6・・・高圧段コンプレッサ、 7・・・吸気通路、 13 、14・・・排気バイパス通路、16・・・吸気
バイパス通路、 23・・・ウェイストゲートバルブ、 24・・・排気バイパス弁、26・・・吸気バイパス弁
、34・・・排気バイパス弁駆動装置。
FIG. 1 is a general schematic diagram of an embodiment of a supercharging control device for a two-stage turbo engine according to the present invention, and FIG. 2 is a first embodiment of a device for driving an exhaust bypass valve, which is a main part of the present invention. FIG. 3 is a vertical cross-sectional view showing a second embodiment of a device for driving an exhaust bypass valve, which is a main part of the present invention, and FIG. 4 is a vertical cross-sectional view showing an exhaust bypass valve, which is a main part of the present invention. A schematic configuration diagram showing a third embodiment of the device that drives the valve, FIG. 5 is a diagram for explaining duty control, and FIG. 6 is a two-stage configuration with an intake bypass passage that bypasses two turbochargers. FIG. 7 is a schematic configuration diagram of the main parts of the supercharging control device for a turbo engine, and is a diagram showing the relationship between the supercharging pressures Ps and P- on the outlet side of the low-pressure stage and high-pressure stage compressors. 1...Engine, 2...Exhaust passage, 3...
・Low pressure stage turbine, 4...High pressure stage turbine, 5...
・Low pressure stage compressor, 6... High pressure stage compressor, 7... Intake passage, 13, 14... Exhaust bypass passage, 16... Intake bypass passage, 23... Waste gate valve, 24... Exhaust bypass valve, 26... Intake bypass valve, 34... Exhaust bypass valve drive device.

Claims (1)

【特許請求の範囲】[Claims] 吸入空気を過給する低圧段ターボチャージャと、該低圧
段ターボチャージャで過給された空気を更に過給してエ
ンジンに送る高圧段ターボチャージャとを有する二段タ
ーボエンジンにおいて、上記高圧段ターボチャージャの
排気タービンを迂回する排気バイパス通路に、上記高圧
段及び低圧段ターボチャージャのコンプレッサ出口側の
それぞれの過給圧に応動し多段に開閉し得る排気バイパ
ス弁を設け、上記排気バイパス弁は上記低圧段ターボチ
ャージャのコンプレッサ出口側の過給圧が所定値以下の
ときは上記高圧段ターボチャージャのコンプレッサ出口
側の過給圧のみに応動して開弁し、上記低圧段ターボチ
ャージャのコンプレッサ出口側の過給圧が所定圧に達し
たときには直ちに全開するようにしたことを特徴とする
二段ターボエンジンの過給制御装置。
A two-stage turbocharger having a low-pressure turbocharger that supercharges intake air, and a high-pressure turbocharger that further supercharges the air supercharged by the low-pressure turbocharger and sends it to the engine, wherein the high-pressure turbocharger An exhaust bypass valve that can be opened and closed in multiple stages in response to the respective supercharging pressures on the compressor outlet side of the high-pressure stage and low-pressure stage turbochargers is provided in the exhaust bypass passage that bypasses the exhaust turbine, and the exhaust bypass valve is configured to When the boost pressure on the compressor outlet side of the stage turbocharger is below a predetermined value, the valve opens in response only to the boost pressure on the compressor outlet side of the high pressure stage turbocharger, and the valve opens on the compressor outlet side of the low pressure stage turbocharger. A supercharging control device for a two-stage turbo engine, characterized in that the supercharging control device fully opens the engine immediately when supercharging pressure reaches a predetermined pressure.
JP63250928A 1988-10-06 1988-10-06 Supercharging control device for two-stage turbo engine Expired - Fee Related JP2522359B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63250928A JP2522359B2 (en) 1988-10-06 1988-10-06 Supercharging control device for two-stage turbo engine
US07/415,918 US5063744A (en) 1988-10-06 1989-10-02 Actuator for controlling intake pressure in sequential turbo-system
DE3933518A DE3933518C2 (en) 1988-10-06 1989-10-06 Turbocharger system with two turbochargers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250928A JP2522359B2 (en) 1988-10-06 1988-10-06 Supercharging control device for two-stage turbo engine

Publications (2)

Publication Number Publication Date
JPH0299723A true JPH0299723A (en) 1990-04-11
JP2522359B2 JP2522359B2 (en) 1996-08-07

Family

ID=17215105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250928A Expired - Fee Related JP2522359B2 (en) 1988-10-06 1988-10-06 Supercharging control device for two-stage turbo engine

Country Status (1)

Country Link
JP (1) JP2522359B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6237380B1 (en) * 1998-02-03 2001-05-29 Kabushiki Kaisha Opton Bending device having a control mechanism for controlling joint-type robots of the bending device
EP1640596A1 (en) * 2004-09-22 2006-03-29 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Supercharged internal combustion engine and method for operating such an internal combustion engine
EP1640597A1 (en) * 2004-09-22 2006-03-29 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Supercharged internal combustion engine and method for operating such an internal combustion engine
JP2007205265A (en) * 2006-02-02 2007-08-16 Isuzu Motors Ltd Two stage supercharging system for diesel engine
JP2007255299A (en) * 2006-03-23 2007-10-04 Isuzu Motors Ltd Valve system
US20110094221A1 (en) * 2009-10-23 2011-04-28 Gm Global Technology Operations, Inc. Turbocharger control systems and methods for improved transient performance
WO2011111090A1 (en) * 2010-03-09 2011-09-15 三菱電機株式会社 Westgate actuator for turbo
WO2011114448A1 (en) * 2010-03-17 2011-09-22 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6237380B1 (en) * 1998-02-03 2001-05-29 Kabushiki Kaisha Opton Bending device having a control mechanism for controlling joint-type robots of the bending device
EP1640596A1 (en) * 2004-09-22 2006-03-29 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Supercharged internal combustion engine and method for operating such an internal combustion engine
EP1640597A1 (en) * 2004-09-22 2006-03-29 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Supercharged internal combustion engine and method for operating such an internal combustion engine
JP2007205265A (en) * 2006-02-02 2007-08-16 Isuzu Motors Ltd Two stage supercharging system for diesel engine
JP2007255299A (en) * 2006-03-23 2007-10-04 Isuzu Motors Ltd Valve system
JP4674561B2 (en) * 2006-03-23 2011-04-20 いすゞ自動車株式会社 Valve device
US20110094221A1 (en) * 2009-10-23 2011-04-28 Gm Global Technology Operations, Inc. Turbocharger control systems and methods for improved transient performance
US8640459B2 (en) * 2009-10-23 2014-02-04 GM Global Technology Operations LLC Turbocharger control systems and methods for improved transient performance
WO2011111090A1 (en) * 2010-03-09 2011-09-15 三菱電機株式会社 Westgate actuator for turbo
JP5073120B2 (en) * 2010-03-09 2012-11-14 三菱電機株式会社 Wastegate actuator for turbo
WO2011114448A1 (en) * 2010-03-17 2011-09-22 トヨタ自動車株式会社 Control device for internal combustion engine
JP5170343B2 (en) * 2010-03-17 2013-03-27 トヨタ自動車株式会社 Control device for internal combustion engine
US9206734B2 (en) 2010-03-17 2015-12-08 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine

Also Published As

Publication number Publication date
JP2522359B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US5063744A (en) Actuator for controlling intake pressure in sequential turbo-system
KR100292418B1 (en) Apparatus for compression control of exhaust gas refiller
JPH0299723A (en) Supercharging control device for two-stage turbo engine
US4598549A (en) Turbocharger manifold pressure control system
JP5262543B2 (en) Diaphragm actuator
JP2570403B2 (en) Supercharging pressure control device for twin turbo engine
JPH0648119Y2 (en) Two-stage turbo engine
JPH0648118Y2 (en) Two-stage turbo engine turbocharger arrangement structure
JPH04287835A (en) Supercharging pressure controller of turbocharger
JPH0536993Y2 (en)
JPS6287615A (en) Multistage type turbosupercharged engine
KR100391627B1 (en) boost pressure controlling system of turbocharger
JPS6033301Y2 (en) supercharging device
JP3828209B2 (en) Intake device for supercharged engine
JPH09268922A (en) Control device of turbocharger
JPH04370324A (en) Deceleration air bypass valve control device for engine having supercharger
JPS62107232A (en) Supercharging pressure control device
JPS60206937A (en) Variable capacity turbo-charger controller
JP2817446B2 (en) Control device for supercharged engine
JP2516077Y2 (en) Bypass valve controller for two-stage turbo engine
JPH0544485A (en) Drive device for waste gate valve of turbocharge of engine
JPH0744736Y2 (en) Supercharging pressure controller for 2-stage turbocharged engine
JPH05288067A (en) Turbo charger boost pressure control device
JPH03111624A (en) Waste gate valve structure of internal combustion engine with tubocharger
JP2861516B2 (en) Supercharging pressure control device for turbocharged engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees