JPH0666151A - Supercharger for internal combustion engine - Google Patents

Supercharger for internal combustion engine

Info

Publication number
JPH0666151A
JPH0666151A JP15158293A JP15158293A JPH0666151A JP H0666151 A JPH0666151 A JP H0666151A JP 15158293 A JP15158293 A JP 15158293A JP 15158293 A JP15158293 A JP 15158293A JP H0666151 A JPH0666151 A JP H0666151A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
turbine
supercharging
valve
exhaust gas
shut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15158293A
Other languages
Japanese (ja)
Other versions
JP3487357B2 (en )
Inventor
Jakob Bucher
ブーヒアー ヤーコブ
Original Assignee
Man B & W Diesel As
エムアーエヌ、ベーウントヴエー、デイーゼル、アクチエンゲゼルシヤフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/04Mechanical drives; Variable-gear-ratio drives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/14Technologies for the improvement of mechanical efficiency of a conventional ICE
    • Y02T10/144Non naturally aspirated engines, e.g. turbocharging, supercharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/16Energy recuperation from low temperature heat sources of the ICE to produce additional power
    • Y02T10/163Turbocompound engines

Abstract

PURPOSE: To achieve optimal supercharging air pressure in main operation output in a supercharger of an internal combustion engine by avoiding acute closing and shutoff of a power generating turbine so as to avoid insufficiency of supercharging air, and shutting off the turbine without causing obstacles to the engine when a failure occurs in an upper load region. CONSTITUTION: A bypass pipe 14 with control mechanisms 16, 21 for opening and closing a power generating turbine 5 is arranged parallel to the turbine. The pipe is dimensioned such that when the through cross-sectional area thereof is open, it allows an exhaust gas flow substantially the same as the turbine 5 to pass through. Control mechanisms 7, 19 and 16, 21 are designed such that the opening and closing speed of the through cross-sectional area can be adjusted individually. Control devices 18, 30, 31 are arranged for slightly varying supercharging air pressure during closing and shutoff processes.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】この発明は、排気ガス駆動式過給機と、排気ガス側において過給機タービンに並列接続された別個の動力発生用タービンと、このタービンを運転停止するための制御機構とを持った内燃機関の過給装置に関する。 BACKGROUND OF THE INVENTION This invention is an exhaust gas driven supercharger, and a separate power generation turbines connected in parallel to the turbocharger turbine in the exhaust gas side, control to shutdown the turbine on the supercharging system for an internal combustion engine with a mechanism.

【0002】 [0002]

【従来の技術】この形式の内燃機関の過給装置はヨーロッパ特許第0091139号公報で公知である。 BACKGROUND ART supercharging device for an internal combustion engine of this type are known in European Patent No. 0091139 Publication. 過給機タービンの横断面積は全負荷運転にとって必要であるよりも狭く決められている。 Cross-sectional area of ​​the turbocharger turbine is determined narrower than is required for full load operation. これによって過給機タービンはエンジン部分負荷において排気ガスを大きくせき止めるので、過給機は下部負荷範囲運転において比較的高い過給空気圧を供給する。 This interrupts the supercharger turbine damming large exhaust gas in the engine part load, the turbocharger supplies a relatively high boost pressure in the lower load range operation. 動力発生用タービンは所定のエンジン部分負荷に到達した際に急激に投入ないし遮断される。 Power generation turbine is abruptly turned to shut off upon reaching a predetermined engine partial load. 排気ガス駆動式過給機および動力発生用タービンは、このタービンが投入されている場合に全負荷点において所望の過給空気圧が達成されるように設計されている。 Exhaust gas-driven turbocharger and a power generating turbine is designed such that the desired boost pressure is achieved in the full-load point when the turbine is turned.

【0003】動力発生用タービンを上部負荷範囲において故障のために遮断しなければならないときには、過給空気圧は許容できない値に上昇する。 [0003] When must cut off for failure power generation turbine in the upper load range, the supercharging pressure rises to unacceptable values. その際排気ガス駆動式過給機の許容最大回転数および許容シリンダ圧を超過するおそれがある。 At that time there is a risk of exceeding the permissible maximum speed and the allowable cylinder pressure of the exhaust gas-driven turbocharger.

【0004】更に動力発生用タービンの急激な投入は、 [0004] More rapid introduction of power-generating turbine,
このタービンの出力を負荷に伝達する手段が同様に急激に荷重されるという結果を生ずる。 Means for transmitting the output of the turbine to the load produces a result that is likewise sharply load. 例えば歯車伝動装置および特に自動過走(オーバーラン)クラッチにおいてはかなりの損傷を生じるおそれがある。 Which may cause considerable damage in for example a gear transmission and in particular an automatic over-run (overrunning) clutch. 更に動力発生用タービンの急激な投入は過給空気圧を急激に低下してしまい、これは空気の不足を生じ、燃焼室の構造部品に大きな熱負荷を生じるおそれがある。 Furthermore rapid introduction of power generation turbines would rapidly decrease the supercharging pressure, which results in lack of air, which may cause a large thermal load on the structural parts of the combustion chamber.

【0005】排気ガス駆動式過給機および動力発生用タービンを全負荷において所望の過給空気圧に設定することは、主に利用される出力範囲においてエンジンに対して最良の過給空気圧が形成されないことを意味する。 [0005] By setting the exhaust gas-driven turbocharger and a power generation turbine in a desired supercharging pressure at full load does not best supercharged air to the engine in the output range that is mainly used is formed it means that.

【0006】 [0006]

【発明が解決しようとする課題】本発明の課題は、冒頭に述べた形式の内燃機関の過給装置を、動力発生用タービンの投入および遮断が急激に行われず、過給空気の不足が避けられ、上部負荷範囲において故障が生じた際に動力発生用タービンが内燃機関の運転に支障を与えることなしに遮断され、主な運転出力において最良の過給空気圧が達成されるように改良することにある。 OBJECTS OF THE 0008] The present invention is a supercharging device in the form of an internal combustion engine mentioned in the introduction, on and cut-off of the power generation turbines is not performed rapidly, avoiding a shortage of the boost air is, the power generation turbines when a failure occurs in the upper load range is cut off without giving any trouble to the operation of the internal combustion engine, to improve as best supercharged air pressure in the main operating power is achieved It is in.

【0007】 [0007]

【課題を解決するための手段】本発明によればこの課題は、冒頭に述べた形式の内燃機関の過給装置において、 This object according to the present invention SUMMARY OF THE INVENTION, in the supercharging device in the form of an internal combustion engine mentioned in the introduction,
動力発生用タービンに対して並列にバイパス配管が設けられ、このバイパス配管がそれを開閉するための制御機構を有し、バイパス配管がその貫流断面積が開いている場合に動力発生用タービンとほぼ同じ排気ガス流量の貫流を可能にするように寸法づけられ、動力発生用タービンを投入および遮断するための制御量が過給空気圧であり、制御機構が、貫流断面積の開閉速度が個々に調整できるように設計され、制御機構に対して、投入および遮断過程中において過給空気圧を極めて僅かしか変動させない制御装置が設けられ、この制御装置によって動力発生用タービンが遮断でき、排気ガス駆動式過給機および動力発生用タービンが、75〜90%のエンジン出力において最良の過給空気圧が達成されるように設計されることによって解決 Bypass pipe is provided in parallel with the power generating turbine has a control mechanism for the bypass pipe for opening and closing it, almost a power generation turbine when the bypass pipe is open the flow cross-sectional area are dimensioned to permit flow of the same exhaust gas flow rate, the control amount for turning on and off a power generation turbine is supercharged air pressure control mechanism, adjusts the opening and closing speed of the flow cross-sectional area individually is designed to allow for the control mechanism, very little only varied control device is provided with a supercharged air pressure during up and shut-off process, can shut off the power generation turbine through the control device, over an exhaust gas-driven solved by the supercharger and power generation turbines are designed to best supercharging air pressure is achieved in the engine output of 75 to 90% れる。 It is.

【0008】 [0008]

【実施例】以下図面に示した実施例を参照して本発明を詳細に説明する。 EXAMPLES The following with reference to embodiments shown in the drawings illustrating the present invention in detail.

【0009】図1において内燃機関1は排気ガス駆動式過給機3の圧縮機2を介して圧縮空気を供給される。 [0009] the internal combustion engine 1 in FIG. 1 is supplied with compressed air via a compressor 2 of an exhaust gas-driven turbocharger 3. 内燃機関1の排気ガスが供給される過給機タービン4は圧縮機2を駆動する。 Turbocharger turbine 4 exhaust gas of the internal combustion engine 1 is supplied to drive the compressor 2. 排気ガス側において過給機タービン4および動力発生用タービン5が並列接続されている。 Turbocharger turbine 4 and the power generating turbine 5 is connected in parallel in the exhaust gas side.
タービン5への供給配管6に方向切換弁の形をした遮断弁7が配置されている。 Shutoff valve 7 in the form of directional control valve to the supply pipe 6 to the turbine 5 is arranged. この遮断弁7は排気ガス駆動式過給機の所定の過給空気圧において自動的に開閉される。 The shut-off valve 7 is automatically opened and closed in a predetermined supercharging pressure of the exhaust gas-driven turbocharger.

【0010】特に高い効率の過給機を持った上述の過給装置において、排気ガス駆動式過給機の過給機タービン4の出力は必要な過給機動力よりも大きく、余分な出力はエンジンの有効出力を増大するために利用される。 [0010] In particularly high above supercharger having a turbocharger efficiency, greater than the output of the supercharger turbine 4 exhaust gas-driven turbocharger supercharging mobility necessary, extra output It is utilized to increase the effective output of the engine. 排気ガス駆動式過給機タービン4に導かれる排気ガスの一部は供給配管6を通って動力発生用タービン5に導かれる。 Part of the exhaust gas introduced into the exhaust gas-driven turbocharger turbine 4 is guided to the power generating turbine 5 through the supply piping 6. そこでこの排気ガスエネルギーの過剰出力はタービン5で吸収され、伝動装置9を介して内燃機関1のクランク軸10に与えられる。 Therefore excess output of the exhaust gas energy is absorbed by the turbine 5 is supplied to the crankshaft 10 of the internal combustion engine 1 via a transmission device 9. タービン5の排気ガス配管1 Exhaust gas pipe 1 of the turbine 5
1および排気ガス駆動式過給機3の排気ガス配管12は共通の排気ガス集合配管13に開口している。 Exhaust gas pipe 12 of the first and the exhaust gas-driven supercharger 3 is open to a common exhaust gas collection pipe 13. 動力発生用タービン5と並列に絞り15と遮断弁16とを持ったバイパス配管14が配置されている。 Bypass pipe 14 having a power generating turbine 5 and 15 stop in parallel with the shutoff valve 16 is disposed. このバイパス配管14は、遮断弁16が開放され遮断弁7が閉じられている場合タービン5とほぼ同じ排気ガス流量の貫流が可能であるように設定されている。 The bypass pipe 14 is set so as to be substantially flow in the same exhaust gas flow rate and when the turbine 5 the shutoff valve 16 is shut-off valve 7 is opened is closed. 絞り15は、タービン5 Iris 15, a turbine 5
が運転されてない場合にタービン5に相応した圧力勾配を発生させる目的を有している。 Has the purpose of generating a pressure gradient corresponds to the turbine 5 in If is not operated. これによってタービン5はそれに前置されている遮断弁7によって内燃機関の過給に影響を与えることなしに遮断される。 This turbine 5 is blocked by the blocking valve 7 which is Mae置 thereto without affecting the supercharging of an internal combustion engine.

【0011】過給装置はたいていのエンジン運転回転数に通用する流量に対して設計されている。 [0011] is designed for supercharger is flow-class most engine operating speed. 即ち排気ガス駆動式過給機3および動力発生用タービン5は、最大エンジン負荷の約75〜90%の主要運転出力において最良の過給空気圧が達成されるように設計されている。 That exhaust gas-driven turbocharger 3 and the power generating turbine 5 is best supercharging pressure is designed to be achieved in the main operating power of about 75 to 90% of the maximum engine load. 勿論過給空気圧は小さな部分負荷および全負荷において最良の値からずれる。 Of course supercharging air pressure deviates from the best value in a small partial load and full load. しかしこれは、内燃機関1がこの範囲では運転時間のごく一部でしか運転されないので欠点とはならない。 However, this internal combustion engine 1 is not a drawback because it is not operated only a small fraction of the operating time in this range.

【0012】過給空気圧は過給装置の熱負荷に大きな影響を与えるので、動力発生用タービン5の投入信号は過給空気圧から導き出される。 [0012] Since the supercharging pressure has a significant influence on the thermal load of the supercharging device, on signal of the power generating turbine 5 is derived from the supercharged air pressure. この過給空気圧の値はエンジン負荷に関係して選択される。 The value of the supercharging pressure is selected in relation to engine load. 実験の結果、タービン5の投入および遮断がエンジン負荷の中央範囲でしか有効でないことが分かった。 The results of the experiment, it was found that on and cut-off of the turbine 5 is not only effective in the middle range of engine load.

【0013】図2は、横軸にエンジン負荷が%で記入され、縦軸に過給空気圧P Lがバールで記入されている線図を示している。 [0013] Figure 2 is entered in the engine load on the horizontal axis is%, supercharging pressure P L on the vertical axis indicates the diagram is entered in bars. 曲線Aはタービン5が遮断されている場合の過給空気圧P Lとエンジン負荷との関係を示しており、曲線Bはタービン5が投入されている場合の同じ関係を示している。 Curve A shows the relationship between the supercharging air pressure P L and the engine load when the turbine 5 is blocked, the curve B shows the same relationship when the turbine 5 is turned. 内燃機関1の高速回転中においてタービン5の前の遮断弁7は、過給空気圧が所定の値Cに到達した際に開き始める。 Shutoff valve 7 in front of the turbine 5 during high speed rotation of the internal combustion engine 1 begins to open when the boost pressure reaches a predetermined value C. これによって過給空気圧が低下する。 This supercharging pressure is decreased. 過給空気圧が所定の下側値Dを下回ったとき、 When the supercharging pressure falls below a predetermined lower value D,
タービン5の前の遮断弁7の開放過程は中断される。 Opening process of the shutoff valve 7 before the turbine 5 is interrupted. それから過給空気圧はエンジン負荷が増大する場合に再び増加する。 Then the supercharging pressure is again increased when the engine load increases. この過程は、遮断弁7が完全に開かれるまで繰り返される。 This process, cut-off valve 7 is repeated until the fully opened. この特性は線図のジグザグの部分曲線E Partial curve E of the zigzag of the characteristic diagram
で示されている。 In are shown. 従って過給空気圧は遮断弁7の切換過程中において所定の値CとDで規定された狭い範囲にとどまり、これによって空気不足状態およびそれにより生ずる欠点は避けられる。 Therefore supercharging air pressure remains in a narrow range defined by a predetermined value C and D during the shifting operation of the shut-off valve 7, which disadvantages caused by insufficient air condition and thereby is avoided.

【0014】図3における第1の実施例では、この特性は制御機構7、19、16、21の空気式制御によって実現される。 In FIG. 3 in the first embodiment, this characteristic is realized by pneumatic control of the control mechanism 7,19,16,21. 方向切換弁の形をした動力発生用タービン5の遮断弁7は入力側に圧力配管17を介して圧縮空気が供給される。 Shutoff valve 7 of the power generating turbine 5 in the form of directional control valve is compressed air is supplied via the pressure line 17 to the input side. この圧力配管17には制御機構即ち絞り19の前および方向切換弁7の前に方向切換弁の形をした別の遮断弁18が配置されている。 Another shut-off valve 18 in the form of directional control valve prior to the previous control mechanism or stop 19 and the directional control valve 7 is disposed in the pressure line 17. 制御量として作用する過給空気圧に関係して方向切換弁18が操作される。 Directional control valve 18 in relation to the supercharging air pressure acting as control variable is manipulated. この方向切換弁18は放圧された基本位置において閉じられ、過給空気圧が増大した際にばねの復帰力に抗して開かれる。 The directional control valve 18 is closed in release pressure the basic position, the supercharging pressure is opened against the return force of the spring upon increased. バイパス配管14の制御機構即ち絞り要素21および遮断弁16の制御は、方向切換弁の形をした遮断弁16の入力側に、圧縮空気源(図示せず)に接続され圧縮空気を案内する圧力配管20を接続することによって行われる。 Control of the control mechanism viz throttle element 21 and the shut-off valve 16 of the bypass pipe 14, to the input side of the shut-off valve 16 in the form of directional control valve, the pressure for guiding the compressed air is connected to a compressed air source (not shown) It carried out by connecting a pipe 20. 公知のように絞り弁22、23、2 It is known as the throttle valve 22,23,2
4、25と逆止弁26、27、28、29とから構成されている絞り要素19、21は、その都度の圧力上昇あるいは圧力降下をゆっくりさせる目的を有する。 4, 25 and the check valve 26, 27, 28, 29 Metropolitan throttle element 19, 21 and a have the purpose of slow pressure rise or pressure drop in each case. バイパス配管14は動力発生用タービン5が遮断されているときだけ開放すればよいので、圧力配管20は電磁式方向切換弁30を介して放圧される。 Since the bypass pipe 14 may be opened only when the power generation turbine 5 is blocked, the pressure pipe 20 is relieved through the electromagnetic directional control valve 30. タービン5を運転する際、方向切換弁31が開かれ、方向切換弁30は閉じられる。 When driving the turbine 5, the directional control valve 31 is opened, the direction switching valve 30 is closed. しかしタービン5に故障が生じたとき、方向切換弁30が投入され、方向切換弁31は閉じられ、これによってバイパス配管14の遮断弁16が圧縮空気によって開かれ、圧力配管17の方向切換弁18がばね力によって閉じられる。 But when a fault in the turbine 5 has occurred, the direction switching valve 30 is turned, the directional control valve 31 is closed, this shut-off valve 16 of the bypass pipe 14 is opened by the compressed air by the direction switching valve of the pressure line 17 18 It is closed by spring force. 電磁式方向切換弁30、31の作動は非常に迅速に行われる。 Operation of the electromagnetic directional control valve 30, 31 very quickly.

【0015】エンジン負荷が低下する場合、タービン5 [0015] When the engine load is reduced, the turbine 5
の遮断はその投入と類似して逆向きに行われる。 Blocking takes place in reverse similar to that introduced. タービン5の制御機構7、19およびバイパス配管14の制御機構16、21は、それらが20〜120秒の操作時間で開閉できるように設計されている。 Control mechanism of the control mechanism 7, 19 and the bypass pipe 14 of the turbine 5 16, 21, they are designed to be opened and closed by the operation time of 20-120 seconds.

【0016】図4は図3の実施例の電気式制御方式を示している。 [0016] Figure 4 shows an electric control system of the embodiment of FIG. 圧力配管17は電流導線に、方向切換弁3 The current conductor pressure line 17, the directional control valve 3
0、31はスイッチに置き換えられる。 0,31 is replaced by a switch. 過給空気圧は電気入力信号として図示しない上位制御装置即ち計算機に導かれる。 Supercharging pressure is led to the upper control device or computer (not shown) as an electric input signal. この計算機は、記憶された目標値をもとにタービン5およびバイパス配管14の方向切換弁として形成された遮断弁7、16の位置を調節する電動式サーボモータ32、33を制御するためのデジタル出力パルスを発する。 This calculator, Digital to control the electric servo motor 32, 33 for adjusting the stored target value based on the position of the shut-off valves 7 and 16 which are formed as a directional control valve of the turbine 5 and the bypass pipe 14 It generates an output pulse. 投入過程および遮断過程は図3の空気式の場合に類似して進行し、その場合押釦スイッチ34が図3 Turned process and blocking processes similar to proceeds in the case of pneumatic 3, in which case the push-button switch 34 in FIG. 3
における方向切換弁18の機能を果たす。 Functions of the directional control valve 18 in.

【0017】図5における制御機構7、19、16、2 The control mechanism shown in FIG. 5 7,19,16,2
1の空気式制御方式においては、バイパス配管14の遮断弁16は遮断弁18を介して入力側に過給空気が供給され、図3における実施例と同じように動力発生用タービン5の投入が行われる。 In one pneumatic control system, shut-off valve 16 of the bypass pipe 14 is supercharged air is supplied to the input side via a shutoff valve 18, the same as on of power generation turbine 5 as examples in FIG. 3 It takes place. 切換過程が終了しバイパス配管14が完全に開かれ、更にタービン5の運転に対する他のすべての条件が満たされたとき、バイパス配管14 Shifting operation is opened completely to bypass pipe 14 ends, when all other conditions are met for further operation of the turbine 5, a bypass pipe 14
の遮断弁16が閉鎖し、同時にタービン5の遮断弁7が上述の操作時間で開かれる。 Shutoff valve 16 closes, and simultaneously the shutoff valve 7 of the turbine 5 is opened by the operation time described above. 図3における実施例との相違点は、方向切換弁18を通る過給空気がバイパス配管14の遮断弁16に対する圧縮空気を制御し、圧縮空気が入力側においてタービン5の遮断弁7にかかることにある。 Differs from the embodiment in FIG. 3, the supercharged air through a directional control valve 18 controls the compressed air to the shut-off valve 16 of the bypass pipe 14, compressed air is applied to the shutoff valve 7 of the turbine 5 on the input side It is in. 同様に電磁式に切換可能な方向切換弁30、31 Similarly switchable directional control valve electromagnetically 30,31
を介して切り換えが行われる。 The switching is performed via the. 即ち圧力配管ないし導線17、20には制御機構が設けられ、排気ガス流量はこの制御機構によって絞られるか、遮断弁7、16によって中断される。 That is, the pressure line to lead 17, 20 control mechanism is provided, the exhaust gas flow is either throttled by the control mechanism is interrupted by a shut-off valve 7 and 16. 従って制御機構7、16、19、21 Therefore, the control mechanism 7,16,19,21
は、貫流横断面積の開閉速度が個々に調整できるように設計されている。 The opening and closing speed of the flow cross-sectional area is designed to be adjusted individually.

【0018】図6に示すように、排気ガス供給配管6にはタービン5の前に1秒以下の時間で切り換え可能即ち閉鎖する補助遮断弁35が配置されていると有利である。 As shown in FIG. 6, it is advantageous if the exhaust gas supply pipe 6 auxiliary shut-off valve 35 which switchably i.e. closed in less than one second before the turbine 5 is arranged. 同様に迅速に開放する遮断弁36がバイパス配管1 Shut-off valve 36 is a bypass pipe 1 which likewise quickly opened
4の遮断弁16に並列に流れ配管37の中に配置されている。 Parallel to the shut-off valve 16 of 4 are disposed in the flow pipe 37. これら両補助遮断弁35、36はタービン5の非常停止を可能にする。 These two auxiliary shut-off valve 35, 36 allows the emergency stop of the turbine 5.

【0019】例えば油の不足、超過速度、振動警報などのような動力発生用タービンの遮断のための条件が発生すると、タービン5は内燃機関の運転に影響を与えることなしに運転停止される。 [0019] For example lack of oil, overspeed, the condition for cut off of the power generating turbine, such as vibration alert is generated, the turbine 5 is stopped operating without affecting the operation of the internal combustion engine. バイパス配管14における遮断弁16がタービン5の非常停止の際に十分速く開放されるように形成されていると、迅速に開放する別個の遮断弁36は省略できる。 When the shutoff valve 16 in the bypass pipe 14 is formed so as to be opened fast enough during emergency stop of the turbine 5, a separate shut-off valve 36 to quickly open can be omitted.

【0020】 [0020]

【発明の効果】本発明によれば、動力発生用タービンの投入および遮断は急激には行われず、過給空気が不足することはなく、上部負荷範囲において故障が生じた際にタービンは内燃機関の運転に支障を与えることなしに遮断され、主要運転出力において最良の過給空気圧が達成される。 According to the present invention, on and cut-off of the power generation turbines is suddenly not performed, not the supercharged air is insufficient, the turbine engine when a failure in the upper load range occurs It is blocked in operation without giving any trouble, best supercharging air pressure is achieved in the main operating power.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】排気ガス駆動式過給機とこれに対して並列接続された動力発生用タービンとを備えた内燃機関の過給装置の原理系統図。 [1] Principle diagram of a supercharging apparatus for an internal combustion engine having an exhaust gas driven turbocharger and the power generation turbines connected in parallel thereto.

【図2】過給空気圧とエンジン負荷との関係を示す線図。 [Figure 2] graph showing the relationship between the supercharging air pressure and engine load.

【図3】この発明による制御機構の空気式制御方式の原理系統図。 [3] Principle diagram of pneumatic control system of the control mechanism according to the present invention.

【図4】制御機構の電気式制御方式の原理系統図。 [4] The principle diagram of the electric control system of the control mechanism.

【図5】制御機構の異なった空気式制御方式の原理系統図。 [5] The principle diagram of different pneumatic control system of the control mechanism.

【図6】動力発生用タービンの非常停止方式の原理系統図。 [6] The principle diagram of the emergency stop system of the power generating turbine.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 内燃機関 3 排気ガス駆動式過給機 4 過給機タービン 5 動力発生用タービン 7 遮断弁 14 バイパス配管 16 遮断弁 18 遮断弁 19 絞り要素 21 絞り要素 30 遮断弁 31 遮断弁 1 engine 3 exhaust gas driven turbocharger 4 turbocharger turbine 5 power generation turbine 7 shutoff valve 14 the bypass pipe 16 cutoff valve 18 shutoff valve 19 throttle element 21 throttle element 30 shut-off valve 31 shut-off valve

Claims (7)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 排気ガス駆動式過給機と、排気ガス側において過給機タービンに並列接続された別個の動力発生用タービンと、このタービンを運転停止するための制御機構とを持った内燃機関の過給装置において、動力発生用タービン(5)に並列にバイパス配管(14)が設けられ、このバイパス配管(14)がそれを開閉するための制御機構(16、21)を有し、バイパス配管(1 1. A combustion having an exhaust gas driven supercharger, and a separate power generation turbines connected in parallel to the turbocharger turbine in the exhaust gas side, and a control mechanism for shutting down the turbine in supercharger of the engine, a bypass pipe (14) is provided in parallel to the power generating turbine (5), having a control mechanism for the bypass pipe (14) is opened and closed it (16, 21), bypass pipe (1
    4)がその貫流断面積が開いている場合にタービン(5)とほぼ同じ排気ガス流量の貫流を可能にするように寸法づけられ、タービン(5)を投入および遮断するための制御量が過給空気圧であり、制御機構(7、1 4) is dimensioned so as to permit substantially flow of the same exhaust gas flow rate and turbine (5) if the throughflow cross-sectional area is open, the control amount for charging and blocking the turbine (5) is over a supply air pressure control mechanism (7,1
    9;16、21)が、貫流断面積の開閉速度を個々に調整できるように設計され、制御機構(7、19;16、 9; 16,21) are designed to adjust the opening and closing speed of the flow cross-sectional area individually, the control mechanism (7,19; 16,
    21)に対して、投入および遮断過程中に過給空気圧を極めて僅かしか変動させない制御装置(18、30、3 Against 21), very little only varied controller supercharging pressure during on and cut-off process (18,30,3
    1)が設けられ、この制御装置(18、30、31)によってタービン(5)が遮断でき、排気ガス駆動式過給機(3)およびタービン(5)が、75〜90%のエンジン出力において最良の過給空気圧が達成されるように設計されていることを特徴とする内燃機関の過給装置。 1) is provided, the control device (18,30,31) by be blocked turbine (5) is, the exhaust gas-driven turbocharger (3) and a turbine (5) is, in the engine output of 75 to 90% the best of the supercharging system for an internal combustion engine, characterized in that it is designed to boost the air pressure is achieved.
  2. 【請求項2】 制御機構(7、19;16、21)が遮断弁(7、16)と絞り要素(19、21)とから成り、制御装置(18、30、31)が方向切換弁(1 2. A control mechanism (7, 19; 16, 21) is made from cut-off valve (7, 16) and aperture element (19, 21), the control device (18,30,31) is direction selector valve ( 1
    8)と電磁作動式方向切換弁(30、31)とから成り、上位制御装置に並列接続されることを特徴とする請求項1記載の過給装置。 8) and become from the electromagnetically actuatable directional control valve (30, 31), the supercharging device according to claim 1, characterized in that it is connected in parallel to the host controller.
  3. 【請求項3】 タービン(5)の前の遮断弁(7)の入力側が過給空気圧に関係して付勢されることを特徴とする請求項2記載の内燃機関の過給装置。 3. A turbine (5) before the input side supercharging apparatus for an internal combustion engine according to claim 2, wherein the biased in relation to the supercharging pressure of the shut-off valve (7).
  4. 【請求項4】 バイパス配管(14)の遮断弁(16) 4. A shut-off valve of the bypass pipe (14) (16)
    の入力側が過給空気圧に関係して付勢されることを特徴とする請求項2記載の過給装置。 Input side supercharging device according to claim 2, wherein the biased in relation to the supercharging air pressure.
  5. 【請求項5】 タービン(5)の前の1秒以下で閉鎖できる補助遮断機構(35)と、バイパス配管(14)の第1の遮断弁(16)に並列接続された1秒以下で投入できる遮断弁(36)とが設けられることを特徴とする請求項1ないし4のいずれか1つに記載の過給装置。 5. A turbine (5) before the auxiliary shut-off mechanism can be closed in less than one second and (35), the first shut-off valve (16) to put in 1 second or less in parallel connection of the bypass pipe (14) shut-off valve which can (36) and the supercharging device according to any one of claims 1 to 4, characterized in that is provided.
  6. 【請求項6】 過給空気圧特性が空気式制御装置によって実現されることを特徴とする請求項1ないし5のいずれか1つに記載の過給装置。 6. supercharging pressure characteristics supercharging device according to any one of 5 claims 1, characterized in that it is implemented by a pneumatic control device.
  7. 【請求項7】 過給空気圧特性が電気式制御装置によって実現されることを特徴とする請求項1ないし5のいずれか1つに記載の過給装置。 7. A supercharging pressure characteristics supercharging device according to any one of claims 1, characterized in that it is realized by the electric control means 5.
JP15158293A 1992-07-02 1993-05-28 Supercharging system for an internal combustion engine Expired - Lifetime JP3487357B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19924221734 DE4221734C2 (en) 1992-07-02 1992-07-02 Charging system for internal combustion engines
DE4221734.2 1992-07-02

Publications (2)

Publication Number Publication Date
JPH0666151A true true JPH0666151A (en) 1994-03-08
JP3487357B2 JP3487357B2 (en) 2004-01-19

Family

ID=6462332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15158293A Expired - Lifetime JP3487357B2 (en) 1992-07-02 1993-05-28 Supercharging system for an internal combustion engine

Country Status (2)

Country Link
JP (1) JP3487357B2 (en)
DE (1) DE4221734C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260437B2 (en) 2001-09-18 2007-08-21 Denso Corporation Network system using management frames for supervising control units
US20130055711A1 (en) * 2011-09-07 2013-03-07 Douglas C. Hofer Method and system for a turbocharged engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3364469D1 (en) * 1982-04-05 1986-08-21 Bbc Brown Boveri & Cie Exhaust turbocharger on a supercharged diesel engine
DE3729117C1 (en) * 1987-09-01 1988-11-03 Man B & W Diesel Gmbh Internal combustion engine system
DE3916242C1 (en) * 1989-05-18 1990-06-13 Man B & W Diesel Ag, 8900 Augsburg, De

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260437B2 (en) 2001-09-18 2007-08-21 Denso Corporation Network system using management frames for supervising control units
US20130055711A1 (en) * 2011-09-07 2013-03-07 Douglas C. Hofer Method and system for a turbocharged engine
US8813494B2 (en) * 2011-09-07 2014-08-26 General Electric Company Method and system for a turbocharged engine

Also Published As

Publication number Publication date Type
DE4221734C2 (en) 1996-01-04 grant
DE4221734A1 (en) 1994-01-05 application
JP3487357B2 (en) 2004-01-19 grant

Similar Documents

Publication Publication Date Title
US6354084B1 (en) Exhaust gas recirculation system for a turbocharged internal combustion engine
US4570442A (en) Reciprocating piston internal combustion engine
US6715289B2 (en) Turbo-on-demand engine with cylinder deactivation
US4779423A (en) Variable area turbocharger turbine and control system therefor
US6418719B2 (en) Control of a variable geometry turbocharger by sensing exhaust pressure
US4730457A (en) Supercharging system for automotive engines
US2773348A (en) Turbo-charger system, involving plural turbine driven superchargers
US4428199A (en) Turbocharger control system
US4833886A (en) Internal combustion engine supercharged by means of an exhaust gas turbocharger
US20020078934A1 (en) Exhaust gas turbine for internal combustion engine and exhaust turbo-supercharger
US5477840A (en) Boost pressure control for supercharged internal combustion engine
US6089018A (en) Method of controlling a VTG exhaust gas turbocharger
US4903488A (en) Turbocharged engine including an engine driven supercharger
US4062332A (en) Compression brake for internal combustion engine
US6058707A (en) Method of controlling the charge air mass flows of an internal combustion engine including an exhaust gas turbocharger with adjustable turbine geometry
US4612770A (en) Turbocharged engine with exhaust purifier
US6230682B1 (en) Combustion engine and method of controlling same
US5199261A (en) Internal combustion engine with turbocharger system
US4299090A (en) Internal combustion engine with at least two exhaust gas turbochargers
US7654086B2 (en) Air induction system having bypass flow control
US4589396A (en) Supercharger control in automobile engine system
US4617799A (en) Plural turbine inlet passage turbo-supercharger with inlet passage shut-off valve
US20070295007A1 (en) System and method for achieving engine back-pressure set-point by selectively bypassing a stage of a two-stage turbocharger
US4702218A (en) Engine intake system having a pressure wave supercharger
US4709552A (en) Multiple cylinder internal combustion engine with exhaust turbochargers

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030918

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

EXPY Cancellation because of completion of term