JP2018183879A - Laminated film and method for producing laminated film, and molded article on which laminated film is transferred - Google Patents

Laminated film and method for producing laminated film, and molded article on which laminated film is transferred Download PDF

Info

Publication number
JP2018183879A
JP2018183879A JP2017084920A JP2017084920A JP2018183879A JP 2018183879 A JP2018183879 A JP 2018183879A JP 2017084920 A JP2017084920 A JP 2017084920A JP 2017084920 A JP2017084920 A JP 2017084920A JP 2018183879 A JP2018183879 A JP 2018183879A
Authority
JP
Japan
Prior art keywords
refractive index
layer
index layer
low refractive
high refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017084920A
Other languages
Japanese (ja)
Inventor
和彦 金内
Kazuhiko Kaneuchi
和彦 金内
知徳 杉山
Tomonori Sugiyama
知徳 杉山
洋史 森岡
Hiroshi Morioka
洋史 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017084920A priority Critical patent/JP2018183879A/en
Publication of JP2018183879A publication Critical patent/JP2018183879A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a laminated film which reproduces a metal design without using metal, and can impart a design of a half mirror to a resin molding enabling use both infrared transmission and a touch panel.SOLUTION: Low refractive index layers 107 and high refractive index layers 108 having different refractive indexes are alternately laminated on base layers 105 and 106 having unevenness thereon, a refractive index of the alternately laminated low refractive index layers 107 and high refractive index layers 108 is 0.15 or more, at least unevenness is provided on any interface between the low refractive index layers and the high refractive index layers, as for light reflected on the interfaces of each layer of the low refractive index layers and the high refractive index layers, external light approached from a surface of a molding product irregularily scatters therein the molded product by density unevenness of a fine uneven part of submicron formed between the respective layers and an aggregate of the low refractive index and high refractive index fine particles.SELECTED DRAWING: Figure 1

Description

本発明は、積層フィルムの中でも金属意匠の積層フィルムに関するものである。   The present invention relates to a laminated film of a metal design among laminated films.

金属意匠とは、樹脂部品の表面に金属材料を金属蒸着,金属スパッタ,金属メッキ等によってコーティングしたもの、または金属自体を酸化劣化させて経年変化した金属独特の風合いを出した部品などを、金属意匠と定義する。具体的には入射した光の部品表面での反射率が高く高輝度な意匠と定義する。   A metal design is a metal part coated with a metal material by metal vapor deposition, metal sputtering, metal plating, etc., or a part with a unique texture that has changed over time due to oxidative degradation of the metal itself. Defined as a design. Specifically, it is defined as a design with high reflectivity of the incident light on the component surface and high brightness.

樹脂部品の表面に金属意匠を再現する方法として、金属蒸着,金属スパッタ,金属メッキ等を樹脂表面に直接コーティングするか、もしくは金属蒸着,金属スパッタ,金属メッキをフィルム表面にコートしたものを使用してフィルム自体を樹脂へ転写するか、もしくはフィルムにコートした一部の金属層を樹脂表面に転写させる方法で金属意匠にする方法が一般的である。   As a method of reproducing the metal design on the surface of the resin part, use a method in which metal deposition, metal sputtering, metal plating, etc. are directly coated on the resin surface, or metal deposition, metal sputtering, metal plating are coated on the film surface. In general, the film itself is transferred to the resin, or a metal design is made by transferring a part of the metal layer coated on the film to the resin surface.

近年、樹脂部品への加飾ニーズはより多様化、複雑化しており金属意匠と併せて機能性も付与する等して複数性能を樹脂部品に付与させる傾向にある。その中で、樹脂部品に対して従来の金属材料を使用した金属意匠では実現が出来ないニーズとしては、金属意匠と赤外線透過機能の併用やタッチパネル機能の併用等がある。   In recent years, decorating needs for resin parts have become more diversified and complicated, and there is a tendency to give a plurality of performances to resin parts by adding functionality together with metal design. Among them, needs that cannot be realized by a metal design using a conventional metal material for resin parts include the combined use of a metal design and an infrared transmission function and the combined use of a touch panel function.

このニーズを実現するために、樹脂材料の屈折率と膜厚と積層数を制御することで光の波長と反射率を制御し金属レスで金属意匠を再現する金属調の積層フィルムがある。しかし、この積層フィルムでは全ての金属意匠を包含するには不十分である。   In order to realize this need, there is a metal-type laminated film that controls the wavelength and reflectance of light by controlling the refractive index, film thickness, and number of laminated layers of a resin material, and reproduces a metal design without using a metal. However, this laminated film is insufficient to include all metal designs.

金属レスで金属意匠を再現する従来の積層フィルムは、屈折率の異なる2種類の樹脂材料で徐々に膜厚を変えて交互に積層することで光の反射率を制御することで金属意匠を再現している。この金属レスの積層フィルムを用いることで赤外線透過機能やタッチパネル機能と併せて金属意匠を付与できる。   A conventional laminated film that reproduces a metal design without using a metal can reproduce the metal design by controlling the light reflectivity by alternately laminating two different resin materials with different refractive indexes. doing. By using this metalless laminated film, a metal design can be imparted together with an infrared transmission function and a touch panel function.

特許文献1などには図5に示す金属調の積層フィルムが開示されている。   Patent Document 1 discloses a metal-like laminated film shown in FIG.

この積層フィルム200は、樹脂層A201と樹脂層B202を交互に200層以上積層した構造を含んでおり、層の相対厚みが一方の表面から反対側に向かうにつれて120nm〜320nmに徐々に各層の膜厚が厚くなる層構成を含んだハーフミラーの金属調フィルムである。また、樹脂層Aはポリエチレンテレフタレートまたはポリエチレンナフタレートであり、樹脂層Bはスピログリコール及びシクロヘキサンジカルボン酸を含んでなるポリエステルであり、樹脂層Aと樹脂層Bを交互に積層し二軸延伸により製造した連続フィルムである。   This laminated film 200 includes a structure in which 200 or more resin layers A201 and resin layers B202 are alternately laminated, and gradually increases from 120 nm to 320 nm as the relative thickness of the layers goes from one surface to the opposite side. It is a metal film of a half mirror including a layer structure in which the thickness is increased. Further, the resin layer A is polyethylene terephthalate or polyethylene naphthalate, and the resin layer B is a polyester containing spiroglycol and cyclohexanedicarboxylic acid. The resin layer A and the resin layer B are alternately laminated and manufactured by biaxial stretching. A continuous film.

上記、積層フィルムを用いて樹脂成形品表面に金属調の意匠を付与する場合、積層フィルム200の片側に接着層を印刷した後に、インサート成形するかもしくは積層フィルム200の片側に粘着層を設けた後に、真空圧空成形にて積層フィルム200を転写させる方法がある。積層フィルム200を用いた樹脂成形品の場合、樹脂成形品の最表面は積層フィルム200が配置された構成となる。   When giving a metallic design to the surface of the resin molded product using the laminated film, the adhesive layer is printed on one side of the laminated film 200, and then insert molding or an adhesive layer is provided on one side of the laminated film 200. Later, there is a method of transferring the laminated film 200 by vacuum / pressure forming. In the case of a resin molded product using the laminated film 200, the outermost surface of the resin molded product has a configuration in which the laminated film 200 is disposed.

特許第5176319号公報Japanese Patent No. 5176319

図6(a)は積層フィルム200を用いて作成したインサート成形品を示す。   FIG. 6 (a) shows an insert molded product created using the laminated film 200.

203は射出成形樹脂用の接着剤から成る接着層、204は射出成形で形成した樹脂層である。図6中の部分拡大図を図6(b)に示す。205は積層フィルム200の表面より入射した外光であり、206は積層フィルム200の表面及び樹脂層A201と樹脂層B202の各層の界面で反射した正反射光である。207は積層フィルム200の表面及び樹脂層Aおよび樹脂層Bの各層の界面で反射した正反射光206が干渉して強め合った干渉光である。   203 is an adhesive layer made of an adhesive for injection molding resin, and 204 is a resin layer formed by injection molding. A partially enlarged view in FIG. 6 is shown in FIG. 205 is external light incident from the surface of the laminated film 200, and 206 is specularly reflected light reflected from the surface of the laminated film 200 and the interfaces between the resin layers A201 and B202. Reference numeral 207 denotes interference light in which the specular reflection light 206 reflected from the surface of the laminated film 200 and the interfaces of the resin layers A and B is interfered and strengthened.

積層フィルム200の表面は平滑性が高く、樹脂層A201および樹脂層B202の層内も均質な樹脂からなり、積層フィルム200に入射した外光205は散乱されることがなく、積層フィルム200の表面及び樹脂層A201、樹脂層B202の各層の界面で正反射光206の割合が高く、各層の界面の正反射光206が干渉し合い強め合うことで、鏡面性の高い金属意匠が形成される。また、積層フィルム200は樹脂層A201、樹脂層B202が200層以上積層された状態で形成され、且つ厚み方向に膜厚を変えた構成となっており、反射される波長も複数領域の波長が反射される構成となっており、シルバーのハーフミラーの金属意匠が形成される。そのため、単一色で輝度及び鏡面性の高い金属蒸着、金属スパッタ、金属メッキ等の意匠の再現は可能となる。   The surface of the laminated film 200 has high smoothness, and the resin layer A201 and the resin layer B202 are also made of a homogeneous resin. The external light 205 incident on the laminated film 200 is not scattered, and the surface of the laminated film 200 is not scattered. In addition, the ratio of the specular reflection light 206 is high at the interface between the resin layers A201 and B202, and the specular reflection light 206 at the interface between the layers interferes and strengthens, thereby forming a metal design with high specularity. Further, the laminated film 200 is formed in a state where 200 layers or more of the resin layer A201 and the resin layer B202 are laminated, and the film thickness is changed in the thickness direction. It is configured to be reflected, and a silver half mirror metal design is formed. Therefore, it is possible to reproduce designs such as metal vapor deposition, metal sputtering, metal plating, etc. with a single color and high brightness and specularity.

しかし、経年での酸化劣化した金属表面や一部の金属表面が荒れることで鏡面性が落ちた状態や、表面の酸化の度合いにより金属面内で色が変わることで色味の差が生じた不均一な色目になった経年での酸化劣化した金属の意匠を再現することは困難である。例えば酸化した真鍮や酸化銅が一例である。   However, the color difference occurred due to the state that the specularity deteriorated due to roughening of the metal surface deteriorated by oxidation over time or part of the metal surface, or the color changed within the metal surface depending on the degree of surface oxidation. It is difficult to reproduce the design of an oxidatively deteriorated metal over time when the color becomes uneven. For example, oxidized brass and copper oxide are examples.

本発明は、前記従来の課題を解決するもので、経年で酸化劣化した金属意匠を金属レスで再現し、金属意匠と併せて赤外線透過やタッチパネルとの併用が可能な樹脂成形品にハーフミラーの金属意匠を付与する積層フィルムの提供を目的とする。   The present invention solves the above-described conventional problems, and reproduces a metal design that has been oxidized and deteriorated over time without using a metal, and in addition to the metal design, a resin molded product that can be used in combination with infrared transmission and a touch panel. It aims at providing the laminated film which provides a metal design.

上記目的を達成するために、本発明の積層フィルムは、表面に凹凸を有したベース層の上に屈折率の異なる複数の樹脂層が交互に積層されており、交互に積層された前記樹脂層の屈折率差は0.15以上あり、交互に積層された前記樹脂層はそれぞれ低屈折率ナノ粒子を含有する低屈折率層と高屈折率ナノ粒子を含有する高屈折率層であり、前記低屈折率層及び前記高屈折率層の積層数の合計は10層以上で形成され、且つ低屈折率層及び高屈折率層のどこかの界面で少なくとも凹凸を有することを特徴とする。   In order to achieve the above object, the laminated film of the present invention has a plurality of resin layers having different refractive indexes alternately laminated on a base layer having irregularities on the surface, and the resin layers are alternately laminated. The refractive index difference is 0.15 or more, and the alternately laminated resin layers are a low refractive index layer containing low refractive index nanoparticles and a high refractive index layer containing high refractive index nanoparticles, respectively. The total number of layers of the low refractive index layer and the high refractive index layer is 10 or more, and has at least unevenness at any interface between the low refractive index layer and the high refractive index layer.

さらに、複数の樹脂層は、屈折率の異なる2種類以上の樹脂層が交互に平均膜厚が50nm以上150nm以下の間で積層されており、樹脂層の積層数は10層以上で形成され且つ凹凸部の上に形成された樹脂層は、凹部ではその樹脂層の平均膜厚よりも膜厚が厚く、凸部でその樹脂層の平均膜厚よりも膜厚が薄くなる様に形成され面内に凹凸の膜厚ムラを有する形で構成される。   Further, the plurality of resin layers are formed by alternately laminating two or more types of resin layers having different refractive indexes with an average film thickness between 50 nm and 150 nm, and the number of resin layers is 10 or more and The resin layer formed on the concavo-convex part is formed so that the film thickness is thicker than the average film thickness of the resin layer at the concave part and the film thickness is thinner than the average film thickness of the resin layer at the convex part. It is comprised in the form which has an uneven film thickness unevenness inside.

さらに、複数の樹脂層は、低屈折率層と高屈折率層であり、低屈折率層の組成は低屈折率ナノ粒子を樹脂層内に一定量含有しており、保護層またはハードコート層、アンカー層よりも屈折率が低い材料構成とする。低屈折率層はウエットコーティングで形成するため、低屈折率層は、低屈折率ナノ粒子、樹脂、溶媒、助剤等から成る低屈折率コーティング液を使用して形成する。高屈折率層は高屈折率ナノ粒子を樹脂層内に一定量含有しており、保護層またはハードコート層、アンカー層よりも屈折率が高い材料組成とする。高屈折率層もウエットコーティングで形成するため、高屈折率層は、高屈折率微粒子、樹脂、溶媒、助剤から成る高屈折率コーティング液を使用する。   Further, the plurality of resin layers are a low refractive index layer and a high refractive index layer, and the composition of the low refractive index layer contains a certain amount of low refractive index nanoparticles in the resin layer, and a protective layer or a hard coat layer The material structure has a lower refractive index than the anchor layer. Since the low refractive index layer is formed by wet coating, the low refractive index layer is formed using a low refractive index coating liquid composed of low refractive index nanoparticles, a resin, a solvent, an auxiliary agent and the like. The high refractive index layer contains a certain amount of high refractive index nanoparticles in the resin layer, and has a material composition having a refractive index higher than that of the protective layer, the hard coat layer, or the anchor layer. Since the high refractive index layer is also formed by wet coating, the high refractive index layer uses a high refractive index coating liquid composed of high refractive index fine particles, a resin, a solvent, and an auxiliary agent.

また、低屈折率層と高屈折率層の屈折率差はnd(550nm)で少なくとも0.15以上離れ、より望ましくは0.2以上0.6以下が好ましい。屈折率差が0.15よりも小さいと、低屈折率層と高屈折率層の層間での反射率が弱くなり、金属調に必要な輝度を得るための積層数が増えフィルムコストが高くなる。また、屈折率差が0.6より大きくなると市販品で入手し難い材料となり量産時の材料調達が難しくなる。   The difference in refractive index between the low refractive index layer and the high refractive index layer is preferably at least 0.15 or more, more preferably 0.2 or more and 0.6 or less, in terms of nd (550 nm). If the refractive index difference is smaller than 0.15, the reflectivity between the low refractive index layer and the high refractive index layer becomes weak, and the number of layers for obtaining the brightness necessary for the metallic tone increases and the film cost increases. . On the other hand, if the refractive index difference is larger than 0.6, it is difficult to obtain a commercially available material, making it difficult to procure the material during mass production.

本発明の積層フィルムを用いて作成した成形品は、低屈折率層と高屈折率層が10層以上で積層され、低屈折率層と高屈折率層の各界面で反射される光は、各層間に形成された凹凸と各樹脂層内での低屈折率ナノ粒子と高屈折率ナノ粒子の凝集体が点在して形成された屈折率ムラにより成形品表面から進入した外光が不規則に反射される構成となる。   The molded product created using the laminated film of the present invention is a laminate of 10 or more low refractive index layers and high refractive index layers, and the light reflected at each interface between the low refractive index layer and the high refractive index layer is: External light entering from the surface of the molded product is not caused by unevenness formed between the layers and uneven refractive index formed by the agglomeration of low refractive index nanoparticles and high refractive index nanoparticles in each resin layer. The structure is reflected by the rules.

これにより成形品表面から進入した外光の反射される量及び方向が面内で不均一な構成となり、成形品の見た目で反射光量及び反射色にムラができる。反射させる光の波長、つまり光の色目の制御については、低屈折率層及び高屈折率層を予め薄膜干渉の光学シミュレーションソフトで計算し、低屈折率層、高屈折率層それぞれで平滑な面に形成する場合、必要な屈折率と膜厚を計算して平滑面に形成する場合の膜厚を想定した塗工条件で調整し、反射波長のピークを黄色や赤色など狙いの反射波長に合わせ込む。   As a result, the amount and direction in which the external light entering from the surface of the molded product is reflected is uneven in the surface, and the amount of reflected light and the reflected color are uneven in the appearance of the molded product. For controlling the wavelength of light to be reflected, that is, the color of the light, the low refractive index layer and the high refractive index layer are calculated in advance by thin film interference optical simulation software, and the low refractive index layer and the high refractive index layer are smooth surfaces. When forming the film, the required refractive index and film thickness are calculated and adjusted with the coating conditions assuming the film thickness when forming on a smooth surface, and the peak of the reflection wavelength is adjusted to the target reflection wavelength such as yellow or red Include.

低屈折率層及び高屈折率層をそれぞれ目的の膜厚になる条件で塗工することで、見た目は黄色や赤色の反射色が出つつ、各層の凹凸や低屈折率層内の低屈折率ナノ粒子及び高屈折率層内の高屈折率ナノ粒子の凝集体の影響でできる各層内の屈折率ムラにより光の反射状態が変わることで、場所により反射波長と反射光の強度が変わり、面内で不均一な反射をする金属調の成形品にすることが可能となる。   By coating the low refractive index layer and the high refractive index layer under the conditions to achieve the desired film thickness, the appearance of yellow or red reflected color appears, while the unevenness of each layer and the low refractive index in the low refractive index layer The light reflection state changes due to uneven refractive index in each layer due to the influence of the aggregates of nanoparticles and high refractive index nanoparticles in the high refractive index layer. It becomes possible to make a metal-like molded product that has non-uniform reflection inside.

この構成によると、ベース層の上に屈折率の異なる複数の樹脂層が交互に積層されており、交互に積層された前記樹脂層の屈折率差は0.15以上あり、交互に積層された前記樹脂層はそれぞれ低屈折率ナノ粒子を含有する低屈折率層と高屈折率ナノ粒子を含有する高屈折率層であり、低屈折率層及び前記高屈折率層の積層数の合計は10層以上で形成され、且つ低屈折率層及び高屈折率層のどこかの界面で少なくとも凹凸を有しているので、従来の金属調の加飾フィルムでは再現が難しい経年で酸化劣化した金属表面の意匠に近い再現が可能となり、樹脂部品表面に金属レスで酸化劣化した金属意匠の成形品ができる。本発明の積層フィルムの使用により樹脂部品表面に低コストで、安定して酸化劣化した金属意匠の成形品を提供可能となる。   According to this configuration, a plurality of resin layers having different refractive indexes are alternately laminated on the base layer, and the refractive index difference between the alternately laminated resin layers is 0.15 or more, and the resin layers are alternately laminated. The resin layer is a low refractive index layer containing low refractive index nanoparticles and a high refractive index layer containing high refractive index nanoparticles, respectively, and the total number of layers of the low refractive index layer and the high refractive index layer is 10 A metal surface that is formed of more than one layer and has at least unevenness at some interface between the low refractive index layer and the high refractive index layer, so that it is oxidatively deteriorated over time, which is difficult to reproduce with conventional metal-like decorative films. It is possible to reproduce the design of the metal design, and a molded product of the metal design that is oxidized and deteriorated without metal on the surface of the resin part. By using the laminated film of the present invention, it is possible to provide a molded product of a metal design that is stably oxidized and deteriorated at a low cost on the surface of a resin component.

本発明の実施の形態1における(a)金属調の積層フィルムを有するインサートフィルムの断面図と(b)部分拡大図Sectional drawing and (b) partial enlarged view of the insert film which has (a) metallic tone laminated film in Embodiment 1 of this invention (a)〜(h)インモールド成形工程の説明図(A)-(h) Explanatory drawing of an in-mold molding process 本発明の実施の形態1における積層フィルムを転写した(a)成形品の断面図と(b)部分拡大図(A) Cross-sectional view and (b) partial enlarged view of a molded product to which the laminated film in Embodiment 1 of the present invention is transferred 本発明の実施の形態2のおける金属調の積層フィルムの転写層を転写した(a)成形品の断面図と(b)部分拡大図(A) Cross-sectional view and (b) Partial enlarged view of a molded product to which a transfer layer of a metallic laminate film according to Embodiment 2 of the present invention is transferred 従来の積層フィルムの断面図Cross section of conventional laminated film 従来の積層フィルムを用いて作成した(a)インサート成形品の断面図と(b)部分拡大図(A) Cross-sectional view of insert molded product and (b) Partial enlarged view created using conventional laminated film

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1(a)は、本発明の実施の形態1における金属意匠の積層フィルムとしての転写層102を有するインサートフィルム100を示す。
(Embodiment 1)
Fig.1 (a) shows the insert film 100 which has the transfer layer 102 as a laminated | multilayer film of the metal design in Embodiment 1 of this invention.

図1のインサートフィルム100は帯状の連続フィルムである。インサートフィルム100は、成形品に転写されないキャリア層101と、キャリア層101の上に形成されて成形品の表面に転写される転写層102で構成されている。   The insert film 100 in FIG. 1 is a strip-like continuous film. The insert film 100 includes a carrier layer 101 that is not transferred to the molded product, and a transfer layer 102 that is formed on the carrier layer 101 and transferred to the surface of the molded product.

キャリア層101は、ベースフィルム103と、ベースフィルム103と転写層102の間の剥離層104とで構成されている。   The carrier layer 101 includes a base film 103 and a release layer 104 between the base film 103 and the transfer layer 102.

ベースフィルム103は、転写層102を連続的に金型内へ供給する役割を果たすPETやアクリルフィルム等からなるである。ベースフィルム103の厚みは、20μm以上100μm以下の間で使用することが望ましい。20μmよりも薄い場合、フィルム自体にシワが入り易く、且つ破れ易くなる。また100μmよりも厚い場合、薄いフィルムと比較し同じ巻き数のロールフィルムの厚みが厚く重量も重くなりハンドリング性が悪くなる、また、ベースフィルムのコストが高くなる。この例では、ベースフィルム103はフィラーが分散されて表面に凹凸のあるものを使用した。ベースフィルム103の片側に剥離層104を介して転写層102が形成されている。   The base film 103 is made of PET, an acrylic film or the like that plays a role of continuously supplying the transfer layer 102 into the mold. The thickness of the base film 103 is desirably used between 20 μm and 100 μm. When it is thinner than 20 μm, the film itself is easily wrinkled and easily broken. On the other hand, when the thickness is greater than 100 μm, the roll film having the same number of windings is thicker and heavier than a thin film, resulting in poor handling and a high base film cost. In this example, the base film 103 has a surface in which filler is dispersed and the surface is uneven. A transfer layer 102 is formed on one side of the base film 103 with a release layer 104 interposed therebetween.

転写層102は、保護層またはハードコート(HC)層105と、多層に積層された低屈折率層107と高屈折率層108と、隠蔽層109と、接着層203とで構成されている。必要に応じてアンカー層106を保護層またはハードコート(HC)層105の上にに形成する。必要に応じて剥離層104、保護層またはHC層105、アンカー層106にも凹凸調整用の微粒子を含有させても良い。   The transfer layer 102 includes a protective layer or hard coat (HC) layer 105, a low refractive index layer 107, a high refractive index layer 108, a concealing layer 109, and an adhesive layer 203, which are stacked in multiple layers. An anchor layer 106 is formed on the protective layer or hard coat (HC) layer 105 as necessary. If necessary, the peeling layer 104, the protective layer or the HC layer 105, and the anchor layer 106 may contain fine particles for adjusting irregularities.

保護層またはHC層105は、転写層102が転写された成形品の表面を保護及び表面に硬度を付与させる。低屈折率層107は、転写層102の反射波長、反射率に関係する反射層である。また高屈折率層108は、低屈折率層107同様に転写層102の反射波長、反射率に関係する反射層である。低屈折率層107と高屈折率層108は転写層102の中で交互に積層され、反射波長や反射率毎に決まった膜厚と層数で形成される。低屈折率層107、高屈折率層108はどちらを先に積層しても良い。低屈折率層107と高屈折率層108を構成する樹脂の少なくともどちらか一方に熱硬化性樹脂が含まれている。また、転写層102の表面の正反射率のピーク波長が400nm以上780nm以下の可視光領域にある。   The protective layer or HC layer 105 protects the surface of the molded product to which the transfer layer 102 has been transferred and imparts hardness to the surface. The low refractive index layer 107 is a reflective layer related to the reflection wavelength and reflectance of the transfer layer 102. The high refractive index layer 108 is a reflective layer related to the reflection wavelength and reflectance of the transfer layer 102, as with the low refractive index layer 107. The low-refractive index layers 107 and the high-refractive index layers 108 are alternately stacked in the transfer layer 102, and are formed with a film thickness and the number of layers determined for each reflection wavelength and reflectivity. Either the low refractive index layer 107 or the high refractive index layer 108 may be laminated first. At least one of the resins constituting the low refractive index layer 107 and the high refractive index layer 108 contains a thermosetting resin. Further, the peak wavelength of regular reflectance on the surface of the transfer layer 102 is in the visible light region of 400 nm or more and 780 nm or less.

アンカー層106は、保護層またはHC層105と低屈折率層107とを繋ぐ役割を果たす。なお、アンカー層106は、保護層またはHC層105がアンカー層106の役割も兼ねる場合は無くても良い。つまり、樹脂層である低屈折率層107と高屈折率層108が交互に積層されるベースとなるベース層は、保護層またはHC層105、または保護層またはHC層105とアンカー層106で構成される。   The anchor layer 106 serves to connect the protective layer or the HC layer 105 and the low refractive index layer 107. Note that the anchor layer 106 may be omitted when the protective layer or the HC layer 105 also serves as the anchor layer 106. In other words, the base layer serving as a base on which the low refractive index layer 107 and the high refractive index layer 108, which are resin layers, are alternately stacked is configured by the protective layer or HC layer 105, or the protective layer or HC layer 105 and the anchor layer 106. Is done.

隠蔽層109は、低屈折率層107及び高屈折率層108のどちらか最下層で光を吸収するための黒色の隠蔽層である。接着層203は、転写層102と転写層102が転写された成形品とを接着する役割を果たす。隠蔽層109は接着層203が黒色で隠蔽性が有る場合、もしくは射出成形樹脂に黒色樹脂を用いる場合、または射出成形樹脂層以降で、周囲からの光が入らない構成にする場合、隠蔽層109が無くても成形樹脂層以降が暗くなり成形品表面から進入した光が射出成形樹脂以降で吸収されるため問題無い。その場合、低屈折率層107もしくは高屈折率層108の最終層の後に、接着層203を直接に設ければ良い。   The concealing layer 109 is a black concealing layer for absorbing light in the lowermost layer of either the low refractive index layer 107 or the high refractive index layer 108. The adhesive layer 203 serves to bond the transfer layer 102 and the molded product to which the transfer layer 102 has been transferred. When the adhesive layer 203 is black and has a concealing property, or when a black resin is used as the injection molding resin, or when the concealing layer 109 is configured so that light from the surroundings does not enter after the injection molding resin layer, the concealing layer 109 is used. Even if there is not, there is no problem because the light after the molded resin layer becomes dark and the light entering from the surface of the molded product is absorbed after the injection molded resin. In that case, the adhesive layer 203 may be provided directly after the final layer of the low refractive index layer 107 or the high refractive index layer 108.

以上のように本発明のインサートフィルム100は、複数層で構成される。また、図1(a)において剥離層104〜接着層203までの間の層厚は、5μm以上30μm以下の間で形成されることが好ましいが、上記範囲以外でも同様の効果が得られれば特に上記範囲に限定されるものでは無い。   As described above, the insert film 100 of the present invention is composed of a plurality of layers. Further, in FIG. 1A, the layer thickness between the peeling layer 104 and the adhesive layer 203 is preferably formed between 5 μm and 30 μm, but particularly if the same effect can be obtained outside the above range. It is not limited to the said range.

また、低屈折率層107、高屈折率層108のどちらかを形成する保護層もしくはHC層105もしくはアンカー層106表面の凹凸粗さは算術平均粗さRa0.05以上0.5以下が好ましい。Raが0.05よりも小さくなると、低屈折率層107及び高屈折率層108表面が平滑に成りすぎて、低屈折率層107及び高屈折率層の面内で不均一な凹凸が形成され難い。また、Raが0.5よりも大きくなると低屈折率層107及び高屈折率層108の面内での凹凸が大きくなり光の散乱が強く正反射光が弱くなり金属調に必要な輝度が十分に得られない。   The roughness of the surface of the protective layer, the HC layer 105, or the anchor layer 106 forming either the low refractive index layer 107 or the high refractive index layer 108 is preferably an arithmetic average roughness Ra of 0.05 or more and 0.5 or less. When Ra is smaller than 0.05, the surfaces of the low refractive index layer 107 and the high refractive index layer 108 become too smooth, and uneven irregularities are formed in the plane of the low refractive index layer 107 and the high refractive index layer. hard. Further, when Ra is larger than 0.5, the unevenness in the plane of the low refractive index layer 107 and the high refractive index layer 108 becomes large, light scattering is strong, and regular reflection light is weakened, so that the brightness necessary for the metallic tone is sufficient. I can't get it.

低屈折率層107、高屈折率層108を除く他の層の形成方法に関しては、グラビアコーター、コンマコーター、ロールコート、グラビア印刷、スクリーン印刷、インクジエット印刷等で形成が可能である。低屈折率層107及び高屈折率層108は、各層をサブミクロンオーダーの精密な膜厚で形成が必要なためグラビアコーターによる精密塗工で形成必要になる。   Regarding the formation method of the other layers except the low refractive index layer 107 and the high refractive index layer 108, it can be formed by gravure coater, comma coater, roll coat, gravure printing, screen printing, ink jet printing, or the like. The low refractive index layer 107 and the high refractive index layer 108 need to be formed by precision coating with a gravure coater because each layer needs to be formed with a precise film thickness on the order of submicrons.

インサートフィルム100の製造は、最初にベースフィルム103上の表面に不均一な凹凸を有する保護層またはHC層105もしくはアンカー層106上にウエットコーティングで低屈折率コーティング液を狙いの膜厚になる様に塗工し熱乾燥させる。その後、高屈折率層108を形成する高屈折率コーティング液を乾燥した低屈折率コーティング液上に狙いの膜厚になる様に塗工し熱乾燥させる。その後、乾燥した高屈折率層上に再度、低屈折率コーティング液を狙いの膜厚になる様に塗工し乾燥させる。この様に低屈折率層107と高屈折率層108を交互に積層させ10層以上で形成する。低屈折率層107及び高屈折率層108はウエットコートで形成するため、保護層またはHC層105もしくはアンカー層106表面の不均一な凹凸面に塗工されるため、低屈折率層107、高屈折率層108がそれぞれ塗工、熱乾燥される際に不均一な凹凸により乾燥後の膜厚が変わり凹部では平均膜厚よりも膜厚が厚くなり、凸部では平均膜厚よりも膜厚が薄い状態となり積層される。   In the manufacture of the insert film 100, first, a protective layer having uneven unevenness on the surface of the base film 103, or a low refractive index coating solution with a wet coating on the HC layer 105 or the anchor layer 106 is targeted. Coat and heat dry. Thereafter, the high refractive index coating liquid for forming the high refractive index layer 108 is coated on the dried low refractive index coating liquid so as to have a target film thickness and is thermally dried. Thereafter, the low refractive index coating solution is again applied onto the dried high refractive index layer so as to have a target film thickness and dried. In this manner, the low refractive index layer 107 and the high refractive index layer 108 are alternately stacked to form 10 layers or more. Since the low refractive index layer 107 and the high refractive index layer 108 are formed by wet coating, the low refractive index layer 107 and the high refractive index layer 108 are coated on the uneven surface of the protective layer or the HC layer 105 or the anchor layer 106. When the refractive index layer 108 is coated and thermally dried, the film thickness after drying changes due to uneven unevenness, and the film thickness is thicker than the average film thickness at the concave part, and the film thickness is larger than the average film thickness at the convex part. Are laminated in a thin state.

低屈折率層107と高屈折率層108の交互積層部について、転写層102の一部を拡大した部分拡大を図1(b)に示す。   FIG. 1B shows a partial enlargement in which a part of the transfer layer 102 is enlarged in the alternately laminated portion of the low refractive index layer 107 and the high refractive index layer 108.

不均一な凹凸面の保護層またはHC層105にアンカー層106が形成されてアンカー層106面は不均一な凹凸面になっており、その上に低屈折率層107もしくは高屈折率層108が積層される。図1(b)では先に低屈折率層107をアンカー層106上に積層した場合で説明する。   An anchor layer 106 is formed on the protective layer of the uneven surface or the HC layer 105, the surface of the anchor layer 106 is an uneven surface, and the low refractive index layer 107 or the high refractive index layer 108 is formed thereon. Laminated. In FIG. 1B, the case where the low refractive index layer 107 is first laminated on the anchor layer 106 will be described.

不均一な凹凸面が形成されたアンカー層106上にグラビアコーターによりウエットコーティングで低屈折率層107を形成するため、低屈折率層107形成用のコーティング液は溶媒を含んだ適切な状態に粘度調整された液を用いる。低屈折率層107はアンカー層106の凹凸部に沿って低屈折率層107はグラビア版により塗り付けられる。その後、乾燥工程を経て溶媒が除去された後に、低屈折率層107の固形成分のみが残り、最終アンカー層106の表面凹凸に沿った形で低屈折率層107の膜は形成される。アンカー層106の凹部では周囲に対して膜厚が厚膜で形成され易く、アンカー層106の凸部では逆に周囲に対して薄膜で形成され易い状態となる。結果、低屈折率層107も面内に凹凸ムラを有するサブミクロンオーダーの膜が形成される。   Since the low refractive index layer 107 is formed by wet coating with a gravure coater on the anchor layer 106 on which the uneven uneven surface is formed, the coating liquid for forming the low refractive index layer 107 has a viscosity in an appropriate state containing a solvent. Use the adjusted liquid. The low refractive index layer 107 is applied with a gravure plate along the uneven portion of the anchor layer 106. Thereafter, after the solvent is removed through a drying process, only the solid component of the low refractive index layer 107 remains, and the film of the low refractive index layer 107 is formed along the surface irregularities of the final anchor layer 106. In the concave portion of the anchor layer 106, the film thickness is easily formed with respect to the surroundings, and on the contrary, the convex portion of the anchor layer 106 is easily formed with a thin film with respect to the surroundings. As a result, the low refractive index layer 107 is also formed with a submicron order film having unevenness in the surface.

次に、高屈折率層108も同様にグラビアコーターで形成され、同様のプロセスを経て、高屈折率層108の膜も低屈折率層107上の凹凸に沿って面内に凹凸ムラを有するサブミクロンオーダーの膜が形成される。これを特定の反射波長と、反射率に合わせて必要回数それぞれ低屈折率層107と高屈折率層108を狙いの平均膜厚でグラビアコーターを用いて交互に積層する。低屈折率層107と前記高屈折率層108の各層の1層あたりの平均膜厚は50nm以上150nm以下である。   Next, the high refractive index layer 108 is also formed by a gravure coater, and through the same process, the film of the high refractive index layer 108 also has subsurface irregularities in the plane along the irregularities on the low refractive index layer 107. A micron order film is formed. The low refractive index layer 107 and the high refractive index layer 108 are alternately laminated using a gravure coater with a target average film thickness according to the specific reflection wavelength and the required reflectance. The average film thickness per layer of each of the low refractive index layer 107 and the high refractive index layer 108 is 50 nm or more and 150 nm or less.

最終的に、アンカー層106から離れるに従い低屈折率層107及び高屈折率層108の面内の微小凹凸はアンカー層106から遠ざかるに従い緩やかに平滑な面へと近づく。   Eventually, as the distance from the anchor layer 106 increases, the minute irregularities in the surface of the low refractive index layer 107 and the high refractive index layer 108 gradually approach a smooth surface as the distance from the anchor layer 106 increases.

本発明で作成した転写型のインサートフィルム100の詳細について説明する。   The details of the transfer type insert film 100 produced in the present invention will be described.

ベースフィルム103には工業用グレードのPETフィルムを用いており、内部にフィラーが含有された平均厚み50μmのベースフィルムを使用した。また剥離層104には、メラミン樹脂系の材料で平均膜厚は乾燥後1μmで形成した。HC層105は、アフターキュアタイプの紫外線硬化型のアクリル樹脂材料で乾燥後の平均膜厚が5μmとなる様に形成した。アンカー層106は、2液硬化型のアクリルウレタン樹脂系材料を用いて乾燥後の平均膜厚が2μmとなる様に形成した。   As the base film 103, an industrial grade PET film was used, and a base film having an average thickness of 50 μm and containing a filler therein was used. The release layer 104 was formed of a melamine resin material with an average film thickness of 1 μm after drying. The HC layer 105 was formed of an after-curing type ultraviolet curable acrylic resin material so that the average film thickness after drying was 5 μm. The anchor layer 106 was formed using a two-component curable acrylic urethane resin material so that the average film thickness after drying was 2 μm.

低屈折率層107は、シリコーン樹脂と平均粒子径が50nmの中空シリカを分散させた低屈折率層形成用のコーティング液を用いて形成し屈折率ndが1.33で平均膜厚が130nmになる様に形成した。低屈折率ナノ粒子として、中空シリカ以外にフッ化マグネシウムや氷晶石などを用いても良く、これら意外でも同様の効果が得られれば限定される必要は無い。   The low refractive index layer 107 is formed using a coating solution for forming a low refractive index layer in which a silicone resin and hollow silica having an average particle diameter of 50 nm are dispersed, and the refractive index nd is 1.33 and the average film thickness is 130 nm. It was formed as follows. As the low refractive index nanoparticles, magnesium fluoride, cryolite or the like may be used in addition to the hollow silica, and there is no need to be limited as long as the same effect can be obtained.

高屈折率層108は、アフターキュアタイプの紫外線硬化型のアクリル樹脂に平均粒子径が50nmのジルコニアを分散させた高屈折率層形成用のコーティング液を用いて形成し屈折率ndが1.63で平均膜厚が85nmになる様に形成した。高屈折率ナノ粒子として、ジルコニア以外に酸化チタン、酸化亜鉛などを用いても良く、これら以外でも同様の効果が得られれば限定される必要は無い。   The high refractive index layer 108 is formed by using a coating liquid for forming a high refractive index layer in which zirconia having an average particle diameter of 50 nm is dispersed in an after-curing type ultraviolet curable acrylic resin, and the refractive index nd is 1.63. The average film thickness was 85 nm. In addition to zirconia, titanium oxide, zinc oxide, or the like may be used as the high refractive index nanoparticles, and there is no need to be limited as long as the same effect can be obtained.

低屈折率層107及び高屈折率層108はグラビアコーターで交互に積層し、低屈折率層107と高屈折率層108が合計10層となる様に形成した。低屈折率層107と高屈折率層108の屈折率差はnd(550nm)で少なくとも0.15以上離れ、より望ましくは0.2以上0.6以下が好ましい。屈折率差が0.15よりも小さいと、低屈折率層107と高屈折率層108の層間での反射率が弱くなり、金属調に必要な輝度を得るための積層数が増えフィルムコストが高くなる。また、屈折率差が0.6より大きくなると市販品で入手し難い材料となり量産時の材料調達が難しくなる。   The low refractive index layer 107 and the high refractive index layer 108 were alternately laminated by a gravure coater, and the low refractive index layer 107 and the high refractive index layer 108 were formed in a total of 10 layers. The difference in refractive index between the low refractive index layer 107 and the high refractive index layer 108 is at least 0.15 or more, more preferably 0.2 or more and 0.6 or less, in terms of nd (550 nm). If the refractive index difference is smaller than 0.15, the reflectivity between the low refractive index layer 107 and the high refractive index layer 108 becomes weak, and the number of layers for obtaining the brightness necessary for the metallic tone increases, and the film cost increases. Get higher. On the other hand, if the refractive index difference is larger than 0.6, it is difficult to obtain a commercially available material, making it difficult to procure the material during mass production.

積層数に関しては反射させる波長及び必要な反射率で変わるが、低屈折率層及び高屈折率層の交互積層の総数は10層以上60層以下の範囲が好ましい。より好ましくは10層以上40層以下となる。積層数10層以下になると金属調に必要な十分な反射率及び輝度が得られがたくなり、60層以上になると各層間で反射した反射光が干渉したフィルム及び成形品表面の反射率が変化しない領域となり、それ以上積層する必要がないためである。   The number of laminated layers varies depending on the wavelength to be reflected and the required reflectance, but the total number of alternately laminated low refractive index layers and high refractive index layers is preferably in the range of 10 to 60 layers. More preferably, it is 10 layers or more and 40 layers or less. When the number of layers is less than 10 layers, it is difficult to obtain sufficient reflectivity and brightness necessary for metallic tone, and when the number of layers exceeds 60 layers, the reflectivity of the film and the molded product surface where the reflected light reflected between each layer changes. This is because there is no need for further lamination.

上記積層数の範囲は、使用する低屈折率材料及び高屈折率材料の屈折率差が小さい場合は、金属調に必要な反射率を得るための積層数は多くなり、逆に屈折率差が大きくなれば積層数は減らせる方向となるため、上記範囲外でも同様の効果が得られれば上記範囲外でも問題ない。   When the difference in the refractive index between the low refractive index material and the high refractive index material to be used is small, the number of stacks for obtaining the reflectance necessary for the metallic tone increases, and conversely the refractive index difference As the number increases, the number of stacked layers can be reduced. Therefore, if the same effect can be obtained outside the above range, there is no problem outside the above range.

その後、隠蔽層109を2液硬化型のウレタン系樹脂の黒インクを用いてスクリーン印刷で乾燥後の平均膜厚が4μmとなる様に印刷した。最後に、接着層203をスクリーン印刷で塩化ビニル樹脂と酢酸ビニル樹脂の共重合体を含有したウレタンビニル系の熱可塑性の接着剤をスクリーン印刷で乾燥後の平均膜厚が4μmとなる様に印刷した。光学シミュレーション用の解析ソフトで計算して得られた加飾フィルム100の反射率のピーク波長は、ベースフィルム103側から5°の正反射率を測定すると600nm付近の黄色の波長を反射する金色に近い輝きのインサートフィルム100を得た。   Thereafter, the concealing layer 109 was printed by screen printing using a black ink of a two-component curable urethane resin so that the average film thickness after drying was 4 μm. Finally, the adhesive layer 203 is printed by screen printing with a urethane vinyl thermoplastic adhesive containing a copolymer of vinyl chloride resin and vinyl acetate resin so that the average film thickness after drying is 4 μm by screen printing. did. The peak wavelength of the reflectance of the decorative film 100 obtained by calculation with analysis software for optical simulation is a gold color that reflects a yellow wavelength near 600 nm when a regular reflectance of 5 ° is measured from the base film 103 side. An insert film 100 having a near brightness was obtained.

また別の試作においては、上記と同様に光学シミュレーション用の解析ソフトで計算して、低屈折率層107を屈折率ndが1.33で平均膜厚が130nm、高屈折率層108を屈折率ndが1.63で平均膜厚が115nmになる様にグラビアコーターで交互に形成し、低屈折率層107と高屈折率層108を合計10層となる様に形成した加飾フィルム100では、反射率のピーク波長は、ベースフィルム103側から5°の正反射率を測定すると725nm付近の橙赤色の波長を反射する銅色に近い輝きの加飾フィルム100を得た。   In another prototype, the low refractive index layer 107 has a refractive index nd of 1.33, an average film thickness of 130 nm, and the high refractive index layer 108 has a refractive index, as calculated by the analysis software for optical simulation as described above. In the decorative film 100 in which the nd is 1.63 and the average film thickness is alternately formed with a gravure coater so that the average film thickness becomes 115 nm, and the low refractive index layer 107 and the high refractive index layer 108 are formed to be a total of 10 layers. The peak wavelength of the reflectance was obtained by measuring a specular reflectance of 5 ° from the base film 103 side to obtain a decorative film 100 having a copper-like brightness reflecting an orange-red wavelength near 725 nm.

次に、インサートフィルム100の転写層102を成形品の表面に転写するインモールド成形の製造プロセスを説明する。   Next, an in-mold molding manufacturing process for transferring the transfer layer 102 of the insert film 100 to the surface of the molded product will be described.

先ず図2(a)の工程では、固定型1と可動型2の間に転写型のインサートフィルム100を箔送り装置3を用いて所定の位置に送る。この時、転写型のインサートフィルム100はベースフィルム103が可動型2に向くよう配置されている。また、フィルムが金型に賦型し易いように、インサートフィルム100を図示されていないヒーターで予熱してから、金型内へ送り込んでも良い。   First, in the process of FIG. 2A, the transfer type insert film 100 is sent to a predetermined position between the fixed mold 1 and the movable mold 2 by using the foil feeding device 3. At this time, the transfer type insert film 100 is arranged so that the base film 103 faces the movable mold 2. Further, the insert film 100 may be preheated with a heater (not shown) and then fed into the mold so that the film can be easily molded into the mold.

次に、インサートフィルム100の所定の位置への送り完了後、図2(b)の工程では、で可動型2のキャビティ面に空けられた吸引穴4で転写型のインサートフィルム100を吸引し可動型2のキャビティ面へインサートフィルム100を賦形する。その際に、図示されていないフィルム押さえ機構でインサートフィルム100の外周を固定し位置決めする。   Next, after the feeding of the insert film 100 to a predetermined position is completed, in the step of FIG. 2B, the transfer type insert film 100 is sucked through the suction hole 4 formed in the cavity surface of the movable mold 2 and is movable. The insert film 100 is shaped on the cavity surface of the mold 2. At that time, the outer periphery of the insert film 100 is fixed and positioned by a film pressing mechanism (not shown).

その後、図2(c)の工程では、可動型2を動かして型締めする。   Thereafter, in the step of FIG. 2C, the movable mold 2 is moved and clamped.

次に、図2(d)の工程では、固定型1のゲート5よりインサートフィルム100の接着層203に向け溶融した樹脂6を注入し、金型内のキャビティ内に溶融した樹脂6を充填させる。   Next, in the step of FIG. 2D, the molten resin 6 is injected from the gate 5 of the fixed mold 1 toward the adhesive layer 203 of the insert film 100, and the molten resin 6 is filled in the cavity in the mold. .

図2(e)の工程では、溶融した樹脂6の充填が完了したら、所定の温度まで溶融した樹脂6を冷却する。   In the step of FIG. 2E, when the filling of the molten resin 6 is completed, the molten resin 6 is cooled to a predetermined temperature.

図2(f)の工程では、可動型2を可動させ型開きし、インモールド成形品7を取り出す際にインモールド成形品7から転写型の金属調フィルムのキャリア層101が剥がれ、転写層102のみ転写されインモールド成形品7の最表面は保護層またはHC層が転写された状態となる。   In the step of FIG. 2F, when the movable mold 2 is moved and the mold is opened and the in-mold molded product 7 is taken out, the carrier layer 101 of the transfer-type metallic film is peeled off from the in-mold molded product 7 and the transfer layer 102 is removed. As a result, the protective layer or the HC layer is transferred to the outermost surface of the in-mold molded product 7.

その後、図2(g)の工程では、固定型1側の突き出しピン8を押し出して成形品7を金型内より取り出す。   Thereafter, in the step of FIG. 2G, the protruding pin 8 on the fixed mold 1 side is pushed out to take out the molded product 7 from the mold.

図2(h)の工程では、次の成形に備えて可動型2の吸引穴4でのインサートフィルム100のキャリア層101であるベースフィルム103と剥離層104の可動型2のキャビティ内への吸着を止め、次の成形に使用するインサートフィルム100を箔送り装置3により所定位置まで送り、この動作を繰り返して連続成形可能となる。インモールド成形方式の場合、ベースフィルム103は金型内へ転写層102を送り込むためのキャリアの役割で、成形品へは転写されないため、型内からインモールド成形品7を取り出すだけで成形品表面に転写層102を転写させるためフィルムのプリフォームや成形後のトリミング工程が不要となる。よって生産性は高く、安定して効率良く低コストに成形品を生産できる。   In the step of FIG. 2 (h), the base film 103 as the carrier layer 101 of the insert film 100 and the peeling layer 104 are adsorbed in the cavity of the movable mold 2 in the suction hole 4 of the movable mold 2 in preparation for the next molding. The insert film 100 used for the next molding is fed to a predetermined position by the foil feeding device 3, and this operation is repeated to enable continuous molding. In the case of the in-mold molding method, the base film 103 serves as a carrier for feeding the transfer layer 102 into the mold and is not transferred to the molded product. Therefore, the surface of the molded product can be obtained simply by taking out the in-mold molded product 7 from the mold. Since the transfer layer 102 is transferred to the film, a film preform and a trimming step after molding are not required. Therefore, productivity is high, and a molded product can be produced stably and efficiently at low cost.

インサートフィルム100の転写層102を転写して作成した成形品110の断面図を図3(a)に示す。   FIG. 3A shows a cross-sectional view of a molded product 110 created by transferring the transfer layer 102 of the insert film 100.

成形品110は、一般的なインモールド成形用金型を用いて、本発明の積層フィルムを有するインサートフィルム100によりABS樹脂を用いて射出成形で樹脂6を形成して得た。射出成形樹脂に関してはABSでなくPC、PMMA、PP等、用途に合わせて適宜選択すれば良く、射出成形用樹脂に合わせて接着層203も適宜選択すれば良い。   The molded product 110 was obtained by forming the resin 6 by injection molding using ABS resin with the insert film 100 having the laminated film of the present invention using a general in-mold molding die. The injection molding resin may be appropriately selected according to the use, such as PC, PMMA, PP, etc. instead of ABS, and the adhesive layer 203 may be appropriately selected according to the injection molding resin.

図3(b)は、図3(a)に示した成形品110の表面に転写された転写層102を部分拡大した断面の詳細図である。   FIG. 3B is a detailed cross-sectional view showing a partially enlarged transfer layer 102 transferred to the surface of the molded product 110 shown in FIG.

205は成形品表面より入射した外光であり、206は外光205が成形品表面及び成形品内部で反射した正反射光である。207は成形品内部で反射光が干渉した干渉光であり、208は成形品表面もしくは成形品内部で外光205が拡散した拡散反射光である。   205 is external light incident from the surface of the molded product, and 206 is regular reflection light that the external light 205 reflects on the surface of the molded product and inside the molded product. Reference numeral 207 denotes interference light in which the reflected light interferes inside the molded product, and 208 denotes diffuse reflected light in which the external light 205 is diffused on the surface of the molded product or inside the molded product.

本発明のインサートフィルム100を用いることで、成形品110の最表面から入射した外光205は保護層もしくはHC層105の表面に凹凸で反射され外光205の正反射光206の割合が減り、一部が拡散反射光208となる。これにより成形品110の表面のギラツキが低減される。成形品110の内部も凹凸箇所が不均一に存在し、内部の凹凸箇所でも成形品110の表面で起きた外光205と同様に、成形品110内部に入射した外光205は、正反射光206と拡散反射光208に分離される。   By using the insert film 100 of the present invention, the external light 205 incident from the outermost surface of the molded product 110 is reflected by the unevenness on the surface of the protective layer or the HC layer 105, and the ratio of the regular reflection light 206 of the external light 205 is reduced. Part of it becomes diffusely reflected light 208. Thereby, the glare on the surface of the molded product 110 is reduced. In the molded product 110, uneven portions are unevenly present, and the external light 205 incident on the molded product 110 is specularly reflected in the same manner as the external light 205 generated on the surface of the molded product 110 even in the internal uneven portions. 206 and diffused reflected light 208 are separated.

このため、成形品110の内部での低屈折率層107と高屈折率層108の間で繰り返し起こる屈折率差による反射は、入射した外光205が面内で安定した正反射光205を形成し難く、場所による凹凸量の違いにより面内で不均一な正反射光205となる。結果、低屈折率層107と高屈折率層の間で繰り返し起こる外光205の反射において、正反射光206は面内で不均一となるため、成形品110の表面に出てくる干渉光207は面内で不均一となり、正反射光206において場所毎で強弱が生まれ、且つ凹凸箇所で平均膜厚から薄い厚い等のズレにより反射波長の僅かなズレが発生することで、面内で反射された干渉光207の光量の強い箇所と弱い箇所で濃淡が形成され、面内に色の濃淡がある様に見える。   For this reason, reflection due to a difference in refractive index that repeatedly occurs between the low-refractive index layer 107 and the high-refractive index layer 108 inside the molded product 110 causes the incident external light 205 to form stable regular reflection light 205 within the surface. It is difficult to produce regular reflected light 205 that is uneven within the surface due to the difference in the amount of unevenness depending on the location. As a result, in the reflection of the external light 205 that repeatedly occurs between the low refractive index layer 107 and the high refractive index layer, the regular reflection light 206 becomes non-uniform in the plane, and therefore the interference light 207 that appears on the surface of the molded product 110. Is uneven in the plane, and the intensity of the specular reflection light 206 is increased at each location, and the reflection wavelength is reflected in the plane due to a slight shift in the reflection wavelength due to a shift from the average film thickness to a thin thickness at the uneven portion. Light and shade are formed at the strong and weak portions of the interference light 207, and the color appears to be in-plane.

この現象が結果として、例えば、反射されるピーク波長が600nm付近の黄色の場合、鮮やかな金色に見える箇所と、暗い金色に見える箇所ができることで一部が酸化した真鍮に近い金属調の成形品となる。また、同様に反射されるピーク波長が725nm付近の場合は、鮮やかな橙赤色に見える箇所と、暗い橙赤色に見える箇所ができることで一部が酸化した銅に近い金属調の成形品となる。   As a result of this phenomenon, for example, when the reflected peak wavelength is yellow near 600 nm, a metal-like molded product close to brass that is partially oxidized due to the appearance of vivid gold and dark gold. It becomes. Similarly, when the reflected peak wavelength is around 725 nm, a part that looks bright orange-red and a part that looks dark orange-red are formed, resulting in a metal-like molded product that is close to partially oxidized copper.

上記以外の反射させるピーク波長を変えることで、黄色や橙赤色以外に、青、緑、赤、シルバー等の好みの色味で面内に濃淡を有する独特の金属調フィルムとそれを用いた成形品を得ることができる。   By changing the peak wavelength to be reflected other than the above, a unique metallic film with shades in the surface with a favorite color such as blue, green, red, silver, etc. in addition to yellow and orange red, and molding using it Goods can be obtained.

なお、ベースフィルム103、剥離層104、保護層またはHC層105のうちの少なくともどれか1層以上の表面に凹凸形成して構成することもできる。   It should be noted that the surface of at least one of the base film 103, the release layer 104, the protective layer, or the HC layer 105 may be formed with unevenness.

(実施の形態2)
図4(a)は本発明の実施の形態2の積層フィルムとしての転写層102を有するインサートフィルム100を使用してインモールド成形し、転写層102を成形樹脂層6に転写して作成した成形品110を示す。図4(b)は図4(a)中の部分拡大を示す。
(Embodiment 2)
FIG. 4A shows an in-mold molding using the insert film 100 having the transfer layer 102 as the laminated film according to the second embodiment of the present invention, and the transfer layer 102 is transferred to the molded resin layer 6 and formed. Item 110 is shown. FIG. 4B shows a partial enlargement in FIG.

なお、図3(a)(b)と構成要素については同じ符号付けて説明する。   In addition, about the component as FIG. 3 (a) (b), it demonstrates with the same code | symbol.

この実施の形態2は、実施の形態1よりも更に酸化劣化した金属調の濃淡を強調したい場合に有効である。   The second embodiment is effective when it is desired to emphasize the darkness of the metallic tone that is further deteriorated by oxidation compared to the first embodiment.

図4(b)の低屈折率層107中には、低屈折率ナノ粒子111と、低屈折率ナノ粒子の凝集体112が含まれている。高屈折率層108中には、高屈折率ナノ粒子113と、高屈折率ナノ粒子の凝集体114が含まれている。   The low refractive index layer 107 in FIG. 4B includes low refractive index nanoparticles 111 and aggregates 112 of low refractive index nanoparticles. The high refractive index layer 108 includes high refractive index nanoparticles 113 and aggregates 114 of high refractive index nanoparticles.

実施の形態2の低屈折率層107と高屈折率層108は、低屈折率層107及び高屈折率層108の各層内にそれぞれ低屈折率ナノ粒子の凝集体112と高屈折率ナノ粒子の凝集体114を含有する以外は、実施の形態1と同様の構成となる。低屈折率ナノ粒子には中空シリカを用い、高屈折率ナノ粒子にはジルコニアを用いた。   The low-refractive index layer 107 and the high-refractive index layer 108 according to the second embodiment are formed of the low-refractive index nanoparticle aggregate 112 and the high-refractive index nanoparticle in the low-refractive index layer 107 and the high-refractive index layer 108, respectively. Except for containing the agglomerate 114, the configuration is the same as in the first embodiment. Hollow silica was used for the low refractive index nanoparticles, and zirconia was used for the high refractive index nanoparticles.

低屈折率層107及び高屈折率層108において、それぞれの樹脂層中に含有させるナノ粒子の含有量は低屈折率層が多い方が良い。理由は樹脂の屈折率と低屈折率ナノ粒子111の中空シリカの屈折率差の方が、樹脂と高屈折率ナノ粒子113のジルコニアの屈折率差よりも大きいためである。低屈折率層107へ低屈折率ナノ粒子111の中空シリカを多く添加した方が、低屈折率層107と高屈折率層108の屈折率差を効果的に大きくできる。また、高屈折率層108に高屈折率ナノ粒子113のジルコニアよりも屈折率の高い酸化チタンや酸化亜鉛のナノ粒子を含有させる場合、酸化チタンや酸化亜鉛はジルコニアには無い光触媒活性を有するため、高屈折率層108中への添加量が多くなると高屈折率層108の樹脂成分が光触媒活性作用により、樹脂層の一部が酸化劣化されることで、黄変などが発生し易い。そのため、低屈折率層107及び高屈折率層108の屈折率差を大きくする場合、低屈折率層107への低屈折率ナノ粒子111の添加量を多くした方が良くなる。   In the low-refractive index layer 107 and the high-refractive index layer 108, the content of nanoparticles contained in each resin layer is preferably higher in the low-refractive index layer. The reason is that the refractive index difference between the refractive index of the resin and the hollow silica of the low refractive index nanoparticles 111 is larger than the refractive index difference between the resin and the high refractive index nanoparticles 113 of zirconia. The difference in refractive index between the low refractive index layer 107 and the high refractive index layer 108 can be effectively increased by adding more hollow silica of the low refractive index nanoparticles 111 to the low refractive index layer 107. Moreover, when the high refractive index layer 108 contains nanoparticles of titanium oxide or zinc oxide having a higher refractive index than that of the zirconia of the high refractive index nanoparticles 113, titanium oxide and zinc oxide have photocatalytic activity that is not found in zirconia. When the amount added to the high refractive index layer 108 is increased, the resin component of the high refractive index layer 108 is subject to photocatalytic activity, and part of the resin layer is oxidized and deteriorated, so that yellowing or the like is likely to occur. Therefore, when the difference in refractive index between the low refractive index layer 107 and the high refractive index layer 108 is increased, it is better to increase the amount of the low refractive index nanoparticles 111 added to the low refractive index layer 107.

実施の形態2において、成形品110の表面より入射した外光205は、低屈折率層107及び高屈折率層108に到達した際に、各層の界面の凹凸において正反射光206が減り拡散反射光208が増えるに要因以外に、各層内のナノ粒子の凝集体が存在する箇所でも同様に正反射光206が減り、拡散反射光208増えることで低屈折率層107と高屈折率層108の界面で繰り返し起こる反射による干渉光の強弱による反射光の強度差で起こる色の濃淡差がより顕著になる。低屈折率層107及び高屈折率層108は各層内に低屈折率ナノ粒子及び高屈折率ナノ粒子の凝集体を含んだ箇所では、層内での屈折率ムラができる。   In the second embodiment, when the external light 205 incident from the surface of the molded product 110 reaches the low-refractive index layer 107 and the high-refractive index layer 108, the regular reflection light 206 is reduced at the irregularities at the interface of each layer, and diffuse reflection is performed. In addition to the factors that increase the amount of light 208, the specularly reflected light 206 decreases in the same manner at the locations where the aggregates of nanoparticles in each layer are present, and the diffusely reflected light 208 increases, so that the low refractive index layer 107 and the high refractive index layer 108 are increased. The difference in color density caused by the intensity difference of the reflected light due to the intensity of the interference light due to repetitive reflection at the interface becomes more prominent. The low-refractive index layer 107 and the high-refractive index layer 108 have uneven refractive index in the layer where each layer includes an aggregate of low-refractive index nanoparticles and high-refractive index nanoparticles.

凝集体のサイズが通常のナノ粒子のサイズよりも大きいため、凝集体が存在する箇所では、膜上に凸形状が出来易く、低屈折率層107及び高屈折率層108の面内の凹凸が増えることになる。低屈折率層107及び高屈折率層108の層内で新たに凝集体による凹凸が形成されるため、実施の形態1と違い、アンカー層106から遠ざかっても面内の凹凸量及び凹凸深さなどが緩やかに緩和されることなく低屈折率層107及び高屈折率層108の最後まで面内に凹凸部が形成された構成となる。その結果、実施の形態1よりも低屈折率層107及び高屈折率層108の各層の界面での正反射206が減り、拡散反射208が増えることで、反射光の量、方向がより顕著に不均一となり、成形品の表面に出る干渉光207の濃淡差が更に大きい金属調の成形品を得ることが可能となる。   Since the size of the aggregate is larger than the size of the normal nanoparticle, it is easy to form a convex shape on the film where the aggregate is present, and the in-plane unevenness of the low refractive index layer 107 and the high refractive index layer 108 Will increase. Since irregularities due to aggregates are newly formed in the layers of the low refractive index layer 107 and the high refractive index layer 108, unlike the first embodiment, the amount of irregularities and the depth of the irregularities in the surface even when they are away from the anchor layer 106. And the like, in which the concave and convex portions are formed in the plane up to the end of the low refractive index layer 107 and the high refractive index layer 108. As a result, the regular reflection 206 at the interface of each layer of the low refractive index layer 107 and the high refractive index layer 108 is reduced and the diffuse reflection 208 is increased as compared with the first embodiment, so that the amount and direction of reflected light are more prominent. It becomes non-uniform, and it becomes possible to obtain a metal-like molded product in which the contrast difference of the interference light 207 appearing on the surface of the molded product is further large.

本発明によれば、例えばインモールド成形、熱転写、ロール転写により家電製品、モバイル機器などの外装筐体や自動車用の内装部品等の樹脂部品への金属調の意匠付与として幅広く活用できる。   According to the present invention, for example, it can be widely used to apply a metallic design to resin parts such as exterior casings for home appliances, mobile devices, and interior parts for automobiles by in-mold molding, thermal transfer, and roll transfer.

1 固定型
2 可動型
3 箔送り装置
4 吸引穴
5 ゲート
6 溶融した樹脂
7 インモールド成形品
8 突き出しピン
100 インサートフィルム
101 キャリア層
102 転写層
103 ベースフィルム
104 剥離層
105 保護層またはハードコート層
106 アンカー層
107 低屈折率層
108 高屈折率層
109 隠蔽層
110 本発明の金属調成形品
111 低屈折率ナノ粒子
112 低屈折率ナノ粒子の凝集体
113 高屈折率ナノ粒子
114 高屈折率ナノ粒子の凝集体
DESCRIPTION OF SYMBOLS 1 Fixed type 2 Movable type 3 Foil feeder 4 Suction hole 5 Gate 6 Molten resin 7 In-mold molded product 8 Extrusion pin 100 Insert film 101 Carrier layer 102 Transfer layer 103 Base film 104 Release layer 105 Protective layer or hard coat layer 106 Anchor layer 107 Low-refractive index layer 108 High-refractive index layer 109 Concealing layer 110 Metal-molded article 111 of the present invention Low-refractive index nanoparticles 112 Aggregates 113 of low-refractive index nanoparticles High-refractive index nanoparticles 114 High-refractive index nanoparticles Aggregates of

Claims (14)

表面に凹凸を有したベース層の上に屈折率の異なる複数の樹脂層が交互に積層されており、
交互に積層された前記樹脂層の屈折率差は0.15以上あり、
交互に積層された前記樹脂層はそれぞれ低屈折率ナノ粒子を含有する低屈折率層と高屈折率ナノ粒子を含有する高屈折率層であり、
前記低屈折率層及び前記高屈折率層の積層数の合計は10層以上で形成され、且つ低屈折率層及び高屈折率層のどこかの界面で少なくとも凹凸を有する、
積層フィルム。
A plurality of resin layers having different refractive indexes are alternately laminated on a base layer having irregularities on the surface,
The refractive index difference between the alternately laminated resin layers is 0.15 or more,
The resin layers stacked alternately are a low refractive index layer containing low refractive index nanoparticles and a high refractive index layer containing high refractive index nanoparticles, respectively.
The total number of layers of the low refractive index layer and the high refractive index layer is 10 or more, and has at least irregularities at any interface between the low refractive index layer and the high refractive index layer,
Laminated film.
前記低屈折率層及び高屈折率層を構成する樹脂層内に含有される前記ナノ粒子の一部が凝集体であることを特徴とする、
請求項1に記載の積層フィルム。
A part of the nanoparticles contained in the resin layer constituting the low refractive index layer and the high refractive index layer is an aggregate,
The laminated film according to claim 1.
前記低屈折率層と前記高屈折率層はそれぞれ屈折率の異なるナノ粒子を含有しており、前記低屈折率層と前記高屈折率層の屈折率差が0.15以上0.6以下であることを特徴とする、
請求項1または2に記載の積層フィルム。
The low refractive index layer and the high refractive index layer each contain nanoparticles having different refractive indexes, and the refractive index difference between the low refractive index layer and the high refractive index layer is 0.15 or more and 0.6 or less. It is characterized by being,
The laminated film according to claim 1 or 2.
前記低屈折率層と前記高屈折率層の各層の1層あたりの平均膜厚は50nm以上150nm以下であることを特徴とする、
請求項1〜3の何れかに記載の積層フィルム。
The average film thickness per layer of each of the low refractive index layer and the high refractive index layer is 50 nm or more and 150 nm or less,
The laminated film according to any one of claims 1 to 3.
前記低屈折率層と前記高屈折率層を構成する樹脂の少なくともどちらか一方に熱硬化性樹脂が含まれていることを特徴とする、
請求項1〜4の何れかに記載の積層フィルム。
The thermosetting resin is contained in at least one of the resins constituting the low refractive index layer and the high refractive index layer,
The laminated film according to any one of claims 1 to 4.
表面の正反射率のピーク波長が400nm以上780nm以下の可視光領域にあることを特徴とする、
請求項1〜5の何れかに記載の積層フィルム。
The peak wavelength of the regular reflectance of the surface is in the visible light region of 400 nm or more and 780 nm or less,
The laminated film according to any one of claims 1 to 5.
前記低屈折率層と前記高屈折率層の各層の凹凸がベース層から遠くなるにつれ小さくなることを特徴とする、
請求項1〜6の何れかに記載の積層フィルム。
The unevenness of each layer of the low refractive index layer and the high refractive index layer becomes smaller as the distance from the base layer becomes smaller,
The laminated film according to any one of claims 1 to 6.
前記低屈折率層内に含まれるナノ粒子の含有量が、前記高屈折率層に含まれるナノ粒子の含有量よりも多いことを特徴とする、
請求項1〜7の何れかに記載の積層フィルム。
The content of nanoparticles contained in the low refractive index layer is greater than the content of nanoparticles contained in the high refractive index layer,
The laminated film according to any one of claims 1 to 7.
前記低屈折率層と前記高屈折率層の塗工面の凹凸粗さが、Raで0.05以上0.5以下であることを特徴とする、
請求項1〜8の何れかに記載の積層フィルム。
The uneven roughness of the coating surface of the low refractive index layer and the high refractive index layer is Ra, 0.05 or more and 0.5 or less,
The laminated film according to any one of claims 1 to 8.
請求項1記載の積層フィルムがベースフィルムに剥離層を介して転写層として形成され、前記ベースフィルム、前記剥離層、前記転写層の保護層またはハードコート層の少なくともどれか1層以上で凹凸を有することを特徴とする、
インモールドフィルム。
The laminated film according to claim 1 is formed as a transfer layer on a base film through a release layer, and the at least one of the base film, the release layer, the protective layer of the transfer layer, or the hard coat layer has irregularities. Characterized by having,
In-mold film.
前記ベースフィルム内部にフィラーが含有されており、ベースフィルム表面が凹凸であることを特徴とする、
請求項10に記載のインモールドフィルム。
Filler is contained inside the base film, the base film surface is uneven,
The in-mold film according to claim 10.
前記ベース層と反対側の面に、黒色の隠蔽層を有することを特徴とする、
請求項1に記載の積層フィルム。
It has a black masking layer on the surface opposite to the base layer,
The laminated film according to claim 1.
前記請求項1に記載の積層フィルムを表面に転写した、成形品。   The molded product which transcribe | transferred the laminated | multilayer film of the said Claim 1 on the surface. 請求項1に記載の積層フィルムにおける交互に積層された屈折率の異なる複数の樹脂層を、ウエットコーティングで形成する、
積層フィルムの製造方法。
A plurality of resin layers having different refractive indexes that are alternately laminated in the laminated film according to claim 1 are formed by wet coating.
A method for producing a laminated film.
JP2017084920A 2017-04-24 2017-04-24 Laminated film and method for producing laminated film, and molded article on which laminated film is transferred Pending JP2018183879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017084920A JP2018183879A (en) 2017-04-24 2017-04-24 Laminated film and method for producing laminated film, and molded article on which laminated film is transferred

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017084920A JP2018183879A (en) 2017-04-24 2017-04-24 Laminated film and method for producing laminated film, and molded article on which laminated film is transferred

Publications (1)

Publication Number Publication Date
JP2018183879A true JP2018183879A (en) 2018-11-22

Family

ID=64356850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017084920A Pending JP2018183879A (en) 2017-04-24 2017-04-24 Laminated film and method for producing laminated film, and molded article on which laminated film is transferred

Country Status (1)

Country Link
JP (1) JP2018183879A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927989A (en) * 2019-12-18 2020-03-27 厦门美澜光电科技有限公司 Eimei antioxidant anti-infrared band pattern lens and preparation method thereof
WO2020066968A1 (en) 2018-09-28 2020-04-02 ナミックス株式会社 Conductive paste
KR20220120231A (en) * 2021-02-23 2022-08-30 지디에스 주식회사 Decoration film and preparation method thereof
CN115335222A (en) * 2020-03-26 2022-11-11 东洋纺株式会社 Laminate for thin film layer transfer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066968A1 (en) 2018-09-28 2020-04-02 ナミックス株式会社 Conductive paste
CN110927989A (en) * 2019-12-18 2020-03-27 厦门美澜光电科技有限公司 Eimei antioxidant anti-infrared band pattern lens and preparation method thereof
CN115335222A (en) * 2020-03-26 2022-11-11 东洋纺株式会社 Laminate for thin film layer transfer
CN115335222B (en) * 2020-03-26 2024-01-16 东洋纺株式会社 Laminate for transferring thin film layer
KR20220120231A (en) * 2021-02-23 2022-08-30 지디에스 주식회사 Decoration film and preparation method thereof
KR102520114B1 (en) * 2021-02-23 2023-04-11 지디에스 주식회사 Decoration film and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2018183879A (en) Laminated film and method for producing laminated film, and molded article on which laminated film is transferred
Højlund‐Nielsen et al. Plasmonic colors: toward mass production of metasurfaces
KR101161032B1 (en) Decorating sheet, decorated molded article and in-mold decorating injection molding
KR100846269B1 (en) Antireflective formed article and method for preparation thereof, and mold for antireflective formed article
JP5236342B2 (en) Decorative materials and decorative articles
JP7231567B2 (en) Optical components for producing light effects
WO2009150800A1 (en) Transfer sheet containing interference fringe eliminator and decorative molded resin
WO2019154020A1 (en) Optical decorative film, preparation method and consumer electronic product cover plate
JP4951895B2 (en) Decorative molded product and its manufacturing method
KR102007711B1 (en) Gradation deco-film and manufacturing method thereof
JP2011525994A (en) Light control film with off-axis visible indicia
JP2011131597A (en) Cubic effect forming exterior material
JP3333677B2 (en) Insert film and method for manufacturing insert molded product using the same
JP7254761B2 (en) Hiding optical defect lines in some FDM printed luminaires with a metallic appearance
WO2015071943A1 (en) Optical film and method for fabricating same
JP3340104B2 (en) Simultaneously molded article having matte feeling and method for producing the same
CN113552657A (en) Preparation method of anti-glare ultralow-reflection film
JP5152384B2 (en) Decorative sheet for injection molding, decorative molded product, and injection molding simultaneous decoration method
JP2004268502A (en) Flip-flop type print
JP5152070B2 (en) Decorative sheet, decorative molded product, and injection molding simultaneous decoration method
JP2001330704A (en) Antireflection molding and method for producing the same
JP2013215998A (en) Decorative molded panel and method of manufacturing the same
TWI484231B (en) A light guiding decorative laminate and components made thereof
JP4811617B2 (en) Injection molding simultaneous decoration method
JP2009066763A (en) Coat molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210309