JP2018183716A - Jet injector - Google Patents

Jet injector Download PDF

Info

Publication number
JP2018183716A
JP2018183716A JP2017085258A JP2017085258A JP2018183716A JP 2018183716 A JP2018183716 A JP 2018183716A JP 2017085258 A JP2017085258 A JP 2017085258A JP 2017085258 A JP2017085258 A JP 2017085258A JP 2018183716 A JP2018183716 A JP 2018183716A
Authority
JP
Japan
Prior art keywords
nozzle
pressure
air
gas
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017085258A
Other languages
Japanese (ja)
Other versions
JP6317505B1 (en
Inventor
加藤 次郎
Jiro Kato
次郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAY CREWS KK
Original Assignee
BAY CREWS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAY CREWS KK filed Critical BAY CREWS KK
Priority to JP2017085258A priority Critical patent/JP6317505B1/en
Priority to US16/341,719 priority patent/US11103838B2/en
Priority to PCT/JP2018/016378 priority patent/WO2018198994A1/en
Application granted granted Critical
Publication of JP6317505B1 publication Critical patent/JP6317505B1/en
Publication of JP2018183716A publication Critical patent/JP2018183716A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/235Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids for making foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/026Cleaning by making use of hand-held spray guns; Fluid preparations therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/02Nozzles specially adapted for fire-extinguishing
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C5/00Making of fire-extinguishing materials immediately before use
    • A62C5/008Making of fire-extinguishing materials immediately before use for producing other mixtures of different gases or vapours, water and chemicals, e.g. water and wetting agents, water and gases
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0072Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using sprayed or atomised water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/305Treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/70Spray-mixers, e.g. for mixing intersecting sheets of material
    • B01F25/72Spray-mixers, e.g. for mixing intersecting sheets of material with nozzles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Nozzles (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a jet injector by which nano-bubbles (ultrafine air bubbles) are incorporated in mists and said mists are injected at a high speed.SOLUTION: This jet injector comprises: a two-fluid nozzle 3 which is configured from a cylindrical nozzle outer cylinder 1, and an air connection pipe 2 which is integrally connected to the nozzle outer cylinder 1 at a right angle; a nano-bubble generator 4 which supplies nano-bubble water of a high pressure to the nozzle outer cylinder 1 of the two-fluid nozzle 3; and a compressor 5 which supplies high pressure air to the air connection pipe 2 of the two-fluid nozzle 3. Gas-containing bubble water, which is generated by the nano-bubble generator 4, is pressure-fed to the nozzle outer cylinder 1 of the two-fluid nozzle 3, compressed-air in the compressor 5 is pressure-fed to the air connection pipe 2 of the two-fluid nozzle 3. In the two-fluid nozzle 3, the gas-containing bubble water of a high pressure and compressed-air become a gas-liquid mixed fluid, and said fluid is injected at a high speed in a mist state from a nozzle cylinder 8 of the two-fluid nozzle 3.SELECTED DRAWING: Figure 1

Description

本発明は、ミストの中にナノバブル(超微細気泡)を内蔵させてミストを高速噴射させるジェット噴射装置に関する。   The present invention relates to a jet injection device that incorporates nanobubbles (ultrafine bubbles) in mist to inject mist at high speed.

マイクロバブル(微細気泡)は、普通の泡よりもとても小さな気泡であるが、大きい泡に無いような様々な特長の、水中の浮上速度が極めて遅い、水に拡がり易い、水中の物質に吸着する、泡が壊れにくい等を備えることが分かっている。そのため、排水処理分野、洗浄分野、美容分野、養殖分野等の各方面にマイクロバブルの活用例が広がっている。
このマイクロバブルよりさらに小さな超微細気泡をナノバブルと称している。
Microbubbles (fine bubbles) are very small bubbles than ordinary bubbles, but they have various characteristics that are not found in large bubbles. It has been found that the foam is difficult to break. For this reason, examples of utilizing microbubbles are spreading in various fields such as the wastewater treatment field, the cleaning field, the beauty field, and the aquaculture field.
Ultrafine bubbles smaller than these microbubbles are called nanobubbles.

高圧液体と高圧空気とを混合させてジェット流を作り出し、先端ノズルから高速・高圧な混合流体を吹き付ける気液混合チーズが知られている(特開2013−184152号公報を参照)。
この特開2013−184152号公報は、チーズ本体5の上流側から水などの高圧液体が供給され、高圧空気配管12から金属粒や砂粒などの研磨剤を含む高圧空気が供給されて中コマ8の位置で合流され、前記中コマ8の傾斜切り口7により40〜50°の角度で下流側の高圧流体へ合流され、高速・高圧な気液混合流体となって圧送される。
そのため、前記気液混合流体は、研磨対象物に付いた汚れや塗料などに高速のジェット流で衝突して汚れや塗料を剥ぎ取ることができる。
Gas-liquid mixed cheese is known in which a high-pressure liquid and high-pressure air are mixed to create a jet flow, and a high-speed and high-pressure mixed fluid is sprayed from a tip nozzle (see JP 2013-184152 A).
In JP 2013-184152 A, a high-pressure liquid such as water is supplied from the upstream side of the cheese body 5, and high-pressure air containing a polishing agent such as metal particles and sand particles is supplied from the high-pressure air pipe 12. Are joined to the high-pressure fluid on the downstream side at an angle of 40 to 50 ° by the inclined cut edge 7 of the middle piece 8 and pumped as a high-speed and high-pressure gas-liquid mixed fluid.
Therefore, the gas-liquid mixed fluid can peel off dirt and paint by colliding with dirt and paint on the object to be polished by a high-speed jet flow.

また、使用する装備が極めて少なく、ポンプと2流体ノズル、バルブ2個にポーラスフィルター及びチューブ類からなるマイクロバブル発生装置が知られている(特開2016−112477号公報を参照)。
この特開2016−112477号公報においては、ガス発生装置3からの気体と貯留槽1からの戻り液体を混合して気液混合流体を形成する2流体ノズル11は、ノズル外筒17にノズル嘴18が嵌合し、ノズル外筒17のノズル室19のテーパー面にノズル嘴18の先端が位置しており、循環チューブ10からの戻り液体1が強く流れることで第一バルブ9への気体の吸引力が発生する。その時、ノズル室19内では適度に液体と空気及びガス類が混じり合い、気液混合流体が形成される。加圧液体ポンプ12から押し出される気液混合流体は、圧送チューブ13に入り、定常状態に戻して過飽和状態になる時、強くキャビテーション(泡の発生と消滅現象)を発生し、溶存空気及びガス類が析出する。その際、気液混合流体は沸騰する。そのまま第二バルブ14により適度なクリアランスに導かれて常圧に戻されるので、液体に溶け込んでいた気体はナノバブル(超微細気泡)となって貯留槽2に出る。
Also, there are very few equipments to be used, and a microbubble generator comprising a pump, a two-fluid nozzle, two valves and a porous filter and tubes is known (see Japanese Patent Application Laid-Open No. 2016-112477).
In this Japanese Unexamined Patent Application Publication No. 2016-112477, a two-fluid nozzle 11 that forms a gas-liquid mixed fluid by mixing the gas from the gas generator 3 and the return liquid from the storage tank 1 is connected to the nozzle outer cylinder 17 with a nozzle soot. 18 is fitted, and the tip of the nozzle rod 18 is positioned on the tapered surface of the nozzle chamber 19 of the nozzle outer cylinder 17, and the return liquid 1 from the circulation tube 10 flows strongly, so that the gas to the first valve 9 flows. A suction force is generated. At that time, in the nozzle chamber 19, the liquid, air, and gases are appropriately mixed to form a gas-liquid mixed fluid. When the gas-liquid mixed fluid pushed out from the pressurized liquid pump 12 enters the pressure feed tube 13 and returns to a steady state and becomes a supersaturated state, it strongly generates cavitation (bubble generation and disappearance phenomenon), and dissolved air and gases. Precipitates. At that time, the gas-liquid mixed fluid boils. As it is guided to a proper clearance by the second valve 14 and returned to the normal pressure, the gas dissolved in the liquid becomes nanobubbles (ultrafine bubbles) and exits to the storage tank 2.

前述した公知技術は、それぞれジェット流およびマイクロバブルの発生装置であり、個々の発明である。本出願人はこれら技術を関連結合し、ミストにナノバブルを内蔵させて高速噴射することにより、ミストに内蔵させているガスの種類に依存した効果を発揮できることを実証した。   The above-described known techniques are jet flow and microbubble generators, and are individual inventions. The present applicant has demonstrated that an effect depending on the type of gas incorporated in the mist can be exerted by combining these technologies in association with each other and by incorporating nanobubbles in the mist and performing high-speed injection.

特開2013−184152号公報(図1を参照)JP 2013-184152 A (refer to FIG. 1) 特開2016−112477号公報JP 2016-112477 A

本発明は、ミストの中にナノバブル(超微細気泡)を内蔵させてミストを高速噴射させるジェット噴射装置を提供することを目的とする。   An object of the present invention is to provide a jet injection device that incorporates nanobubbles (ultrafine bubbles) in a mist to inject the mist at a high speed.

本発明のジェット噴射装置は、円筒管のノズル外筒と該ノズル外筒に直角に一体接続されたエアー接続管とからなる2流体ノズルと、該2流体ノズルのノズル外筒に高圧のナノバブル水を供給するナノバブル発生装置と、前記2流体ノズルのエアー接続管に高圧空気を供給するコンプレッサーとから構成されてなる。   The jet injection device according to the present invention includes a two-fluid nozzle including a nozzle outer cylinder of a cylindrical tube and an air connection pipe integrally connected to the nozzle outer cylinder at a right angle, and high-pressure nanobubble water in the nozzle outer cylinder of the two-fluid nozzle. And a compressor for supplying high-pressure air to the air connection pipe of the two-fluid nozzle.

本発明のジェット噴射装置は、ミスト中にナノバブルを混合できるので、ガス類を目的地まで吹き付けガスの効果を期待することができる。   Since the jet injection device of the present invention can mix nanobubbles in the mist, it is possible to expect the effect of gas by blowing gases to the destination.

本発明のジェット噴射装置の概略説明図である。It is a schematic explanatory drawing of the jet injection apparatus of this invention. ジェット噴射装置の2流体ノズルの説明図である。It is explanatory drawing of the 2 fluid nozzle of a jet injection apparatus. ジェット噴射装置の2流体ノズルの断面図である。It is sectional drawing of the 2 fluid nozzle of a jet injection apparatus. 各種ガス入りナノバブル発生装置の概略説明図である。It is a schematic explanatory drawing of the nanobubble generator containing various gas. ナノバブル発生装置の原理説明図である。It is principle explanatory drawing of a nanobubble generator. ナノバブル発生装置の2流体ノズルの断面図である。It is sectional drawing of the 2 fluid nozzle of a nano bubble generator.

本発明のジェット噴射装置の一実施例を添付図面に基づいて、以下に説明する。
図1の概略説明図に示すように、本発明のジェット噴射装置は、円筒管のノズル外筒1と該ノズル外筒1に直角に一体接続されたエアー接続管2とから構成されてなる2流体ノズル3と、前記2流体ノズル3の一方のノズル外筒1に高圧のナノバブル水を供給するナノバブル発生装置4と、前記2流体ノズル3の他方のエアー接続管2に高圧空気を供給するコンプレッサー5とからなる。
An embodiment of the jet injection device of the present invention will be described below with reference to the accompanying drawings.
As shown in the schematic explanatory diagram of FIG. 1, the jet injection device of the present invention comprises a nozzle outer cylinder 1 of a cylindrical pipe and an air connection pipe 2 integrally connected to the nozzle outer cylinder 1 at a right angle. A fluid nozzle 3, a nanobubble generator 4 that supplies high-pressure nanobubble water to one nozzle outer cylinder 1 of the two-fluid nozzle 3, and a compressor that supplies high-pressure air to the other air connection pipe 2 of the two-fluid nozzle 3 It consists of five.

前記2流体ノズル3は、図2の説明図及び図3の断面図に示すように、金属製や合成樹脂製の円筒管のノズル外筒1を設け、該ノズル外筒1に直角にエアー接続管2が一体に接合される。
そして、前記ノズル外筒1の下流側先端部に小径筒孔6を備えたノズル嘴7を接続し、さらに前記ノズル嘴7を囲むようにノズル筒8を接続する。
前記ノズル筒8は、前記ノズル嘴7を収納する大径のノズル室9を備え、該ノズル室9から縮径となるようにテーパー面10を形成し、該テーパー面10から引き続き前記ノズル嘴7の小径筒孔6より大径の大径筒孔11を形成する。前記ノズル嘴7先端を前記テーパー面10に接近させて配置する。
前記ノズル筒8のノズル室9に外気と連通するようにノズル筒9外周に空気吸引孔12を設ける。
また、前記ノズル外筒1の上流側先端部には、第一バルブ13を介して高圧流体配管14が接続されて圧縮水、本実施例では高圧のナノバブル水が供給される。
前記エアー接続管2には、第二バルブ15を介して高圧空気配管16が接続されて圧縮空気が供給される。
As shown in the explanatory diagram of FIG. 2 and the sectional view of FIG. 3, the two-fluid nozzle 3 is provided with a nozzle outer cylinder 1 of a cylindrical tube made of metal or synthetic resin, and is connected to the nozzle outer cylinder 1 by air connection at a right angle. Tube 2 is joined together.
A nozzle rod 7 having a small-diameter cylindrical hole 6 is connected to the downstream end portion of the nozzle outer tube 1, and a nozzle tube 8 is connected so as to surround the nozzle rod 7.
The nozzle cylinder 8 includes a large-diameter nozzle chamber 9 that accommodates the nozzle rod 7, a tapered surface 10 is formed so as to have a diameter reduced from the nozzle chamber 9, and the nozzle rod 7 continues from the tapered surface 10. A large-diameter cylindrical hole 11 having a larger diameter than the small-diameter cylindrical hole 6 is formed. The tip of the nozzle rod 7 is disposed close to the tapered surface 10.
An air suction hole 12 is provided on the outer periphery of the nozzle cylinder 9 so as to communicate with the outside air in the nozzle chamber 9 of the nozzle cylinder 8.
A high-pressure fluid pipe 14 is connected to the upstream end of the nozzle outer cylinder 1 via a first valve 13 to supply compressed water, in this embodiment, high-pressure nanobubble water.
A high-pressure air pipe 16 is connected to the air connection pipe 2 via a second valve 15 to supply compressed air.

気相・液相の2流体ノズル3では、空気圧により液の圧力が回復され、空気と液の密度差が出てノズル嘴7に導かれる。ノズル嘴7ではベルヌーイの定理により流速に応じた負圧が発生する。その負圧により、ミストの粒子径10μmから150μmまでの粒子が発生する。平均粒子径は50μmである。
ミストの粒子径は圧縮空気の量により可変させられるので、好みの粒子径を得るには手元の第二バルブ15の可変で行える。
ノズル筒8の大径筒孔11は4mm以上で使用するが、ポンプ能力により大きい口径も使用できる。
ミストの飛距離は液体圧力3kgで空気圧0.7MPaにおいて地上高1mで12m〜15mである。
ミスト中にナノバブル粒子を混合させて吹くが、ナノバブル中にガス類を入れることにより、途中蒸発することなく対象物に衝突させてその効果を得ることができる。ミストのみでは20μm以下では蒸発するスピードが速く効果は限定的であるが、ナノバブルを入れたミストでは性質的に蒸発し難いので効果は長く期待できる。
In the gas-phase / liquid-phase two-fluid nozzle 3, the pressure of the liquid is recovered by the air pressure, and the density difference between the air and the liquid is generated and guided to the nozzle 7. In the nozzle rod 7, a negative pressure corresponding to the flow velocity is generated by Bernoulli's theorem. Due to the negative pressure, particles having a mist particle size of 10 μm to 150 μm are generated. The average particle size is 50 μm.
Since the particle diameter of the mist can be varied depending on the amount of compressed air, the desired second particle diameter can be varied by using the second valve 15 at hand.
The large-diameter cylindrical hole 11 of the nozzle cylinder 8 is used at 4 mm or more, but a larger diameter can also be used for the pump capacity.
The flying distance of the mist is 12 to 15 m at a ground height of 1 m at a liquid pressure of 3 kg and an air pressure of 0.7 MPa.
The nanobubble particles are mixed and blown into the mist, but by putting gases into the nanobubbles, the effect can be obtained by colliding with the object without evaporating halfway. If the mist alone is 20 μm or less, the evaporation speed is fast and the effect is limited. However, since the mist containing nanobubbles is difficult to evaporate in nature, the effect can be expected to be long.

図4の概略説明図に示すように、前記ナノバブル発生装置4は、ボックス17内にダイヤフラム式バブル発生機18とダイヤフラムポンプ19を設置する。
前記ダイヤフラム式バブル発生機18には、CO2などの各種ガス入りのガスタンク20を接続すると共に貯水タンク21の貯留水を接続し、前記ダイヤフラム式バブル発生機18により生成されたナノバブル気泡を貯水タンク21に貯留する。ダイヤフラム式バブル発生機18のナノバブル粒子量は1mmlあたり1.5×10個である。なお、各種ガス入りナノバブル気泡は貯水タンク21内で長期保存され、直ぐに消滅することはない。
前記ダイヤフラムポンプ19には、一方から前記貯水タンク21の各種ガス入りバブル水を引き込み、他方からコンプレッサー5からの圧縮空気を取り込む。
前記ダイヤフラムポンプ19により各種ガス入りバブル水と圧縮空気とが気液混合状態となり、高圧となったナノバブル水が下流側の高圧液体配管14へ送られる。
As shown in the schematic explanatory diagram of FIG. 4, the nanobubble generator 4 has a diaphragm bubble generator 18 and a diaphragm pump 19 installed in a box 17.
The diaphragm-type bubble generator 18 is connected to a gas tank 20 containing various gases such as CO 2 and is connected to water stored in a water storage tank 21, and the nanobubble bubbles generated by the diaphragm-type bubble generator 18 are stored in the water storage tank 21. Store in. The amount of nanobubble particles in the diaphragm bubble generator 18 is 1.5 × 10 8 per 1 ml. In addition, nanobubble bubbles containing various gases are stored for a long time in the water storage tank 21 and do not disappear immediately.
The diaphragm pump 19 draws bubble water containing various gases from the water storage tank 21 from one side, and takes in compressed air from the compressor 5 from the other side.
Various diaphragms containing gas and compressed air are brought into a gas-liquid mixed state by the diaphragm pump 19, and high-pressure nanobubble water is sent to the high-pressure liquid pipe 14 on the downstream side.

図5の原理説明図に示すように、前記ナノバブル発生装置4は、貯水タンク21の液体を2流体ノズル22に圧送し、前記2流体ノズル22内では、図6の断面図に示すように、各種ガス吸引口23からガスバルブ24を介して高圧ガスが送られ、一方矢印で示す高圧液体の流速によりテーパー面25の負圧発生空間に発生する負圧により高圧液体と高圧ガスが混合され、気液混合状態の旋回流のミストとなって下流へ送られる。
図5に示すダイヤフラムポンプ19によって断続的に高圧の気液混合流体となってフレキシブル管26へ送られ、該フレキシブル管26内で定常状態に戻して過飽和状態になる時に強くキャビテーション(泡が発生し消滅する現象)を発生し、溶存ガスを析出し、気液混合流体は沸騰する。
そのままで送られ、縦型のT型チーズ27の空気抜き弁28により適度なクリアランスに導かれて常圧に戻されるので、溶け込んでいた気体はナノバブル気泡となって横型のT型チーズ29、チューブ30、減圧弁31を経て貯水タンク21内へ導かれる。
なお、横型のT型チーズ29には、圧力測定のために圧力メータ32を接続する。
As shown in the principle explanatory diagram of FIG. 5, the nanobubble generator 4 pumps the liquid in the water storage tank 21 to the two-fluid nozzle 22, and in the two-fluid nozzle 22, as shown in the cross-sectional view of FIG. 6, High pressure gas is sent from the various gas suction ports 23 through the gas valve 24, and the high pressure liquid and the high pressure gas are mixed by the negative pressure generated in the negative pressure generation space of the tapered surface 25 by the flow velocity of the high pressure liquid indicated by an arrow. It is sent downstream as a mist of a swirling flow in a liquid mixed state.
The diaphragm pump 19 shown in FIG. 5 intermittently becomes a high-pressure gas-liquid mixed fluid and is sent to the flexible tube 26. When the state is returned to a steady state and becomes supersaturated in the flexible tube 26, cavitation (bubbles are generated strongly). (Disappearing phenomenon) occurs, the dissolved gas is deposited, and the gas-liquid mixed fluid boils.
Since it is sent as it is and is led to an appropriate clearance by the air vent valve 28 of the vertical T-type cheese 27 and returned to normal pressure, the dissolved gas becomes nanobubble bubbles, and the horizontal T-type cheese 29 and the tube 30 Then, the water is introduced into the water storage tank 21 through the pressure reducing valve 31.
A pressure meter 32 is connected to the horizontal T-type cheese 29 for pressure measurement.

次に、本発明のジェット噴射装置の操作動作を添付図面に基づいて、以下に説明する。
図1に示すように、ガスタンク20内の高圧ガス、例えばCO2ガスがレギュレータ33を介して図4に示すダイヤフラム式バブル発生機18に圧送され、他方、貯水タンク21内の貯留水が同様に前記ダイヤフラム式バブル発生機18に圧送される。
前記ダイヤフラム式バブル発生機18では、図5に示す原理でナノバブル水が発生され、貯水タンク21内にCO2ナノバブル水が貯留される。
ダイヤフラムポンプ19によりCO2バブル水と圧縮空気とが気液混合状態となり、高圧となったナノバブル水が下流側の高圧液体配管14へ送られる。
Next, the operation of the jet injection device of the present invention will be described below with reference to the accompanying drawings.
As shown in FIG. 1, a high-pressure gas in the gas tank 20, for example, CO 2 gas, is pumped to the diaphragm bubble generator 18 shown in FIG. 4 through the regulator 33, while the stored water in the water storage tank 21 is similarly It is pumped to the diaphragm type bubble generator 18.
In the diaphragm type bubble generator 18, nanobubble water is generated based on the principle shown in FIG. 5, and CO 2 nanobubble water is stored in the water storage tank 21.
The diaphragm pump 19 causes the CO2 bubble water and the compressed air to be in a gas-liquid mixed state, and the high pressure nanobubble water is sent to the high pressure liquid pipe 14 on the downstream side.

図1に示す2流体ノズル3には、高圧液体配管14から第一バルブ13を介して圧縮水、すなわちナノバブル水が圧送され、またコンプレッサー5により高圧空気配管16から第二バルブ15を介して圧縮空気が送られる。
図3に示す直管のノズル外筒1に前記ナノバブル水が圧送されると共にエアー接続管2から圧縮空気が圧送されるので、合流点で気液混合され、気液混合流体となってノズル嘴7へ流出する。
前記ノズル嘴7は、ノズル室9のテーパー面10に接近しているので、ノズル嘴7先端に負圧が発生し、空気吸引孔12から外気を導入し、外気が気液混合流体と合流して気液混合状態の旋回流のミストとなって下流へ送られ、ノズル筒8の先端部からナノバブルを内蔵したミストとなって高速噴射される。
Compressed water, that is, nanobubble water is pumped from the high-pressure liquid pipe 14 through the first valve 13 to the two-fluid nozzle 3 shown in FIG. 1 and compressed by the compressor 5 from the high-pressure air pipe 16 through the second valve 15. Air is sent.
Since the nano bubble water is pumped to the straight nozzle outer cylinder 1 shown in FIG. 3 and compressed air is pumped from the air connection pipe 2, it is gas-liquid mixed at the confluence to become a gas-liquid mixed fluid. To 7
Since the nozzle rod 7 is close to the tapered surface 10 of the nozzle chamber 9, a negative pressure is generated at the tip of the nozzle rod 7, the outside air is introduced from the air suction hole 12, and the outside air merges with the gas-liquid mixed fluid. As a result, the swirl flow mist in a gas-liquid mixed state is sent downstream, and the mist containing nanobubbles is ejected from the tip of the nozzle cylinder 8 at a high speed.

本発明は、吹き付けるミスト内にナノバブル粒子を内蔵させることが最大の特徴であり、内蔵させているガスの種類に依存した効果を発揮できる。
ミストのみを10μm以下にすると大気中に蒸発してしまうが、ナノバブルを内蔵させることで蒸発しにくくなり、マイナスに強く帯電することで到達後被射体に対してマイナス荷電効果と、内蔵するガス効果が得られる。
The greatest feature of the present invention is that the nanobubble particles are incorporated in the sprayed mist, and an effect depending on the type of the incorporated gas can be exhibited.
If only mist is reduced to 10 μm or less, it will evaporate in the atmosphere. However, by incorporating nanobubbles, it will be difficult to evaporate. An effect is obtained.

農業分野では、CO2ガス内蔵のナノバブルを内蔵したミストを吹き付けると、真性菌や細菌類等に対して、静菌効果や抗菌効果が得られることは確認されている。また日中においては植物の光合成効果を助けるので、太陽エネルギーの貯蔵(澱粉製造)に対する効果も期待できる。
ハウス内における従来の生ガス封入は人畜に対するガス中毒の危険性も指摘されるが、本発明のミスト内ガスの封入と散布は目に見える形であるため、ガス濃度に対する危険は少ない。
植物には、葉にも根にもナノバブル水化は吸収に貢献するので、便利である。その場合に、根には酸素水をかけ、葉にはCO2水をかけることで生育に貢献する。
In the agricultural field, it has been confirmed that bacteriostatic and antibacterial effects can be obtained against eubacteria and bacteria by spraying mist containing nanobubbles containing CO2 gas. Moreover, since it helps the plant's photosynthesis effect in the daytime, it can also be expected to have an effect on solar energy storage (starch production).
Although it is pointed out that there is a risk of gas poisoning of human livestock in the conventional live gas filling in the house, the risk of gas concentration is small because the filling and spraying of the gas in the mist of the present invention is visible.
For plants, hydration of nanobubbles in both leaves and roots contributes to absorption, which is convenient. In that case, oxygen water is applied to the roots and CO2 water is applied to the leaves to contribute to growth.

航空機の塩害除去に対して、ミスト内にナノバブル粒子を内蔵することで被射体に対するガスの効果と水による流す効果と、ミスト全体がマイナスに帯電する効果が得られる。これらは従来の高圧洗浄機にはない効果である。
生ガスを10m以上飛ばす装置はないが、ミストでは容易に飛ぶので便利である。
ミストに内蔵されるナノバブルは十分な高圧に変化しており、装置内の圧力では壊れない。
一旦製造したガス入りナノバブルは数ヶ月間持つので、作り置きが可能であり、タンク内に前もって作っておくことで使用できるので、便利である。
For removing salt damage from aircraft, by incorporating nanobubble particles in the mist, the effect of gas on the subject, the effect of flowing with water, and the effect of negatively charging the entire mist are obtained. These are effects not found in conventional high-pressure washing machines.
There is no device for flying raw gas more than 10m, but it is convenient because it can fly easily with mist.
The nanobubbles contained in the mist are changed to a sufficiently high pressure and are not broken by the pressure in the apparatus.
Once produced, nanobubbles with gas will last for several months, so they can be made and can be used by making them in advance in a tank, which is convenient.

上述したように、本発明のジェット噴射装置は、多用途に利用できるが、ほかに下記の用途にも使用できる。
1.洗浄装置
・洗浄装置として液の使用が高圧洗浄機の約半分で済む。
・ノズルの先端が解放型(絞りがない)なので詰まりなどがない。
・ミスト流速はノズル先端でマッハ1であり、ミスト群は飛散することなく目的物に
吹き付けられる。水の固まりが飛ぶのではなく、一粒ずつが完全な粒子径として飛
ぶので洗浄効果が高い。
2.消火装置
・CO2ガスを目的地まで吹き付けガスの遮断効果を期待できる。
3.船の推進器
・推進器として使用すると反作用効果により高出力の推進が得られる。
4.バブル風呂
As described above, the jet injection device of the present invention can be used for many purposes, but can also be used for the following purposes.
1. Cleaning device-About half of the high-pressure cleaning machine can be used as a cleaning device.
・ No clogging because the tip of the nozzle is an open type (no iris).
-The mist flow rate is Mach 1 at the nozzle tip, and the mist group is sprayed onto the object without scattering. Rather than a lump of water flying, each particle will fly as a complete particle size, so the cleaning effect is high.
2. Fire extinguisher ・ CO2 gas can be blown to the destination and gas blocking effect can be expected.
3. Ship propulsion device ・ When used as a propulsion device, high output propulsion is obtained due to the reaction effect.
4). Bubble bath

1 ノズル外筒
2 エアー接続管
3 2流体ノズル
4 ナノバブル発生装置
5 コンプレッサー
6 小径筒孔
7 ノズル嘴
8 ノズル筒
9 ノズル室
10 テーパー面
11 大径筒孔
12 空気吸引孔
13 第一バルブ
14 高圧流体配管
15 第二バルブ
16 高圧空気配管
17 ボックス
18 ダイヤフラム式バブル発生機
19 ダイヤフラムポンプ
20 ガスタンク
21 貯水タンク
22 2流体ノズル
23 2流体ノズル
24 ガスバルブ
25 テーパー面
26 フレキシブル管
27 T型チーズ
28 空気抜き弁
29 T型チーズ
30 チューブ
31 減圧弁
32 圧力メータ
33 レギュレータ
DESCRIPTION OF SYMBOLS 1 Nozzle outer cylinder 2 Air connection pipe 3 2 Fluid nozzle 4 Nano bubble generator 5 Compressor 6 Small diameter cylindrical hole 7 Nozzle rod 8 Nozzle cylinder 9 Nozzle chamber 10 Tapered surface 11 Large diameter cylindrical hole 12 Air suction hole 13 First valve 14 High pressure fluid Piping 15 Second valve 16 High-pressure air piping 17 Box 18 Diaphragm bubble generator 19 Diaphragm pump 20 Gas tank 21 Water storage tank 22 Two-fluid nozzle 23 Two-fluid nozzle 24 Gas valve 25 Tapered surface 26 Flexible pipe 27 T-type cheese 28 Air vent valve 29 T Mold cheese 30 Tube 31 Pressure reducing valve 32 Pressure meter 33 Regulator

Claims (3)

円筒管のノズル外筒と該ノズル外筒に直角に一体接続されたエアー接続管とからなる2流体ノズルと、該2流体ノズルの一方のノズル外筒に高圧のナノバブル水を供給するナノバブル発生装置と、前記2流体ノズルの他方のエアー接続管に高圧空気を供給するコンプレッサーとから構成されてなることを特徴とするジェット噴射装置。   A two-fluid nozzle comprising a nozzle outer cylinder of a cylindrical tube and an air connection pipe integrally connected at right angles to the nozzle outer cylinder, and a nanobubble generator for supplying high-pressure nanobubble water to one nozzle outer cylinder of the two-fluid nozzle And a compressor for supplying high-pressure air to the other air connection pipe of the two-fluid nozzle. 前記2流体ノズルは、ノズル外筒の下流側先端部に小径筒孔を備えたノズル嘴を接続し、さらに前記ノズル嘴を囲むようにノズル筒を接続すると共に、前記ノズル筒は、前記ノズル嘴を収納する大径のノズル室を備え、該ノズル室から縮径となるようにテーパー面を形成し、該テーパー面から引き続き前記ノズル嘴の小径筒孔より大径の大径筒孔を形成し、前記ノズル嘴先端を前記テーパー面に接近させて配置し、前記ノズル筒のノズル室に連通するようにノズル筒外周に空気吸引孔を設けることを特徴とする請求項1記載のジェット噴射装置。   The two-fluid nozzle is connected to a nozzle rod having a small-diameter cylindrical hole at the downstream end portion of the nozzle outer tube, and further connected to the nozzle tube so as to surround the nozzle rod. A large-diameter nozzle chamber for accommodating a nozzle, and a tapered surface is formed so as to be reduced in diameter from the nozzle chamber, and a large-diameter cylindrical hole having a diameter larger than that of the small-diameter cylindrical hole of the nozzle rod is formed continuously from the tapered surface. 2. The jet injection device according to claim 1, wherein the tip of the nozzle rod is disposed close to the tapered surface, and an air suction hole is provided on an outer periphery of the nozzle cylinder so as to communicate with a nozzle chamber of the nozzle cylinder. 前記ナノバブル発生装置は、ダイヤフラム式バブル発生機とダイヤフラムポンプを設置し、前記ダイヤフラム式バブル発生機には、CO2などの各種ガス入りのガスタンクを接続すると共に貯水タンクの貯留水を接続し、前記ダイヤフラム式バブル発生機により生成されたナノバブルを貯水タンクに貯留し、また前記ダイヤフラムポンプには、一方から前記貯水タンクの各種ガス入りバブル水を引き込み、他方からコンプレッサーからの圧縮空気を取り込み、前記ダイヤフラムポンプにより各種ガス入りバブル水と圧縮空気とが気液混合状態となり、高圧となったナノバブル水が下流側の高圧液体配管へ送られることを特徴とする請求項1記載のジェット噴射装置。   The nano-bubble generator includes a diaphragm-type bubble generator and a diaphragm pump, and the diaphragm-type bubble generator is connected to a gas tank containing various gases such as CO 2 and connected to water stored in a storage tank. Nanobubbles generated by a bubble generator are stored in a water storage tank, and the diaphragm pump draws bubble water containing various gases in the water storage tank from one side, and takes in compressed air from a compressor from the other side, and the diaphragm pump 2. The jet injection device according to claim 1, wherein the bubble water containing various gases and the compressed air are in a gas-liquid mixed state, and the high-pressure nanobubble water is sent to the high-pressure liquid pipe on the downstream side.
JP2017085258A 2017-04-24 2017-04-24 Jet injection device Active JP6317505B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017085258A JP6317505B1 (en) 2017-04-24 2017-04-24 Jet injection device
US16/341,719 US11103838B2 (en) 2017-04-24 2018-04-20 Jet injection device
PCT/JP2018/016378 WO2018198994A1 (en) 2017-04-24 2018-04-20 Jet injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085258A JP6317505B1 (en) 2017-04-24 2017-04-24 Jet injection device

Publications (2)

Publication Number Publication Date
JP6317505B1 JP6317505B1 (en) 2018-04-25
JP2018183716A true JP2018183716A (en) 2018-11-22

Family

ID=62069434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085258A Active JP6317505B1 (en) 2017-04-24 2017-04-24 Jet injection device

Country Status (3)

Country Link
US (1) US11103838B2 (en)
JP (1) JP6317505B1 (en)
WO (1) WO2018198994A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021115209A (en) * 2020-01-24 2021-08-10 大平研究所株式会社 Washing water supply device
JP2022189723A (en) * 2021-06-11 2022-12-22 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド Mixing nozzle, sensor assembly, vehicle and automatic driving vehicle
JP7493275B1 (en) 2023-03-01 2024-05-31 セブンシーズテクノロジー株式会社 Liquid mixture atomizer and fuel supply device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7086547B2 (en) * 2017-08-31 2022-06-20 キヤノン株式会社 Ultra fine bubble-containing liquid manufacturing equipment and manufacturing method
CN107952194A (en) * 2017-12-18 2018-04-24 山东宏达科技集团有限公司 A kind of multifunctional fire-fighting truck and mixing jetting big gun using liquid nitrogen as injection power
US20210212266A1 (en) * 2018-05-30 2021-07-15 Aquasolution Corporation Soil amelioration method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152410U (en) * 1976-05-17 1977-11-18
WO1995027557A1 (en) * 1994-04-12 1995-10-19 Ekokehitys Oy Method of generating gas bubbles in a liquid and apparatus for the implementation of the method
JPH09206637A (en) * 1996-02-01 1997-08-12 Denso Corp Apparatus for finely pulverizing liquid droplets
JP2009226392A (en) * 2008-02-26 2009-10-08 Air Water Sol Kk Gas jet nozzle
JP2013184152A (en) * 2012-03-12 2013-09-19 Bay Crews:Kk Gas-liquid mixing t-joint
JP2014181999A (en) * 2013-03-19 2014-09-29 Bay Crews:Kk Mist injection device for decontamination
JP2016112477A (en) * 2014-12-11 2016-06-23 有限会社ベイクルーズ Microbubble generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161336A (en) * 1974-11-26 1976-05-27 Takeshi Yokoyama GORUFUJUGIGU
US4211733A (en) * 1978-12-26 1980-07-08 Chang Shih Chih Gas-liquid mixing process and apparatus
US4379097A (en) * 1981-04-03 1983-04-05 Leggett Wilbur P Hydrotherapy jet unit
KR100781820B1 (en) * 2001-02-21 2007-12-03 시부야 코교 가부시키가이샤 Injection apparatus for mixed flow of gas and liquid
US20080048348A1 (en) * 2006-07-11 2008-02-28 Shung-Chi Kung Circulation water vortex bubble generation device for aquaculture pond
US8302942B2 (en) * 2009-12-28 2012-11-06 Yih-Jin Tsai Microbubble water generator
WO2014199525A1 (en) * 2013-06-13 2014-12-18 シグマテクノロジー有限会社 Micro and nano bubble generating method, generating nozzle, and generating device
EP3456815B1 (en) * 2016-05-13 2024-07-03 SIGMA TECHNOLOGY, Inc. Aqueous solution capable of being administered to living body, and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152410U (en) * 1976-05-17 1977-11-18
WO1995027557A1 (en) * 1994-04-12 1995-10-19 Ekokehitys Oy Method of generating gas bubbles in a liquid and apparatus for the implementation of the method
JPH09206637A (en) * 1996-02-01 1997-08-12 Denso Corp Apparatus for finely pulverizing liquid droplets
JP2009226392A (en) * 2008-02-26 2009-10-08 Air Water Sol Kk Gas jet nozzle
JP2013184152A (en) * 2012-03-12 2013-09-19 Bay Crews:Kk Gas-liquid mixing t-joint
JP2014181999A (en) * 2013-03-19 2014-09-29 Bay Crews:Kk Mist injection device for decontamination
JP2016112477A (en) * 2014-12-11 2016-06-23 有限会社ベイクルーズ Microbubble generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021115209A (en) * 2020-01-24 2021-08-10 大平研究所株式会社 Washing water supply device
JP7462205B2 (en) 2020-01-24 2024-04-05 大平研究所株式会社 Cleaning water supply device
JP2022189723A (en) * 2021-06-11 2022-12-22 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド Mixing nozzle, sensor assembly, vehicle and automatic driving vehicle
JP7493275B1 (en) 2023-03-01 2024-05-31 セブンシーズテクノロジー株式会社 Liquid mixture atomizer and fuel supply device

Also Published As

Publication number Publication date
US20200179882A1 (en) 2020-06-11
WO2018198994A1 (en) 2018-11-01
US11103838B2 (en) 2021-08-31
JP6317505B1 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6317505B1 (en) Jet injection device
KR101937133B1 (en) Micro and nano bubble generating method, generating nozzle, and generating device
US11179684B2 (en) System, device, and method to manufacture nanobubbles
JP2007117799A (en) Microbubble generator and microbubble generating apparatus using the same
JP2016535835A5 (en)
CN107530650A (en) Micro air bubble generating means
WO1998018543A1 (en) Method and apparatus for dissolving/mixing gas in liquid
JP2018069213A (en) Fine bubble generation device
JP5588582B2 (en) Cleaning device
JP2018047019A (en) Nozzle for oral cavity washing device and oral cavity washing device
JP6449531B2 (en) Microbubble generator
TW201605538A (en) Disinfection liquid generating apparatus
US20200156018A1 (en) Fine bubble generating method and fine bubble generating apparatus
JP2013188681A (en) Carbonated water discharge unit and carbonated water discharge device
KR20210003880A (en) Microbubble generator
JP6731586B2 (en) Nano bubble generator
JP4364876B2 (en) Gas dissolving device
JPH03296475A (en) Cleaning apparatus
ES2933485A1 (en) A system for saturating liquids with gas and a method for saturating liquids with gas using this system
JP2022128357A (en) Micro-mist generating method and device therefor
JP2000167439A (en) Cavitation nozzle and cavitation generation system
JP3160437U (en) Injection tank
JP5740684B2 (en) Bubble generator
CN216799410U (en) Dissolved ozone adding system
JP2012223659A (en) Apparatus for producing functional water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180316

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180329

R150 Certificate of patent or registration of utility model

Ref document number: 6317505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250