JP2018180358A - Mirror film, reflective optical element, method of forming reflective optical element, and method of manufacturing mirror film - Google Patents

Mirror film, reflective optical element, method of forming reflective optical element, and method of manufacturing mirror film Download PDF

Info

Publication number
JP2018180358A
JP2018180358A JP2017081193A JP2017081193A JP2018180358A JP 2018180358 A JP2018180358 A JP 2018180358A JP 2017081193 A JP2017081193 A JP 2017081193A JP 2017081193 A JP2017081193 A JP 2017081193A JP 2018180358 A JP2018180358 A JP 2018180358A
Authority
JP
Japan
Prior art keywords
mirror film
film
layer
optical element
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017081193A
Other languages
Japanese (ja)
Other versions
JP7015461B2 (en
Inventor
勝己 古田
Katsumi Furuta
勝己 古田
基 森
Motoi Mori
基 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2017081193A priority Critical patent/JP7015461B2/en
Publication of JP2018180358A publication Critical patent/JP2018180358A/en
Application granted granted Critical
Publication of JP7015461B2 publication Critical patent/JP7015461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mirror film which is not susceptible to cracking when combined with a molded resin product regardless of a shape thereof, a reflective optical element obtained by combining the mirror film with a molded resin product, a method of forming the reflective optical element, and a method of manufacturing the mirror film.SOLUTION: A mirror film comprises a film-like base material and a reflective layer formed on the base material. The reflective layer has a metal layer having a thickness of 50-300 nm. Looking at a cross-section of the metal layer along a thickness direction thereof, distance between adjacent grain boundaries of the metal layer is no less than 100 nm in average on a front side or back side of the cross-section.SELECTED DRAWING: Figure 5

Description

本発明は、ミラーフィルム、反射光学素子、反射光学素子の成形方法及びミラーフィルムの製造方法に関する。   The present invention relates to a mirror film, a reflective optical element, a method of forming a reflective optical element, and a method of manufacturing a mirror film.

レーザービームプリンタや複合機等に用いられているfθミラーや折返しミラー、ヘッドアップディスプレイやプロジェクター用の大型ミラーなどの比較的大型の反射光学素子は、軽量化、低コスト化への対応等の理由から、従来のガラス製から樹脂成形品への転換が行われ、既に実用化されている。これらの反射光学素子については、一般的には金型の高精度の鏡面を射出成形などにより転写して得られた成形品に蒸着等の成膜プロセスを介して、所定の金属反射面を形成している。   Relatively large reflective optical elements such as fθ mirrors and folding mirrors used for laser beam printers and complex machines, and large mirrors for head-up displays and projectors, for reasons such as measures to reduce the weight and cost. Therefore, conversion from conventional glass to resin molded products has been carried out and has already been put to practical use. In these reflective optical elements, generally, a predetermined metal reflective surface is formed on a molded product obtained by transferring a high-precision mirror surface of a mold by injection molding or the like through a film forming process such as vapor deposition. doing.

この蒸着等の成膜プロセスは、所定の環境に維持された成膜室にてバッチ処理により行われるが、成膜室の大きさが制限されることから、大型の成形品に大面積にわたって成膜を行う場合、1バッチあたりに成膜できる成形品の個数が少なくなり、成膜コストが顕著に増大するという課題がある。このような課題に対して、金属シートや、金属薄膜を形成したフィルムなどをプラスチック成形品と複合化することにより、より低コストで反射光学素子を形成する試みがある。   Although film formation processes such as evaporation are performed by batch processing in a film formation chamber maintained in a predetermined environment, since the size of the film formation chamber is limited, a large-sized molded article is formed over a large area. In the case of film formation, the number of molded articles that can be film-formed per batch decreases, and there is a problem that the film formation cost is significantly increased. In order to solve such problems, attempts have been made to form a reflective optical element at lower cost by combining a metal sheet, a film having a metal thin film formed thereon, and the like with a plastic molded product.

ところで、このような複合化による反射光学素子の課題の一つに、高反射率をいかに確保するかということがある。上述したような用途の大型光学ミラーに求められる反射率は、可視光領域で90%以上を要求されるものもある。   By the way, one of the problems of the reflective optical element by such compounding is how to secure a high reflectance. The reflectance required for the large-sized optical mirror for the application as described above may be 90% or more in the visible light region.

これに対し、高い反射率を得る手法として、プラスチックフィルムに銀やアルミニウムを蒸着して反射層を形成する技術も提案されている。しかるに、高反射率を有する反射層をフィルム上に成膜したミラーフィルムの場合、延伸を行うと反射層の表面に微細なクラックが入り反射率が低下してしまうという問題がある。特に、インサート成形を用いて射出成形と同時にミラーフィルムの貼付を行って、3次元的に曲率を有する大型光学ミラー形状の成形品にミラーフィルムを一体化するような工程では、インサートするミラーフィルムに高い延伸性が求められるため、クラックによる反射層の反射率低下が大きな問題となっている。   On the other hand, the technique of vapor-depositing silver and aluminum on a plastic film, and forming a reflection layer as a method of obtaining high reflectance is also proposed. However, in the case of a mirror film in which a reflective layer having a high reflectance is formed on a film, when stretched, there is a problem that fine cracks are formed on the surface of the reflective layer and the reflectance is lowered. In particular, in the process of integrating the mirror film into a large optical mirror-shaped molded product having curvature in three dimensions by attaching the mirror film simultaneously with injection molding using insert molding, the mirror film to be inserted is used. Since high stretchability is required, the decrease in the reflectance of the reflective layer due to cracks is a major problem.

かかる問題に対し、特許文献1においては、スパッタ成膜法において支持基板と反射層の界面に所定量の窒素が添加されており、支持基板と反射層の密着性を得ることで水分の透水による剥離を防ぐことが出来るとされる技術が開示されている。   In order to address this problem, in Patent Document 1, a predetermined amount of nitrogen is added to the interface between the support substrate and the reflective layer in the sputter deposition method, and the adhesion between the support substrate and the reflective layer is obtained to obtain water permeability. A technique is disclosed that can prevent peeling.

特開2005−190611号公報JP, 2005-190611, A 特開2003−272236号公報JP 2003-272236 A

ところで、特許文献1に開示された反射層はスパッタ成膜法で形成されており、その反射層の膜厚は10nm以上、50nm以下であり、支持基板と反射層の密着性を得ることで水分の透水による剥離を防ぐことを目的としている。しかるに、スパッタ成膜は銀分子がプラズマイオン化されるので、窒素ガスと反応しやすく窒化銀になりやすく、それにより粒界の間隔も狭まる。よって、かかる技術を樹脂成形品と複合化される反射フィルムに転用しても、樹脂成形品と複合化される際に生じる曲げに対してクラックが生じる恐れがある。   By the way, the reflective layer disclosed in Patent Document 1 is formed by a sputtering film forming method, the film thickness of the reflective layer is 10 nm or more and 50 nm or less, and moisture is obtained by obtaining the adhesion between the support substrate and the reflective layer. The purpose is to prevent separation due to water permeation. However, in sputter deposition, silver molecules are plasma-ionized, so that they are easily reacted with nitrogen gas to easily become silver nitride, thereby narrowing the grain boundaries. Therefore, even if such a technique is diverted to a reflective film to be compounded with a resin molded product, there is a risk that a crack may occur with respect to bending that occurs when it is compounded with a resin molded product.

一方、特許文献2には、スパッタ成膜において窒素流量を上げていくと粒径が小さくなることが記載されている。上述したように、スパッタ成膜では銀分子がプラズマイオン化されるので、窒素ガスと反応しやすく窒化銀になりやすく、それにより粒界の間隔も詰まる。よって、かかる技術を樹脂成形品と複合化される反射フィルムに転用しても、樹脂成形品と複合化される際に生じる曲げに対してクラックが更に増大することとなる。   On the other hand, Patent Document 2 describes that as the nitrogen flow rate is increased in sputter deposition, the particle size is reduced. As described above, in sputtering film formation, silver molecules are plasma-ionized, so that they are easily reacted with nitrogen gas to easily become silver nitride, whereby the spacing between grain boundaries is also clogged. Therefore, even if such a technique is diverted to a reflective film to be compounded with a resin molded product, cracks will further increase with respect to bending that occurs when it is compounded with a resin molded product.

本発明は、上述した課題に鑑みてなされたものであり、樹脂成形品の形状にかかわらず複合化してもクラックなどが生じにくいミラーフィルム、ミラーフィルムを樹脂成形品と複合化した反射光学素子、反射光学素子の成形方法、及びミラーフィルムの製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and is a mirror film which hardly causes cracks even if it is compounded regardless of the shape of the resin molded product, a reflective optical element in which the mirror film is compounded with the resin molded product, An object of the present invention is to provide a method of forming a reflective optical element and a method of manufacturing a mirror film.

本発明のミラーフィルムは、フィルム状の基材と、前記基材上に形成された反射層とを有するミラーフィルムであって、
前記反射層は、厚さ50nm〜300nmである金属層を有しており、前記金属層の厚さ方向に沿って断面をとったとき、前記断面における表面側又は裏面側において、前記金属層の隣接する粒界同士の間隔は平均100nm以上である。
The mirror film of the present invention is a mirror film having a film-like substrate and a reflection layer formed on the substrate,
The reflective layer has a metal layer having a thickness of 50 nm to 300 nm, and when the cross section is taken along the thickness direction of the metal layer, the metal layer is formed on the front side or the back side in the cross section. The distance between adjacent grain boundaries is 100 nm or more on average.

本発明のミラーフィルムの製造方法は、処理空間内に窒素を流入させつつ、真空蒸着法を用いて金属分子を基材に衝突させることにより、前記基材上に金属層を形成するものである。   The method for producing a mirror film according to the present invention forms a metal layer on the substrate by causing metal molecules to collide with the substrate using a vacuum deposition method while flowing nitrogen into the processing space. .

本発明によれば、樹脂成形品の形状にかかわらず複合化してもクラックなどが生じにくいミラーフィルム、ミラーフィルムを樹脂成形品と複合化した反射光学素子、反射光学素子の成形方法、及びミラーフィルムの製造方法を提供することができる。   According to the present invention, a mirror film which hardly causes cracks even when compounded regardless of the shape of the resin molded product, a reflective optical element in which the mirror film is compounded with the resin molded product, a method of molding the reflective optical element, and a mirror film Can provide a manufacturing method of

本実施の形態にかかるミラーフィルムを製造するために用いるロールトゥロール方式の真空蒸着装置の概略図である。It is the schematic of the vacuum evaporation system of a roll to roll system used in order to manufacture the mirror film concerning this Embodiment. 本実施の形態にかかるミラーフィルムを製造するために用いるロールコータ装置の概略図である。It is the schematic of the roll coater apparatus used in order to manufacture the mirror film concerning this Embodiment. 反射光学素子のインサート成形工程を示す図である。It is a figure which shows the insert molding process of a reflective optical element. (a)は比較例にかかるミラーフィルムの厚さ方向における断面のSEM(走査電子顕微鏡)画像であり、(b)は、実施例にかかるミラーフィルムの厚さ方向における断面のSEM画像である。(A) is a SEM (scanning electron microscope) image of the cross section in the thickness direction of the mirror film concerning a comparative example, (b) is a SEM image of the cross section in the thickness direction of a mirror film concerning an example. (a)は、図4(a)のSEM画像を模式化した図であり、(b)は、図4(b)のSEM画像を模式化した図である。FIG. 4A is a view schematically illustrating the SEM image of FIG. 4A, and FIG. 4B is a view schematically illustrating the SEM image of FIG. 4B. (a)は、比較例にかかるミラーフィルムの反射特性を示すグラフであり、(b)は、実施例にかかるミラーフィルムの反射特性を示すグラフである。(A) is a graph which shows the reflective characteristic of the mirror film concerning a comparative example, (b) is a graph which shows the reflective characteristic of the mirror film concerning an Example.

以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施の形態にかかるミラーフィルムを製造するために用いるロールトゥロール方式の真空蒸着装置の概略図である。図1のロールトゥロール方式の真空蒸着装置は、筐体2内の密閉された処理空間内に配置されており、蒸着材料としての銀分子又はアルミニウム分子を含む蒸着フラックス3を発生するための蒸発源1と、プラスチックフィルム(基材)8を支持し、その上に蒸着フラックス3を受けて薄膜を形成するための成膜ローラ4と、蒸発源1と成膜ローラ4の間に蒸着フラックス3の一部を遮るための遮蔽板6と、を備えている。筐体2は、N2発生源7に接続され、ここから内部へとN2ガスが流入するようになっている。 Hereinafter, embodiments of the present invention will be described based on the drawings. FIG. 1 is a schematic view of a roll-to-roll type vacuum deposition apparatus used to manufacture a mirror film according to the present embodiment. The roll-to-roll type vacuum deposition apparatus shown in FIG. 1 is disposed in a closed processing space in a housing 2 and is evaporated to generate a deposition flux 3 containing silver molecules or aluminum molecules as a deposition material. A film forming roller 4 for supporting a source 1 and a plastic film (base material) 8 and receiving a vapor deposition flux 3 thereon to form a thin film, and a vapor deposition flux 3 between the evaporation source 1 and the film forming roller 4 And a shielding plate 6 for shielding a part of the The housing 2 is connected to an N 2 generation source 7, from which N 2 gas flows into the inside.

本真空蒸着装置には、図示していない巻き出しロールと巻き取りロールが備えられている。すなわち、図1で左側のテンションロール5の更に先には幾つかのロールを介して巻き出しロールが備えられており、巻き出しロールには処理前のプラスチックフィルム8が巻き付けられている。プラスチックフィルム8としては,例えばPC、PET、COP材料を用いることができるが、それに限られない。また図1で右側のテンションロール5の更に先には幾つかのロールを介して巻き取りロールが備えられており、巻き取りロールには処理後のプラスチックフィルム8が巻き付けられる。   The present vacuum deposition apparatus is equipped with an unwinding roll and a winding roll (not shown). That is, in FIG. 1, the unwinding roll is provided further on the left side of the tension roll 5 via several rolls, and the plastic film 8 before processing is wound around the unwinding roll. As the plastic film 8, for example, PC, PET, COP material can be used, but it is not limited thereto. Further, in FIG. 1, the take-up roll is provided further on the right side of the tension roll 5 via several rolls, and the plastic film 8 after processing is wound around the take-up roll.

成膜ローラ4は、公知の温度調整手段により温度制御されている。遮蔽板6は、蒸発源1から発せられる蒸着材料の蒸着フラックス3を遮る機能を有する。一対の遮蔽板6が、成膜ローラ4と蒸発源1の間に、成膜ローラ4に近接させて設置され、その間に開口部9を形成している。   The film forming roller 4 is temperature controlled by a known temperature control means. The shielding plate 6 has a function of blocking the vapor deposition flux 3 of the vapor deposition material emitted from the evaporation source 1. A pair of shielding plates 6 is disposed between the film forming roller 4 and the evaporation source 1 so as to be close to the film forming roller 4, and an opening 9 is formed therebetween.

本真空蒸着装置の動作を説明する。図1において、筐体2の内部の真空度は10-2Pa以上、好ましくは10-1Pa(すなわち、従来の真空蒸着法に比べて窒素流入分だけ大気圧に近くなる)であり、また窒素流入状態での成膜圧力が10-1Paとなっている。不図示の巻き出しローラから連続的に供給されるプラスチックフィルム8は、成膜ロール4の外周に巻き付いた後、その露出した表面が開口部9を通過する際に、蒸発源1から開口部9を介して飛散してきた銀分子又はアルミニウム分子が、成膜レート1Å/sにて付着することで、厚さ50nm〜300nm(より好ましくは50nm〜200nm)の金属層(銀層又はアルミニウム層)が成膜される。 The operation of the present vacuum deposition apparatus will be described. In FIG. 1, the degree of vacuum inside the housing 2 is 10 -2 Pa or more, preferably 10 -1 Pa (that is, it is closer to the atmospheric pressure by the amount of nitrogen inflow compared to the conventional vacuum evaporation method), The film formation pressure in the nitrogen inflow state is 10 −1 Pa. The plastic film 8 continuously supplied from the unwinding roller (not shown) is wound around the outer periphery of the film forming roll 4 and then the exposed surface passes from the evaporation source 1 to the opening 9 when passing through the opening 9. The metal layer (silver layer or aluminum layer) with a thickness of 50 nm to 300 nm (more preferably 50 nm to 200 nm) is formed by adhesion of silver molecules or aluminum molecules scattered through the film at a deposition rate of 1 Å / s. The film is formed.

成膜ロール4にて片面に金属層を成膜したプラスチックフィルム8は、成膜ロール4の外周から離脱した後、不図示の巻き取りローラに巻き取られ、次工程に搬送されるようになっている。このように本実施の形態にかかるロールトゥロール方式の真空蒸着装置を用いることで、プラスチックフィルム8の片面に連続的に金属層を成膜できる。   The plastic film 8 on which the metal layer is formed on one side by the film forming roll 4 is separated from the outer periphery of the film forming roll 4 and then taken up by a winding roller (not shown) and conveyed to the next step. ing. As described above, by using the roll-to-roll type vacuum deposition apparatus according to the present embodiment, a metal layer can be continuously formed on one surface of the plastic film 8.

本実施の形態によれば、特許文献1のように透水防止に対する密着性確保を目的とせず、銀層又はアルミニウム層の粒界を制御することで、面方向への延伸時の微細クラックを抑えることが出来る。「粒界」とは、膜成長の過程で生ずる金属粒子間の空壁をいう。窒素ガス雰囲気下で成膜することで、単位面積あたりの粒界が少なくなる傾向があり、特に膜断面の厚み方向で粒界が少なくなるから、顕著な横方向への延伸に対して堅牢な膜質となる。更に銀層又はアルミニウム層の膜厚を50nm〜300nmとしているので、高い反射率を確保することができる。   According to the present embodiment, the purpose is not to secure adhesion to water permeation prevention as in Patent Document 1, but by controlling grain boundaries of the silver layer or the aluminum layer, it is possible to suppress micro cracks during stretching in the surface direction. I can do it. "Grain boundary" refers to an empty wall between metal particles generated in the process of film growth. By forming a film in a nitrogen gas atmosphere, grain boundaries per unit area tend to be reduced, and in particular, grain boundaries are reduced in the thickness direction of the film cross section, so it is robust against remarkable stretching in the lateral direction. It becomes a film quality. Furthermore, since the film thickness of the silver layer or the aluminum layer is 50 nm to 300 nm, high reflectance can be secured.

特に、真空蒸着中に窒素を流入することで粒界を抑えることが出来、粒状の粒子では無く連続膜に近づけることができる。特許文献2に開示されたようなスパッタ成膜法では、銀又はアルミニウムがプラズマイオン化されるので窒素ガスと反応しやすく窒化銀になりやすい。これに対し、本実施の形態で用いる真空蒸着法では、基材に向かって金属分子の塊で飛んでいくので窒素ガスと化学的な反応は起きにくく、延伸に有利な粒界を抑えた膜質になるのである。   In particular, by flowing nitrogen during vacuum deposition, grain boundaries can be suppressed, and it is possible to approach a continuous film rather than granular particles. In the sputter deposition method as disclosed in Patent Document 2, silver or aluminum is plasma-ionized, so it easily reacts with nitrogen gas and tends to be silver nitride. On the other hand, in the vacuum evaporation method used in the present embodiment, since a mass of metal molecules fly toward the substrate, a chemical reaction with nitrogen gas hardly occurs, and a film quality suppressing grain boundaries advantageous for stretching It becomes.

図2は、本実施の形態にかかるミラーフィルムを製造するために用いるロールコータ装置の概略図である。図2に示すロールコータ装置は、グラビアロール11と、ピックアップロール12と、貯留槽13とを有する。貯留槽13内には、硬化剤にイソシアネート樹脂を用い、主剤にポリエステルやアクリル系樹脂を用いた混合液14が貯留されている。混合液14は、塗布後に乾燥させることでポリウレタン樹脂の被膜となる。「ポリウレタン樹脂」とは、ウレタン結合を分子内に有する高分子化合物のことであり、通常ポリオールとイソシアネートの反応により作製される。ポリオールとしては、ポリカーボネートポリオール類、ポリエステルポリオール類、ポリエーテルポリオール類、ポリオレフィンポリオール類、アクリルポリオール類が挙げられ、これらの化合物は単独で用いても、複数種用いてもよい。   FIG. 2 is a schematic view of a roll coater used to manufacture the mirror film according to the present embodiment. The roll coater shown in FIG. 2 has a gravure roll 11, a pickup roll 12 and a storage tank 13. In the storage tank 13, a mixed liquid 14 using an isocyanate resin as a curing agent and a polyester or an acrylic resin as a main agent is stored. The mixed liquid 14 becomes a coating of a polyurethane resin by drying after application. The "polyurethane resin" is a polymer compound having a urethane bond in the molecule, and is usually produced by the reaction of a polyol and an isocyanate. Examples of the polyol include polycarbonate polyols, polyester polyols, polyether polyols, polyolefin polyols, and acrylic polyols. These compounds may be used alone or in combination of two or more.

本ロールコータ装置にも、図示していない巻き出しロールと巻き取りロールが備えられている。すなわち、図2で左側になる上流側に巻き出しロールが備えられており、巻き出しロールには片面(図2で下面)に金属層を成膜されたプラスチックフィルム8が巻き付けられている。また図2で右側になる下流側には巻き取りロールが備えられており、巻き取りロールには処理後のプラスチックフィルム8が巻き付けられる。   The roll coater apparatus is also provided with an unwinding roll and a winding roll, which are not shown. That is, the unwinding roll is provided on the upstream side which becomes the left side in FIG. 2, and the plastic film 8 in which the metal layer is formed on one side (the lower surface in FIG. 2) is wound around the unwinding roll. Further, a take-up roll is provided on the downstream side on the right side in FIG. 2, and the plastic film 8 after processing is wound around the take-up roll.

図2において,貯留槽13内に貯留された混合液14は、混合液14内に浸漬されるゴム製のピックアップロール12を介してグラビアロール11に転写され、グラビアロール11によって、巻き出しロールから連続的に供給されたプラスチックフィルム8の金属層上に所望の厚さで塗布される。その後、プラスチックフィルム8は乾燥工程を経て、金属層の上にポリウレタン樹脂を保護層として被覆させたプラスチックフィルム8,すなわちミラーフィルムが得られる。かかるプラスチックフィルム8は、不図示の巻き取りローラに巻き取られ、更に所定のサイズにカットされた後、成形品と複合化される次工程へと搬送されるようになっている。尚、ポリウレタン樹脂を形成する工程は、以上に限られず、グラビアコーターやリバースコーター、コンマコーターなどのロールコーター法やスロットダイなどによるダイコーター法等、種々の工程により形成することができる。   In FIG. 2, the mixed solution 14 stored in the storage tank 13 is transferred to the gravure roll 11 via the rubber pick-up roll 12 immersed in the mixed solution 14, and the gravure roll 11 removes the mixture from the unwinding roll. The desired thickness is applied on the metal layer of the plastic film 8 supplied continuously. Thereafter, the plastic film 8 is subjected to a drying process to obtain a plastic film 8 in which a polyurethane resin is coated as a protective layer on the metal layer, that is, a mirror film. The plastic film 8 is taken up by a take-up roller (not shown), further cut into a predetermined size, and conveyed to the next step to be combined with the molded product. In addition, the process of forming a polyurethane resin is not restricted above, It can form by various processes, such as a roll coater method, such as a gravure coater, a reverse coater, a comma coater, and a die coater method, such as slot die.

変形例として、プラスチックフィルム8に下地層を設ける場合、プラスチックフィルム8の片面に対して、図2のようなロールコータ装置を用いてポリウレタン樹脂の下地層を形成し、その後、図1のようなロールトゥロール方式の真空蒸着装置を用いて金属層を形成し、再び図2のようなロールコータ装置を用いてポリウレタン樹脂の保護層を形成して、ミラーフィルムを製造することができる。尚、プラスチックフィルム8に下地層を設けるか否かにかかわらず、金属層を設けた片面とは反対側の面に接着層を設けても良い。接着層を設けることで、成形品にプラスチックフィルム8を貼り付ける際に強固な接着力を確保できる。   As a modification, in the case of providing a base layer on the plastic film 8, a base layer of polyurethane resin is formed on one side of the plastic film 8 using a roll coater as shown in FIG. 2, and then as shown in FIG. A mirror film can be manufactured by forming a metal layer using a roll-to-roll type vacuum deposition apparatus and forming a protective layer of polyurethane resin using a roll coater as shown in FIG. 2 again. An adhesive layer may be provided on the side opposite to the single side provided with the metal layer regardless of whether the plastic film 8 is provided with the base layer. By providing the adhesive layer, a strong adhesive force can be secured when the plastic film 8 is attached to the molded product.

図3は、反射光学素子のインサート成形工程を示す図である。インサート成形を用いた反射光学素子の製造方法について、図3を参照して説明する。図3において、金型21は、凸曲面状の転写面21aと、一端が転写面21aに開口する吸気孔21bと、転写面21aから突き出し可能に配置されたイジェクトピン21cとを有している。吸気孔21bの他端は、外部の負圧機構(不図示)に接続されている。又、イジェクトピン21cは、駆動機構21dにより突き出し又は引き込みが可能となっている。一方、金型22は、転写面21aに対向して凹曲面状の転写面22aを有している。   FIG. 3 is a view showing an insert molding process of the reflective optical element. A method of manufacturing a reflective optical element using insert molding will be described with reference to FIG. In FIG. 3, the mold 21 has a convex curved transfer surface 21a, an intake hole 21b having one end opened to the transfer surface 21a, and an eject pin 21c disposed so as to be able to protrude from the transfer surface 21a. . The other end of the intake hole 21b is connected to an external negative pressure mechanism (not shown). Further, the eject pin 21c can be protruded or pulled in by the drive mechanism 21d. On the other hand, the mold 22 has a concave curved transfer surface 22a facing the transfer surface 21a.

まず、前工程として、上述のように銀層とポリウレタン樹脂を形成したプラスチックフィルム8を所定サイズに裁断する。更に、図3(a)に示すように、金型21,22を離間させた状態で、搬送装置23を用いて,裁断したプラスチックフィルム8を搬送し、銀層と保護層を設けた側を転写面21aに接近させる。このとき、負圧機構により吸気孔21b内を負圧にすると、プラスチックフィルム8は大気圧により曲面状の転写面21aに対して密着する。この際に、銀層及びポリウレタン樹脂の保護層は曲げられるが、割れなどが生じることがない。更に、搬送装置23は、プラスチックフィルム8を解放させた後に金型間から退避させる。   First, as a pre-process, the plastic film 8 on which the silver layer and the polyurethane resin are formed as described above is cut into a predetermined size. Furthermore, as shown in FIG. 3 (a), with the molds 21 and 22 separated, the cut plastic film 8 is conveyed using the conveying device 23, and the side provided with the silver layer and the protective layer is The transfer surface 21a is made to approach. At this time, if the inside of the air suction hole 21b is made negative pressure by the negative pressure mechanism, the plastic film 8 adheres to the curved transfer surface 21a by the atmospheric pressure. At this time, the silver layer and the protective layer of the polyurethane resin are bent, but no cracking or the like occurs. Furthermore, after releasing the plastic film 8, the transport device 23 retracts from between the dies.

その後、図3(b)に示すように、図21,22を互いに接近させて型締めを行い、転写面21a(プラスチックフィルム8)と転写面22aの間に形成されたキャビティ内に、不図示のゲートを介して溶融した樹脂を射出する。射出した樹脂が固化することで、プラスチックフィルム8と一体化することとなる。この際に、銀層及びポリウレタン樹脂の保護層は加熱されるが、熱膨張などで割れやヒビなどが生じることがない。   Thereafter, as shown in FIG. 3 (b), the molds shown in FIGS. 21 and 22 are brought close to each other and clamped, and not shown in the cavity formed between the transfer surface 21a (plastic film 8) and the transfer surface 22a. The molten resin is injected through the gate. Solidifying the injected resin results in integration with the plastic film 8. At this time, although the silver layer and the protective layer of the polyurethane resin are heated, no cracks or cracks occur due to thermal expansion or the like.

その後、図3(c)に示すように、金型21,22を離間して型開きし、更に図3(d)に示すように駆動機構21dを用いてイジェクトピン21cを突き出すことで、転写面21aから成形品を取り出すことができる。かかる成形品は、プラスチックフィルム8をインサート成形することにより、低コストながらも高反射率を備えた高精度な反射面を有する反射光学素子OEとなる。   Thereafter, as shown in FIG. 3C, the molds 21 and 22 are separated, the mold is opened, and as shown in FIG. 3D, the ejection pin 21c is protruded using the drive mechanism 21d, thereby performing transfer. The molded product can be taken out from the surface 21a. Such a molded product becomes a reflective optical element OE having a highly accurate reflective surface with high reflectance at a low cost by insert molding the plastic film 8.

本発明者らは、ミラーフィルムの比較例と実施例を作成した。図4(a)は比較例にかかるミラーフィルムの厚さ方向における断面のSEM(走査電子顕微鏡)画像であり、図4(b)は、実施例にかかるミラーフィルムの厚さ方向における断面のSEM画像であり、それぞれ表面を上面とし、裏面を下面とする。ここでは比較例及び実施例とも、真空蒸着法で基材上に厚さ150nmの銀層を形成したが、比較例では窒素ガスを流入せず真空度10-3Paで蒸着を行い、実施例では成膜圧力10-1Paで窒素ガスを導入しつつ蒸着を行った。それ以外の成膜条件は同じである。 The present inventors made comparative examples and examples of mirror films. Fig.4 (a) is a SEM (scanning electron microscope) image of the cross section in the thickness direction of the mirror film concerning a comparative example, FIG.4 (b) is SEM of the cross section in the thickness direction of the mirror film concerning an Example. It is an image, and let each surface be an upper surface and a back surface be a lower surface. Here, a silver layer of 150 nm in thickness was formed on the substrate by the vacuum evaporation method in both the comparative example and the example, but in the comparative example, the deposition was performed at a vacuum degree of 10 -3 Pa without flowing nitrogen gas. In the above, the deposition was performed while introducing nitrogen gas at a deposition pressure of 10 −1 Pa. The other film forming conditions are the same.

図5(a)は、図4(a)のSEM画像を模式化した図であり、図5(b)は、図4(b)のSEM画像を模式化した図であり、金属層内の粒界を線で示している。図5(a)に示す比較例では、銀層の表面又は裏面上での結晶粒界の平均間隔が50nm以下であるのに対し、図5(b)に示す実施例では、銀層の表面又は裏面上での結晶粒界の平均間隔が150nm以上であって、比較例の結晶粒界の平均間隔よりも大きくなっている。窒素ガスを流入させつつ真空蒸着法で金属層を成膜することで、結晶粒界の平均間隔を100nm以上とすることができる。これにより、ミラーフィルム曲げ時のクラック発生による反射率低下を抑制できる。   FIG. 5 (a) is a schematic view of the SEM image of FIG. 4 (a), and FIG. 5 (b) is a schematic view of the SEM image of FIG. 4 (b). The grain boundaries are indicated by lines. In the comparative example shown in FIG. 5 (a), while the average distance between crystal grain boundaries on the front or back surface of the silver layer is 50 nm or less, in the embodiment shown in FIG. 5 (b), the surface of the silver layer Alternatively, the average distance between grain boundaries on the back surface is 150 nm or more, which is larger than the average distance between grain boundaries in the comparative example. By forming a metal layer by vacuum evaporation while introducing nitrogen gas, the average distance between crystal grain boundaries can be made 100 nm or more. Thereby, the reflectance fall by the crack generation at the time of mirror film bending can be controlled.

本発明者らは、比較例と実施例のミラーフィルムを、延伸率2.5%、5%、7.5%、10%、12.5%、20%で引き延ばした際の反射率の変化について検討した。図6は、その結果を示すグラフである。図6(a)に示す比較例では、延伸率10%では波長530nm未満で反射率が90%未満となり、可視光を反射するミラーフィルムとしては反射性能が不十分であることが分かる。   The inventors of the present invention changed the reflectance of the mirror films of Comparative Examples and Examples when stretched at 2.5%, 5%, 7.5%, 10%, 12.5%, and 20%. Was examined. FIG. 6 is a graph showing the result. In the comparative example shown in FIG. 6A, the reflectance is less than 90% at a wavelength of less than 530 nm at a stretch ratio of 10%, and it can be seen that the reflection performance is insufficient as a mirror film that reflects visible light.

これに対し、図6(b)に示す比較例では、延伸率10%では波長400nm以上の可視光域で反射率が90%以上となり、延伸率12.5%でも波長410nm以上で反射率が90%以上となり、十分実用に供し得ることが分かる。すなわち、窒素ガス雰囲気下で銀又はアルミニウムを成膜することで、インサート成形時に10%程度延伸しても微細クラックが発生又は拡大しづらいため、反射率の劣化を抑えることができるミラーフィルムを得ることができる。   On the other hand, in the comparative example shown in FIG. 6 (b), the reflectance is 90% or more in the visible light region of wavelength 400 nm or more at a stretching ratio of 10%, and the reflectance is at wavelength 410 nm or more even at a stretching ratio of 12.5%. It becomes 90% or more, and it turns out that it can fully use for practical use. That is, by forming silver or aluminum in a nitrogen gas atmosphere, it is difficult to generate or expand a micro crack even if it is stretched by about 10% during insert molding, thereby obtaining a mirror film capable of suppressing deterioration of reflectance. be able to.

以上、本発明を実施の形態を参照して説明してきたが、本発明はこれに限られない。例えば、ミラーフィルムと成形品との複合化は、インサート成形に限られず、ミラーフィルムを樹脂成形品に接着する場合も含む。又、本発明の反射光学素子は、レーザービームプリンタや複合機等に用いられているfθミラーや折返しミラー、ヘッドアップディスプレイやプロジェクター用の大型ミラー等に適用できる。   Although the present invention has been described above with reference to the embodiments, the present invention is not limited thereto. For example, the combination of the mirror film and the molded article is not limited to the insert molding, but includes the case where the mirror film is bonded to the resin molded article. Further, the reflective optical element of the present invention can be applied to an fθ mirror or a folding mirror used for a laser beam printer, a complex machine or the like, a large mirror for a head-up display, a projector or the like.

1 蒸発源
2 筐体
3 蒸着フラックス
4 成膜ローラ
5 テンションロール
6 遮蔽板
7 N2発生源
8 プラスチックフィルム
9 開口部
11 グラビアロール
12 ピックアップロール
13 貯留槽
13 貯留部
14 混合液
21 金型
21a 転写面
21b 吸気孔
21c イジェクトピン
21d 駆動機構
22 金型
22a 転写面
23 搬送装置
OE 反射光学素子
DESCRIPTION OF SYMBOLS 1 Evaporation source 2 Housing | casing 3 Evaporation flux 4 Film-forming roller 5 Tension roll 6 Shielding plate 7 N 2 Source 8 Plastic film 9 Opening 11 Gravure roll 12 Pick-up roll 13 Reservoir 13 Reservoir 14 Reservoir 14 Liquid mixture 21 Mold 21a Transfer Surface 21b Intake hole 21c Ejection pin 21d Drive mechanism 22 Mold 22a Transfer surface 23 Transport device OE Reflective optical element

Claims (9)

フィルム状の基材と、前記基材上に形成された反射層とを有するミラーフィルムであって、
前記反射層は、厚さ50nm〜300nmである金属層を有しており、前記金属層の厚さ方向に沿って断面をとったとき、前記断面における表面側又は裏面側において、前記金属層の隣接する粒界同士の間隔は平均100nm以上であるミラーフィルム。
A mirror film comprising a film-like substrate and a reflection layer formed on the substrate, the mirror film comprising
The reflective layer has a metal layer having a thickness of 50 nm to 300 nm, and when the cross section is taken along the thickness direction of the metal layer, the metal layer is formed on the front side or the back side in the cross section. The mirror film in which the distance between adjacent grain boundaries is 100 nm or more on average.
前記金属層は銀層であって、前記反射層の反射率が90%以上である請求項1に記載のミラーフィルム。   The mirror film according to claim 1, wherein the metal layer is a silver layer, and the reflectance of the reflective layer is 90% or more. 前記反射層の上に、保護層を形成した請求項1又は2に記載のミラーフィルム。   The mirror film of Claim 1 or 2 which formed the protective layer on the said reflection layer. 前記基材と前記金属層との間に、下地層を形成した請求項1〜3のいずれかに記載のミラーフィルム。   The mirror film in any one of Claims 1-3 which formed the base layer between the said base material and the said metal layer. 前記基材は、PC,PET,COPのいずれかを素材としてフィルム状に形成されている請求項1〜4のいずれかに記載のミラーフィルム。   The mirror film according to any one of claims 1 to 4, wherein the base material is formed in a film shape using any of PC, PET and COP as a material. 請求項1〜5のいずれかに記載のミラーフィルムを樹脂成形品の表面に貼り付けてなる反射光学素子。   The reflective optical element formed by sticking the mirror film in any one of Claims 1-5 on the surface of a resin molded product. 請求項1〜6のいずれかに記載のミラーフィルムを金型内に配置して、溶融した樹脂を前記ミラーフィルムに接するように前記金型内に射出して、前記樹脂を固化させることで前記ミラーフィルムと前記樹脂とを一体化する反射光学素子の成形方法。   The mirror film according to any one of claims 1 to 6 is disposed in a mold, the molten resin is injected into the mold so as to be in contact with the mirror film, and the resin is solidified. A molding method of a reflective optical element in which a mirror film and the resin are integrated. 処理空間内に窒素を流入させつつ、真空蒸着法を用いて金属分子を基材に衝突させることにより、前記基材上に金属層を形成するミラーフィルムの製造方法。   A method of manufacturing a mirror film, wherein a metal layer is formed on the substrate by causing metal molecules to collide with the substrate using a vacuum evaporation method while flowing nitrogen into the processing space. 前記処理空間における内部圧力が、窒素流入状態で10-2Pa以上である請求項8に記載のミラーフィルムの製造方法。 The method for producing a mirror film according to claim 8, wherein the internal pressure in the processing space is 10 -2 Pa or more in a nitrogen inflow state.
JP2017081193A 2017-04-17 2017-04-17 Mirror film, reflective optical element, molding method of reflective optical element and manufacturing method of mirror film Active JP7015461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081193A JP7015461B2 (en) 2017-04-17 2017-04-17 Mirror film, reflective optical element, molding method of reflective optical element and manufacturing method of mirror film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081193A JP7015461B2 (en) 2017-04-17 2017-04-17 Mirror film, reflective optical element, molding method of reflective optical element and manufacturing method of mirror film

Publications (2)

Publication Number Publication Date
JP2018180358A true JP2018180358A (en) 2018-11-15
JP7015461B2 JP7015461B2 (en) 2022-02-03

Family

ID=64275278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081193A Active JP7015461B2 (en) 2017-04-17 2017-04-17 Mirror film, reflective optical element, molding method of reflective optical element and manufacturing method of mirror film

Country Status (1)

Country Link
JP (1) JP7015461B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114185217A (en) * 2021-10-29 2022-03-15 涿州市柯林电子产品有限公司 EC electrochromic membrane production facility and winding mechanism convenient to solidification moulding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339683A (en) * 1998-05-29 1999-12-10 Matsushita Electron Corp Cathode-ray tube and its manufacture
JP2010214790A (en) * 2009-03-17 2010-09-30 Shin Etsu Polymer Co Ltd Radio wave transmitting decorative film and decorative member using the same
JP2012116219A (en) * 2010-11-29 2012-06-21 Pacific Ind Co Ltd Metal tone decorative sheet and method for manufacturing the same
WO2016027733A1 (en) * 2014-08-22 2016-02-25 コニカミノルタ株式会社 Light-reflecting film, production method for light-reflecting film, decorative molding method for light-reflecting film, laminated glass, and curved surface body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339683A (en) * 1998-05-29 1999-12-10 Matsushita Electron Corp Cathode-ray tube and its manufacture
JP2010214790A (en) * 2009-03-17 2010-09-30 Shin Etsu Polymer Co Ltd Radio wave transmitting decorative film and decorative member using the same
JP2012116219A (en) * 2010-11-29 2012-06-21 Pacific Ind Co Ltd Metal tone decorative sheet and method for manufacturing the same
WO2016027733A1 (en) * 2014-08-22 2016-02-25 コニカミノルタ株式会社 Light-reflecting film, production method for light-reflecting film, decorative molding method for light-reflecting film, laminated glass, and curved surface body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114185217A (en) * 2021-10-29 2022-03-15 涿州市柯林电子产品有限公司 EC electrochromic membrane production facility and winding mechanism convenient to solidification moulding

Also Published As

Publication number Publication date
JP7015461B2 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
TWI426098B (en) Optical film
US7655289B2 (en) Optical film composite having spatially controlled adhesive strength
TWI447012B (en) An optical film manufacturing method, an optical film, a polarizing film, and a display device
KR101067410B1 (en) Method of producing film from polymer solution
JP2006264118A (en) Plastic film, gas-barrier film, and image display element using it
TWI424218B (en) Optical film manufacturing method and apparatus
CN101639558A (en) Lens, method for removing lens flare and die for manufacturing lens barrel
JPWO2018012541A1 (en) Optical element manufacturing method, optical element, and optical functional film
JP2018180358A (en) Mirror film, reflective optical element, method of forming reflective optical element, and method of manufacturing mirror film
TWI644131B (en) Polarizing plate, manufacturing method of polarizing plate and liquid crystal display device
JP2010179276A (en) Foreign matter remover of film surface, and method of manufacturing film
JP5304034B2 (en) Manufacturing method of optical film
JP6164050B2 (en) Optical film, polarizing plate, manufacturing method thereof, and image display device
JP5309779B2 (en) Optical film manufacturing method and optical film manufacturing apparatus
WO2010071009A1 (en) Flexible resin substrate and display device using same
JP2010253723A (en) Optical film and method for manufacturing the same
JP4254390B2 (en) ORGANIC-INORGANIC HYBRID FILM, PROCESS FOR PRODUCING THE SAME, OPTICAL FILM COMPRISING ORGANIC-INORGANIC HYBRID MATERIAL, AND POLARIZING PLATE
WO2016132607A1 (en) Optical film, optical film manufacturing method, polarizing plate and liquid crystal display device
WO2016132606A1 (en) Polarizing plate and polarizing plate manufacturing method
WO2018207623A1 (en) Reflective film, reflective optical element, method for forming reflective optical element and method for producing reflective film
WO2010150570A1 (en) Film mirror, method for producing same, and sunlight reflecting mirror using same
JP2007062064A (en) Optical film and its manufacturing method
JP2015150888A (en) Direct gravure coating apparatus and method, and optical film
JP4296867B2 (en) Optical film manufacturing method and optical film
JP5838778B2 (en) Manufacturing method of optical film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220106

R150 Certificate of patent or registration of utility model

Ref document number: 7015461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150