JP2018179819A - Nondestructive inspection device - Google Patents

Nondestructive inspection device Download PDF

Info

Publication number
JP2018179819A
JP2018179819A JP2017081031A JP2017081031A JP2018179819A JP 2018179819 A JP2018179819 A JP 2018179819A JP 2017081031 A JP2017081031 A JP 2017081031A JP 2017081031 A JP2017081031 A JP 2017081031A JP 2018179819 A JP2018179819 A JP 2018179819A
Authority
JP
Japan
Prior art keywords
inspection
arm
inspection device
base
nondestructive inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017081031A
Other languages
Japanese (ja)
Other versions
JP7090306B2 (en
Inventor
邦男 齊藤
Kunio Saito
邦男 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAITOTEC CO Ltd
Original Assignee
SAITOTEC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAITOTEC CO Ltd filed Critical SAITOTEC CO Ltd
Priority to JP2017081031A priority Critical patent/JP7090306B2/en
Publication of JP2018179819A publication Critical patent/JP2018179819A/en
Application granted granted Critical
Publication of JP7090306B2 publication Critical patent/JP7090306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nondestructive inspection device that can aerially inspect heights of a building, or a building present at a site like persons being non-accessible.SOLUTION: A nondestructive inspection device 10: a base body 12; an inspection body 14; a rotary wing 16; a distance holding body 18; and an auxiliary rotary wing 28. The inspection body 14 includes: an arm 20 that is connected to the base body 12; and an inspection unit 22 that taps an inspected body by an actuation of the arm 20 to conduct an inspection. The arm 20 includes: a first arm member 20a that is rotatably connected to the base body 12; and a second arm member 20b that holds the inspection unit 22, and is connected rotatably relative to the first arm member 20a. The rotary wing 16 is configured to cause the base body 12 to fly. The distance holding body 18, which contacts with the inspected body to keep a distance between the base body 12 and the inspected body at a prescribed value, includes: an axle shaft 40 that is provided in the base body 12; and wheels 42 and 44 that are rotatably provided on either side of the axle shaft 40. The auxiliary rotary wing 28 causes the base body 12 to move in an inspected body direction.SELECTED DRAWING: Figure 1

Description

本発明は、回転翼無人航空機を用いて、建造物の劣化状態を空中で検査する非破壊検査装置に関する。   The present invention relates to a nondestructive inspection apparatus for inspecting the deterioration state of a building in the air using a rotary unmanned aerial vehicle.

トンネル、橋梁、ビル等の建造物は、建設後にこれらの構造の劣化を検査し続ける必要がある。見た目では建造物の劣化がわからないため、高所作業車や検査のために設置した足場などを使用して、ハンマー等の検査具で人が建造物を直接叩いて検査するのが一般的である。しかしながら、検査具で人が建造物を直接叩く検査では、高所作業の危険性や足場の設置コスト等が問題となる。また、検査具で人がトンネルの内壁を直接叩く検査では、検査期間中の車両や電車等の通行規制が必要となる。さらに、人が近づけないような場所で、建造物を叩打検査しなければならないこともある。   Structures such as tunnels, bridges and buildings need to continue to be inspected for deterioration of these structures after construction. It is common for people to directly hit and inspect a building with a test tool such as a hammer, using an aerial work vehicle or a scaffold installed for inspection, because the appearance of the building can not be understood in appearance . However, in the inspection in which a person directly strikes a building with an inspection tool, the danger of work at a high place, the installation cost of a scaffold, and the like become problems. In addition, in the inspection in which a person directly strikes the inner wall of the tunnel with the inspection tool, traffic restrictions on vehicles, trains, etc. during the inspection period are required. In addition, it may be necessary to bang and inspect structures in places where people are not accessible.

本発明はこのような事情に鑑みてなされたものであり、建造物の高所や人が近づけないような場所にある建造物を、空中で検査できる非破壊検査装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a nondestructive inspection apparatus capable of inspecting in the air a structure located in a high place of a structure or a place where people can not approach. Do.

本発明の非破壊検査装置は、基体と、基体に接続されたアームと、アームに保持され、アームの作動によって被検査体を叩いて検査する検査部とを備える検査体と、基体を飛行させる回転翼と、被検査体に接触して、基体と被検査体の距離を所定値に保つ距離保持体とを有している。本発明の非破壊検査装置において、アームが、基体に回動可能に接続された第一アーム部材と、検査部を保持するとともに、第一アーム部材に対して回動可能に接続された第二アーム部材とを備えることが好ましい。   The nondestructive inspection apparatus according to the present invention causes a test object including a base, an arm connected to the base, and an inspection unit held by the arm and testing the object to be inspected by the operation of the arm, and a base It has a rotary wing and a distance holding body which is in contact with the inspection object and keeps the distance between the base and the inspection object at a predetermined value. In the nondestructive inspection device of the present invention, the arm holds the inspection unit and the first arm member rotatably connected to the base, and the second arm rotatably connected to the first arm member Preferably, an arm member is provided.

また、本発明の非破壊検査装置において、距離保持体が被検査体に接触する少なくとも二つの接触部を備え、二つの接触部の間でアームが作動することが好ましい。また、本発明の非破壊検査装置において、距離保持体が、基体に設けられた車軸と、車軸の両側に回動自在に設けられた車輪とを備えることが好ましい。また、本発明の非破壊検査装置において、基体を被検査体方向に移動させる補助回転翼をさらに有していてもよい。この補助回転翼は、停止と所定の回転数での回転の二段階の切り替えで作動してもよい。また、本発明の非破壊検査装置において、検査部が被検査体を叩いたときの衝撃力の時間変化に基づいて被検査体の劣化を判定してもよい。   Further, in the nondestructive inspection device of the present invention, it is preferable that the distance holding body includes at least two contact portions contacting the object to be inspected, and the arm operates between the two contact portions. Further, in the nondestructive inspection device of the present invention, it is preferable that the distance holder includes an axle provided on the base and wheels provided rotatably on both sides of the axle. The nondestructive inspection apparatus of the present invention may further include an auxiliary rotary blade for moving the base toward the inspection object. The auxiliary rotor may operate with a two-step switch between stop and rotation at a predetermined speed. In the nondestructive inspection device of the present invention, the deterioration of the object to be inspected may be determined based on the time change of the impact force when the inspection unit strikes the object to be inspected.

本発明の非破壊検査装置によれば、被検査体との距離を所定値に保った状態で、検査部で被検査体を叩いて検査できる。このため、人が検査具で建造物を直接叩いたときと同等の精度で、建造物の劣化状態が判定できる。   According to the nondestructive inspection device of the present invention, it is possible to inspect the inspection object by tapping the inspection object in a state where the distance to the inspection object is maintained at a predetermined value. Therefore, the deterioration state of the building can be determined with the same accuracy as when a person directly hits the building with the inspection tool.

本発明の実施形態に係る非破壊検査装置の斜視図。The perspective view of the nondestructive inspection device concerning the embodiment of the present invention. 本発明の実施形態に係る非破壊検査装置を用いた建造物の壁面の検査を説明する側面図。The side view explaining the inspection of the wall surface of the building using the nondestructive inspection device concerning the embodiment of the present invention. 本発明の実施形態に係る非破壊検査装置を用いた建造物の底面の検査を説明する側面図。The side view explaining the inspection of the bottom of the building using the nondestructive inspection device concerning the embodiment of the present invention.

以下、本発明の非破壊検査装置について、実施形態に基づいて、図面を参照しながら説明する。なお、図面は、非破壊検査装置、非破壊検査装置の構成部材、および非破壊検査装置の周辺部材を模式的に表したものであり、これらの実物の寸法および寸法比は、図面上の寸法および寸法比と必ずしも一致していない。なお、重複説明は適宜省略し、同一部材には同一符号を付与することがある。   Hereinafter, the nondestructive inspection device of the present invention will be described based on embodiments with reference to the drawings. The drawings schematically represent the nondestructive inspection device, the components of the nondestructive inspection device, and the peripheral members of the nondestructive inspection device, and the dimensions and dimensional ratio of these actual products are the dimensions in the drawings. And do not necessarily match the dimensional ratio. In addition, duplication explanation may be omitted suitably and the same numerals may be given to the same member.

図1は、本発明の実施形態に係る非破壊検査装置10を示している。非破壊検査装置10は、空中で、すなわち地面や床面から離れた空間で、被検査体の劣化状態を非破壊で検査できる。非破壊検査装置10は、基体12と、検査体14と、回転翼16と、距離保持体18を備えている。非破壊検査装置10は、検査体14と距離保持体18を備えるドローンとも言える。   FIG. 1 shows a nondestructive inspection device 10 according to an embodiment of the present invention. The nondestructive inspection apparatus 10 can nondestructively inspect the deterioration state of the object to be inspected in the air, that is, in a space away from the ground or the floor surface. The nondestructive inspection apparatus 10 includes a base 12, an inspection body 14, a rotary wing 16, and a distance holder 18. The nondestructive inspection device 10 can also be said to be a drone provided with the inspection body 14 and the distance holder 18.

基体12は、検査体14を保持している。検査体14は、アーム20と、検査部22を備えている。アーム20は基体12に接続されている。検査部22はアーム20に保持されている。検査部22は、アーム20の作動によって、被検査体を叩いて検査する。検査部22が被検査体を叩いたときの衝撃力変化や、検査部22が被検査体を叩いたときに発生する音等によって、被検査体の劣化状態を判断する。被検査体としては、例えば、トンネル、橋梁、ビル等の建造物のコンクリート部分が挙げられる。本実施形態では、アーム20は、基体12に回動可能に接続された第一アーム部材20aと、第一アーム部材20aに対して回動可能に接続された第二アーム部材20bを備えている。検査部22は第二アーム部材20bに保持されている。   The base 12 holds the test body 14. The inspection body 14 includes an arm 20 and an inspection unit 22. The arm 20 is connected to the base 12. The inspection unit 22 is held by the arm 20. The inspection unit 22 strikes the inspection object by the operation of the arm 20 to perform inspection. The state of deterioration of the object to be inspected is determined by the change in impact force when the inspection unit 22 strikes the object to be inspected, the sound generated when the inspection unit 22 strikes the object to be inspected, and the like. As a to-be-tested body, the concrete part of structures, such as a tunnel, a bridge, a building, is mentioned, for example. In the present embodiment, the arm 20 includes a first arm member 20a pivotally connected to the base 12 and a second arm member 20b pivotally connected to the first arm member 20a. . The inspection unit 22 is held by the second arm member 20b.

より具体的には、基体12に設けられたサーボモータ24に、第一アーム部材20aの一端が取り付けられており、第一アーム部材20aの他端に設けられたサーボモータ26に、第二アーム部材20bの一端が取り付けられている。このため、基体12と第一アーム部材20aの角度、および第一アーム部材20aと第二アーム部材20bの角度が適宜調整できる。したがって、被検査体に対して所望の角度で、例えば垂直で、検査部22が接触するようにできる。また、後述するように、鉛直面だけでなく、水平下面である被検査体の非破壊検査が容易となる。   More specifically, one end of the first arm member 20a is attached to the servomotor 24 provided on the base 12, and the servomotor 26 provided on the other end of the first arm member 20a is provided on the second arm. One end of the member 20b is attached. Therefore, the angle between the base 12 and the first arm member 20a and the angle between the first arm member 20a and the second arm member 20b can be appropriately adjusted. Therefore, the inspection unit 22 can be brought into contact with the inspection object at a desired angle, for example, vertically. Further, as described later, nondestructive inspection of not only the vertical surface but also the object to be inspected which is the horizontal lower surface is facilitated.

回転翼16は基体12を飛行させる。本実施形態では、4つの回転翼16が設けられているが、回転翼の数量、形状、配置、素材等は特に制限がない。回転翼16は、回転速度、回転面の角度、回転方向等が制御でき、基体12、つまり非破壊検査装置10の飛行方向を調整できる。すなわち、回転翼16によって、非破壊検査装置10は、鉛直上下方向、水平方向、水平に対する斜め上下方向に移動できる。また、回転翼16のそれぞれの回転状態を調整することによって、非破壊検査装置10はホバリングできる。なお、本実施形態では、非破壊検査装置10は補助回転翼28を備えている。補助回転翼28については後述する。   The rotary wings 16 fly the base 12. In the present embodiment, four rotary wings 16 are provided, but the number, shape, arrangement, material, and the like of the rotary wings are not particularly limited. The rotary wing 16 can control the rotational speed, the angle of the rotational surface, the rotational direction, and the like, and can adjust the flight direction of the base 12, that is, the nondestructive inspection device 10. That is, the non-destructive inspection apparatus 10 can move in the vertical vertical direction, the horizontal direction, and the diagonal vertical direction with respect to the horizontal by the rotary wing 16. Moreover, the nondestructive inspection device 10 can hover by adjusting the rotational state of each of the rotary wings 16. In the present embodiment, the nondestructive inspection device 10 is provided with the auxiliary rotary wing 28. The auxiliary rotary wings 28 will be described later.

距離保持体18は、検査時に被検査体に接触して、基体12と被検査体の距離を所定値に保つ。距離保持体18は、基体12に設けられた車軸40と、車軸40の両側に回動自在に設けられた車輪42,44を備えている。したがって、非破壊検査装置10が被検査体に最も近づいた状態で非破壊検査装置10が多少動いても、車輪42,44が回転しながら基体12と被検査体の距離を一定に保てる。   The distance holder 18 contacts the object under inspection at the time of inspection, and keeps the distance between the base 12 and the object at a predetermined value. The distance holder 18 includes an axle 40 provided on the base 12 and wheels 42 and 44 rotatably provided on both sides of the axle 40. Therefore, even if the nondestructive inspection device 10 moves a little in the state where the nondestructive inspection device 10 is closest to the inspected object, the distance between the base 12 and the inspected object can be kept constant while the wheels 42 and 44 rotate.

なお、本実施形態の距離保持体18に代えて、被検査体に接触する少なくとも二つの接触部を備え、この二つの接触部の間でアーム20が作動するような距離保持体であってもよい。このような距離保持体としては、例えば、水平面がコ字形状やH字形状となるように棒状部材を組み合わせ、コ字の縦線に相当する棒状部材やH字の横線に相当する棒状部材を基体12に固定したものや、三本の棒状部材の一端を基体12に固定し、他端を斜め三方向に拡げ、これらの他端が三角形の頂点となるように被検査体に接触させるものが挙げられる。   It should be noted that, instead of the distance holding body 18 of the present embodiment, at least two contact portions contacting the object to be inspected are provided, even if the distance holding body is such that the arm 20 operates between the two contact portions. Good. As such a distance holder, for example, a rod-shaped member is combined such that the horizontal surface is U-shaped or H-shaped, and a rod-shaped member corresponding to a vertical line of U-shaped or a rod-shaped member corresponding to a horizontal line of H-shaped One fixed to the base 12 or one end of three rod-like members fixed to the base 12 and the other end spread in three oblique directions, and the other end is in contact with the test object so that the other end is the apex of a triangle. Can be mentioned.

検査部22は、ハンマーのような形状を備え、グリップ部分が第二アーム部材20bに保持されている。第二アーム部材20bの回動に伴って検査部22も回動し、検査部22が被検査体を叩打する。検査部22の叩打の結果に応じて、被検査体の劣化を判定する。本実施形態では、検査部22が被検査体を叩いたときの衝撃力の時間変化に基づいて被検査体の劣化を判定する。このため、叩いたときの音によって被検査体の劣化を判定する打音検査と異なり、回転翼16の回転音が激しく発生する環境下でも、被検査体の劣化を正確に判定できる。   The inspection unit 22 has a hammer-like shape, and the grip portion is held by the second arm member 20b. With the rotation of the second arm member 20b, the inspection unit 22 also rotates, and the inspection unit 22 strikes the inspection object. According to the result of the tapping of the inspection unit 22, the deterioration of the inspection object is determined. In the present embodiment, the deterioration of the object to be inspected is determined based on the time change of the impact force when the inspection unit 22 strikes the object to be inspected. For this reason, unlike the batting test which determines deterioration of a to-be-tested object by the sound when it strikes, deterioration of a to-be-tested object can be determined correctly also in the environment where the rotational sound of the rotary wing 16 generate | occur | produces violently.

図2は、非破壊検査装置10を用いて、被検査体である建造物、例えばコンクリート製の橋脚の壁面W(コンクリート面)を検査する方法を示している。この検査方法は以下のように実施される。まず、回転翼16を水平面内で回転させて、鉛直上方に非破壊検査装置10を飛行させる。つぎに、補助回転翼28を鉛直面内で回転して、基体12を壁面Wの方向に移動させ、車輪42と車輪44(不図示)を壁面Wに接触させながら非破壊検査装置10を空中飛行させる。補助回転翼28は、回転翼16の回転開始と同じタイミングで回転開始してもよい。   FIG. 2 shows a method of inspecting a wall W (concrete surface) of a structure which is an inspection object, for example, a concrete-made bridge pier, using the nondestructive inspection device 10. This inspection method is implemented as follows. First, the rotary wing 16 is rotated in a horizontal plane to fly the nondestructive inspection device 10 vertically upward. Next, the auxiliary rotary wing 28 is rotated in the vertical plane to move the base 12 in the direction of the wall surface W, and the nondestructive inspection device 10 is suspended in the air while the wheels 42 and 44 (not shown) are in contact with the wall surface W. Let it fly. The auxiliary rotary wings 28 may start to rotate at the same timing as the rotary wings 16 start to rotate.

なお、補助回転翼28が設けられていない非破壊検査装置では、水平に対して斜めの面内で回転翼16を回転させることによって、車輪42,44を壁面Wに接触させながら空中飛行できる。しかし、本実施形態では補助回転翼28が設けられているため、回転翼16を水平面内で回転して、主に非破壊検査装置10の鉛直方向の飛行の維持に動力源であるエネルギーを使用できる。そして、回転翼16への供給源と別に設けられた動力源によって、補助回転翼28を鉛直面内で回転させ、車輪42,44の壁面Wへの接触維持を図れる。   In the nondestructive inspection device in which the auxiliary rotary wing 28 is not provided, the wheels 42 and 44 can be made to fly in air while being in contact with the wall surface W by rotating the rotary wing 16 in a plane oblique to the horizontal. However, in the present embodiment, since the auxiliary rotary wing 28 is provided, the rotary wing 16 is rotated in the horizontal plane, and energy which is a motive power source is mainly used to maintain the flight of the nondestructive inspection device 10 in the vertical direction. it can. Then, the auxiliary rotary wing 28 can be rotated in the vertical plane by the power source provided separately from the supply source to the rotary wing 16 to maintain the contact of the wheels 42 and 44 with the wall surface W.

このように、本実施形態では、別々に設けた回転翼16と補助回転翼28の動力源を効率的に使用できるため、長時間の飛行ができ、被検査体の広範囲の検査が可能となる。さらに、補助回転翼28を、停止と所定の回転数での回転の二段階の切り替えで作動する単純な構造にすれば、エネルギー消費量をより一層抑えられ、被検査体のさらなる広範囲の検査が可能となる。   As described above, in the present embodiment, since the power sources of the separately provided rotor blades 16 and the auxiliary rotor blades 28 can be efficiently used, flight over a long time can be performed, and a wide range inspection of the inspection object becomes possible. . Furthermore, if the auxiliary rotary wing 28 has a simple structure that operates by switching between stop and rotation at a predetermined rotational speed, the energy consumption can be further reduced, and the inspection of a wide range of inspection objects can be performed. It becomes possible.

そして、車輪42,44を壁面Wに接触しながら非破壊検査装置10が空中飛行している状態で、第二アーム部材20bを回動させて、加速度計を内蔵している検査部22で壁面Wを複数回、例えば10回叩く。検査部22は、壁面Wを叩いたときの衝撃力の時間変化を記憶している。検査部22の記憶媒体をコンピュータに接続し、この衝撃力の時間変化をコンピュータで処理して、壁面Wの劣化を判定する。例えば、衝撃力の時間変化を示すグラフの波形が左右対称の山型になれば、壁面Wは劣化していないと判定し、不規則な鋸波になれば、その波形に応じて、壁面Wは表面劣化している、または壁面Wに剥離面があると判定する。   Then, in a state where the nondestructive inspection device 10 is flying in the air while the wheels 42 and 44 are in contact with the wall surface W, the second arm member 20b is rotated and the wall surface is inspected by the inspection unit 22 incorporating the accelerometer. Tap W several times, for example 10 times. The inspection unit 22 stores the time change of the impact force when striking the wall surface W. The storage medium of the inspection unit 22 is connected to a computer, and the time change of the impact force is processed by the computer to determine the deterioration of the wall W. For example, it is determined that the wall W is not deteriorated if the waveform of the graph showing the time change of the impact force is symmetrical in the left-right symmetry, and if it becomes an irregular sawtooth, the wall W according to the waveform It is determined that the surface is deteriorated or that the wall W has a peeling surface.

図3は、非破壊検査装置10を用いて、被検査体である建造物、例えばコンクリート製の橋梁の底面B(コンクリート面)を検査する方法を示している。この検査方法は、以下のように実施される。まず、第一アーム部材20aを回動して鉛直方向にする。つぎに、回転翼16を水平面内で回転させて、鉛直上方に非破壊検査装置10を飛行させ、車輪42と車輪44(不図示)を底面Bに接触させながら非破壊検査装置10を空中飛行させる。なお、補助回転翼28は、常時停止したままである。そして、壁面Wの検査方法と同様にして、車輪42,44を底面Bに接触させながら、第二アーム部材20bを回動させて、検査部22で底面Bを複数回叩き、底面Bの劣化を判定する。   FIG. 3 shows a method of inspecting the bottom surface B (concrete surface) of a structure which is an object to be inspected, for example, a concrete bridge, using the nondestructive inspection device 10. This inspection method is implemented as follows. First, the first arm member 20a is turned in the vertical direction. Next, the rotor 16 is rotated in a horizontal plane, and the nondestructive inspection device 10 is caused to fly vertically upward, and the nondestructive inspection device 10 is flying while the wheels 42 and 44 (not shown) are in contact with the bottom surface B. Let The auxiliary rotor 28 is always stopped. Then, similar to the inspection method of the wall surface W, the second arm member 20b is rotated while the wheels 42 and 44 are in contact with the bottom surface B, and the bottom surface B is beaten a plurality of times by the inspection unit 22 Determine

図1に示すようなドローン型の非破壊検査装置を用いて、劣化していないコンクリートブロックの壁面を検査部で叩いたときの衝撃力と、検査部であるハンマーユニットのグリップ部を持って、劣化していないコンクリートブロックの壁面をハンマーの打撃面で人手で叩いたときの衝撃力を10回測定した。検査部はコンクリートテスター(日東建設株式会社、CTS−02V4)を使用した。なお、非破壊検査装置を用いた検査では、非破壊検査装置を地上に設置し、車輪をコンクリートブロックの壁面に接触させた状態で検査した。   Using the drone-type nondestructive inspection device as shown in FIG. 1, with the impact force when the wall of the undegraded concrete block is struck by the inspection part, and the grip part of the hammer unit which is the inspection part The impact force when manually striking the wall surface of a non-degraded concrete block with a hammer striking surface was measured 10 times. The inspection unit used a concrete tester (Nitto Construction Co., Ltd., CTS-02V4). In the inspection using the nondestructive inspection device, the nondestructive inspection device was installed on the ground, and the inspection was performed in a state where the wheels were in contact with the wall surface of the concrete block.

人手で叩いたときの表面強度は40.09〜45.40〔N〕で、平均値は42.14〔N〕であった。また、叩いたときに壁面が押されている時間を、壁面が押し戻されている時間で割った数値である表面劣化の指標は、1.16〜1.42で、平均値は1.27であった。なお、この指標は0.85〜1.25が正常値である。一方、非破壊検査装置を用いたときの表面強度は36.97〜49.06〔N〕で、平均値は44.05〔N〕であった。また、表面劣化の指標は、1.09〜1.37で、平均値は1.23であった。以上より、非破壊検査装置を用いたときと、人手で叩いたときでは、表面強度と表面劣化の指標に大きな誤差がなかった。非破壊検査装置を用いたときに、距離保持体によって、被検査体と検査部の距離がほぼ一定に保てたからだと考えられる。   The surface strength when manually struck was 40.09 to 45.40 [N], and the average value was 42.14 [N]. In addition, the index of surface deterioration, which is a value obtained by dividing the time when the wall is pushed when hitting it, by the time when the wall is pushed back, is 1.16 to 1.42, and the average value is 1.27. there were. The index is normally 0.85 to 1.25. On the other hand, the surface strength was 36.97 to 49.06 [N] when using the nondestructive inspection device, and the average value was 44.05 [N]. Moreover, the index of surface deterioration was 1.09 to 1.37, and the average value was 1.23. From the above, there was no large error in the surface strength and the index of surface deterioration between when the nondestructive inspection device was used and when it was struck manually. It is considered that when the nondestructive inspection device is used, the distance holder keeps the distance between the object to be inspected and the inspection part substantially constant.

10 非破壊検査装置
12 基体
14 検査体
16 回転翼
18 距離保持体
20 アーム
20a 第一アーム部材
20b 第二アーム部材
22 検査部
24,26 サーボモータ
28 補助回転翼
40 車軸
42,44 車輪
DESCRIPTION OF REFERENCE NUMERALS 10 nondestructive inspection device 12 base 14 inspection body 16 rotary wing 18 distance holder 20 arm 20a first arm member 20b second arm member 22 inspection unit 24, 26 servo motor 28 auxiliary rotary wing 40 axle 42, 44 wheel

Claims (7)

基体と、
前記基体に接続されたアームと、前記アームに保持され、前記アームの作動によって被検査体を叩いて検査する検査部とを備える検査体と、
前記基体を飛行させる回転翼と、
前記被検査体に接触して、前記基体と前記被検査体の距離を所定値に保つ距離保持体と、
を有する非破壊検査装置。
A substrate,
An inspection body comprising: an arm connected to the base; and an inspection unit held by the arm and striking the object under inspection by the operation of the arm.
A rotary wing for flying the substrate;
A distance holder for keeping the distance between the base and the inspection object at a predetermined value in contact with the inspection object;
Nondestructive inspection device.
請求項1において、
前記アームが、前記基体に回動可能に接続された第一アーム部材と、前記検査部を保持するとともに、前記第一アーム部材に対して回動可能に接続された第二アーム部材とを備える非破壊検査装置。
In claim 1,
The arm includes a first arm member rotatably connected to the base, and a second arm member holding the inspection unit and rotatably connected to the first arm member. Nondestructive inspection device.
請求項1または2において、
前記距離保持体が前記被検査体に接触する少なくとも二つの接触部を備え、
前記二つの接触部の間で前記アームが作動する非破壊検査装置。
In claim 1 or 2,
The distance holding body comprises at least two contact portions contacting the object to be inspected;
Nondestructive inspection device in which said arm operates between said two contact parts.
請求項1または2において、
前記距離保持体が、前記基体に設けられた車軸と、前記車軸の両側に回動自在に設けられた車輪とを備える非破壊検査装置。
In claim 1 or 2,
The nondestructive inspection device, wherein the distance holder includes an axle provided on the base and wheels rotatably provided on both sides of the axle.
請求項1から4のいずれかにおいて、
前記基体を前記被検査体方向に移動させる補助回転翼をさらに有する非破壊検査装置。
In any one of claims 1 to 4,
The nondestructive inspection device which further has an auxiliary rotary wing which moves the base in the direction of the inspection object.
請求項5において、
前記補助回転翼が、停止と所定の回転数での回転の二段階の切り替えで作動する非破壊検査装置。
In claim 5,
The nondestructive inspection device in which the said auxiliary | assistant rotary blade operate | moves by two-step switching of rotation at the stop and predetermined rotation speed.
請求項1から6のいずれかにおいて、
前記検査部が前記被検査体を叩いたときの衝撃力の時間変化に基づいて前記被検査体の劣化を判定する非破壊検査装置。
In any one of claims 1 to 6,
The nondestructive inspection apparatus which determines degradation of the said to-be-tested object based on the time change of the impact force when the said test | inspection part strikes the said to-be-tested object.
JP2017081031A 2017-04-17 2017-04-17 Non-destructive inspection equipment Active JP7090306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081031A JP7090306B2 (en) 2017-04-17 2017-04-17 Non-destructive inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081031A JP7090306B2 (en) 2017-04-17 2017-04-17 Non-destructive inspection equipment

Publications (2)

Publication Number Publication Date
JP2018179819A true JP2018179819A (en) 2018-11-15
JP7090306B2 JP7090306B2 (en) 2022-06-24

Family

ID=64276341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081031A Active JP7090306B2 (en) 2017-04-17 2017-04-17 Non-destructive inspection equipment

Country Status (1)

Country Link
JP (1) JP7090306B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101997674B1 (en) * 2019-01-14 2019-07-09 라온구조안전기술(주) Non-destructive Method and Apparatus for Measuring Strength of Concrete using Drone
KR20200090428A (en) * 2019-01-21 2020-07-29 주식회사 한국건설방재연구원 Detecting attachment for concrete structures using drone
JP2020118622A (en) * 2019-01-28 2020-08-06 株式会社e−セレス Wall surface inspection device
US20200249357A1 (en) * 2019-01-31 2020-08-06 Faro Technologies, Inc. Measurement of three dimensional coordinates using an unmanned aerial drone
JP2021047059A (en) * 2019-09-18 2021-03-25 株式会社サテライトオフィス Drone system and program of drone system
JP2021085860A (en) * 2019-11-30 2021-06-03 独立行政法人国立高等専門学校機構 Method and device for non-destructive inspection of concrete structure
US20210356255A1 (en) * 2020-05-12 2021-11-18 The Boeing Company Measurement of Surface Profiles Using Unmanned Aerial Vehicles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205216A (en) * 2002-12-20 2004-07-22 Hazama Corp Tapping sound inspection device for tunnel covering concrete
JP2010236950A (en) * 2009-03-30 2010-10-21 Chubu Electric Power Co Inc Inspection device for sealed-type power supply/distribution equipment
JP2012168023A (en) * 2011-02-15 2012-09-06 Sato Kogyo Co Ltd Method for diagnosing quality of concrete-based structure
US20150267688A1 (en) * 2012-10-16 2015-09-24 Susanne Krampe Robot for inspecting rotor blades of wind energy installations
WO2016139930A1 (en) * 2015-03-04 2016-09-09 日本電気株式会社 Defect inspection device, defect inspection method, and program
JP2016211878A (en) * 2015-04-30 2016-12-15 新日本非破壊検査株式会社 Structure inspection device using floating robot, and inspection method of structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205216A (en) * 2002-12-20 2004-07-22 Hazama Corp Tapping sound inspection device for tunnel covering concrete
JP2010236950A (en) * 2009-03-30 2010-10-21 Chubu Electric Power Co Inc Inspection device for sealed-type power supply/distribution equipment
JP2012168023A (en) * 2011-02-15 2012-09-06 Sato Kogyo Co Ltd Method for diagnosing quality of concrete-based structure
US20150267688A1 (en) * 2012-10-16 2015-09-24 Susanne Krampe Robot for inspecting rotor blades of wind energy installations
WO2016139930A1 (en) * 2015-03-04 2016-09-09 日本電気株式会社 Defect inspection device, defect inspection method, and program
JP2016211878A (en) * 2015-04-30 2016-12-15 新日本非破壊検査株式会社 Structure inspection device using floating robot, and inspection method of structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101997674B1 (en) * 2019-01-14 2019-07-09 라온구조안전기술(주) Non-destructive Method and Apparatus for Measuring Strength of Concrete using Drone
KR20200090428A (en) * 2019-01-21 2020-07-29 주식회사 한국건설방재연구원 Detecting attachment for concrete structures using drone
KR102170055B1 (en) * 2019-01-21 2020-10-26 주식회사 한국건설방재연구원 Detecting attachment for concrete structures using drone
JP2020118622A (en) * 2019-01-28 2020-08-06 株式会社e−セレス Wall surface inspection device
US20200249357A1 (en) * 2019-01-31 2020-08-06 Faro Technologies, Inc. Measurement of three dimensional coordinates using an unmanned aerial drone
JP2021047059A (en) * 2019-09-18 2021-03-25 株式会社サテライトオフィス Drone system and program of drone system
JP2021085860A (en) * 2019-11-30 2021-06-03 独立行政法人国立高等専門学校機構 Method and device for non-destructive inspection of concrete structure
JP7362068B2 (en) 2019-11-30 2023-10-17 独立行政法人国立高等専門学校機構 Non-destructive testing method and non-destructive testing device for concrete structures
US20210356255A1 (en) * 2020-05-12 2021-11-18 The Boeing Company Measurement of Surface Profiles Using Unmanned Aerial Vehicles
US11555693B2 (en) * 2020-05-12 2023-01-17 The Boeing Company Measurement of surface profiles using unmanned aerial vehicles

Also Published As

Publication number Publication date
JP7090306B2 (en) 2022-06-24

Similar Documents

Publication Publication Date Title
JP2018179819A (en) Nondestructive inspection device
JP6749003B2 (en) Inspection equipment
JP2018128278A (en) Hammer sound inspector and hammer sound system
JPWO2016139929A1 (en) Defect inspection apparatus, defect inspection method and program
TW201806825A (en) Inspection system, control device, control method, and recording medium
CN104237116B (en) system and method for testing tire/road noise
CN108408089A (en) It is arrested for spatial spin target and the ground physical simulating experimental of racemization
KR101806139B1 (en) Performance Testing Device for Multirotor
JP2016166819A (en) Hammering machine
WO2016139930A1 (en) Defect inspection device, defect inspection method, and program
JP6691878B2 (en) Elastic wave measurement system
WO2017208281A1 (en) Wave-detection-type searching system
JP2015219028A (en) Hammering inspection equipment for structure
WO2016139928A1 (en) Defect inspection device, defect inspection method, and program
TW201317557A (en) Testing system and testing method
CN115752514A (en) Autonomous optical navigation verification system for deep space small celestial body
CN116429609A (en) Material hardness detection system and detection process for building construction
JP2020139929A (en) Inspection device and inspection system
CN106644395B (en) A kind of specific impulse direct measuring method for laser ablation micromass culture
CN112857719B (en) Fixed airfoil flutter ground test device and method
JP2021085860A (en) Method and device for non-destructive inspection of concrete structure
CN114778333A (en) Safety helmet detection device
JP6669916B2 (en) Radio-controlled rotary wing aircraft
KR102394322B1 (en) Comprehensive inspection system for facility by wall climbing robot
JP7396576B2 (en) Inspection equipment and analysis equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R150 Certificate of patent or registration of utility model

Ref document number: 7090306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150