JP2018179734A - Displacement measurement method and displacement measurement system - Google Patents

Displacement measurement method and displacement measurement system Download PDF

Info

Publication number
JP2018179734A
JP2018179734A JP2017079210A JP2017079210A JP2018179734A JP 2018179734 A JP2018179734 A JP 2018179734A JP 2017079210 A JP2017079210 A JP 2017079210A JP 2017079210 A JP2017079210 A JP 2017079210A JP 2018179734 A JP2018179734 A JP 2018179734A
Authority
JP
Japan
Prior art keywords
positioning
satellite signal
satellite
displacement
relative positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017079210A
Other languages
Japanese (ja)
Other versions
JP7075572B2 (en
Inventor
範洋 山口
Norihiro Yamaguchi
範洋 山口
喬 横島
Takashi Yokoshima
喬 横島
久保 信明
Nobuaki Kubo
信明 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Tokyo University of Marine Science and Technology NUC
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Tokyo University of Marine Science and Technology NUC
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=64275099&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2018179734(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shimizu Construction Co Ltd, Tokyo University of Marine Science and Technology NUC, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2017079210A priority Critical patent/JP7075572B2/en
Publication of JP2018179734A publication Critical patent/JP2018179734A/en
Priority to JP2022009637A priority patent/JP7405378B2/en
Application granted granted Critical
Publication of JP7075572B2 publication Critical patent/JP7075572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a displacement measurement method and a displacement measurement system which improve accuracy in measuring displacement not only at a top part of a relatively stable object including a structure and the like but also at a side part thereof.SOLUTION: A method for measuring displacement of a relatively stable object including a structure and the like by using a satellite signal receiver for receiving a satellite signal from a plurality of positioning satellites, includes: a relative positioning step of acquiring, by relative positioning, temporal displacement between measurement points that consist of either a satellite signal receiver installed at one point on an outer surface of a relatively stable object including a structure and the like, or a plurality of satellite signal receivers installed at different positions from each other on the outer surface, and a fixed point that consists of a satellite signal receiver which is installed at a position on the outer surface of the relatively stable object including the structure and the like, or at a position other than the outer surface and including the ground. In the relative positioning step, a predetermined positioning satellite to be used in the relative positioning is selected from among the plurality of positioning satellites, and the satellite signal from the selected positioning satellite is used to obtain the displacement from the relative positioning.SELECTED DRAWING: Figure 3

Description

本発明は、衛星測位システムを用いた変位計測方法および変位計測システムに関し、特に構造物等を含めた比較的安定した物体の側面の変位計測のための精度向上技術および精度向上システムに関するものである。   The present invention relates to a displacement measurement method and a displacement measurement system using a satellite positioning system, and more particularly to an accuracy improvement technique and accuracy improvement system for measuring the displacement of the side surface of a relatively stable object including a structure etc. .

従来、衛星測位システムによる構造物の変位等計測に際しては、一般に米国のGPS(Global Positioning System:衛星測位システム)衛星を利用する方法が主流であった。例えば、構造物の周辺地盤の固定点に設置したGPS受信機と、構造物上の観測点に設置したGPS受信機との間の相対測位により、構造物の変位等を計測する方法が知られている(例えば、特許文献1、2を参照)。しかし、米国のGPS衛星の数にも限りがあり、利用に際して以下のような制約や課題がある。   In the past, when measuring displacement and the like of a structure by a satellite positioning system, in general, the method using the GPS (Global Positioning System: satellite positioning system) satellites of the United States has been mainstream. For example, there is known a method of measuring displacement of a structure or the like by relative positioning between a GPS receiver installed at a fixed point around the structure and a GPS receiver installed at an observation point on the structure. (See, for example, Patent Documents 1 and 2). However, the number of GPS satellites in the United States is also limited, and there are the following limitations and problems in use.

(1)測位解析に必要なGPS衛星を捕捉するために衛星測位機器からの仰角を15°以上に保つことが必要である。
(2)そのため、構造物等が過密で上空視野を確保し難い都市部などでは、衛星測位機器の設置場所は構造物等の屋上に限定される。すなわち構造物等の屋上周辺の変位計測しかできない。
(3)しかし屋上にも様々な設備が配置され、衛星測位機器の設置場所は制限される。
(4)仮に屋上に衛星測位機器を設置できたとしても、屋上の他の設備や周辺のビルのマルチパスの影響を受け正確な変位計測を妨げるおそれがある。
(1) In order to capture GPS satellites necessary for positioning analysis, it is necessary to keep the elevation angle from the satellite positioning device at 15 ° or more.
(2) Therefore, in an urban area where structures and the like are congested and it is difficult to secure the sky view, the installation position of the satellite positioning device is limited to the roof of the structures and the like. That is, it is only possible to measure the displacement around the roof of a structure or the like.
(3) However, various facilities are placed on the roof, and the installation location of the satellite positioning device is limited.
(4) Even if satellite positioning equipment can be installed on the roof, it may be affected by other facilities on the roof and multipaths of surrounding buildings, which may hinder accurate displacement measurement.

従来はこうした課題により、構造物等の壁面測位に着目することもなかった。   Conventionally, due to these problems, attention has not been paid to wall positioning of a structure or the like.

一方、GPS衛星を利用した測位技術に関して、本出願人のうち一人は特許文献3に示すような技術を既に提案している。この技術は、簡単かつ確実な方法によってマルチパスの影響を受けた衛星信号を判別し、移動局の測定位置を補正するものである。   On the other hand, with regard to positioning technology using GPS satellites, one of the applicants has already proposed a technology as shown in Patent Document 3. This technique discriminates satellite signals affected by multipath by a simple and reliable method, and corrects the measurement position of the mobile station.

特開2015−197344号公報JP, 2015-197344, A 特開2008−76117号公報JP 2008-76117 A 特許第5232994号公報Patent No. 5232994

ところで現在、米国のGPS衛星のみならず、ロシア、欧州、中国、日本の衛星測位システム(以下、これら全てを総称してGNSS(Global Navigation Satellite System:全球測位衛星システム)と呼ぶ。)が運用されており、衛星測位機器で測位すると30前後のGNSS衛星からの信号を受信可能である。今後各国のGNSS衛星数の増加が見込まれ、さらに日本の準天頂衛星数の増加により、高仰角からの信号の取得も容易となる。衛星数の増加とともに上記の課題は容易に解決できると思われがちであるが、逆に衛星数の増加とともにマルチパス増大という課題も生じることから、その解決策が期待されていた。   By the way, not only GPS satellites in the United States, but also satellite positioning systems in Russia, Europe, China, and Japan (hereinafter, all of them are collectively called GNSS (Global Navigation Satellite System: GNSS)) are operated. When positioning with a satellite positioning device, it can receive signals from around 30 GNSS satellites. The number of GNSS satellites in each country is expected to increase in the future, and the increase in the number of quasi-zenith satellites in Japan will also facilitate the acquisition of signals from high elevation angles. The above problems tend to be easily solved with the increase in the number of satellites, but conversely, the problem of increasing the number of multipaths arises with the increase in the number of satellites, so a solution is expected.

そこで本発明者は、「構造物等を含めた比較的安定した物体等は、構造物等を含めた比較的安定した物体等の周辺で行う各種測位にマルチパスを与える邪魔者と認識されることが多いが、GNSS測位機器を構造物等を含めた比較的安定した物体の壁面に直接設置すると、逆に構造物等を含めた比較的安定した物体等からのマルチパスが減り、構造物等を含めた比較的安定した物体等の変位計測には有効である」という点に着目して、構造物等の屋上のみならず、壁面の変位計測も可能とする以下の本発明に至った。   Therefore, the inventor of the present invention recognizes that “relatively stable objects and the like including structures and the like are considered as obstacles that give multipath to various positioning performed around the relatively stable objects and the like including the structures and the like. In many cases, if the GNSS positioning device is directly installed on the wall of a relatively stable object including a structure etc., the multipath from a relatively stable object etc. including the structure etc. is reduced conversely, the structure Not only on the roof of a structure etc. but also on the wall surface displacement measurement, focusing on the fact that it is effective for measuring the displacement of relatively stable objects etc. including .

本発明は、上記に鑑みてなされたものであって、特に構造物等を含めた比較的安定した物体の、頂部(屋上)のみならず、側面の変位計測のための精度を向上した変位計測方法および変位計測システムを提供することを目的とする。   The present invention has been made in view of the above, and in particular, a displacement measurement that improves the accuracy for measuring the displacement of not only the top (rooftop) but also the side of a relatively stable object including a structure etc. It aims to provide a method and a displacement measurement system.

上記した課題を解決し、目的を達成するために、本発明に係る変位計測方法は、複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得することを特徴とする。
相対測位は一般に固定点の正確な位置を取得した後(既知点)、この既知点と観測点(未知点)で同時に単独測位を行い、共通誤差を相殺して未知点の測位を行う方法である。共通誤差として座標値を利用する場合と、測位衛星の送信電波の波長を利用する場合がある。前者は座標が既知である固定点のGNSS測位機器で観測された座標の誤差を未知点のGNSS測位機器に送り、未知点の測定座標から差し引いて補正し精度を改善させる。後者は干渉測位と呼ばれ、測位の物差しとしてGNSS衛星の送信電波の波長を用いる。以下、測位の物差しとしてGNSS衛星の送信電波の波長を用いた内容で説明する。
In order to solve the above problems and achieve the object, the displacement measurement method according to the present invention is relatively stable including a structure etc. using a satellite signal receiver that receives satellite signals from a plurality of positioning satellites Satellite signal receiver installed at one point on the outer surface of a relatively stable object including a structure etc. or satellite signal reception installed at different positions on the outer surface Progress between the observation point configured by the aircraft and the fixed point configured by the satellite signal receiver installed at a position other than the outer surface of the relatively stable object including the structure etc. or on the ground The relative positioning step of acquiring displacement by relative positioning by relative positioning, the relative positioning step selects a predetermined positioning satellite to be used for relative positioning among a plurality of positioning satellites, and uses satellite signals from the selected positioning satellites And obtaining the relative positioning of the displacement.
Relative positioning generally uses a method of performing single positioning at this known point and observation point (unknown point) simultaneously after acquiring the exact position of the fixed point (known point), offsetting the common error, and positioning the unknown point. is there. The coordinate value may be used as the common error, and the wavelength of the transmission radio wave of the positioning satellite may be used. The former sends the error of the coordinates observed by the GNSS positioning device of the fixed point whose coordinates are known to the GNSS positioning device of the unknown point and subtracts it from the measurement coordinates of the unknown point to correct it and improve the accuracy. The latter is called interference positioning, and uses the wavelength of the transmission radio wave of the GNSS satellite as a measure of positioning. The following description is based on the contents using the wavelength of the transmission radio wave of the GNSS satellite as a measure of positioning.

また、本発明に係る他の変位計測方法は、上述した発明において、固定点と観測点との波長を用いた相対測位ステップと、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出するステップと、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除くステップと、測位用衛星信号のみを用いて観測点の位置を算出するステップと、算出した観測点の位置を前記位置補正用データによって補正するステップを有し、補正した観測点の位置に基づいて前記変位を取得することを特徴とする。   In the displacement measurement method according to the present invention, in the above-described invention, the relative positioning step using the wavelength of the fixed point and the observation point, and the reception intensity of the satellite signal at the fixed point and the observation point are measured. For each satellite signal, compare the reception strength at the fixed point and the reception strength at the observation point, and calculate the carrier phase of the observation point for the satellite signal for which the difference between the reception strength at the fixed point and the reception strength at the observation point is greater than a predetermined threshold When the satellite signal from the positioning satellite can not be received continuously during the calculation of the carrier phase and the step, the satellite signal is detected as a multipath when the calculated carrier phase is equal to or more than a predetermined threshold. Removing the position of the observation point using only the positioning satellite signal, and correcting the calculated position of the observation point using the position correction data. Comprising the step, and acquires the displacement based on the position of the corrected observation point.

また、本発明に係る他の変位計測方法は、上述した発明において、相対測位ステップは、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定するステップと、アンビギュイティを保持するステップと、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位するステップの少なくとも一つを有することを特徴とする。   Further, in another displacement measuring method according to the present invention, in the above-mentioned invention, the relative positioning step determines the ambiguity of the carrier wave phase of the satellite signal based on the position of the fixed point or the observation point; And at least one of the steps of relative positioning based on cycle slip information of the carrier wave phase output from the satellite signal receiver.

また、本発明に係る変位計測システムは、複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物の変位を計測するシステムであって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、相対測位手段は、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得することを特徴とする。   The displacement measurement system according to the present invention is a system that measures displacement of a structure using a satellite signal receiver that receives satellite signals from a plurality of positioning satellites, and is relatively stable including the structure etc. Of a relatively stable object including a satellite signal receiver installed at one point on the outer surface of the object, or a satellite signal receiver installed at different positions on the outer surface, and a structure etc. The relative positioning means includes relative positioning means for obtaining, by relative positioning, displacement over time with a fixed point constituted by a satellite signal receiver installed at a position other than the outer surface including the outer surface or the ground. It is characterized in that a predetermined positioning satellite to be used for relative positioning is selected from a plurality of positioning satellites, and the displacement is obtained by relative positioning using satellite signals from the selected positioning satellite.

また、本発明に係る他の変位計測システムは、上述した発明において、相対測位手段は、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出する手段と、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除く手段と、測位用衛星信号のみを用いて観測点の位置を算出する手段と、算出した観測点の位置を前記位置補正用データによって補正する手段を有し、補正した観測点の位置に基づいて前記変位を取得することを特徴とする。   Further, in another displacement measurement system according to the present invention, in the above-described invention, the relative positioning means measures the reception strength of the satellite signal at the fixed point and the observation point, and receives the reception strength at each fixed point and observes each satellite signal. Means for calculating the carrier wave phase of the observation point for satellite signals in which the reception strength at the fixed point is compared with the reception strength at the fixed point and the difference between the reception strength at the fixed point and the reception strength at the observation point is a predetermined threshold or more; If the satellite signal from can not be received continuously, it is detected as a multipath, and if the calculated carrier phase is equal to or greater than a predetermined threshold, only means for excluding the satellite signal from the positioning satellite signal and the positioning satellite signal Means for calculating the position of the observation point using the device, and means for correcting the calculated position of the observation point with the position correction data, and based on the corrected position of the observation point And acquiring the displacement.

また、本発明に係る他の変位計測システムは、上述した発明において、相対測位手段は、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定する手段と、アンビギュイティを保持する手段と、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位する手段の少なくとも一つを有することを特徴とする。   In another displacement measurement system according to the present invention, in the above-mentioned invention, the relative positioning means determines the ambiguity of the carrier wave phase of the satellite signal based on the position of the fixed point or the observation point; And at least one of the means for relative positioning based on the cycle slip information of the carrier wave phase output from the satellite signal receiver.

本発明に係る変位計測方法によれば、複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得するので、構造物等を含めた比較的安定した物体の外面に設置した観測点変位を精度よく計測することができるという効果を奏する。このため、本発明は、過密した環境に設置されている構造物等を含めた比較的安定した物体の頂部(屋上)のみならず、側部(壁面)の変位・変形等を監視するのに好適である。   According to the displacement measurement method of the present invention, a relatively stable displacement of an object including a structure etc. is measured using a satellite signal receiver that receives satellite signals from a plurality of positioning satellites, A satellite signal receiver installed at one point on the outer surface of a relatively stable object including a structure or a satellite signal receiver installed at different positions on the outer surface, and a structure Relative positioning to obtain displacement over time with a fixed point composed of a satellite signal receiver installed at a position other than the outer surface of a relatively stable object including the ground or on the ground, by relative positioning The step is provided, and the relative positioning step selects a predetermined positioning satellite to be used for relative positioning among a plurality of positioning satellites, and acquires the displacement by relative positioning using satellite signals from the selected positioning satellites. An effect that a relatively stable installed observation point displaced in the outer surface of the object, including the structure and the like can be measured accurately. For this reason, the present invention is intended to monitor not only the top (roof) of a relatively stable object including a structure or the like installed in a crowded environment but also displacement, deformation, etc. of the side (wall). It is suitable.

また、本発明に係る他の変位計測方法によれば、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出するステップと、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除くステップと、測位用衛星信号のみを用いて観測点の位置を算出するステップと、算出した観測点の位置を前記位置補正用データによって補正するステップを有し、補正した観測点の位置に基づいて前記変位を取得するので、簡単かつ確実な方法によってマルチパスの影響を受けた衛星信号を判別して、観測点の位置を補正することにより、高精度な変位計測を実現することができるという効果を奏する。   Further, according to another displacement measurement method according to the present invention, the reception strengths of satellite signals at fixed points and observation points are measured, and the reception strengths at fixed points and reception strengths at observation points are compared for each satellite signal, Calculating the carrier wave phase of the observation point for the satellite signal for which the difference between the reception strength at the fixed point and the reception strength at the observation point is equal to or greater than a predetermined threshold, and continuously calculating satellite signals from positioning satellites during the calculation of the carrier phase. If it can not be received, it is detected as a multipath, and if the calculated carrier phase is above a predetermined threshold, the satellite signal is excluded from the positioning satellite signal and the position of the observation point is calculated using only the positioning satellite signal. And correcting the calculated position of the observation point using the position correction data, and acquiring the displacement based on the corrected position of the observation point In, to determine the satellite signal affected by a multipath by simple and reliable methods, by correcting the position of the observation point, there is an effect that it is possible to realize a highly accurate displacement measurement.

また、本発明に係る他の変位計測方法によれば、相対測位ステップは、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定するステップと、アンビギュイティを保持するステップと、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位するステップの少なくとも一つを有するので、高精度な変位計測を実現することができるという効果を奏する。   Further, according to another displacement measurement method according to the present invention, the relative positioning step determines the carrier phase ambiguity of the satellite signal based on the position of the fixed point or the observation point, and holds the ambiguity. Since at least one of the step of performing and the relative positioning based on the cycle slip information of the carrier wave phase output from the satellite signal receiver is included, it is possible to realize highly accurate displacement measurement.

また、本発明に係る変位計測システムによれば、複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物の変位を計測するシステムであって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、相対測位手段は、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得するので、構造物等を含めた比較的安定した物体に設置した観測点のみで構造物の外面の変位を精度よく計測することができるという効果を奏する。このため、本発明は、過密した環境に設置されている構造物等を含めた比較的安定した物体の頂部(屋上)のみならず、側部(壁面)の変位・変形等を監視するのに好適である。   Further, according to the displacement measurement system according to the present invention, it is a system for measuring displacement of a structure using a satellite signal receiver that receives satellite signals from a plurality of positioning satellites. Signal receiver including a satellite signal receiver installed at one point on the outer surface of a dynamically stable object, or satellite signal receivers installed at different positions on the outer surface, and relatively stable including structures etc. Relative positioning means comprising relative positioning means for acquiring, by relative positioning, displacement with time with a fixed point constituted by a satellite signal receiver installed at a position other than the outer surface including the outer surface of the object or the ground. Selects a predetermined positioning satellite to be used for relative positioning among a plurality of positioning satellites, and acquires the displacement by relative positioning using satellite signals from the selected positioning satellites, so that a comparison including a structure etc. is made. An effect that a displacement of the outer surface of the stable observation point only structure installed in an object can be measured accurately. For this reason, the present invention is intended to monitor not only the top (roof) of a relatively stable object including a structure or the like installed in a crowded environment but also displacement, deformation, etc. of the side (wall). It is suitable.

また、本発明に係る他の変位計測システムによれば、相対測位手段は、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出する手段と、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除く手段と、測位用衛星信号のみを用いて観測点の位置を算出する手段と、算出した観測点の位置を前記位置補正用データによって補正する手段により補正した観測点の位置に基づいて前記変位を取得するので、簡単かつ確実な方法によってマルチパスの影響を受けた衛星信号を判別して、観測点の位置を補正することにより、高精度な変位計測を実現することができるという効果を奏する。   Further, according to another displacement measurement system according to the present invention, the relative positioning means measures the reception intensity of the satellite signal at the fixed point and the observation point, and receives the reception intensity at the fixed point and the reception at the observation point for each satellite signal. A means for calculating the carrier phase of the observation point for satellite signals whose strengths are compared and the difference between the reception strength at the fixed point and the reception strength at the observation point is equal to or greater than a predetermined threshold; If the signal can not be received continuously, it is detected as a multipath, and if the calculated carrier phase is equal to or higher than a predetermined threshold, observation is performed using only the means for excluding satellite signals from the satellite signals for positioning and the satellite signals for positioning. The displacement is obtained based on the position of the observation point corrected by the means for calculating the position of the point and the means for correcting the calculated position of the observation point using the position correction data. Since, to determine the satellite signal affected by a multipath by simple and reliable methods, by correcting the position of the observation point, there is an effect that it is possible to realize a highly accurate displacement measurement.

また、本発明に係る他の変位計測システムによれば、相対測位手段は、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定する手段と、アンビギュイティを保持する手段と、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位する手段の少なくとも一つを有するので、高精度な変位計測を実現することができるという効果を奏する。   Further, according to another displacement measurement system according to the present invention, the relative positioning means holds means for determining the ambiguity of the carrier wave phase of the satellite signal based on the position of the fixed point or the observation point, and holds the ambiguity. And at least one of the means for performing relative positioning based on the cycle slip information of the carrier wave phase output from the satellite signal receiver, so that it is possible to realize highly accurate displacement measurement.

図1は、本発明に係る変位計測方法および変位計測システムの実施の形態を示す概略状況図である。FIG. 1 is a schematic situation view showing an embodiment of a displacement measuring method and a displacement measuring system according to the present invention. 図2は、本発明に係る変位計測システムの実施の形態を示す概略構成図である。FIG. 2 is a schematic configuration view showing an embodiment of a displacement measurement system according to the present invention. 図3は、本発明に係る変位計測方法の実施の形態を示す概略フローチャート図である。FIG. 3 is a schematic flowchart showing an embodiment of a displacement measuring method according to the present invention. 図4は、魚眼カメラで見た上空視野および測位衛星の一例を示す図である。FIG. 4 is a view showing an example of an aerial view and a positioning satellite as viewed by a fisheye camera.

上述したように、本発明者は、「構造物等は、構造物等の周辺で行う各種測位にマルチパスを与える邪魔者と認識されることが多いが、GNSS測位機器を、構造物等を含めた比較的安定した物体の壁面に直接設置すると、逆に構造物等を含めた比較的安定した物体からのマルチパスが減り、構造物等を含めた比較的安定した物体の変位計測には有効である」という点に着目して、構造物等を含めた比較的安定した物体の屋上のみならず、壁面の変位計測も可能とする本発明に至った。なお、本発明は、単に構造物等を含めた比較的安定した物体の壁面測位のみならず、構造物等を含めた比較的安定した物体の屋上であっても衛星測位機器の設置場所周辺にマルチパスを生じさせる障害物等がある場合の測位などにも適用可能である。   As described above, the present inventor often says that “structures and the like are often found to be obstacles that give multipath to various positioning performed around structures and the like. When installed directly on the wall surface of a relatively stable object including, on the contrary, multipass from a relatively stable object including a structure etc. is reduced, and for displacement measurement of a relatively stable object including a structure etc Focusing on the point of "effective", the present invention has been made possible to measure not only the roof of a relatively stable object including a structure etc. but also displacement measurement of a wall surface. In addition, the present invention is not limited to the wall surface positioning of a relatively stable object including merely a structure etc., and also around the installation location of the satellite positioning device even on the roof of a relatively stable object including a structure etc The present invention is also applicable to positioning in the case where there is an obstacle or the like that causes multipath.

以下に、本発明に係る変位計測方法および変位計測システムの実施の形態を図面に基づいて詳細に説明する。なお、以下の説明では、変位を計測・監視する対象の構造物として都市部の過密した環境に設置された中小マンションを、衛星信号受信機としてGNSS測位機器を用いた相対測位を例に説明するが、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a displacement measurement method and a displacement measurement system according to the present invention will be described in detail based on the drawings. In the following description, a relative positioning using a GNSS positioning device as a satellite signal receiver will be described as an example of a small and medium-sized apartment set up in an overcrowded environment of an urban area as a target structure for measuring and monitoring displacement. However, the present invention is not limited by this embodiment.

本発明の実施の形態に係る変位計測方法は、複数の測位衛星からの衛星信号を受信するGNSS測位機器(衛星信号受信機)を用いて構造物の変位を計測する方法であって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得するものである。ここでは、相対測位の中で最も精度が良い搬送波を用いた干渉測位を用いた方法で説明する。   A displacement measurement method according to an embodiment of the present invention is a method of measuring the displacement of a structure using a GNSS positioning device (satellite signal receiver) that receives satellite signals from a plurality of positioning satellites. Satellite signal receivers installed at one point on the outer surface of a relatively stable object including a satellite, or satellite signal receivers installed at different positions on the outer surface, and structures, etc. A relative positioning step of acquiring, by relative positioning, displacement over time with a fixed point constituted by a satellite signal receiver installed at a position other than the outer surface including the outer surface or the ground of a relatively stable object The relative positioning step selects a predetermined positioning satellite to be used for relative positioning among a plurality of positioning satellites, and acquires the displacement by relative positioning using a satellite signal from the selected positioning satellite. That. Here, a method using interference positioning using a carrier with the highest accuracy among relative positioning will be described.

より具体的には、GNSS測位機器の設置初期に固定点の座標を決定した後、固定点、観測点全てのGNSS測位機器で同時に観測をして、衛星からの電波到達の差(位相差)を解析し固定点と観測点間の距離を求める。例えばGNSS測位機器を5つ設置する場合には、固定点と他の観測点を1組とカウントしたとき、5組の座標変化や基線長の変化を取得することで、構造物のどの部分に傾斜や沈下が生じているか等を把握できる。   More specifically, after determining the coordinates of the fixed point at the initial stage of installation of the GNSS positioning device, the GNSS positioning device at all the fixed points and observation points observes at the same time, and the difference in radio wave arrival from the satellite (phase difference) Analyze the distance between fixed point and observation point. For example, in the case of installing five GNSS positioning devices, when counting fixed points and other observation points as one set, by acquiring five sets of coordinate changes and changes in base length, it is possible to select any part of the structure. It can be grasped whether inclination or sinking has occurred.

次に、GNSS測位機器(観測点)を5つ設置した場合の変位計測システムを例にとり、初期座標設定から観測までの流れを説明する。   Next, the flow from initial coordinate setting to observation will be described by taking a displacement measurement system in which five GNSS positioning devices (observation points) are installed as an example.

図1に示すように、中小マンションなどの構造物1の外壁面2の互いに異なる位置に、GNSS衛星からの衛星信号を受信するGNSS測位機器を5台設置し、観測点とし、別の構造物4の上にGNSS測位機器を1台設置し固定点Fとして干渉測位を行う。図1の例では、道路に面する外壁面2の上下左右の四隅と中央の合計5か所にGNSS測位機器A〜Eを設置した場合を示しているが、設置位置、設置数についてはこれに限るものではなく同一構造物につき1点または互いに異なる複数点であればいかなる位置、数であっても構わない。固定点は外壁面2以外に設定してもよく、例えば構造物1の周辺地盤上や他の構造物3の屋上などに設置してもよい。   As shown in FIG. 1, five GNSS positioning devices for receiving satellite signals from GNSS satellites are installed at different positions on the outer wall 2 of the structure 1 such as a small and medium-sized apartment, and are used as observation points. One GNSS positioning device is installed on 4 and interference positioning is performed as a fixed point F. Although the example of FIG. 1 shows the case where GNSS positioning devices A to E are installed at a total of five places of four corners in the top, bottom, left, and right of the outer wall 2 facing the road and the center, The position is not limited to the above, and any position or number may be used as long as the same structure has one point or a plurality of points different from each other. The fixed point may be set on a surface other than the outer wall surface 2 and may be installed on the ground around the structure 1 or on the roof of another structure 3, for example.

観測点、固定点に設置するGNSS測位機器としては、高性能な2周波GNSS機器、格安な1周波GNSS機器のどちらでもよい。なお、GNSS測位機器A〜Eは、図示しない通信装置を通じて遠隔地の計測室のコンピュータに有線または無線通信回線を介して接続しているものとする。   As a GNSS positioning device installed at the observation point or fixed point, either a high performance dual frequency GNSS device or a cheap single frequency GNSS device may be used. The GNSS positioning devices A to E are connected to a computer in a measurement room at a remote location through a communication device (not shown) via a wired or wireless communication line.

図2は、本発明に係る変位計測システム10の概略構成図である。この図に示すように、この変位計測システム10は、計測室に設けられるコンピュータ12を有している。コンピュータ12は、相対測位手段14、報知手段16、警報手段18、記憶手段20、これらを制御する制御手段22を備えている。記憶手段20はGNSS測位機器A〜Eから得られた計測データをリアルタイムに記憶・収集する。記憶手段20に記憶・収集されたデータは制御手段22を通じて適宜読み出され、相対測位手段14によって処理されるようになっている。相対測位手段14はGNSS測位機器A〜Eどうしの間の時間経過に伴う変位・変形情報を相対測位により取得するものであり、各種解析ソフトウェア、演算手段などで構成される。なお、このコンピュータ12はインターネットに接続している。このため、例えばユーザの要求に応じて、報知手段16の機能によりインターネットを経由して構造物の管理関係者が有するユーザ端末装置(例えば、パソコンや携帯電話端末など)に取得した構造物の変位・変形情報を配信可能である。また、警報手段18は、所定の閾値以上の変位が取得された場合に、管理室のコンピュータ12や上記のユーザ端末装置を通じてアラーム音などの警報を発する処理を行う。   FIG. 2 is a schematic configuration diagram of a displacement measurement system 10 according to the present invention. As shown in this figure, this displacement measurement system 10 has a computer 12 provided in a measurement room. The computer 12 is provided with a relative positioning unit 14, a notification unit 16, an alarm unit 18, a storage unit 20, and a control unit 22 that controls these. The storage unit 20 stores and collects measurement data obtained from the GNSS positioning devices A to E in real time. The data stored and collected in the storage unit 20 is appropriately read through the control unit 22 and processed by the relative positioning unit 14. The relative positioning means 14 acquires displacement / deformation information associated with the passage of time between the GNSS positioning devices A to E by relative positioning, and is constituted by various analysis software, calculation means, and the like. The computer 12 is connected to the Internet. Therefore, for example, in response to the user's request, displacement of the structure acquired by the user of the person in charge of management of the structure (for example, a personal computer or a mobile telephone terminal) via the Internet by the function of the notification means 16 -It is possible to deliver deformation information. Further, the alarm means 18 performs processing of emitting an alarm such as an alarm sound through the computer 12 of the control room or the above-mentioned user terminal device when a displacement equal to or more than a predetermined threshold is acquired.

図3に示すように、まず、5つの観測点にGNSS測位機器A〜Eを設置する(ステップS1)。次に構造物4に設定した固定点Fの初期座標を数時間から数日間の単独測位や周辺の電子基準点とのスタティック測位等にて決定する(ステップS2)。   As shown in FIG. 3, first, GNSS positioning devices A to E are installed at five observation points (step S1). Next, initial coordinates of the fixed point F set in the structure 4 are determined by single positioning for several hours to several days, static positioning with an electronic reference point in the periphery, or the like (step S2).

次に固定点と観測点で同時に観測を開始し衛星からの電波到達の差(位相差)を解析し、固定点と観測点の距離を求める(ステップS3)。以上の初期座標の設定から干渉測位は、計測室のコンピュータ12に備わる図示しない解析ソフトウェアや干渉測位手段14が行うことができる。本実施の形態では、相対測位としてリアルタイムキネマティック(RTK)測位を利用する。その際、後述のアルゴリズムを適用し、構造物1の外壁面2に関して適切な座標・基線長解を得るものとする。   Next, observation is started simultaneously at the fixed point and the observation point, and the difference (phase difference) of radio wave arrival from the satellite is analyzed, and the distance between the fixed point and the observation point is determined (step S3). From the above setting of the initial coordinates, interference positioning can be performed by analysis software (not shown) provided in the computer 12 of the measurement room and the interference positioning means 14. In the present embodiment, real time kinematic (RTK) positioning is used as relative positioning. At that time, an algorithm described later is applied to obtain an appropriate coordinate / baseline long solution with respect to the outer wall surface 2 of the structure 1.

異常値を含めた観測結果としての変位・変形情報は、報知手段16の機能により計測室のコンピュータ12やユーザ端末装置の画面などに報知される(ステップS4)。ここで、取得された異常値があらかじめ定めた所定の閾値以上である場合には、警報手段18は計測室のコンピュータ12やユーザ端末装置を通じてアラーム音などの警報を発する。これにより管理者や管理関係者などのユーザは、閾値以上の変位が生じたことを即座に把握することができる。   The displacement / deformation information as the observation result including the abnormal value is notified to the computer 12 of the measurement room or the screen of the user terminal device by the function of the notification means 16 (step S4). Here, when the acquired abnormal value is equal to or greater than a predetermined threshold value, the alarm unit 18 issues an alarm such as an alarm sound through the computer 12 of the measurement room or the user terminal device. As a result, the user such as a manager or a person in charge of management can immediately grasp that a displacement equal to or greater than the threshold has occurred.

なお、上記の実施の形態において、コンピュータ12は観測点(固定点併用)の測位情報をリアルタイムで取得でき、相対測位手段14による解析もリアルタイムで可能である。また、報知手段16は、例えばユーザの要求に応じて、例えば所定時間毎(例えば1日(24時間)毎)の解析結果(観測結果)もユーザに報知することもできる。したがって、観測点を5つ設けた場合に必要となる解析時間も基本はリアルタイムである。また、一般に構造物はあまり大きく変位しないため、大地震時等を除き、測位情報を数時間平均または1日平均した測位平均値で比較するのが通例である。   In the above embodiment, the computer 12 can acquire the positioning information of the observation point (in combination with the fixed point) in real time, and the analysis by the relative positioning means 14 is also possible in real time. Further, the notification unit 16 can also notify the user of, for example, analysis results (observation results) every predetermined time (for example, every one day (24 hours)), for example, in response to the user's request. Therefore, the analysis time required when five observation points are provided is also based on real time. Also, since structures generally do not displace so much, it is customary to compare positioning information with positioning average values averaged over several hours or daily, except during large earthquakes and the like.

本実施の形態によれば、例えば、都市部など過密な環境下に設置された学校等の公共施設、施工者のいなくなった中小マンション等の杭や構造物の変形・変位、斜面、ダム傾斜部などを監視することができる。公共施設は一般に避難場所として利用されるが、大地震後の余震等が継続する中で当該施設が安全か否かの確認を行う際にも本発明を利用することができる。   According to the present embodiment, for example, public facilities such as schools installed in a congested environment such as urban areas, deformation / displacement of piles and structures such as small and medium-sized condominiums without builders, slopes, dam inclination Departments can be monitored. Although public facilities are generally used as evacuation sites, the present invention can also be used when confirming whether the facilities are safe or not while the aftershocks and the like after a large earthquake continue.

<アルゴリズム>
次に上記のRTK測位(相対測位)で使用するアルゴリズムの機能について説明する。
<Algorithm>
Next, functions of an algorithm used in the above RTK positioning (relative positioning) will be described.

a)GNSS衛星の信号を取捨選択する機能
GNSS測位機器A〜Eは上空にあるGNSS衛星からの信号を受信する。マルチパスとならなければ、各GNSS衛星からGNSS測位機器A〜Eに届くべき信号レベルが決まっているため、解析に利用するGNSS衛星を選択する機能を持たせる。なお、図4においてC01、G21、J01等の符号は衛星番号を示している。解析に利用するGNSS衛星をさらに厳密に選択する機能を持たせる方法としては、例えば上記の特許文献3に記載の方法を用いることができる。
a) Function of selecting signals of GNSS satellites GNSS positioning devices A to E receive signals from GNSS satellites in the sky. If it does not become multi-pass, the signal level to be reached from each GNSS satellite to the GNSS positioning devices A to E is decided, so that the function to select the GNSS satellite to be used for analysis is provided. In FIG. 4, reference numerals such as C01, G21, J01, etc indicate satellite numbers. For example, the method described in Patent Document 3 described above can be used as a method of providing the function of selecting the GNSS satellites used for analysis more strictly.

この特許文献3に記載の方法を用いる場合には、例えば、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出する。ここで、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除く。測位用衛星信号のみを用いて観測点の位置を算出し、算出した観測点の位置を上記の位置補正用データによって補正する。補正した観測点の位置に基づいて構造物1の外壁面2の変位・変形を観測する。   When using the method described in Patent Document 3, for example, the reception strengths of satellite signals at fixed points and observation points are measured, and the reception strengths at fixed points and reception strengths at observation points are compared for each satellite signal. The carrier phase of the observation point is calculated for a satellite signal in which the difference between the reception strength at the fixed point and the reception strength at the observation point is equal to or greater than a predetermined threshold. Here, if the satellite signal from the positioning satellite can not be received continuously during calculation of the carrier wave phase, it is detected as a multipath, and if the calculated carrier wave phase is equal to or more than a predetermined threshold, the satellite signal is used as a satellite signal for positioning. Excluded from The position of the observation point is calculated using only the positioning satellite signal, and the calculated position of the observation point is corrected by the position correction data. The displacement and deformation of the outer wall 2 of the structure 1 are observed based on the corrected position of the observation point.

ここで、搬送波位相とは、GNSS測位機器と衛星間の相対速度すなわち視線速度である。搬送波位相は、衛星信号のドップラー・シフトを測定することで容易に計算することができる。マルチパスの影響を受けた場合、電波の入射方向も変化する。電波の入射方向の変化により、衛星の視線方向の速度も大きく変化する。すなわち、マルチパスが生じたときは、衛星信号の受信強度が急激に変化するのと同時に、搬送波位相も大きく変化する。そこで、固定点に比して観測点で受信強度が大きく変化した衛星信号について、さらに搬送波位相を計算し、搬送波位相も大きく変化した衛星信号を、マルチパスの影響を受けた衛星信号として確実に判別することが可能となる。   Here, the carrier phase is the relative velocity between the GNSS positioning device and the satellite, ie, the gaze velocity. The carrier phase can be easily calculated by measuring the Doppler shift of the satellite signal. When it is affected by multipath, the incident direction of the radio wave also changes. Due to the change in the incident direction of the radio wave, the velocity in the sight line direction of the satellite also changes significantly. That is, when multipath occurs, the carrier phase also changes significantly at the same time as the reception strength of the satellite signal changes rapidly. Therefore, the carrier wave phase is further calculated for the satellite signal whose reception intensity has largely changed at the observation point compared to the fixed point, and the satellite signal whose carrier phase has also largely change is surely used as the satellite signal affected by multipath. It becomes possible to distinguish.

ここで、上記の特許文献3に記載の方法に以下のb)〜d)の3つの機能を追加することによって、構造物1の外壁面2の高精度な変位計測を実現させてもよい。   Here, high-precision displacement measurement of the outer wall surface 2 of the structure 1 may be realized by adding the following three functions b) to d) to the method described in Patent Document 3 described above.

b)RTKの要となるアンビギュイティを高い信頼度で決定する機能
構造物1の外壁面2の測位は、1日またはもっと長い期間(1年)で数cm等のずれを検知することが主目的であり、あらかじめアンビギュイティの候補となる位置を事前に入力する機能を追加することで、継続したFIX解が得られる。
b) A function to determine the ambiguity that is the key of RTK with high reliability The positioning of the outer wall 2 of the structure 1 can detect deviations of several cm etc. in one day or longer period (one year) This is the main purpose, and by adding a function to input in advance positions that are candidates for ambiguity in advance, a continuous FIX solution can be obtained.

換言すると、構造物1の外壁面2のGNSS測位機器A〜Eの設置位置についてはあらかじめ正しい精密位置がわかっているため、搬送波位相のアンビギュイティを決める際の初期値をその値に設定する。これは既存のソフトウェアでは対応していない。初期値を正しく入力すると、搬送波位相測定値が正しく出力される限り、正しいFIX解を得ることができ、精度も1cm程度となる。逆にミスFIX解(誤った搬送波位相のアンビギュイティ)の削減、除外も可能となる。   In other words, for the installation positions of the GNSS positioning devices A to E on the outer wall 2 of the structure 1, since the correct precise position is known in advance, the initial value when determining the carrier phase ambiguity is set to that value. . This is not supported by existing software. If the initial value is correctly input, as long as the carrier phase measurement value is correctly output, the correct FIX solution can be obtained, and the accuracy is about 1 cm. On the contrary, it is also possible to reduce or eliminate the miss FIX solution (error carrier phase ambiguity).

この機能を新たに取り入れることで、従来のRTKの汎用ソフトウェアと比較して格段に利便性(例えば24時間のRTK測位で何%の時間、RTKが可能であるかを示すもの)が向上することを本発明者は確認済みである。   By newly incorporating this function, the convenience (for example, the one showing the percentage of time that RTK can be performed by 24-hour RTK positioning) is significantly improved compared to the conventional RTK general-purpose software. The present inventor has been confirmed.

ここで、RTK測位(相対測位)における搬送波はL1帯で波長19cm、L2帯で波長24cmの無変調で無限に続くサイン波であるため、GNSS測位機器で信号を受信し始めた時の位相の整数部分(整数値バイアス)はわからない。このため、通常の相対測位では何らかの方法でこの整数値バイアスを解く必要がある。   Here, since the carrier wave in RTK positioning (relative positioning) is an unmodulated, infinitely continuous sine wave with a wavelength of 19 cm and a wavelength of 24 cm in L1 band and L2 band, the phase when the GNSS positioning device starts to receive the signal The integer part (integer value bias) is not known. For this reason, it is necessary to solve this integer bias in some way in normal relative positioning.

なお、上記の方法の一般的なRTK測位と異なる点は以下のとおりである。すなわち通常のRTK測位の場合、固定点の位置情報を入力した後に、測位のモノサシとしてGNSS衛星の送信電波を用い干渉測位解析を行うが、上記の方法はアルゴリズム中に設定する新たな方法であり、従来のRTK測位とは異なる。   The difference between the above method and the general RTK positioning is as follows. That is, in the case of normal RTK positioning, after the position information of the fixed point is input, interference positioning analysis is performed using transmission radio waves of GNSS satellites as a positioning measure, but the above method is a new method set in the algorithm , Unlike conventional RTK positioning.

c)アンビギュイティを保持する機能
アンビギュイティ保持とは、サイクルスリップ等のない衛星については、いったん正しいアンビギュイティを求めると、理論上その値を保持してもRTKの測位は継続できる。アンビギュイティ保持とはその特徴を利用したものである。この方法の特徴は、従来の方法ではアンビギュイティ保持が途切れてしまうケースにおいても、その途切れを可能な限りなくすところにある。1つの具体例として、アンビギュイティ決定には、主衛星と従衛星による二重位相差が必須である。その主衛星が変更されるとアンビギュイティ保持はできなくなる。このような事象にも対応できるよう、あらかじめ品質のよい主衛星を選択することと、主衛星が変更されても瞬時に別の主衛星でアンビギュイティを保持できる能力を持つ機能である。これも既存のソフトウェアでは対応していない。
c) Function of holding ambiguity With ambiguity holding, for a satellite without cycle slip etc., once the correct ambiguity is determined, RTK positioning can continue theoretically even if the value is held. Ambiguity retention uses that feature. The feature of this method is that, even in the case where ambiguity retention is interrupted in the conventional method, such interruption is eliminated as much as possible. As one specific example, the ambiguity determination requires a double phase difference between the main satellite and the secondary satellite. Ambiguity can not be maintained if the main satellite is changed. In order to cope with such an event, the function is to select in advance a high quality main satellite and to have the ability to hold an ambiguity with another main satellite instantly even if the main satellite is changed. This is also not supported by existing software.

d)GNSS測位機器が出力する搬送波位相のサイクルスリップ情報等を利用する機能
例えばu−blox社製の衛星信号受信機には、出力情報に搬送波位相が信頼できるか信頼できないかのIndicatorが付加されている。そこで本機能では、GNSS測位機器による出力情報から、こうした信頼できる情報のみを選択して解析する。このような機能も既存のソフトウェアでは対応していない。
d) Function to use cycle slip information etc. of the carrier phase output by the GNSS positioning device For example, in a satellite signal receiver made by u-blox, an indicator is added to the output information as to whether the carrier phase is reliable or unreliable. ing. Therefore, this function selects and analyzes only such reliable information from the output information from the GNSS positioning device. Such functions are not supported by existing software.

ここで、サイクルスリップについて説明する。衛星からの電波が障害物で遮断されると位相測定が中断する。そのため、その間の整数部の繰り上がり、繰り下がりが分からなくなる。この中断前後で位相の整数部分に整数部だけの不確定が生じる。これをサイクルスリップという。この際ベースラインの処理時に整数値のあいまいさを再度推定し直す必要がある。   Here, the cycle slip will be described. The phase measurement is interrupted when the radio wave from the satellite is blocked by an obstacle. Therefore, it is impossible to know the carry-over and carry-down of the integer part between them. Before and after this interruption, the integer part of the phase has an uncertainty of only the integer part. This is called cycle slip. At this time, it is necessary to re-estimate the ambiguity of integer values at the time of baseline processing.

このように、上記の特許文献3に記載の方法に対して上記のb)〜d)の3つの機能を組み合わせることによって、より高精度に変位計測することが可能となる。   As described above, by combining the three functions b) to d) with the method described in Patent Document 3 described above, displacement measurement can be performed with higher accuracy.

以上説明したように、本発明に係る変位計測方法によれば、複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得するので、構造物等を含めた比較的安定した物体の外面に設置した観測点のみで構造物等を含めた比較的安定した物体の外面の変位を精度よく計測することができる。このため、本発明は、過密した環境に設置されている構造物等を含めた比較的安定した物体の頂部(屋上)のみならず、側部(壁面)の変位・変形等を監視するのに好適である。   As described above, according to the displacement measurement method according to the present invention, a relatively stable displacement of an object including a structure or the like is measured using a satellite signal receiver that receives satellite signals from a plurality of positioning satellites. Satellite signal receivers installed at one point on the outer surface of a relatively stable object including a structure etc., or satellite signal receivers installed at a plurality of different positions on the outer surface. Relative displacement over time between a point and a fixed point constructed by a satellite signal receiver installed at a position other than the outer surface of a relatively stable object including a structure etc. or on the ground A relative positioning step for obtaining by positioning is provided, wherein the relative positioning step selects a predetermined positioning satellite to be used for relative positioning among a plurality of positioning satellites, and relatively measures the displacement using a satellite signal from the selected positioning satellite Since acquiring it makes it possible to measure the displacement of the outer surface of relatively stable objects including structures such as only observation point installed on the outer surface of relatively stable objects including structures like accurately. For this reason, the present invention is intended to monitor not only the top (roof) of a relatively stable object including a structure or the like installed in a crowded environment but also displacement, deformation, etc. of the side (wall). It is suitable.

また、本発明に係る他の変位計測方法によれば、相対測位ステップは、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出するステップと、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除くステップと、測位用衛星信号のみを用いて観測点の位置を算出するステップと、算出した観測点の位置を前記位置補正用データによって補正するステップを有し、補正した観測点の位置に基づいて前記変位を取得するので、簡単かつ確実な方法によってマルチパスの影響を受けた衛星信号を判別して、観測点の位置を補正することにより、高精度な変位計測を実現することができる。   Further, according to another displacement measurement method according to the present invention, the relative positioning step measures the reception intensity of the satellite signal at the fixed point and the observation point, and receives the reception intensity at the fixed point and the reception at the observation point for each satellite signal. Calculating the carrier wave phase of the observation point for satellite signals whose strengths are compared and the difference between the reception strength at the fixed point and the reception strength at the observation point is equal to or greater than a predetermined threshold; When the signal can not be received continuously, it is detected as a multipath, and when the calculated carrier phase is equal to or higher than a predetermined threshold, the satellite signal is excluded from the positioning satellite signal and observation is performed using only the positioning satellite signal. Calculating the position of the point and correcting the calculated position of the observation point using the position correction data, and based on the corrected position of the observation point Since acquiring the displacement, to determine the satellite signal affected by a multipath by simple and reliable methods, by correcting the position of the observation point, it is possible to realize a highly accurate displacement measurement.

また、本発明に係る他の変位計測方法によれば、相対測位ステップは、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定するステップと、アンビギュイティを保持するステップと、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位するステップの少なくとも一つを有するので、高精度な変位計測を実現することができる。   Further, according to another displacement measurement method according to the present invention, the relative positioning step determines the carrier phase ambiguity of the satellite signal based on the position of the fixed point or the observation point, and holds the ambiguity. Since it has at least one of the step of performing and relative positioning based on the cycle slip information of the carrier wave phase which a satellite signal receiver outputs, highly accurate displacement measurement is realizable.

また、本発明に係る変位計測システムによれば、複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測するシステムであって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、相対測位手段は、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得するので、構造物等を含めた比較的安定した物体の外面に設置した観測点のみで構造物等を含めた比較的安定した物体の外面の変位を精度よく計測することができる。このため、本発明は、過密した環境に設置されている構造物等を含めた比較的安定した物体の頂部(屋上)のみならず、側部(壁面)の変位・変形等を監視するのに好適である。   Further, according to the displacement measurement system according to the present invention, it is a system for measuring relatively stable displacement of an object including a structure etc. using a satellite signal receiver that receives satellite signals from a plurality of positioning satellites. A satellite signal receiver installed at one point on the outer surface of a relatively stable object including a structure or a satellite signal receiver installed at a plurality of different positions on the outer surface, and a structure To obtain the displacement with the passage of time with a fixed point composed of a satellite signal receiver installed at a position other than the outer surface of the relatively stable object or ground including the object etc. by relative positioning A relative positioning unit is provided, and the relative positioning unit selects a predetermined positioning satellite to be used for relative positioning among a plurality of positioning satellites, and acquires the displacement by relative positioning using a satellite signal from the selected positioning satellite. Since, it is possible to measure the displacement of the outer surface of relatively stable objects including structures such as only observation point installed on the outer surface of relatively stable objects including structures like accurately. For this reason, the present invention is intended to monitor not only the top (roof) of a relatively stable object including a structure or the like installed in a crowded environment but also displacement, deformation, etc. of the side (wall). It is suitable.

また、本発明に係る他の変位計測システムによれば、相対測位手段は、固定点の位置を算出し固定点の絶対位置とのずれを示す位置補正用データを算出する手段と、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出する手段と、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除く手段と、測位用衛星信号のみを用いて観測点の位置を算出する手段と、算出した観測点の位置を前記位置補正用データによって補正する手段を有し、補正した観測点の位置に基づいて前記変位を取得するので、簡単かつ確実な方法によってマルチパスの影響を受けた衛星信号を判別して、観測点の位置を補正することにより、高精度な変位計測を実現することができる。   Further, according to another displacement measurement system according to the present invention, the relative positioning means calculates the position of the fixed point, and calculates the position correction data indicating the deviation from the absolute position of the fixed point, the fixed point, Measure the reception strength of the satellite signal at the observation point, compare the reception strength at the fixed point with the reception strength at the observation point for each satellite signal, and the difference between the reception strength at the fixed point and the reception strength at the observation point is greater than a predetermined threshold Means for calculating the carrier wave phase of the observation point with respect to the satellite signal, and when the satellite signal from the positioning satellite can not be received continuously during calculation of the carrier wave phase, it is detected as multipath and the calculated carrier wave phase has a predetermined threshold In the case of the above, the means for excluding the satellite signal from the positioning satellite signal, the means for calculating the position of the observation point using only the positioning satellite signal, and the calculated position of the observation point Since the displacement is obtained based on the corrected position of the observation point, the satellite signal affected by the multipath is determined by a simple and reliable method, and By correcting the position, highly accurate displacement measurement can be realized.

また、本発明に係る他の変位計測システムによれば、相対測位手段は、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定する手段と、アンビギュイティを保持する手段と、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位する手段の少なくとも一つを有するので、高精度な変位計測を実現することができる。   Further, according to another displacement measurement system according to the present invention, the relative positioning means holds means for determining the ambiguity of the carrier wave phase of the satellite signal based on the position of the fixed point or the observation point, and holds the ambiguity. And at least one of the relative positioning based on the cycle slip information of the carrier wave phase output from the satellite signal receiver, it is possible to realize highly accurate displacement measurement.

以上のように、本発明に係る変位計測方法および変位計測システムは、衛星測位システムを用いた構造物等を含めた比較的安定した物体の変位監視に有用であり、特に、都市部などの過密した環境に設置されている構造物等を含めた比較的安定した物体の壁面を変位監視する場合や、マルチパスを生じさせる障害物がある屋上などの場所に衛星測位機器を設置して変位監視する場合などに適している。   As described above, the displacement measurement method and the displacement measurement system according to the present invention are useful for relatively stable displacement monitoring of objects including structures etc. using a satellite positioning system, and in particular, overcrowding in urban areas etc. Monitoring the displacement of a relatively stable object such as a structure installed in an environment, or installing a satellite positioning device on a roof or other place where there is an obstacle that causes multipath It is suitable for cases such as

1 構造物
2 外壁面(外面)
3 屋上(外面)
10 変位計測システム
12 コンピュータ
14 相対測位手段
16 報知手段
18 警報手段
20 記憶手段
22 制御手段
A〜E GNSS観測点
1 Structure 2 Outer wall surface (outer surface)
3 roof (outside)
DESCRIPTION OF REFERENCE NUMERALS 10 displacement measurement system 12 computer 14 relative positioning means 16 notification means 18 alarm means 20 storage means 22 control means A to E GNSS observation point

Claims (6)

複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、
構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、
相対測位ステップは、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得することを特徴とする変位計測方法。
A method of measuring relatively stable displacement of an object including a structure etc. using a satellite signal receiver that receives satellite signals from a plurality of positioning satellites,
A satellite signal receiver installed at one point on the outer surface of a relatively stable object including a structure or a satellite signal receiver installed at different positions on the outer surface, and a structure Relative positioning to obtain displacement over time with a fixed point composed of a satellite signal receiver installed at a position other than the outer surface of a relatively stable object including the ground or on the ground, by relative positioning Equipped with steps
The relative positioning step selects a predetermined positioning satellite to be used for relative positioning among a plurality of positioning satellites, and acquires the displacement by relative positioning using satellite signals from the selected positioning satellites. Method.
相対測位ステップは、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出するステップと、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除くステップと、測位用衛星信号のみを用いて観測点の位置を算出するステップと、算出した観測点の位置を前記位置補正用データによって補正するステップを有し、補正した観測点の位置に基づいて前記変位を取得することを特徴とする請求項1に記載の変位計測方法。   The relative positioning step measures the reception strength of the satellite signal at the fixed point and the observation point, compares the reception strength at the fixed point with the reception strength at the observation point for each satellite signal, and receives the reception strength at the fixed point and the reception at the observation point Calculating the carrier wave phase of the observation point for satellite signals whose difference in intensity is equal to or greater than a predetermined threshold, and detecting as a multipath when satellite signals from positioning satellites can not be received continuously during calculation of the carrier wave phase; If the calculated carrier wave phase is equal to or higher than a predetermined threshold value, the satellite signal is excluded from the positioning satellite signal, the position of the observation point is calculated using only the positioning satellite signal, and the position of the calculated observation point Correcting the position by using the position correction data, and acquiring the displacement based on the position of the corrected observation point. Displacement measurement method described. 相対測位ステップは、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定するステップと、アンビギュイティを保持するステップと、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位するステップの少なくとも一つを有することを特徴とする請求項1または2に記載の変位計測方法。   The relative positioning step determines the ambiguity of the carrier phase of the satellite signal based on the position of the fixed point or observation point, holds the ambiguity, and cycles the carrier phase output from the satellite signal receiver. The displacement measurement method according to claim 1 or 2, further comprising at least one of the steps of performing relative positioning based on slip information. 複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測するシステムであって、
構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、
相対測位手段は、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得することを特徴とする変位計測システム。
A system for measuring a relatively stable displacement of an object including a structure or the like using a satellite signal receiver that receives satellite signals from a plurality of positioning satellites,
A satellite signal receiver installed at one point on the outer surface of a relatively stable object including a structure or a satellite signal receiver installed at different positions on the outer surface, and a structure Relative positioning to obtain displacement over time with a fixed point composed of a satellite signal receiver installed at a position other than the outer surface of a relatively stable object including the ground or on the ground, by relative positioning Equipped with
The relative positioning means selects a predetermined positioning satellite to be used for relative positioning among a plurality of positioning satellites, and acquires the displacement by relative positioning using a satellite signal from the selected positioning satellite. system.
相対測位手段は、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出する手段と、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除く手段と、測位用衛星信号のみを用いて観測点の位置を算出する手段と、算出した観測点の位置を前記位置補正用データによって補正する手段を有し、補正した観測点の位置に基づいて前記変位を取得することを特徴とする請求項4に記載の変位計測システム。   The relative positioning means measures the reception strength of the satellite signal at the fixed point and the observation point, compares the reception strength at the fixed point with the reception strength at the observation point for each satellite signal, and receives the reception strength at the fixed point and the reception at the observation point Means for calculating the carrier wave phase of the observation point for satellite signals whose difference in intensity is equal to or greater than a predetermined threshold, and detection as multipath when satellite signals from positioning satellites can not be received continuously during calculation of carrier phase; If the calculated carrier wave phase is equal to or higher than a predetermined threshold value, means for excluding the satellite signal from the positioning satellite signal, means for calculating the position of the observation point using only the positioning satellite signal, and the calculated position of the observation point 5. The displacement measurement system according to claim 4, further comprising means for correcting the position by the position correction data, and acquiring the displacement based on the corrected position of the observation point. Beam. 相対測位手段は、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定する手段と、アンビギュイティを保持する手段と、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位する手段の少なくとも一つを有することを特徴とする請求項4または5に記載の変位計測システム。
The relative positioning means determines the ambiguity of the carrier phase of the satellite signal based on the position of the fixed point or observation point, the means for holding the ambiguity, and the cycle of the carrier phase output from the satellite signal receiver. The displacement measurement system according to claim 4 or 5, further comprising at least one of means for performing relative positioning based on slip information.
JP2017079210A 2017-04-12 2017-04-12 Displacement measurement method and displacement measurement system Active JP7075572B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017079210A JP7075572B2 (en) 2017-04-12 2017-04-12 Displacement measurement method and displacement measurement system
JP2022009637A JP7405378B2 (en) 2017-04-12 2022-01-25 Displacement measurement method and displacement measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017079210A JP7075572B2 (en) 2017-04-12 2017-04-12 Displacement measurement method and displacement measurement system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022009637A Division JP7405378B2 (en) 2017-04-12 2022-01-25 Displacement measurement method and displacement measurement system

Publications (2)

Publication Number Publication Date
JP2018179734A true JP2018179734A (en) 2018-11-15
JP7075572B2 JP7075572B2 (en) 2022-05-26

Family

ID=64275099

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017079210A Active JP7075572B2 (en) 2017-04-12 2017-04-12 Displacement measurement method and displacement measurement system
JP2022009637A Active JP7405378B2 (en) 2017-04-12 2022-01-25 Displacement measurement method and displacement measurement system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022009637A Active JP7405378B2 (en) 2017-04-12 2022-01-25 Displacement measurement method and displacement measurement system

Country Status (1)

Country Link
JP (2) JP7075572B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018218A (en) * 2019-07-24 2021-02-15 清水建設株式会社 Displacement measuring method and displacement measuring system
US20220137235A1 (en) * 2020-11-03 2022-05-05 2KR Systems, LLC Methods of and systems, networks and devices for remotely detecting and monitoring the displacement, deflection and/or distortion of stationary and mobile systems using gnss-based technologies

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256036A (en) * 2006-03-23 2007-10-04 Maeda Corp Structure soundness determination system
US20080204315A1 (en) * 2005-02-04 2008-08-28 Sepa-Sistemi Elettronici Per Automazione S.P.A. System and Method For Monitoring and Surveying Movements of the Terrain, Large Infrastructures and Civil Building Works In General, Based Upon the Signals Transmitted by the Gps Navigation Satellite System
JP2009074930A (en) * 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd Positioning device, positioning system, computer program, and positioning method
JP5232994B2 (en) * 2005-06-06 2013-07-10 国立大学法人東京海洋大学 GPS receiver and GPS positioning correction method
JP2014085168A (en) * 2012-10-22 2014-05-12 Nagata Denki Kk Position measurement system
JP2016102789A (en) * 2014-11-18 2016-06-02 長田電機株式会社 Displacement monitoring system and displacement monitoring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080204315A1 (en) * 2005-02-04 2008-08-28 Sepa-Sistemi Elettronici Per Automazione S.P.A. System and Method For Monitoring and Surveying Movements of the Terrain, Large Infrastructures and Civil Building Works In General, Based Upon the Signals Transmitted by the Gps Navigation Satellite System
JP5232994B2 (en) * 2005-06-06 2013-07-10 国立大学法人東京海洋大学 GPS receiver and GPS positioning correction method
JP2007256036A (en) * 2006-03-23 2007-10-04 Maeda Corp Structure soundness determination system
JP2009074930A (en) * 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd Positioning device, positioning system, computer program, and positioning method
JP2014085168A (en) * 2012-10-22 2014-05-12 Nagata Denki Kk Position measurement system
JP2016102789A (en) * 2014-11-18 2016-06-02 長田電機株式会社 Displacement monitoring system and displacement monitoring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018218A (en) * 2019-07-24 2021-02-15 清水建設株式会社 Displacement measuring method and displacement measuring system
US20220137235A1 (en) * 2020-11-03 2022-05-05 2KR Systems, LLC Methods of and systems, networks and devices for remotely detecting and monitoring the displacement, deflection and/or distortion of stationary and mobile systems using gnss-based technologies
US11782167B2 (en) * 2020-11-03 2023-10-10 2KR Systems, LLC Methods of and systems, networks and devices for remotely detecting and monitoring the displacement, deflection and/or distortion of stationary and mobile systems using GNSS-based technologies

Also Published As

Publication number Publication date
JP7405378B2 (en) 2023-12-26
JP2022050685A (en) 2022-03-30
JP7075572B2 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
US9681269B2 (en) Positioning accuracy using 3D building models
JP5232994B2 (en) GPS receiver and GPS positioning correction method
US10175364B2 (en) Systems and methods for estimating whether a receiver is inside or outside a building
KR101667331B1 (en) Apparatus for getting signal quality of base station of plurality satellite navigation
JP7405378B2 (en) Displacement measurement method and displacement measurement system
US20120072110A1 (en) Indoor positioning using pressure sensors
US10267922B2 (en) Multipath mitigation in positioning systems
US11573335B2 (en) Method and apparatus for position estimation
JP6602176B2 (en) Building damage assessment method
EP1903349A1 (en) Mobile communication terminal for receiving position information service and method thereof
WO2019151158A1 (en) Position detection system
JP7162450B2 (en) Displacement measurement method and displacement measurement system
US20140240174A1 (en) Method and apparatus for determining non-line of sight (nlos) around a gps receiver
JP2019132627A5 (en)
JP4727628B2 (en) Mobile communication terminal and GPS positioning method
JP4914500B2 (en) Communication terminal device
US20220350031A1 (en) Global Navigation Satellite System Interferometric Reflectometry Signature-Based Defense
US20200371255A1 (en) Electronic device, method and computer program for determining and using a distance in dependence on matching constellation information
JP2018059876A (en) Displacement monitoring method and displacement monitoring system for structure
JP2021018218A (en) Displacement measuring method and displacement measuring system
JP3960134B2 (en) Location notification system, host device, and location notification method
KR102447772B1 (en) Method and apparatus for angle-of-arrival detection of gnss spoofing signal
WO2022176524A1 (en) Positioning terminal, information processing device, and positioning method
KR100916495B1 (en) Urgency rescue system and method
KR101838012B1 (en) method for searching spurious source based of GPS information

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220202

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220427

R150 Certificate of patent or registration of utility model

Ref document number: 7075572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150