JP2018179576A - Physical quantity detector and method for acquiring temperature correction signal - Google Patents

Physical quantity detector and method for acquiring temperature correction signal Download PDF

Info

Publication number
JP2018179576A
JP2018179576A JP2017075013A JP2017075013A JP2018179576A JP 2018179576 A JP2018179576 A JP 2018179576A JP 2017075013 A JP2017075013 A JP 2017075013A JP 2017075013 A JP2017075013 A JP 2017075013A JP 2018179576 A JP2018179576 A JP 2018179576A
Authority
JP
Japan
Prior art keywords
signal
excitation
detection
physical quantity
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017075013A
Other languages
Japanese (ja)
Inventor
裕史 丸山
Yasushi Maruyama
裕史 丸山
真一 新井
Shinichi Arai
真一 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2017075013A priority Critical patent/JP2018179576A/en
Publication of JP2018179576A publication Critical patent/JP2018179576A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To correct a temperature drift of the whole of a physical quantity detector simply at low cost.SOLUTION: A detection signal switching unit 73, switched in correspondence to a switching state of an excitation signal switching unit 71, is constituted so as to output a first detection signal D to a first signal holding unit 74a when a first excitation signal A is applied to an excitation coil 20, and constituted so as to output a second detection signal E to a second signal holding unit 74b when a second excitation signal B is applied to the excitation coil 20. When a difference is taken with the same angle of rotation of a revolving shaft 60 at the same temperature of a brushless resolver 13 by subtracting a difference between the first detection signal D and the second detection signal E by a subtraction unit 75, a result is that a difference in temperature characteristics of the brushless resolver 13 due to the frequency of an excitation signal derives, making it possible to obtain a temperature correction signal F as temperature correction information usable for correction of the temperature characteristics.SELECTED DRAWING: Figure 3

Description

この発明は物理量検出器及びその温度補正信号取得方法に関し、特に、電磁誘導により物理量を検出する新規な改良に関する。   The present invention relates to a physical quantity detector and a temperature correction signal acquisition method thereof, and more particularly to a novel improvement in detecting a physical quantity by electromagnetic induction.

例えばレゾルバや差動変圧器(LVDT)等の、コイルが設けられており電磁誘導により物理量を検出する電磁誘導式物理量検出器を使用した物理量検出器においては、コイルの温度特性に起因する、物理量検出器の温度ドリフトを補正する手段が設けられる。従来の電磁誘導により物理量を検出する物理量検出器の構造としては、例えば以下の特許文献1に記載された内容を図4として挙げることができる。すなわち、電磁誘導により物理量を検出する物理量検出器を構成するレゾルバ10において、前記レゾルバ10の温度ドリフトを軽減するために、前記レゾルバ10の励磁コイル20に流れる電流を電流検出回路30で検出し、前記電流検出回路30の検出出力に基づき位相補正回路31で前記励磁コイル20に印加する励磁信号Aを補正することで、前記レゾルバ10の温度ドリフトを低減するように構成されている。   For example, in a physical quantity detector such as a resolver or differential transformer (LVDT) that uses an electromagnetic induction type physical quantity detector that is provided with a coil and detects a physical quantity by electromagnetic induction, the physical quantity resulting from the temperature characteristics of the coil Means are provided for correcting temperature drift of the detector. As a structure of the physical quantity detector which detects a physical quantity by the conventional electromagnetic induction, the content described in the following patent document 1 can be mentioned as FIG. 4, for example. That is, in the resolver 10 constituting a physical quantity detector that detects a physical quantity by electromagnetic induction, a current detection circuit 30 detects a current flowing through the exciting coil 20 of the resolver 10 in order to reduce temperature drift of the resolver 10; By correcting the excitation signal A applied to the excitation coil 20 by the phase correction circuit 31 based on the detection output of the current detection circuit 30, the temperature drift of the resolver 10 is reduced.

また、従来の電磁誘導により物理量を検出する物理量検出器の構造の別の例として、例えば以下の特許文献2に記載された内容を図5として挙げることができる。電磁誘導により物理量を検出する物理量検出器を構成するレゾルバにおいて、このレゾルバのレゾルバステータ構造11の端子保持部40に一対の温度検出用端子ピン41が接続されており、前記温度検出用端子ピン41間にサーミスタ42が接続されており、前記サーミスタ42の検出温度により前記レゾルバステータ構造11の温度ドリフトを補正するように構成されている。   Moreover, as another example of the structure of the physical quantity detector which detects a physical quantity by the conventional electromagnetic induction, the content described, for example in following patent document 2 can be mentioned as FIG. In a resolver that constitutes a physical quantity detector that detects a physical quantity by electromagnetic induction, a pair of temperature detection terminal pins 41 is connected to the terminal holding portion 40 of the resolver stator structure 11 of the resolver. Thermistor 42 is connected between them, and the temperature detected by the thermistor 42 is configured to correct the temperature drift of the resolver stator structure 11.

特開平11−325813号公報Unexamined-Japanese-Patent No. 11-325813 gazette 特開2010−32291号公報Unexamined-Japanese-Patent No. 2010-32291

上記の特許文献1に記載された従来の前記レゾルバ10では、前記励磁信号Aの温度特性の補正を行っているが、出力コイルの温度特性が考慮されていないため、前記レゾルバ10全体としての温度ドリフトを補正するものではないという問題点があった。   In the conventional resolver 10 described in Patent Document 1 described above, the temperature characteristic of the excitation signal A is corrected, but the temperature characteristic of the resolver 10 as a whole is not considered because the temperature characteristic of the output coil is not taken into consideration. There is a problem that it does not correct drift.

また、上記の特許文献2に記載された従来の前記レゾルバステータ構造11では、前記サーミスタ42を設ける必要があり、前記レゾルバステータ構造11の部品点数と製造工数が増加するので、前記レゾルバステータ構造11のコストが増加するという問題点があった。   Further, in the conventional resolver stator structure 11 described in the above-mentioned Patent Document 2, it is necessary to provide the thermistor 42, and the number of parts and the number of manufacturing steps of the resolver stator structure 11 are increased. The problem is that the cost of

この発明は、このような課題を解決するためになされたものであり、特に、簡単で安価に物理量検出器全体の温度ドリフトを補正することのできる物理量検出器及び物理量検出器における検出信号補正情報取得方法を提供することを目的とする。   The present invention has been made to solve such a problem, and in particular, a physical quantity detector capable of correcting temperature drift of the entire physical quantity detector simply and inexpensively, and detection signal correction information in the physical quantity detector The purpose is to provide an acquisition method.

この発明に係る物理量検出器によれば、励磁信号が印加される励磁コイルと、前記励磁コイルに印加される励磁信号を第1励磁信号又は第2励磁信号に切換えるための励磁信号切換部と、検出対象の物理量及び前記各励磁信号に応じて検出信号が出力される検出コイルと、前記検出コイルに接続され、前記検出信号を信号処理して処理後検出信号を出力する信号処理部と、前記処理後検出信号が保持される、第1信号保持部及び第2信号保持部と、前記励磁信号切換部の切換状態に応じて、前記処理後検出信号の出力先を前記第1信号保持部又は前記第2信号保持部に切換えるための検出信号切換部とを備える物理量検出器であって、前記第1励磁信号と前記第2励磁信号とは周波数が異なり、前記第1励磁信号が前記励磁コイルに印加されている場合は、前記処理後検出信号は前記検出信号切換部により第1検出信号として前記第1信号保持部へ出力されるように切り替えられ、前記第2励磁信号が前記励磁コイルに印加されている場合は、前記処理後検出信号は前記検出信号切換部により第2検出信号として前記第2信号保持部へ出力されるように切り替えられ、前記第1信号保持部及び前記第2信号保持部に保持されている前記各検出信号の差が前記検出対象の物理量の検出結果に対する温度補正信号として得られる構成であり、また、前記検出対象の物理量が一定の状態で、前記励磁信号切換部により前記励磁コイルに印加される前記励磁信号が前記第1励磁信号と前記第2励磁信号とに切り替えられる構成であり、また、前記物理量が回転角であり、前記回転角を検出する回転物理量検出器であり、また、前記物理量が直線的な位置であり、前記直線的な位置を検出する差動変圧器である構成である。   According to the physical quantity detector of the present invention, an excitation coil to which an excitation signal is applied, and an excitation signal switching unit for switching an excitation signal applied to the excitation coil to a first excitation signal or a second excitation signal; A detection coil to which a detection signal is output according to the physical quantity to be detected and each excitation signal, a signal processing unit connected to the detection coil, processing the detection signal, and outputting a processed detection signal; According to the switching state of the first signal holding unit and the second signal holding unit, in which the detection signal after processing is held, and the excitation signal switching unit, the output destination of the after processing detection signal is the first signal holding unit or A physical quantity detector comprising a detection signal switching unit for switching to the second signal holding unit, wherein the first excitation signal and the second excitation signal have different frequencies, and the first excitation signal is the excitation coil. Applied to If it is, the post-processing detection signal is switched by the detection signal switching unit to be output as the first detection signal to the first signal holding unit, and the second excitation signal is applied to the excitation coil. In this case, the post-processing detection signal is switched by the detection signal switching unit to be output to the second signal holding unit as a second detection signal, and is held by the first signal holding unit and the second signal holding unit. The excitation signal switching unit is configured to obtain the difference between the detection signals being obtained as a temperature correction signal with respect to the detection result of the physical quantity to be detected, and with the physical quantity to be detected being constant. The excitation signal applied to the coil is switched between the first excitation signal and the second excitation signal, and the physical quantity is a rotation angle, and the rotation angle is detected. A rotating physical quantity detector, also, the physical quantity is a linear position, a configuration is a differential transformer for detecting the linear position.

また、この発明に係る物理量検出器の温度補正信号取得方法は、励磁信号が印加される励磁コイルと、前記励磁コイルに印加される励磁信号を第1励磁信号又は第2励磁信号に切換えるための励磁信号切換部と、検出対象の物理量及び前記各励磁信号に応じて検出信号が出力される検出コイルと、前記検出コイルに接続され、前記検出信号を信号処理して処理後検出信号を出力する信号処理部と、前記処理後検出信号が入力されて保持される、第1信号保持部及び第2信号保持部と、前記励磁信号切換部の切換状態に応じて、前記処理後検出信号の出力先を前記第1信号保持部又は前記第2信号保持部に切換えるための検出信号切換部とを備える物理量検出器において、前記第1励磁信号と前記第2励磁信号とは周波数が異なり、前記第1励磁信号が前記励磁コイルに印加されている場合は、前記処理後検出信号は前記検出信号切換部により第1検出信号として前記第1信号保持部へ出力されるように切り替えられ、前記第2励磁信号が前記励磁コイルに印加されている場合は、前記処理後検出信号は前記検出信号切換部により第2検出信号として前記第2信号保持部へ出力されるように切り替えられ、前記第1信号保持部及び前記第2信号保持部に保持されている前記各検出信号の差を前記検出対象の物理量の検出結果に対する温度補正信号として得る構成であり、また、前記検出対象の物理量が一定の状態で、前記励磁信号切換部により前記励磁コイルに印加される前記励磁信号が前記第1励磁信号と前記第2励磁信号とに切り替えられる構成である。   Further, according to the method of acquiring a temperature correction signal of a physical quantity detector according to the present invention, an excitation coil to which an excitation signal is applied, and an excitation signal applied to the excitation coil are switched to a first excitation signal or a second excitation signal. An excitation signal switching unit, a detection coil to which a detection signal is output according to the physical quantity to be detected and each excitation signal, and the detection coil are connected to process the detection signal and output a processed detection signal According to the switching state of the signal processing unit, the first signal holding unit and the second signal holding unit, and the excitation signal switching unit in which the post-processing detection signal is input and held, the output of the post-processing detection signal In the physical quantity detector including a detection signal switching unit for switching the first to the first signal holding unit or the second signal holding unit, the first excitation signal and the second excitation signal have different frequencies, and the first excitation signal and the second excitation signal have different frequencies. 1 When a signal is applied to the excitation coil, the post-processing detection signal is switched by the detection signal switching unit to be output as the first detection signal to the first signal holding unit, and the second excitation signal is output. Is applied to the excitation coil, the post-processing detection signal is switched by the detection signal switching unit to be output to the second signal holding unit as a second detection signal, and the first signal holding unit And a configuration in which a difference between the detection signals held in the second signal holding unit is obtained as a temperature correction signal for the detection result of the physical quantity to be detected, and the physical quantity to be detected is constant. The excitation signal switching unit is configured to switch the excitation signal applied to the excitation coil to the first excitation signal and the second excitation signal.

この発明の電磁誘導式検出部によれば、前記第1励磁信号と前記第2励磁信号とは周波数が異なり、前記第1励磁信号が前記励磁コイルに印加されている場合は、前記処理後検出信号は前記検出信号切換部により第1検出信号として前記第1信号保持部へ出力されるように切り替えられ、前記第2励磁信号が前記励磁コイルに印加されている場合は、前記処理後検出信号は前記検出信号切換部により第2検出信号として前記第2信号保持部へ出力されるように切り替えられ、前記第1信号保持部及び前記第2信号保持部に保持されている前記各検出信号の差が前記検出対象の物理量の検出結果に対する温度補正信号として得られる構成であるので、簡単で安価に物理量検出器の温度ドリフトを補正することができる。   According to the electromagnetic induction type detection unit of the present invention, when the first excitation signal and the second excitation signal have different frequencies and the first excitation signal is applied to the excitation coil, the post-processing detection is performed The signal is switched by the detection signal switching unit to be output to the first signal holding unit as a first detection signal, and when the second excitation signal is applied to the excitation coil, the post-processing detection signal Is switched by the detection signal switching unit to be output to the second signal holding unit as a second detection signal, and the detection signals of the respective detection signals held by the first signal holding unit and the second signal holding unit. Since the difference is obtained as a temperature correction signal for the detection result of the physical quantity to be detected, the temperature drift of the physical quantity detector can be corrected easily and inexpensively.

この発明の実施の形態に係る物理量検出器を構成するレゾルバを備えたモータの断面図である。It is sectional drawing of a motor provided with the resolver which comprises the physical quantity detector which concerns on embodiment of this invention. 図1に示すレゾルバの半断面図である。It is a half section view of the resolver shown in FIG. 図1に示すレゾルバとレゾルバ制御部との制御構成の概略図である。It is the schematic of control structure of a resolver and a resolver control part shown in FIG. 従来のレゾルバの回路構成概略図である。It is a circuit structure schematic of the conventional resolver. 従来のレゾルバのレゾルバステータ構造の概略図である。It is the schematic of the resolver stator structure of the conventional resolver.

以下、この発明の実施の形態を添付図面の図1〜図3に基づいて説明する。なお、従来例と同一又は同等部分には同一符号を付して説明する。
図1は、この発明の実施の形態に係る物理量検出器を備えたモータの断面図である。前記物理量検出器は例えばACサーボモータ等の、公知のモータ50のカバー51の内側に搭載されたブラシレスレゾルバ13であり、電磁誘導により物理量を検出する物理量検出器を構成している。前記ブラシレスレゾルバ13のケース14の内壁14aに、輪状ステータ15が設けられている。前記輪状ステータ15の内側には、ロータ21が設けられている。
Hereinafter, an embodiment of the present invention will be described based on FIGS. 1 to 3 of the attached drawings. The same or equivalent parts as in the conventional example will be described with the same reference numerals.
FIG. 1 is a cross-sectional view of a motor provided with a physical quantity detector according to an embodiment of the present invention. The physical quantity detector is, for example, a brushless resolver 13 mounted inside a cover 51 of a known motor 50 such as an AC servomotor, and constitutes a physical quantity detector that detects a physical quantity by electromagnetic induction. A ring-shaped stator 15 is provided on the inner wall 14 a of the case 14 of the brushless resolver 13. A rotor 21 is provided inside the annular stator 15.

前記ロータ21には、前記ケース14を貫通し前記ロータ21とともに回転する回転軸60が設けられている。前記回転軸60には、前記モータ50のモータ回転軸52が接続されており、前記回転軸60と前記モータ回転軸52とが共に回転する。こうして、前記モータ回転軸52の回転角が前記回転軸60を介して前記ブラシレスレゾルバ13に入力される。すなわち、検出対象の物理量(この実施の形態では前記モータ50の前記モータ回転軸52の回転角)が、前記回転軸60を介して前記ブラシレスレゾルバ13に入力される。   The rotor 21 is provided with a rotating shaft 60 which penetrates the case 14 and rotates with the rotor 21. A motor rotation shaft 52 of the motor 50 is connected to the rotation shaft 60, and the rotation shaft 60 and the motor rotation shaft 52 rotate together. Thus, the rotation angle of the motor rotation shaft 52 is input to the brushless resolver 13 via the rotation shaft 60. That is, the physical quantity to be detected (the rotation angle of the motor rotation shaft 52 of the motor 50 in this embodiment) is input to the brushless resolver 13 via the rotation shaft 60.

図2に、図1に示す前記ブラシレスレゾルバ13の半断面図を示す。前記輪状ステータ15には、ステータコイルとして検出コイル15aが巻回されている。前記ロータ21には、ロータコイルとして励磁コイル20が巻回されている。また、前記励磁コイル20を励磁するための第1,第2回転トランス16,17が、前記ケース14内に設けられている。2次側の前記第2回転トランス17は、前記励磁コイル20と接続されている。1次側の前記第1回転トランス16への励磁信号入力のためのリード線と、前記検出コイル15aからの検出信号出力のためのリード線とが、リード線18として束ねられ前記ケース14の外部に引き出されている。前記リード線18は、前記ブラシレスレゾルバ13を制御するレゾルバ制御部70に接続されている。   FIG. 2 shows a half sectional view of the brushless resolver 13 shown in FIG. A detection coil 15a is wound around the annular stator 15 as a stator coil. An exciting coil 20 is wound around the rotor 21 as a rotor coil. Further, first and second rotary transformers 16 and 17 for exciting the exciting coil 20 are provided in the case 14. The second rotary transformer 17 on the secondary side is connected to the exciting coil 20. A lead wire for excitation signal input to the first rotary transformer 16 on the primary side and a lead wire for detection signal output from the detection coil 15a are bundled as a lead wire 18 and the outside of the case 14 It has been pulled out. The lead wire 18 is connected to a resolver control unit 70 that controls the brushless resolver 13.

図3は、この発明の実施の形態における前記ブラシレスレゾルバ13と前記レゾルバ制御部70との制御構成の概略図である。なお、図3においては、前記第1,第2回転トランス16,17は記載を省略する。前記励磁コイル20に励磁信号切換部71が前記第1,第2回転トランス16,17(図2参照)及び前記リード線18を介して接続されている。   FIG. 3 is a schematic view of a control configuration of the brushless resolver 13 and the resolver control unit 70 in the embodiment of the present invention. In FIG. 3, the description of the first and second rotary transformers 16 and 17 is omitted. An excitation signal switching unit 71 is connected to the excitation coil 20 via the first and second rotary transformers 16 and 17 (see FIG. 2) and the lead wire 18.

前記励磁信号切換部71は、第1励磁信号Aと、第2励磁信号Bとが入力され、切換信号Xにより前記第1励磁信号A又は前記第2励磁信号Bのどちらを出力するかを切換えられるように構成されている。前記励磁信号切換部71としては、例えばスイッチング素子等の任意の信号切換手段を用いてよい。   The excitation signal switching unit 71 receives the first excitation signal A and the second excitation signal B, and switches whether to output the first excitation signal A or the second excitation signal B by the switching signal X. Are configured to be As the excitation signal switching unit 71, any signal switching unit such as a switching element may be used, for example.

前記励磁コイル20は、前記検出コイル15aに磁気的に結合されて電磁誘導式検出部19を構成している。前記検出コイル15aの出力は検出信号Cであり、前記リード線18を介して前記レゾルバ制御部70の信号処理部72に接続されている。   The excitation coil 20 is magnetically coupled to the detection coil 15 a to constitute an electromagnetic induction detection unit 19. The output of the detection coil 15 a is a detection signal C, and is connected to the signal processing unit 72 of the resolver control unit 70 via the lead wire 18.

前記信号処理部72の出力には、例えば前記モータ50(図1参照)の図示しない制御部等に接続されている。さらに、前記信号処理部72の出力には検出信号切換部73が接続されている。前記検出信号切換部73は、第1信号保持部74aと第2信号保持部74bとに接続されており、前記切換信号Xにより前記第1信号保持部74aと前記第2信号保持部74bとのいずれに処理後検出信号C’を出力するかを切換えられるように構成されている。前記検出信号切換部73としては、例えばスイッチング素子等の任意の信号切換手段を用いてもよい。   The output of the signal processing unit 72 is connected to, for example, a control unit (not shown) of the motor 50 (see FIG. 1). Further, a detection signal switching unit 73 is connected to the output of the signal processing unit 72. The detection signal switching unit 73 is connected to the first signal holding unit 74a and the second signal holding unit 74b, and the switching signal X causes the first signal holding unit 74a and the second signal holding unit 74b to be switched. It is configured to be able to switch to which one of the post-processing detection signals C 'is output. As the detection signal switching unit 73, for example, any signal switching unit such as a switching element may be used.

前記第1信号保持部74aと前記第2信号保持部74bとは、入力された前記処理後検出信号C’を保持できるように構成されている。前記第1,第2信号保持部74a,74bの出力は減算部75に接続され、前記減算部75の出力は、例えば前記モータ50(図1参照)の図示しない制御部等に温度補正信号Fとして接続されている。   The first signal holding unit 74a and the second signal holding unit 74b are configured to be able to hold the inputted post-processing detection signal C '. The outputs of the first and second signal holding units 74a and 74b are connected to a subtraction unit 75, and the output of the subtraction unit 75 is, for example, a temperature correction signal F to a control unit (not shown) of the motor 50 (see FIG. 1). Connected as.

次に、この実施の形態のブラシレスレゾルバ13の動作を図1及び図3を用いて説明する。
図1に示すように、前記ブラシレスレゾルバ13の前記回転軸60は、前記モータ回転軸52と同じ回転角で回転する。このとき、図3に示すように、前記励磁コイル20に励磁信号が印加されて励磁されることで、前記励磁コイル20に磁気的に接合された前記検出コイル15aから、前記回転軸60の回転角と励磁信号の周波数とに応じた前記検出信号Cが前記信号処理部72に出力される。前記信号処理部72は入力された信号を信号処理して、前記処理後検出信号C’として前記モータ50(図1参照)の図示しない制御部等に出力する。これにより、前記モータ回転軸52の回転角が、前記処理後検出信号C’として検出される。
Next, the operation of the brushless resolver 13 of this embodiment will be described with reference to FIGS. 1 and 3.
As shown in FIG. 1, the rotation shaft 60 of the brushless resolver 13 rotates at the same rotation angle as the motor rotation shaft 52. At this time, as shown in FIG. 3, the excitation signal is applied to the excitation coil 20 and excited to thereby rotate the rotation shaft 60 from the detection coil 15 a magnetically joined to the excitation coil 20. The detection signal C corresponding to the angle and the frequency of the excitation signal is output to the signal processing unit 72. The signal processing unit 72 performs signal processing on the input signal, and outputs the processed signal to a control unit (not shown) of the motor 50 (see FIG. 1) as the post-processing detection signal C ′. As a result, the rotation angle of the motor rotation shaft 52 is detected as the post-processing detection signal C ′.

このとき、前記モータ回転軸52(図1参照)の回転角を一定に保った状態、すなわち前記回転軸60の回転角を一定に保った状態で、予め定めた励磁周波数がf1である第1励磁信号Aと、予め定めた励磁周波数がf2である第2励磁信号Bとを前記励磁信号切換部71に入力する。また、以下の動作中は、前記ブラシレスレゾルバ13の温度は変動しないものとする。次に、前記励磁信号切換部71は、前記切換信号Xにより前記励磁信号切換部71に前記第1励磁信号Aが入力されるように切換えられる。すると、前記励磁信号切換部71に入力された前記第1励磁信号Aが、前記励磁コイル20に印加される。   At this time, in a state in which the rotation angle of the motor rotation shaft 52 (see FIG. 1) is kept constant, that is, in a state in which the rotation angle of the rotation shaft 60 is kept constant An excitation signal A and a second excitation signal B having a predetermined excitation frequency f 2 are input to the excitation signal switching unit 71. Also, during the following operation, the temperature of the brushless resolver 13 does not change. Next, the excitation signal switching unit 71 is switched by the switching signal X so that the first excitation signal A is input to the excitation signal switching unit 71. Then, the first excitation signal A input to the excitation signal switching unit 71 is applied to the excitation coil 20.

次に、前記励磁コイル20に前記第1励磁信号Aが印加されると、前記回転軸60の回転角と第1励磁信号Aの前記周波数f1とに応じた前記検出信号Cが前記検出コイル15aに励磁され、前記信号処理部72に出力される。前記信号処理部72において前記検出信号Cが信号処理され、前記検出信号切換部73に前記処理後検出信号C’が入力される。   Next, when the first excitation signal A is applied to the excitation coil 20, the detection signal C corresponding to the rotation angle of the rotary shaft 60 and the frequency f1 of the first excitation signal A is the detection coil 15a. To the signal processing unit 72. The detection signal C is subjected to signal processing in the signal processing unit 72, and the post-processing detection signal C ′ is input to the detection signal switching unit 73.

前記検出信号切換部73は、前記切換信号Xにより、前記第1信号保持部74aに信号処理された前記処理後検出信号C’を出力するように切換えられる。このとき、前記第1信号保持部74aに出力される処理後検出信号C’を第1検出信号Dという。   The detection signal switching unit 73 is switched by the switching signal X to output the post-processing detection signal C ′ which has been subjected to the signal processing to the first signal holding unit 74 a. At this time, the post-processing detection signal C ′ output to the first signal holding unit 74 a is referred to as a first detection signal D.

すなわち、前記検出信号切換部73は、前記励磁信号切換部71の切換状態に対応して切換わり、前記第1励磁信号Aを前記励磁コイル20に印加したときに、前記第1信号保持部74aに前記第1検出信号Dを出力するように構成されている。そして、前記第1信号保持部74aには、前記第1検出信号Dが保持される。   That is, the detection signal switching unit 73 switches according to the switching state of the excitation signal switching unit 71, and when the first excitation signal A is applied to the excitation coil 20, the first signal holding unit 74a. And the first detection signal D is output. The first detection signal D is held in the first signal holding unit 74a.

次に、前記励磁信号切換部71は、前記切換信号Xにより前記励磁信号切換部71が前記第2励磁信号Bを出力するように切換えられる。すると、前記励磁信号切換部71に入力された前記第2励磁信号Bが、前記励磁コイル20に印加される。   Next, the excitation signal switching unit 71 is switched by the switching signal X so that the excitation signal switching unit 71 outputs the second excitation signal B. Then, the second excitation signal B input to the excitation signal switching unit 71 is applied to the excitation coil 20.

次に、前記励磁コイル20に前記第2励磁信号Bが印加されると、前記回転軸60の回転角と励磁信号の前記周波数f2とに応じた信号が前記信号処理部72に出力される。前記信号処理部72において前記検出信号Cが信号処理され、前記検出信号切換部73に前記処理後検出信号C’が入力される。   Next, when the second excitation signal B is applied to the excitation coil 20, a signal corresponding to the rotation angle of the rotary shaft 60 and the frequency f2 of the excitation signal is output to the signal processing unit 72. The detection signal C is subjected to signal processing in the signal processing unit 72, and the post-processing detection signal C ′ is input to the detection signal switching unit 73.

前記検出信号切換部73は、前記切換信号Xにより、前記第2信号保持部74bに前記前記処理後検出信号C’を出力するように切換えられる。このとき、前記第2信号保持部74bに出力される処理後検出信号C’を第2検出信号Eという。   The detection signal switching unit 73 is switched by the switching signal X to output the post-processing detection signal C 'to the second signal holding unit 74b. At this time, the post-processing detection signal C ′ output to the second signal holding unit 74 b is referred to as a second detection signal E.

すなわち、前記検出信号切換部73は、前記第2励磁信号Bを前記励磁コイル20に印加したときに、前記第2信号保持部74bに前記第2検出信号Eを出力するように構成されている。そして、前記第2信号保持部74bには、前記第2検出信号Eが保持される。   That is, the detection signal switching unit 73 is configured to output the second detection signal E to the second signal holding unit 74b when the second excitation signal B is applied to the excitation coil 20. . The second detection signal E is held in the second signal holding unit 74b.

前記第1信号保持部74aに保持されている前記第1検出信号Dと、前記第2信号保持部74bに保持されている前記第2検出信号Eとは、前記減算部75において減算され、温度補正信号Fとして出力される。すなわち、前記温度補正信号Fは、前記回転軸60が一定の回転角の状態且つ前記ブラシレスレゾルバ13の温度が一定の状態において、周波数f1の前記第1励磁信号Aを前記励磁コイル20に印加した場合の前記第1検出信号Dと、周波数f2の前記第2励磁信号Bを前記励磁コイル20に印加した場合の前記第2検出信号Eとの差である。   The first detection signal D held by the first signal holding unit 74a and the second detection signal E held by the second signal holding unit 74b are subtracted by the subtraction unit 75, and the temperature is reduced. It is output as the correction signal F. That is, the temperature correction signal F applies the first excitation signal A of the frequency f 1 to the excitation coil 20 in a state where the rotation shaft 60 has a constant rotation angle and the temperature of the brushless resolver 13 is constant. It is a difference between the first detection signal D in this case and the second detection signal E when the second excitation signal B of frequency f2 is applied to the exciting coil 20.

励磁信号により前記励磁コイル20に生じる磁束の変化や電磁誘導により前記検出コイル15aに生じる起電力には、検出対象の前記回転軸60の回転角の変化による励磁コイル20及び前記検出コイル15aのレジスタンス成分とリアクタンス成分といったインピーダンスの変化が密接に関わっている。一方、インピーダンスは一般的にはレジスタンス成分とリアクタンス成分とで異なる温度特性を持ち、且つ、励磁信号の周波数の変化によりレジスタンス成分とリアクタンス成分とのバランスは変化するため、前記ブラシレスレゾルバ13の温度特性が励磁信号の周波数で変化する。   The resistance of the excitation coil 20 and the detection coil 15a due to the change of the rotation angle of the rotary shaft 60 to be detected is the change in the magnetic flux generated in the excitation coil 20 by the excitation signal or the electromotive force generated in the detection coil 15a by electromagnetic induction. Changes in impedance such as components and reactance components are closely related. On the other hand, the impedance generally has different temperature characteristics between the resistance component and the reactance component, and the balance between the resistance component and the reactance component changes with the change of the frequency of the excitation signal. Changes with the frequency of the excitation signal.

したがって、前記周波数f1の前記第1励磁信号Aと前記周波数f2の前記第2励磁信号Bとについて、同じ前記回転軸60の回転角且つ同じ前記ブラシレスレゾルバ13の温度で、前記第1検出信号Dと前記第2検出信号Eの差を前記減算部75で減算して差をとると、前記ブラシレスレゾルバ13の、励磁信号の周波数による温度特性の差を取り出すことになり、温度特性の補正に利用可能な温度補正情報として前記温度補正信号Fを得ることができる。   Therefore, for the first excitation signal A of the frequency f1 and the second excitation signal B of the frequency f2, the first detection signal D at the same rotation angle of the rotation shaft 60 and the same temperature of the brushless resolver 13. When the difference between the second detection signal E and the second detection signal E is subtracted by the subtraction unit 75 and the difference is taken, the difference of the temperature characteristic of the brushless resolver 13 depending on the frequency of the excitation signal is taken out. The temperature correction signal F can be obtained as possible temperature correction information.

このように、前記第1,第2励磁信号A,Bが印加される前記励磁コイル20と、前記励磁コイル20に印加される励磁信号を第1励磁信号A又は第2励磁信号Bに切換えるための前記励磁信号切換部71と、検出対象の物理量及び前記第1,第2各励磁信号A,Bに応じて前記検出信号Cが出力される前記検出コイル15aと、前記検出コイル15aに接続され、前記検出信号Cを信号処理して前記処理後検出信号C’を出力する前記信号処理部72と、前記処理後検出信号C’が保持される、前記第1信号保持部74a及び前記第2信号保持部74bと、前記励磁信号切換部71の切換状態に応じて、前記処理後検出信号C’の出力先を前記第1信号保持部74a又は前記第2信号保持部74bに切換えるための前記検出信号切換部73とを備える物理量検出器であって、前記第1励磁信号Aと前記第2励磁信号Bとは周波数が異なり、前記第1励磁信号Aが前記励磁コイル20に印加されている場合は、前記処理後検出信号C’は前記検出信号切換部73により前記第1検出信号Dとして前記第1信号保持部74aへ出力されるように切り替えられ、前記第2励磁信号Bが前記励磁コイル20に印加されている場合は、前記処理後検出信号C’は前記検出信号切換部73により前記第2検出信号Eとして前記第2信号保持部74bへ出力されるように切り替えられ、前記第1信号保持部74a及び前記第2信号保持部74bに保持されている前記各検出信号D,Eの差が前記検出対象の物理量の検出結果に対する前記温度補正信号Fとして得られるので、簡単で安価に前記ブラシレスレゾルバ13全体の温度ドリフトを補正することができる。   Thus, the excitation coil 20 to which the first and second excitation signals A and B are applied, and the excitation signal applied to the excitation coil 20 are switched to the first excitation signal A or the second excitation signal B. And the detection coil 15a to which the detection signal C is output according to the physical quantity to be detected and the first and second excitation signals A and B, and the detection coil 15a. The signal processing unit 72 that processes the detection signal C and outputs the processed detection signal C ′, and the first signal holding unit 74 a and the second that hold the processed detection signal C ′. According to the switching state of the signal holding unit 74b and the excitation signal switching unit 71, the output destination of the post-processing detection signal C ′ is switched to the first signal holding unit 74a or the second signal holding unit 74b. Detection signal switching unit 73 And the first excitation signal A and the second excitation signal B are different in frequency, and the first excitation signal A is applied to the excitation coil 20 after the processing. The detection signal C ′ is switched by the detection signal switching unit 73 to be output to the first signal holding unit 74 a as the first detection signal D, and the second excitation signal B is applied to the excitation coil 20. If it is, the post-processing detection signal C ′ is switched by the detection signal switching unit 73 to be output to the second signal holding unit 74 b as the second detection signal E, and the first signal holding unit 74 a and Since the difference between the detection signals D and E held in the second signal holding unit 74b is obtained as the temperature correction signal F with respect to the detection result of the physical quantity to be detected, the block is simple and inexpensive. Shiresurezoruba 13 can correct the temperature drift of the whole.

また、前記ブラシレスレゾルバ13の物理量が一定の状態で、前記励磁信号切換部71により前記励磁コイル20に印加される励磁信号が前記第1励磁信号Aと前記第2励磁信号Bとに切り替えられるので、より確実に前記ブラシレスレゾルバ13全体の温度ドリフトを補正することができる。   Also, since the excitation signal applied to the excitation coil 20 by the excitation signal switching unit 71 is switched between the first excitation signal A and the second excitation signal B while the physical quantity of the brushless resolver 13 is constant. Thus, the temperature drift of the entire brushless resolver 13 can be corrected more reliably.

また、前記第1,第2励磁信号A,Bが印加される前記励磁コイル20と、前記励磁コイル20に印加される励磁信号を前記第1励磁信号A又は前記第2励磁信号Bに切換えるための前記励磁信号切換部71と、検出対象の物理量及び前記第1,第2励磁信号A,Bに応じて前記検出信号Cが出力される前記検出コイル15aと、前記検出コイル15aに接続され、前記検出信号Cを信号処理して前記処理後検出信号C’を出力する前記信号処理部72と、前記処理後検出信号C’が入力されて保持される、前記第1信号保持部74a及び前記第2信号保持部74bと、前記励磁信号切換部71の切換状態に応じて、前記処理後検出信号C’の出力先を前記第1信号保持部74a又は前記第2信号保持部74bに切換えるための前記検出信号切換部73とを備える物理量検出器において、前記第1励磁信号Aと前記第2励磁信号Bとは周波数が異なり、前記第1励磁信号Aが前記励磁コイル20に印加されている場合は、前記処理後検出信号C’は前記検出信号切換部73により前記第1検出信号Dとして前記第1信号保持部74aへ出力されるように切り替えられ、前記第2励磁信号Bが前記励磁コイル20に印加されている場合は、前記処理後検出信号C’は前記検出信号切換部73により前記第2検出信号Eとして前記第2信号保持部74bへ出力されるように切り替えられ、前記第1信号保持部74a及び前記第2信号保持部74bに保持されている前記各検出信号D,Eの差を前記検出対象の物理量の検出結果に対する前記温度補正信号Fとして得る物理量検出器の温度補正信号取得方法であるので、簡単で安価に物理量検出器全体の温度ドリフトを補正することができる。   Also, the excitation coil 20 to which the first and second excitation signals A and B are applied, and the excitation signal applied to the excitation coil 20 are switched to the first excitation signal A or the second excitation signal B. And the detection coil 15a to which the detection signal C is output according to the physical quantity to be detected and the first and second excitation signals A and B, and the detection coil 15a. The signal processing unit 72 that processes the detection signal C and outputs the post-processing detection signal C ′, and the first signal holding unit 74 a and the above that receive and hold the post-processing detection signal C ′ The output destination of the post-processing detection signal C ′ is switched to the first signal holding unit 74 a or the second signal holding unit 74 b according to the switching state of the second signal holding unit 74 b and the excitation signal switching unit 71. Detection signal of In the physical quantity detector including the conversion unit 73, when the first excitation signal A and the second excitation signal B have different frequencies and the first excitation signal A is applied to the excitation coil 20, The post-processing detection signal C ′ is switched by the detection signal switching unit 73 to be output to the first signal holding unit 74 a as the first detection signal D, and the second excitation signal B is applied to the excitation coil 20. If it has, the post-processing detection signal C ′ is switched by the detection signal switching unit 73 to be output to the second signal holding unit 74 b as the second detection signal E, and the first signal holding unit 74a and the temperature of the physical quantity detector which obtains the difference between the detection signals D and E held by the second signal holding unit 74b as the temperature correction signal F with respect to the detection result of the physical quantity to be detected Since a positive signal acquisition method can be easily and inexpensively correcting the temperature drift of the entire physical quantity detector.

また、前記ブラシレスレゾルバ13の物理量が一定の状態で、前記励磁信号切換部71により前記励磁コイル20に印加される励磁信号が前記第1励磁信号Aと前記第2励磁信号Bとに切り替えられる物理量検出器の温度補正信号取得方法であるので、より確実に物理量検出器全体の温度ドリフトを補正することができる。   In addition, the physical quantity in which the excitation signal applied to the excitation coil 20 by the excitation signal switching unit 71 is switched between the first excitation signal A and the second excitation signal B while the physical quantity of the brushless resolver 13 is constant. Since the method of acquiring the temperature correction signal of the detector, the temperature drift of the whole physical quantity detector can be corrected more reliably.

また、この実施の形態において、電磁誘導により物理量を検出する物理量検出器は、回転角検出器であるブラシレスレゾルバ13であったが、例えばRVDT等の任意の電磁誘導により物理量を検出する回転角検出器であってもよい。このように、検出する対象の物理量が回転角であっても、簡単で安価に物理量検出器全体の温度ドリフトを補正することができる。   Further, in this embodiment, the physical quantity detector that detects the physical quantity by electromagnetic induction is the brushless resolver 13 that is a rotation angle detector, but for example, the rotation angle detection that detects the physical quantity by any electromagnetic induction such as RVDT. It may be a container. Thus, even if the physical quantity to be detected is the rotation angle, temperature drift of the entire physical quantity detector can be corrected easily and inexpensively.

また、この実施の形態において、電磁誘導により物理量を検出する物理量検出器は前記ブラシレスレゾルバ13であったが、LVDTのような電磁誘導により直線的な位置を物理量として検出する物理量検出器であってもよい。このように、検出する対象の物理量が直線的な位置であっても簡単で安価に物理量検出器全体の温度ドリフトを補正することができる。   Further, in this embodiment, the physical quantity detector for detecting a physical quantity by electromagnetic induction is the brushless resolver 13, but it is a physical quantity detector for detecting a linear position as a physical quantity by electromagnetic induction such as LVDT. It is also good. Thus, even if the physical quantity to be detected is at a linear position, temperature drift of the entire physical quantity detector can be corrected easily and inexpensively.

また、この実施の形態において、電磁誘導により物理量を検出する物理量検出器としての前記ブラシレスレゾルバ13はモータ50に設けられていたが、これに限定されず、例えばアンテナの角度調節機能の回転角等、任意の物理量を検出する物理量検出器又は方法としてこの発明を用いることができる。   Further, in this embodiment, the brushless resolver 13 as a physical quantity detector for detecting a physical quantity by electromagnetic induction is provided in the motor 50, but the present invention is not limited to this. The present invention can be used as a physical quantity detector or method for detecting any physical quantity.

また、この実施の形態において、前記ブラシレスレゾルバ13は、前記輪状ステータ15にステータコイルとして検出コイル15aが巻回され、前記ロータ21に、ロータコイルとして前記励磁コイル20が巻回されていたが、前記輪状ステータ15に前記励磁コイル20が巻回され、前記ロータ21に前記検出コイル15aが巻回されたレゾルバであってもよいし、ブラシレスレゾルバ以外のレゾルバであってもよい。   In this embodiment, the brushless resolver 13 has the detection coil 15a wound around the annular stator 15 as a stator coil, and the excitation coil 20 wound around the rotor 21 as a rotor coil. The resolver may be a resolver in which the excitation coil 20 is wound around the annular stator 15 and the detection coil 15a is wound around the rotor 21, or a resolver other than a brushless resolver.

なお、本発明による物理量検出器の要旨としては、以下の通りである。すなわち、前記第1,第2励磁信号A,Bが印加される前記励磁コイル20と、前記励磁コイル20に印加される励磁信号を第1励磁信号A又は第2励磁信号Bに切換えるための前記励磁信号切換部71と、検出対象の物理量及び前記第1,第2各励磁信号A,Bに応じて前記検出信号Cが出力される前記検出コイル15aと、前記検出コイル15aに接続され、前記検出信号Cを信号処理して前記処理後検出信号C’を出力する前記信号処理部72と、前記処理後検出信号C’が保持される、前記第1信号保持部74a及び前記第2信号保持部74bと、前記励磁信号切換部71の切換状態に応じて、前記処理後検出信号C’の出力先を前記第1信号保持部74a又は前記第2信号保持部74bに切換えるための前記検出信号切換部73とを備える物理量検出器であって、前記第1励磁信号Aと前記第2励磁信号Bとは周波数が異なり、前記第1励磁信号Aが前記励磁コイル20に印加されている場合は、前記処理後検出信号C’は前記検出信号切換部73により前記第1検出信号Dとして前記第1信号保持部74aへ出力されるように切り替えられ、前記第2励磁信号Bが前記励磁コイル20に印加されている場合は、前記処理後検出信号C’は前記検出信号切換部73により前記第2検出信号Eとして前記第2信号保持部74bへ出力されるように切り替えられ、前記第1信号保持部74a及び前記第2信号保持部74bに保持されている前記各検出信号D,Eの差が前記検出対象の物理量の検出結果に対する前記温度補正信号Fとして得られる構成であり、また、前記ブラシレスレゾルバ13の物理量が一定の状態で、前記励磁信号切換部71により前記励磁コイル20に印加される励磁信号が前記第1励磁信号Aと前記第2励磁信号Bとに切り替えられる構成であり、また、前記物理量が回転角であり、前記回転角を検出する回転物理量検出器であり、また、前記物理量が直線的な位置であり、前記直線的な位置を検出する差動変圧器であり、また、前記第1,第2励磁信号A,Bが印加される前記励磁コイル20と、前記励磁コイル20に印加される励磁信号を前記第1励磁信号A又は前記第2励磁信号Bに切換えるための前記励磁信号切換部71と、検出対象の物理量及び前記第1,第2励磁信号A,Bに応じて前記検出信号Cが出力される前記検出コイル15aと、前記検出コイル15aに接続され、前記検出信号Cを信号処理して前記処理後検出信号C’を出力する前記信号処理部72と、前記処理後検出信号C’が入力されて保持される、前記第1信号保持部74a及び前記第2信号保持部74bと、前記励磁信号切換部71の切換状態に応じて、前記処理後検出信号C’の出力先を前記第1信号保持部74a又は前記第2信号保持部74bに切換えるための前記検出信号切換部73とを備える物理量検出器において、前記第1励磁信号Aと前記第2励磁信号Bとは周波数が異なり、前記第1励磁信号Aが前記励磁コイル20に印加されている場合は、前記処理後検出信号C’は前記検出信号切換部73により前記第1検出信号Dとして前記第1信号保持部74aへ出力されるように切り替えられ、前記第2励磁信号Bが前記励磁コイル20に印加されている場合は、前記処理後検出信号C’は前記検出信号切換部73により前記第2検出信号Eとして前記第2信号保持部74bへ出力されるように切り替えられ、前記第1信号保持部74a及び前記第2信号保持部74bに保持されている前記各検出信号D,Eの差を前記検出対象の物理量の検出結果に対する前記温度補正信号Fとして得る物理量検出器の温度補正信号取得方法であり、また、前記ブラシレスレゾルバ13の物理量が一定の状態で、前記励磁信号切換部71により前記励磁コイル20に印加される励磁信号が前記第1励磁信号Aと前記第2励磁信号Bとに切り替えられる物理量検出器の温度補正信号取得方法である。   The summary of the physical quantity detector according to the present invention is as follows. That is, the excitation coil 20 to which the first and second excitation signals A and B are applied, and the excitation signal applied to the excitation coil 20 are switched to the first excitation signal A or the second excitation signal B. It is connected to the excitation signal switching unit 71, the detection coil 15a to which the detection signal C is output according to the physical quantity to be detected and the first and second excitation signals A and B, and the detection coil 15a, The signal processing unit 72 that processes the detection signal C and outputs the post-processing detection signal C ′, and the first signal holding unit 74 a and the second signal holding where the post-processing detection signal C ′ is held The detection signal for switching the output destination of the post-processing detection signal C 'to the first signal holding unit 74a or the second signal holding unit 74b according to the switching state of the unit 74b and the excitation signal switching unit 71 Switching unit 73 and The physical quantity detector, wherein the first excitation signal A and the second excitation signal B have different frequencies, and when the first excitation signal A is applied to the excitation coil 20, the post-processing detection The signal C ′ is switched by the detection signal switching unit 73 to be output as the first detection signal D to the first signal holding unit 74 a, and the second excitation signal B is applied to the excitation coil 20. In this case, the post-processing detection signal C ′ is switched by the detection signal switching unit 73 to be output to the second signal holding unit 74 b as the second detection signal E, and the first signal holding unit 74 a and the The difference between the detection signals D and E held in the second signal holding unit 74b is obtained as the temperature correction signal F for the detection result of the physical quantity to be detected, and the bra The excitation signal applied to the excitation coil 20 by the excitation signal switching unit 71 is switched between the first excitation signal A and the second excitation signal B while the physical quantity of the res resolver 13 is constant, and The physical quantity is a rotational angle, and the rotational physical quantity detector detects the rotational angle, and the physical quantity is a linear position, and the differential transformer detects the linear position. The excitation coil 20 to which the first and second excitation signals A and B are applied, and an excitation signal applied to the excitation coil 20 are switched to the first excitation signal A or the second excitation signal B. The excitation signal switching unit 71 is connected to the detection coil 15a to which the detection signal C is output according to the physical quantity to be detected and the first and second excitation signals A and B, and the detection coil 15a, The signal processing unit 72 that processes the detection signal C and outputs the post-processing detection signal C ′, and the first signal holding unit 74 a and the first signal holding unit 74a that receive and hold the post-processing detection signal C ′ The output destination of the post-processing detection signal C ′ is switched to the first signal holding unit 74 a or the second signal holding unit 74 b according to the switching state of the two signal holding unit 74 b and the excitation signal switching unit 71. In the physical quantity detector including the detection signal switching unit 73, the first excitation signal A and the second excitation signal B have different frequencies, and the first excitation signal A is applied to the excitation coil 20. Is switched so that the post-processing detection signal C ′ is output to the first signal holding unit 74a as the first detection signal D by the detection signal switching unit 73, and the second excitation signal B is output as the excitation coil. 20 When it is applied, the post-processing detection signal C ′ is switched by the detection signal switching unit 73 to be output to the second signal holding unit 74 b as the second detection signal E, and the first signal holding is performed. Temperature correction signal acquiring method of a physical quantity detector which obtains the difference between the detection signals D and E held in the section 74a and the second signal holding section 74b as the temperature correction signal F with respect to the detection result of the physical quantity to be detected In the state where the physical quantity of the brushless resolver 13 is constant, the excitation signal applied to the excitation coil 20 by the excitation signal switching unit 71 is the first excitation signal A and the second excitation signal B. It is a temperature correction signal acquisition method of the physical quantity detector switched.

本発明による物理量検出器は、励磁信号が印加される励磁コイルと、前記励磁コイルに印加される励磁信号を第1励磁信号又は第2励磁信号に切換えるための励磁信号切換部と、検出対象の物理量及び前記各励磁信号に応じて検出信号が出力される検出コイルと、前記検出コイルに接続され、前記検出信号を信号処理して処理後検出信号を出力する信号処理部と、前記処理後検出信号が保持される、第1信号保持部及び第2信号保持部と、前記励磁信号切換部の切換状態に応じて、前記処理後検出信号の出力先を前記第1信号保持部又は前記第2信号保持部に切換えるための検出信号切換部とを備える物理量検出器であって、前記第1励磁信号と前記第2励磁信号とは周波数が異なり、前記第1励磁信号が前記励磁コイルに印加されている場合は、前記処理後検出信号は前記検出信号切換部により第1検出信号として前記第1信号保持部へ出力されるように切り替えられ、前記第2励磁信号が前記励磁コイルに印加されている場合は、前記処理後検出信号は前記検出信号切換部により第2検出信号として前記第2信号保持部へ出力されるように切り替えられ、前記第1信号保持部及び前記第2信号保持部に保持されている前記各検出信号の差が前記検出対象の物理量の検出結果に対する温度補正信号として得られるので、簡単で安価に物理量検出器全体の温度ドリフトを補正することができる。   A physical quantity detector according to the present invention includes an excitation coil to which an excitation signal is applied, an excitation signal switching unit for switching an excitation signal applied to the excitation coil to a first excitation signal or a second excitation signal, and a detection target A detection coil to which a detection signal is output according to the physical quantity and each excitation signal, and a signal processing unit connected to the detection coil for processing the detection signal and outputting a processed detection signal, and the post-processing detection The output destination of the post-processing detection signal corresponds to the first signal holding unit or the second signal holding unit according to the first signal holding unit, the second signal holding unit, and the switching state of the excitation signal switching unit. A physical quantity detector comprising a detection signal switching unit for switching to a signal holding unit, wherein the first excitation signal and the second excitation signal have different frequencies, and the first excitation signal is applied to the excitation coil. Where you are Is switched so that the post-processing detection signal is outputted to the first signal holding unit as the first detection signal by the detection signal switching unit, and the second excitation signal is applied to the excitation coil. The post-processing detection signal is switched by the detection signal switching unit to be output to the second signal holding unit as a second detection signal, and is held by the first signal holding unit and the second signal holding unit. The difference between the detection signals is obtained as a temperature correction signal for the detection result of the physical quantity to be detected, so that the temperature drift of the entire physical quantity detector can be corrected easily and inexpensively.

13 ブラシレスレゾルバ
15a 検出コイル
20 励磁コイル
71 励磁信号切換部
73 検出信号切換部
74a 第1信号保持部
74b 第2信号保持部
A 第1励磁信号
B 第2励磁信号
C 検出信号
C’ 処理後検出信号
D 第1検出信号
E 第2検出信号
F 温度補正信号
13 Brushless resolver 15a detection coil 20 excitation coil 71 excitation signal switching unit 73 detection signal switching unit 74a first signal holding unit 74b second signal holding unit A first excitation signal B second excitation signal C detection signal C 'detection signal after processing D First detection signal E Second detection signal F Temperature correction signal

Claims (6)

励磁信号が印加される励磁コイル(20)と、
前記励磁コイル(20)に印加される励磁信号を第1励磁信号(A)又は第2励磁信号(B)に切換えるための励磁信号切換部(71)と、
検出対象の物理量及び前記各励磁信号(A,B)に応じて検出信号(C)が出力される検出コイル(15a)と、
前記検出コイル(15a)に接続され、前記検出信号(C)を信号処理して処理後検出信号(C’)を出力する信号処理部(72)と、
前記処理後検出信号(C’)が保持される、第1信号保持部(74a)及び第2信号保持部(74b)と、
前記励磁信号切換部(71)の切換状態に応じて、前記処理後検出信号(C’)の出力先を前記第1信号保持部(74a)又は前記第2信号保持部(74b)に切換えるための検出信号切換部(73)と
を備える物理量検出器であって、
前記第1励磁信号(A)と前記第2励磁信号(B)とは周波数が異なり、
前記第1励磁信号(A)が前記励磁コイル(20)に印加されている場合は、前記処理後検出信号(C’)は前記検出信号切換部(73)により第1検出信号(D)として前記第1信号保持部(74a)へ出力されるように切り替えられ、前記第2励磁信号(B)が前記励磁コイル(20)に印加されている場合は、前記処理後検出信号(C’)は前記検出信号切換部(73)により第2検出信号(E)として前記第2信号保持部(74b)へ出力されるように切り替えられ、前記第1信号保持部(74a)及び前記第2信号保持部(74b)に保持されている前記各検出信号(D,E)の差が前記検出対象の物理量の検出結果に対する温度補正信号(F)として得られる構成としたことを特徴とする物理量検出器。
An excitation coil (20) to which an excitation signal is applied;
An excitation signal switching unit (71) for switching an excitation signal applied to the excitation coil (20) to a first excitation signal (A) or a second excitation signal (B);
A detection coil (15a) for outputting a detection signal (C) according to the physical quantity to be detected and each of the excitation signals (A, B);
A signal processing unit (72) connected to the detection coil (15a), which processes the detection signal (C) and outputs a processed detection signal (C ');
A first signal holding unit (74a) and a second signal holding unit (74b) in which the post-processing detection signal (C ′) is held;
According to the switching state of the excitation signal switching unit (71), the output destination of the post-processing detection signal (C ′) is switched to the first signal holding unit (74a) or the second signal holding unit (74b) A physical quantity detector comprising the detection signal switching unit (73) of
The first excitation signal (A) and the second excitation signal (B) have different frequencies,
When the first excitation signal (A) is applied to the excitation coil (20), the post-processing detection signal (C ') is processed as a first detection signal (D) by the detection signal switching unit (73). The signal is switched to be output to the first signal holding unit (74a), and when the second excitation signal (B) is applied to the exciting coil (20), the post-processing detection signal (C ') Is switched by the detection signal switching unit (73) to be output to the second signal holding unit (74b) as a second detection signal (E), and the first signal holding unit (74a) and the second signal A physical quantity detection characterized in that a difference between the detection signals (D, E) held in the holding section (74b) is obtained as a temperature correction signal (F) for the detection result of the physical quantity to be detected. vessel.
前記検出対象の物理量が一定の状態で、前記励磁信号切換部(71)により前記励磁コイル(20)に印加される前記励磁信号が前記第1励磁信号(A)と前記第2励磁信号(B)とに切り替えられることを特徴とする請求項1に記載の物理量検出器。   The excitation signal applied to the excitation coil (20) by the excitation signal switching unit (71) with the physical quantity of the detection target being constant is the first excitation signal (A) and the second excitation signal (B The physical quantity detector according to claim 1, characterized in that 前記物理量が回転角であり、前記回転角を検出する回転物理量検出器であることを特徴とする請求項1又は2に記載の物理量検出器。   The physical quantity detector according to claim 1 or 2, wherein the physical quantity is a rotational angle, and the physical quantity detector is a rotational physical quantity detector that detects the rotational angle. 前記物理量が直線的な位置であり、前記直線的な位置を検出する差動変圧器であることを特徴とする、請求項1又は2に記載の物理量検出器。   The physical quantity detector according to claim 1, wherein the physical quantity is a linear position, and the physical quantity is a differential transformer that detects the linear position. 励磁信号が印加される励磁コイル(20)と、
前記励磁コイル(20)に印加される励磁信号を第1励磁信号(A)又は第2励磁信号(B)に切換えるための励磁信号切換部(71)と、
検出対象の物理量及び前記各励磁信号(A,B)に応じて検出信号(C)が出力される検出コイル(15a)と、
前記検出コイル(15a)に接続され、前記検出信号(C)を信号処理して処理後検出信号(C’)を出力する信号処理部(72)と、
前記処理後検出信号(C’)が入力されて保持される、第1信号保持部(74a)及び第2信号保持部(74b)と、
前記励磁信号切換部(71)の切換状態に応じて、前記処理後検出信号(C’)の出力先を前記第1信号保持部(74a)又は前記第2信号保持部(74b)に切換えるための検出信号切換部(73)と
を備える物理量検出器において、
前記第1励磁信号(A)と前記第2励磁信号(B)とは周波数が異なり、
前記第1励磁信号(A)が前記励磁コイル(20)に印加されている場合は、前記処理後検出信号(C’)は前記検出信号切換部(73)により第1検出信号(D)として前記第1信号保持部(74a)へ出力されるように切り替えられ、前記第2励磁信号(B)が前記励磁コイル(20)に印加されている場合は、前記処理後検出信号(C’)は前記検出信号切換部(73)により第2検出信号(E)として前記第2信号保持部(74b)へ出力されるように切り替えられ、前記第1信号保持部(74a)及び前記第2信号保持部(74b)に保持されている前記各検出信号(D,E)の差を前記検出対象の物理量の検出結果に対する温度補正信号(F)として得ることを特徴とする物理量検出器の温度補正信号取得方法。
An excitation coil (20) to which an excitation signal is applied;
An excitation signal switching unit (71) for switching an excitation signal applied to the excitation coil (20) to a first excitation signal (A) or a second excitation signal (B);
A detection coil (15a) for outputting a detection signal (C) according to the physical quantity to be detected and each of the excitation signals (A, B);
A signal processing unit (72) connected to the detection coil (15a), which processes the detection signal (C) and outputs a processed detection signal (C ');
A first signal holding unit (74a) and a second signal holding unit (74b), which receive and hold the post-processing detection signal (C ′);
According to the switching state of the excitation signal switching unit (71), the output destination of the post-processing detection signal (C ′) is switched to the first signal holding unit (74a) or the second signal holding unit (74b) In the physical quantity detector including the detection signal switching unit (73) of
The first excitation signal (A) and the second excitation signal (B) have different frequencies,
When the first excitation signal (A) is applied to the excitation coil (20), the post-processing detection signal (C ') is processed as a first detection signal (D) by the detection signal switching unit (73). The signal is switched to be output to the first signal holding unit (74a), and when the second excitation signal (B) is applied to the exciting coil (20), the post-processing detection signal (C ') Is switched by the detection signal switching unit (73) to be output to the second signal holding unit (74b) as a second detection signal (E), and the first signal holding unit (74a) and the second signal Temperature correction of the physical quantity detector characterized in that the difference between the detection signals (D, E) held in the holding unit (74b) is obtained as the temperature correction signal (F) for the detection result of the physical quantity to be detected Signal acquisition method.
前記検出対象の物理量が一定の状態で、前記励磁信号切換部(71)により前記励磁コイル(20)に印加される前記励磁信号が前記第1励磁信号(A)と前記第2励磁信号(B)とに切り替えられることを特徴とする請求項5に記載の物理量検出器の温度補正信号取得方法。 The excitation signal applied to the excitation coil (20) by the excitation signal switching unit (71) with the physical quantity of the detection target being constant is the first excitation signal (A) and the second excitation signal (B The method of acquiring a temperature correction signal of a physical quantity detector according to claim 5, characterized in that
JP2017075013A 2017-04-05 2017-04-05 Physical quantity detector and method for acquiring temperature correction signal Pending JP2018179576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017075013A JP2018179576A (en) 2017-04-05 2017-04-05 Physical quantity detector and method for acquiring temperature correction signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017075013A JP2018179576A (en) 2017-04-05 2017-04-05 Physical quantity detector and method for acquiring temperature correction signal

Publications (1)

Publication Number Publication Date
JP2018179576A true JP2018179576A (en) 2018-11-15

Family

ID=64275610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017075013A Pending JP2018179576A (en) 2017-04-05 2017-04-05 Physical quantity detector and method for acquiring temperature correction signal

Country Status (1)

Country Link
JP (1) JP2018179576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101435A (en) * 2018-12-21 2020-07-02 多摩川精機株式会社 Rotatable differential transformer and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101435A (en) * 2018-12-21 2020-07-02 多摩川精機株式会社 Rotatable differential transformer and manufacturing method thereof
JP7195595B2 (en) 2018-12-21 2022-12-26 多摩川精機株式会社 Rotary differential transformer and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US10090093B2 (en) Multi-winding high sensitivity current transformer
JP5803428B2 (en) Rotation sensor and rotation angle detection device
CN107085193B (en) Detection of offset errors in phase current measurements for motor control systems
CN107110666B (en) Rotation angle detecting device
JP6490244B2 (en) Rotation angle detector and rotating electric machine
EP2998707A1 (en) Resolver malfunction detection method, angle detection device, motor, and transport device
WO2017056817A1 (en) Brushless resolver and rotation angle detecting device
JP2018179576A (en) Physical quantity detector and method for acquiring temperature correction signal
JP4395163B2 (en) Variable reluctance resolver
JP2018533029A (en) Resolver
US20160265942A1 (en) Rotational angle detecting device
US20190044418A1 (en) Position sensor and motor
RU2733270C2 (en) Method of estimating the ac machine rotor position and speed for a vehicle and the corresponding system
JP2015227826A (en) Position detecting device
JP2008170178A (en) Resolver system and electric power steering apparatus using the same
JP2018040660A (en) Redundant system two-phase output type resolver for phase modulation system, and signal output method therefor
JP6942319B2 (en) Parallel winding resolver
US20190044419A1 (en) Position sensor and motor
JP2018021884A (en) Phase detection device, motor system, image forming apparatus, conveying device, and sensor level acquiring method
JPH1169682A (en) Servo motor
JP2013044679A (en) Resolver, rotation sensor, and rotation angle detector
JP2006343239A (en) Inductor-type resolver
KR101981296B1 (en) Rotater Core Using Short Line and Winding Type Resolver Using the Same
WO2021130987A1 (en) Short circuit detection device and short circuit detection method
JP2017120222A (en) Resolver