JP2018179505A - Column packing material for measuring hemoglobins, and measuring method of hemoglobins - Google Patents

Column packing material for measuring hemoglobins, and measuring method of hemoglobins Download PDF

Info

Publication number
JP2018179505A
JP2018179505A JP2017073454A JP2017073454A JP2018179505A JP 2018179505 A JP2018179505 A JP 2018179505A JP 2017073454 A JP2017073454 A JP 2017073454A JP 2017073454 A JP2017073454 A JP 2017073454A JP 2018179505 A JP2018179505 A JP 2018179505A
Authority
JP
Japan
Prior art keywords
peak
particle size
hemoglobins
column
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017073454A
Other languages
Japanese (ja)
Other versions
JP6841503B2 (en
Inventor
正人 木佐貫
Masato Kisanuki
正人 木佐貫
詩乃 犬塚
Shino Inuzuka
詩乃 犬塚
卓也 與谷
Takuya Yotani
卓也 與谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Sekisui Co Ltd
Sekisui Medical Co Ltd
Original Assignee
Tokuyama Sekisui Co Ltd
Sekisui Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Sekisui Co Ltd, Sekisui Medical Co Ltd filed Critical Tokuyama Sekisui Co Ltd
Priority to JP2017073454A priority Critical patent/JP6841503B2/en
Publication of JP2018179505A publication Critical patent/JP2018179505A/en
Application granted granted Critical
Publication of JP6841503B2 publication Critical patent/JP6841503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a column packing material for measuring hemoglobins, capable of maintaining separation performance even when a flow rate is increased.SOLUTION: A column packing material used for measuring hemoglobins by high-performance liquid chromatography has two or more peaks of the frequency distribution obtained when the particle size distribution is measured. Among the frequency distribution peaks, the particle diameter of the peak showing the maximum particle diameter (maximum peak) is 1.1-3.0 times the particle diameter of the peak showing the minimum particle diameter. The particle diameter of the maximum peak is smaller than the particle diameter showing the second largest peak (second peak). A small particle diameter ratio represented by the following formula (1) is 0.91-0.99, and the average particle diameter of the column packing material is 3.0-6.5 μm. Small particle diameter ratio=(the maximum peak height from the baseline)/(the maximum peak height from the baseline + second peak height from the baseline) . . . (1))SELECTED DRAWING: None

Description

本発明は、高速液体クロマトグラフィーに用いられるヘモグロビン類測定用カラム充填剤、並びに該カラム充填剤を用いたヘモグロビン類の測定方法に関する。   The present invention relates to a column packing for measuring hemoglobins used in high performance liquid chromatography, and a method of measuring hemoglobins using the column packing.

ヘモグロビンA1c(HbA1c)は、赤血球の寿命である約120日間血液中に存在し続ける。従って、ヘモグロビンA1cを測定することで、過去1〜2か月間の血糖の状態を推定することができる。そのため、グリコアルブミン等の他の糖尿病マーカーと異なり、ヘモグロビンA1cの測定によって、比較的長期にわたる血糖値の推移を確認できる。   Hemoglobin A1c (HbA1c) continues to be present in the blood for about 120 days, which is the life of red blood cells. Therefore, by measuring hemoglobin A1c, it is possible to estimate the state of blood glucose in the past one to two months. Therefore, unlike other diabetes markers such as glycoalbumin, the measurement of hemoglobin A1c can confirm the transition of the blood glucose level over a relatively long period.

ヘモグロビンA1cの測定においては、測定値の精度が良好であるという理由から、高速液体クロマトグラフィーによる測定が広く行われている。高速液体クロマトグラフィーにおいて、測定値の精度と同様に重要な指標であるのが、測定時間である。検査技師の負担を軽減するため、また、効率的な検査体制の構築のため、測定時間の短縮は、測定値の精度向上と並ぶ大きな課題であった。   In the measurement of hemoglobin A1c, measurement by high performance liquid chromatography is widely performed because the accuracy of the measurement value is good. In high performance liquid chromatography, measurement time is one of the important indexes as well as measurement accuracy. In order to reduce the burden on the laboratory technicians and to construct an efficient inspection system, shortening the measurement time has been a major issue as well as improving the accuracy of the measurement values.

下記の特許文献1には、粒度分布を測定した際に得られる度数分布のピークが2つ以上存在し、かつ前記度数分布のピークのうち、最大粒径を示すピークの粒径が、最小粒径を示すピークの粒径の1.1〜3.0倍である、ヘモグロビン類測定用カラム充填剤が開示されている。   In Patent Document 1 listed below, two or more peaks of frequency distribution obtained when measuring particle size distribution exist, and among the peaks of the frequency distribution, the particle size of the peak showing the largest particle diameter is the smallest particle A column packing for measuring hemoglobins is disclosed, which is 1.1 to 3.0 times the particle size of the peak indicating the diameter.

特開2011−209040号公報JP, 2011-209040, A

高速液体クロマトグラフィーの測定時間の短縮に大きく貢献するのが、流速の上昇である。ところで、高速液体クロマトグラフィーによりヘモグロビンA1cを測定する場合、ヘモグロビンA1c等のヘモグロビン類のピークに隣接して生じる他のピークが大きいと、ヘモグロビン類のピークの鋭さが損なわれる。そのため分離性能が低下するおそれがあった。   A major contribution to shortening the measurement time of high performance liquid chromatography is the increase in flow velocity. By the way, when measuring hemoglobin A1c by high performance liquid chromatography, if the other peaks generated adjacent to the peaks of hemoglobins such as hemoglobin A1c are large, the sharpness of the peaks of hemoglobins is lost. Therefore, the separation performance may be degraded.

高速液体クロマトグラフィーにおいて、ヘモグロビン類のピークを鋭敏にする事は、分離性能の向上において重要な課題である。ヘモグロビン類のピークの鋭敏さを判定する方法の一つとして、ヘモグロビン類のピークの底部に着目することができる。図1に記載のクロマトグラム模式図が示す通り、ヘモグロビンA1cのピークの左側に発生する下向きの突出部分(以下「谷部分」と呼ぶ)と、そのさらに左側に発生する上向きの突出部分(以下「山部分」と呼ぶ)の双方が発生する。ヘモグロビンA1c測定のクロマトグラムにおいて、上記谷部分のベースラインからの高さと山部分のベースラインからの高さの比率(以下、本明細書では「A1cピーク左側の平坦さ」と呼ぶ)は、測定時の流速を上昇させると増大する傾向にある。そのため、ヘモグロビンA1cのピークの鋭敏さが失われ、ヘモグロビンA1cの分離性能が低下するおそれがある。   In high performance liquid chromatography, sharpening the peaks of hemoglobins is an important issue in the improvement of separation performance. As a method of determining the sharpness of the hemoglobin species peak, attention can be paid to the bottom of the hemoglobin species peak. As the chromatogram schematic diagram shown in FIG. 1 shows, a downward projecting portion (hereinafter referred to as "valley portion") generated on the left side of the peak of hemoglobin A1c and an upward projecting portion (hereinafter referred to as " Both occur). In the chromatogram of hemoglobin A1c measurement, the ratio of the height from the baseline of the valley to the height from the baseline of the peak (hereinafter referred to as “flatness on the left side of the A1c peak”) is measured It tends to increase when the flow rate of time is increased. Therefore, the sensitivity of the peak of hemoglobin A1c is lost, and the separation performance of hemoglobin A1c may be reduced.

特許文献1に記載のカラム充填剤を用いた場合、カラム寿命を延ばすことができる。しかしながら、特許文献1に記載のカラム充填剤において、測定の高速化を図るために、流速を高めると、ヘモグロビンA1c等のヘモグロビン類のピークにおいて、ピーク左側の平坦さが増大する傾向があった。そのため、ヘモグロビン類の分離性能が低下するおそれがあった。   When the column packing described in Patent Document 1 is used, the column life can be extended. However, in the column packing described in Patent Document 1, when the flow rate is increased in order to speed up the measurement, the flatness of the left side of the peak tends to increase at the peak of hemoglobins such as hemoglobin A1 c. Therefore, there is a possibility that the separation performance of hemoglobins may be reduced.

本発明の目的は、液体クロマトグラフィーによるヘモグロビン類の測定に際し、ヘモグロビン類の分離性能に優れ、かつ測定時間の短縮を図り得る、ヘモグロビン類測定用カラム充填剤並びに該ヘモグロビン類の測定方法を提供することにある。   An object of the present invention is to provide a column packing for measuring hemoglobins which is excellent in separation performance of hemoglobins and can shorten the measuring time when measuring hemoglobins by liquid chromatography, and a method of measuring the hemoglobins. It is.

本発明は、高速液体クロマトグラフィーによりヘモグロビン類を測定するために用いられるカラム充填剤であって、粒度分布を測定した際に得られる度数分布のピークが2つ以上存在し、度数分布ピークのうち、最大粒径を示すピークの粒径(最大ピーク)が、最小粒径を示すピークの粒径の1.1〜3.0倍であり、最大ピークの粒径は、2番目に大きいピーク(第2ピーク)を示す粒径よりも小さく、下記式(1)で表される小粒径比率が0.91〜0.99であり、かつ該カラム充填剤の平均粒径が3.0〜6.5μmの範囲にある、ヘモグロビン類測定用カラム充填剤である。   The present invention is a column packing material used to measure hemoglobins by high performance liquid chromatography, wherein two or more peaks of frequency distribution obtained when particle size distribution is measured, among the frequency distribution peaks The particle size of the peak showing the largest particle size (maximum peak) is 1.1 to 3.0 times the particle size of the peak showing the smallest particle size, and the particle size of the largest peak is the second largest peak ( The small particle diameter ratio represented by the following formula (1) is 0.91 to 0.99, which is smaller than the particle diameter showing the second peak), and the average particle diameter of the column filler is 3.0 to It is a column filler for measuring hemoglobins in the range of 6.5 μm.

小粒径比率=(最大ピークのベースラインからの高さ)/(最大ピークのベースラインからの高さ+第2ピークのベースラインからの高さ)・・・(1)   Small particle size ratio = (height from baseline of maximum peak) / (height from baseline of maximum peak + height from baseline of second peak) (1)

本発明に係るヘモグロビン類測定用カラム充填剤では、好ましくは、前記カラム充填剤は、アクリル系モノマーを主成分とする。   In the column filler for measuring hemoglobins according to the present invention, preferably, the column filler contains an acrylic monomer as a main component.

本発明に係るヘモグロビン類測定用カラム充填剤では、好ましくは、粒度分布を測定した際に得られる度数分布のピークが2つである。   In the column packing for measuring hemoglobins according to the present invention, preferably, there are two peaks of the frequency distribution obtained when the particle size distribution is measured.

本発明に係るヘモグロビン類測定用液体クロマトグラフィーカラムでは、カラムに、本発明に従って構成されている上記ヘモグロビン類測定用カラム充填剤が充填されている。   In the liquid chromatography column for measuring hemoglobins according to the present invention, the column is filled with the above-mentioned column filler for measuring hemoglobins which is constituted according to the present invention.

本発明に係る液体クロマトグラフィーによるヘモグロビン類の測定方法は、高速液体クロマトグラフィーによるヘモグロビン類の測定法であって、粒度分布を測定した際に得られる度数分布のピークが2つ以上存在し、度数分布ピークのうち、最大粒径を示すピークの粒径(最大ピーク)が、最小粒径を示すピークの粒径の1.1〜3.0倍であり、最大ピークの粒径は、2番目に大きいピーク(第2ピーク)を示す粒径よりも小さく、下記式(1)で表される小粒径比率が0.91〜0.99であり、かつ該カラム充填剤の平均粒径が3.0〜6.5μmを満たすことを特徴とするカラム充填剤を使用し、かつ流速を2.5〜3.7mL/minとすることを特徴とする。   The method of measuring hemoglobins by liquid chromatography according to the present invention is a method of measuring hemoglobins by high performance liquid chromatography, wherein two or more peaks of frequency distribution obtained when particle size distribution is measured, frequency Among the distribution peaks, the particle size of the peak showing the largest particle size (maximum peak) is 1.1 to 3.0 times the particle size of the peak showing the smallest particle size, and the particle size of the largest peak is the second Smaller than the particle diameter showing a large peak (second peak), the small particle diameter ratio represented by the following formula (1) is 0.91 to 0.99, and the average particle diameter of the column filler is It is characterized by using a column packing characterized by satisfying 3.0 to 6.5 μm, and setting the flow rate to 2.5 to 3.7 mL / min.

小粒径比率=(最大ピークのベースラインからの高さ)/(最大ピークのベースラインからの高さ+第2ピークのベースラインからの高さ)・・・(1)   Small particle size ratio = (height from baseline of maximum peak) / (height from baseline of maximum peak + height from baseline of second peak) (1)

本発明に係るヘモグロビン類測定用カラム充填剤及びヘモグロビン類の測定方法によれば、流速を高めて高速化を図った場合においても、ヘモグロビン類のピークの鋭敏さを維持することができる。従って、測定時間の短縮と、ヘモグロビン類の分離性能の向上との両立が可能となる。   According to the column packing for measuring hemoglobins according to the present invention and the method for measuring hemoglobins, even when the flow rate is increased to increase the speed, the sensitivity of the peaks of hemoglobins can be maintained. Therefore, it is possible to achieve both shortening of the measurement time and improvement of the separation performance of hemoglobins.

図1は、本発明の技術分野における、ヘモグロビンA1cを測定した際の一般的なクロマトグラムの模式図である。FIG. 1 is a schematic view of a general chromatogram when measuring hemoglobin A1c in the technical field of the present invention. 図2は、本発明の一実施形態に係るカラム充填剤が充填されているカラムを用いた血液試料の測定において、流速を段階的に変化させた場合のヘモグロビンA1cのピークにおけるピーク左側の平坦さの測定値の変化を示す図である。FIG. 2 shows the flatness on the left side of the peak of hemoglobin A1c when the flow rate is gradually changed in the measurement of a blood sample using a column packed with a column packing material according to one embodiment of the present invention. It is a figure which shows the change of the measured value of.

以下、本発明の詳細を説明する。   Hereinafter, the present invention will be described in detail.

(充填剤粒子の粒径)
本発明のヘモグロビン類測定用カラム充填剤(以下、単に充填剤ともいう)は、粒子状の充填剤からなる。
(Particle size of filler particles)
The column filler for measuring hemoglobins of the present invention (hereinafter, also simply referred to as a filler) comprises a particulate filler.

本発明の充填剤の平均粒径の下限は3.0μm、上限は6.5μmである。充填剤の平均粒径が3.0μm未満であると、溶離液をカラムに流すために必要となる圧力が高くなり、液体クロマトグラフィーの装置に耐圧性付与のための特殊な部品等が必要となる。充填剤の平均粒径が6.5μmを超えると、カラム内の空隙率が増大し、流速を上昇させた際に分離性能に影響を与えるおそれがある。本発明の充填剤の平均粒径の好ましい下限は6.0μm、好ましい上限は6.4μmである。   The lower limit of the average particle diameter of the filler of the present invention is 3.0 μm, and the upper limit is 6.5 μm. If the average particle size of the filler is less than 3.0 μm, the pressure required to flow the eluent through the column becomes high, and special parts for imparting pressure resistance to the liquid chromatography apparatus are required. Become. When the average particle size of the filler exceeds 6.5 μm, the porosity in the column may increase, and the separation performance may be affected when the flow rate is increased. The preferable lower limit of the average particle diameter of the filler of the present invention is 6.0 μm, and the preferable upper limit is 6.4 μm.

なお、本明細書において上記平均粒径、並びに粒度分布は、個数カウント法の原理に基づく粒度分布測定装置により得られた測定結果によるものである。ただし、他の測定原理に基づく測定装置であっても、測定結果について、個数カウント法の原理による測定結果との相関が既知であり、又はキャリブレーションが成されている装置であれば用いることができ、このような装置としては、例えば、遠心沈降法、動的光散乱法、レーザー回折光散乱法、超音波減衰法、キャピラリー法、コールター法等の公知の原理に基づく装置等が挙げられる。   In the present specification, the above-mentioned average particle diameter and particle size distribution are based on measurement results obtained by a particle size distribution measuring device based on the principle of the number counting method. However, even if it is a measurement device based on other measurement principles, it should be used if the measurement result has a known correlation with the measurement result according to the principle of the number counting method, or if the device is calibrated. Such devices include, for example, devices based on known principles such as centrifugal sedimentation method, dynamic light scattering method, laser diffraction light scattering method, ultrasonic attenuation method, capillary method, Coulter method and the like.

(度数分布のピーク)
本発明の充填剤では、粒度分布を測定した際に得られる度数分布のピーク(以下、単に粒度分布のピークともいう)が2つ以上存在する。本発明の充填剤は、上記粒度分布のピークを2つ〜4つ有することが好ましく、2つ有することがより好ましい。
(Peak of frequency distribution)
In the filler of the present invention, two or more peaks of frequency distribution (hereinafter, also simply referred to as peaks of particle size distribution) obtained when the particle size distribution is measured are present. The filler of the present invention preferably has two to four peaks of the above particle size distribution, and more preferably has two.

なお、本明細書において上記ピークとは、隣接する左右の測定点よりもベースラインからの高さの大きい測定点を意味する。即ち、上記粒度分布のピークとは、粒度分布を示すグラフにおける各山の頂点のことである。   In the present specification, the above peak means a measurement point whose height from the baseline is larger than that of the adjacent left and right measurement points. That is, the peak of the above particle size distribution is the top of each mountain in the graph showing the particle size distribution.

本発明の充填剤では、度数分布ピークのうち、最大粒径を示すピークの粒径が、最小粒径を示すピークの粒径の1.1〜3.0倍であり、ピークが最大を示す粒径は、2番目に大きいピークを示す粒径よりも小さく、下記式(1)で定義される小粒径比率が0.91〜0.99となっている。   In the filler of the present invention, among the frequency distribution peaks, the particle size of the peak exhibiting the maximum particle size is 1.1 to 3.0 times the particle size of the peak exhibiting the minimum particle size, and the peak exhibits the maximum. The particle size is smaller than the particle size showing the second largest peak, and the small particle size ratio defined by the following formula (1) is 0.91 to 0.99.

小粒径比率=(最大ピークのベースラインからの高さ)/(最大ピークのベースラインからの高さ+第2ピークのベースラインからの高さ)・・・(1)   Small particle size ratio = (height from baseline of maximum peak) / (height from baseline of maximum peak + height from baseline of second peak) (1)

小粒径比率が前述の範囲となっていることによって、カラム内部に充填剤粒子を高密度に充填することと、充填剤粒子の最適な比表面積をコントロールすることとの両立が可能となる。そのため、耐圧性と高い分析能力とを両立したカラムを提供することが可能となる。小粒径比率の好ましい範囲は、0.94〜0.99である。   When the small particle size ratio is in the above-mentioned range, it is possible to achieve both the packing of the filler particles in the interior of the column with high density and the control of the optimum specific surface area of the filler particles. Therefore, it is possible to provide a column which has both pressure resistance and high analysis ability. The preferred range of the small particle size ratio is 0.94 to 0.99.

(製造方法)
本発明の充填剤を製造する方法としては、公知の方法を用いることができ、例えば、粒度分布が単一ピークを有する2種以上の充填剤を、上述した条件に適合するように混合する方法、複数のピークを有する充填剤を重合により得る方法等が挙げられる。
(Production method)
As a method for producing the filler of the present invention, a known method can be used, for example, a method in which two or more fillers having a single particle size distribution are mixed so as to meet the above-mentioned conditions. And a method of obtaining a filler having a plurality of peaks by polymerization.

(充填剤の素材)
本発明の充填剤の素材としては、シリカ系、セラミックス系、もしくはガラス系等の無機系素材、または、アクリル系ポリマー、もしくはスチレン系ポリマー等の有機合成系素材等の公知の素材を用いることができる。なかでも、有機合成系素材を用いることが好ましく、アクリル系ポリマーを主成分とすることがより好ましい。
(Material of filler)
As the material of the filler of the present invention, a known material such as an inorganic material such as silica, ceramic or glass, or an organic synthetic material such as acrylic polymer or styrene polymer may be used. it can. Among them, it is preferable to use an organic synthetic material, and it is more preferable to use an acrylic polymer as a main component.

なお、本明細書において「アクリル系」とは、アクリロイルオキシ基又はメタクリロイルオキシ基を有することを意味し、「(メタ)アクリル」とは、「アクリル又はメタクリル」を意味する。   In the present specification, "acrylic" means having an acryloyloxy group or a methacryloyloxy group, and "(meth) acrylic" means "acrylic or methacrylic".

上記アクリル系ポリマーを素材とした場合の充填剤の製造方法としては、アクリル系モノマーを公知の重合法により重合する方法を用いることができる。   As a method of producing the filler in the case of using the above-mentioned acrylic polymer as a raw material, a method of polymerizing an acrylic monomer by a known polymerization method can be used.

上記アクリル系モノマーとしては、例えば、ポリエチレングリコールジ(メタ)アクリレート類、ポリプロピレングリコールジ(メタ)アクリレート類、アルキレングリコールジ(メタ)アクリレート類等の、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する架橋性のアクリル系モノマー等が挙げられる。   Examples of the acrylic monomer include, for example, at least two (meth) acryloyloxy groups in the molecule, such as polyethylene glycol di (meth) acrylates, polypropylene glycol di (meth) acrylates, and alkylene glycol di (meth) acrylates. Examples thereof include crosslinkable acrylic monomers having a group.

上記アクリル系ポリマーは、上記架橋性のアクリル系モノマーを重合する方法や、上記架橋性のアクリル系モノマーと、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、ポリエチレングリコールモノ(メタ)アクリレート類、2−ヒドロキシエチル(メタ)アクリレート等の非架橋性のアクリル系モノマーとを共重合する方法等により調製することができる。   The above acrylic polymer is a method of polymerizing the above crosslinkable acrylic monomer, or the above crosslinkable acrylic monomer, methyl (meth) acrylate, ethyl (meth) acrylate, polyethylene glycol mono (meth) acrylate It can be prepared by a method of copolymerizing with a non-crosslinkable acrylic monomer such as 2-hydroxyethyl (meth) acrylate.

(表面状態)
本発明の充填剤は、イオン交換基を有することが好ましい。
(Surface condition)
The filler of the present invention preferably has an ion exchange group.

上記イオン交換基としては、カチオン交換基であることが好ましく、スルホン酸基であることがより好ましい。上記イオン交換基を有する充填剤は、例えば、充填剤の主成分を上記アクリル系ポリマーとする場合、a)アクリル系モノマーとイオン交換基を有する単量体とを重合してアクリル系ポリマーを調製する方法、b)アクリル系ポリマーを調製した後にイオン交換基を導入する方法等の公知の方法により調製することができる。   The ion exchange group is preferably a cation exchange group, more preferably a sulfonic acid group. The filler having the ion exchange group, for example, when the main component of the filler is the acrylic polymer, a) an acrylic polymer is prepared by polymerizing an acrylic monomer and a monomer having an ion exchange group. And a method of introducing an ion exchange group after the preparation of the acrylic polymer and b).

なお、本明細書においては充填剤、並びに充填剤粒子は、特に断らない限り同義の語として用いられる。   In the present specification, fillers and filler particles are used as the same term unless otherwise specified.

(測定対象)
本発明の充填剤を用いれば、高速液体クロマトグラフィーによって種々のヘモグロビン類を測定することができる。具体的には、本発明のヘモグロビン類測定用カラム充填剤を用いれば、液体クロマトグラフィーにより、ヘモグロビンA0、ヘモグロビンA1c、ヘモグロビンF(胎児性ヘモグロビン)、ヘモグロビンA2やヘモグロビンS等を測定することができる。
(Object of measurement)
Using the filler of the present invention, various hemoglobins can be measured by high performance liquid chromatography. Specifically, hemoglobin A0, hemoglobin A1c, hemoglobin F (fetal hemoglobin), hemoglobin A2, hemoglobin S, etc. can be measured by liquid chromatography using the column material for measuring hemoglobins of the present invention. .

また、本発明の充填剤を用いることで、従来より流速を高めた条件での測定も可能となる。測定時間の短縮を図るために、流速を2.5〜3.7mL/minとした条件下で本発明のヘモグロビン類測定用カラム充填剤を用いた、高速液体クロマトグラフィーによるヘモグロビン類の測定方法もまた、本発明の一つである。   In addition, by using the filler of the present invention, it is also possible to perform measurement under conditions where the flow rate is higher than in the prior art. In order to shorten the measurement time, the method of measuring hemoglobins by high performance liquid chromatography using the column packing for measuring hemoglobins of the present invention under the condition of a flow rate of 2.5 to 3.7 mL / min Moreover, it is one of the present invention.

本発明のヘモグロビン類測定用カラム充填剤を用いて高速液体クロマトグラフィーによりヘモグロビンA1c等のヘモグロビン類の測定を行う場合には、溶離液送液用のポンプ、サンプラ、検出器等を備えた公知の高速液体クロマトグラフィーシステムに、本発明のヘモグロビン類測定用カラム充填剤を充填したカラムを接続し、血液試料中のヘモグロビン類の測定を行なうことができる。   In the case of measuring hemoglobins such as hemoglobin A1c and the like by high performance liquid chromatography using the column packing for measuring hemoglobins of the present invention, a known pump, sampler, detector or the like for feeding an eluent is provided. A column packed with the column for measuring hemoglobins of the present invention can be connected to a high performance liquid chromatography system to measure hemoglobins in a blood sample.

(溶離液)
本発明のヘモグロビン類測定用カラム充填剤を用いた液体クロマトグラフィーに用いられる溶離液としては、公知の塩化合物を含む緩衝液類や有機溶媒類を用いることが好ましい。具体的な緩衝液としては、例えば、有機酸、無機酸、及び、これらの塩類、アミノ酸類、グッドの緩衝液等が挙げられる。
(Eluent)
As an eluent used for liquid chromatography using the column packing for measuring hemoglobins of the present invention, it is preferable to use buffers containing known salt compounds and organic solvents. Specific buffers include, for example, organic acids, inorganic acids, and salts thereof, amino acids, buffers of Good and the like.

上記有機酸は特に限定されず、例えば、クエン酸、コハク酸、酒石酸、リンゴ酸等が挙げられる。   The organic acid is not particularly limited, and examples thereof include citric acid, succinic acid, tartaric acid, malic acid and the like.

上記無機酸は特に限定されず、例えば、塩酸、硝酸、硫酸、リン酸、ホウ酸、酢酸等が挙げられる。   The inorganic acid is not particularly limited, and examples thereof include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, boric acid, acetic acid and the like.

上記アミノ酸類は特に限定されず、例えば、グリシン、タウリン、アルギニン等が挙げられる。   The above amino acids are not particularly limited, and examples thereof include glycine, taurine, arginine and the like.

塩類としては例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩等が挙げられる。   Examples of salts include sodium salt, potassium salt, calcium salt, magnesium salt and the like.

また、上記緩衝液には、他に一般に添加される物質、例えば、界面活性剤、各種ポリマー、親水性の低分子化合物等を適宜添加してもよい。   In addition, substances generally added to the above buffer, for example, surfactants, various polymers, hydrophilic low molecular weight compounds and the like may be added as appropriate.

ヘモグロビンA1cの測定を行う際の上記緩衝液の塩濃度の好ましい下限は10mmol/L、好ましい上限は1000mmol/Lである。緩衝液の塩濃度が10mmol/L未満であると、イオン交換反応が行なわれず、ヘモグロビン類を分離することができなくなることがある。緩衝液の塩濃度が1000mmol/Lを超えると、塩が析出してシステムに悪影響を及ぼすことがある。   The preferable lower limit of the salt concentration of the above buffer when performing measurement of hemoglobin A1c is 10 mmol / L, and the preferable upper limit is 1000 mmol / L. When the salt concentration of the buffer solution is less than 10 mmol / L, the ion exchange reaction may not be performed, and the hemoglobins may not be separated. When the salt concentration of the buffer solution exceeds 1000 mmol / L, salts may be precipitated to adversely affect the system.

(ヘモグロビン類のピーク)
図1に示すように、ヘモグロビンA1cのクロマトグラムにおいては、ヘモグロビンA1cのピークの左側に発生する下向きの突出部分(「谷部分」)と、そのさらに左側に発生する上向きの突出部分(「山部分」)の双方が発生する。
(The peak of hemoglobins)
As shown in FIG. 1, in the chromatogram of hemoglobin A1c, a downward protruding portion ("valley portion") generated on the left side of the hemoglobin A1c peak and an upward protruding portion ("crest portion" generated on the further left side ') Both occur.

本発明の評価指標となる「ピーク左部の平坦さ」は、以下のように求められる。   The “peak left flatness”, which is an evaluation index of the present invention, is determined as follows.

「ピーク左部の平坦さ」 =(谷部分の頂点となるベースラインからの高さ)/(山部分の頂点となるベースラインからの高さ)   "Flatness of the peak left portion" = (height from the baseline at the top of the valley) / (height from the baseline at the top of the peak)

一般に、この値は測定の際に流速を上昇させると共に増大する傾向があり、増大を抑える事でヘモグロビンA1cのピークを鋭敏に保持でき、高い分離能力を維持できると判断される。   Generally, this value tends to increase as the flow velocity increases during measurement, and it is judged that the peak of hemoglobin A1c can be kept sharp and the high separation ability can be maintained by suppressing the increase.

(実施例)
以下に発明の効果を説明するための実施例を記載するが、本発明は下記の実施例に限定されるものではない。
(Example)
Although the Example for demonstrating the effect of invention is described below, this invention is not limited to a following example.

[製造例1]
2−ヒドロキシ−3−アクリロイルオキシプロピルメタクリレート(新中村化学工業社製)40g、トリエチレングリコールジメタクリレート(新中村化学工業社製)140g、ペンタエリスリトールテトラアクリレート(新中村化学工業社製)5g、及びペンタエリスリトールトリアクリレート(トリエステル37%)(新中村化学工業社製)15gを含有する単量体混合物に、過酸化ベンゾイル1.0gを溶解した。得られた混合物を、4重量%のポリビニルアルコール水溶液2Lに分散させ、羽根長60mmの撹拌羽根を用いて390rpmで撹拌しながら、窒素雰囲気下で80℃に加温して1時間重合反応を行った。1時間後に反応系にアクリルアミド−tert−ブチルスルホン酸80gを溶解した水溶液200mLを添加してさらに80℃で1時間重合反応を行った。
Production Example 1
40 g of 2-hydroxy-3-acryloyloxypropyl methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), 140 g of triethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), 5 g of pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) In a monomer mixture containing 15 g of pentaerythritol triacrylate (triester 37%, manufactured by Shin-Nakamura Chemical Co., Ltd.), 1.0 g of benzoyl peroxide was dissolved. The obtained mixture is dispersed in 2 L of a 4% by weight aqueous solution of polyvinyl alcohol, and while stirring at 390 rpm using a stirring blade with a blade length of 60 mm, the mixture is heated to 80 ° C. under a nitrogen atmosphere to carry out a polymerization reaction for 1 hour The After 1 hour, 200 mL of an aqueous solution in which 80 g of acrylamide-tert-butylsulfonic acid was dissolved was added to the reaction system, and a polymerization reaction was further performed at 80 ° C. for 1 hour.

得られた重合体粒子を洗浄して充填剤粒子を得た。粒度分布測定装置により、得られた充填剤粒子の平均粒径及び粒度分布を測定した。測定に際しては、光源としては半導体レーザーを、センサとしてはLE400−05を用い、120秒間測定を行って体積分布表示を行い、平均粒径を算出した。その結果、平均粒径は4.45μm、粒度分布は単一ピーク状であった。   The obtained polymer particles were washed to obtain filler particles. The average particle size and particle size distribution of the obtained filler particles were measured by a particle size distribution measuring device. At the time of measurement, measurement was carried out for 120 seconds using a semiconductor laser as a light source and LE 400-05 as a sensor, and volume distribution display was performed to calculate an average particle diameter. As a result, the average particle diameter was 4.45 μm, and the particle size distribution was in the form of a single peak.

[製造例2]
製造例1における撹拌時の回転数を390rpmから300rpmに変更したこと以外は、製造例1と同様に操作して、充填剤粒子を得た。得られた充填剤粒子の平均粒径及び粒度分布を測定した。その結果、平均粒径は9.47μm、粒度分布は単一ピーク状であった。
Production Example 2
In the same manner as in Production Example 1, except that the number of revolutions during stirring in Production Example 1 was changed from 390 rpm to 300 rpm, filler particles were obtained. The average particle size and particle size distribution of the obtained filler particles were measured. As a result, the average particle diameter was 9.47 μm, and the particle size distribution was in the form of a single peak.

製造例1、2で得られた充填剤粒子の平均粒径及び粒度分布ピーク数を表1に示す。   The average particle diameter and the number of particle size distribution peaks of the filler particles obtained in Production Examples 1 and 2 are shown in Table 1.

Figure 2018179505
Figure 2018179505

製造例1及び2で得られた充填剤粒子を、表2に示した混合比で混合して、実施例1、2、及び、比較例1〜3のカラム充填剤を得た。得られた、これらのカラム充填剤の各種パラメータを表2に示す。   The filler particles obtained in Production Examples 1 and 2 were mixed at the mixing ratio shown in Table 2 to obtain column fillers of Examples 1 and 2 and Comparative Examples 1 to 3. The various parameters of these column packings obtained are shown in Table 2.

Figure 2018179505
Figure 2018179505

実施例1〜2、比較例1〜3で得られたカラム充填剤を内径4.6mm、長さ20mmのステンレス製カラムに充填し、ヘモグロビン類測定用カラムを得た。得られたカラムを汎用高速液体クロマトグラフィー測定装置にセットし、血液試料の測定を行った。   The column packings obtained in Examples 1 and 2 and Comparative Examples 1 to 3 were packed in a stainless steel column having an inner diameter of 4.6 mm and a length of 20 mm to obtain a column for measuring hemoglobins. The obtained column was set in a general-purpose high performance liquid chromatography measuring apparatus, and the blood sample was measured.

(血液試料の測定)
精度管理用コントロール血液を試料とし、下記の条件で測定を行った。
(Measurement of blood sample)
The control blood for quality control was used as a sample, and measurement was performed under the following conditions.

測定試料:精度管理用コントロール血液(シスメックス社製)
溶離液:溶離液Aとして200mmol/Lのリン酸緩衝液(pH5.3)、溶離液Bとして400mmol/Lのリン酸緩衝液(pH8.0)
吸光度:415nm
測定装置:LC20A(島津製作所社製)
Measurement sample: Control blood for quality control (Sysmex Corporation)
Eluent: 200 mmol / L phosphate buffer (pH 5.3) as eluent A, 400 mmol / L phosphate buffer (pH 8.0) as eluent B
Absorbance: 415 nm
Measuring device: LC20A (made by Shimadzu Corporation)

また、測定の際に、流速を11段階に渡って1.7〜3.7mL/minまで変化させた。図2は、流速をこのように変化させた場合の、ヘモグロビンA1cのピークに隣接する他のピークの値の変化を示す。   In addition, at the time of measurement, the flow rate was changed from 1.7 to 3.7 mL / min over 11 stages. FIG. 2 shows changes in values of other peaks adjacent to the peak of hemoglobin A1c when the flow rate is changed in this manner.

実施例1、2においては、流速を上昇させた測定条件下でもヘモグロビンA1cのピーク左部の平坦さの増大は見られず、分離能力が維持されることが分かる。   In Examples 1 and 2, no increase in flatness of the left side of the peak of the hemoglobin A1c is observed under measurement conditions in which the flow rate is increased, and it can be seen that the separation ability is maintained.

一方、比較例1、2においては、流速の上昇に伴いヘモグロビンA1cのピーク左部の平坦さの増大が見られた。従って、測定時間を短縮する目的で流速を上昇させた測定条件においては、比較例1〜3のカラム充填剤はピークの鋭敏さが損なわれ、十分な分離能力を維持できない。   On the other hand, in Comparative Examples 1 and 2, an increase in the flatness of the peak left portion of the hemoglobin A1c was observed as the flow velocity increased. Therefore, in the measurement conditions in which the flow rate is increased in order to shorten the measurement time, the column packings of Comparative Examples 1 to 3 lose the sharpness of the peak and can not maintain sufficient separation ability.

Claims (5)

高速液体クロマトグラフィーによりヘモグロビン類を測定するために用いられるカラム充填剤であって、粒度分布を測定した際に得られる度数分布のピークが2つ以上存在し、度数分布ピークのうち、最大粒径を示すピークの粒径(最大ピーク)が、最小粒径を示すピークの粒径の1.1〜3.0倍であり、最大ピークの粒径は、2番目に大きいピーク(第2ピーク)を示す粒径よりも小さく、下記式(1)で表される小粒径比率が0.91〜0.99であり、かつ該カラム充填剤の平均粒径が3.0〜6.5μmの範囲にある、ヘモグロビン類測定用カラム充填剤。
小粒径比率=(最大ピークのベースラインからの高さ)/(最大ピークのベースラインからの高さ+第2ピークのベースラインからの高さ)・・・(1)
A column packing material used to measure hemoglobins by high performance liquid chromatography, which has two or more frequency distribution peaks obtained when the particle size distribution is measured, and the maximum particle size among the frequency distribution peaks The particle size of the peak (maximum peak) is 1.1 to 3.0 times the particle size of the peak showing the minimum particle size, and the particle size of the maximum peak is the second largest peak (second peak) The particle diameter ratio represented by the following formula (1) is 0.91 to 0.99, and the average particle diameter of the column filler is 3.0 to 6.5 μm. A column packing for measuring hemoglobins in the range.
Small particle size ratio = (height from baseline of maximum peak) / (height from baseline of maximum peak + height from baseline of second peak) (1)
前記カラム充填剤は、アクリル系モノマーを主成分とすることを特徴とする、請求項1に記載のヘモグロビン類測定用カラム充填剤。   The column filler for measuring hemoglobins according to claim 1, wherein the column filler comprises an acrylic monomer as a main component. 粒度分布を測定した際に得られる度数分布のピークが2つであることを特徴とする、請求項1または請求項2に記載のヘモグロビン類測定用カラム充填剤。   The column filler for measuring hemoglobins according to claim 1 or 2, characterized in that there are two peaks of frequency distribution obtained when the particle size distribution is measured. カラムに、請求項1〜3のいずれか一項に記載のヘモグロビン類測定用カラム充填剤が充填されている、ヘモグロビン類測定用液体クロマトグラフィーカラム。   A liquid chromatography column for measuring hemoglobins, wherein the column is filled with the column packing for measuring hemoglobins according to any one of claims 1 to 3. 高速液体クロマトグラフィーによるヘモグロビン類の測定法であって、粒度分布を測定した際に得られる度数分布のピークが2つ以上存在し、度数分布ピークのうち、最大粒径を示すピークの粒径(最大ピーク)が、最小粒径を示すピークの粒径の1.1〜3.0倍であり、最大ピークの粒径は、2番目に大きいピーク(第2ピーク)を示す粒径よりも小さく、下記式(1)で表される小粒径比率が0.91〜0.99となり、かつ該カラム充填剤の平均粒径が3.0〜6.5μmを満たすことを特徴とするカラム充填剤を使用し、かつ流速を2.5〜3.7mL/minとすることを特徴とする、ヘモグロビン類の測定方法。
小粒径比率=(最大ピークのベースラインからの高さ)/(最大ピークのベースラインからの高さ+第2ピークのベースラインからの高さ)・・・(1)
This is a method of measuring hemoglobins by high performance liquid chromatography, in which there are two or more frequency distribution peaks obtained when measuring the particle size distribution, and among the frequency distribution peaks, the particle size of the peak showing the largest particle size ( Maximum peak) is 1.1 to 3.0 times the particle size of the peak showing the smallest particle size, and the particle size of the maximum peak is smaller than the particle size showing the second largest peak (second peak) The column packing characterized in that the small particle diameter ratio represented by the following formula (1) is 0.91 to 0.99, and the average particle diameter of the column filler is 3.0 to 6.5 μm. A method of measuring hemoglobins, characterized in that the agent is used and the flow rate is 2.5 to 3.7 mL / min.
Small particle size ratio = (height from baseline of maximum peak) / (height from baseline of maximum peak + height from baseline of second peak) (1)
JP2017073454A 2017-04-03 2017-04-03 Column packing material for measuring hemoglobin and method for measuring hemoglobin Active JP6841503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017073454A JP6841503B2 (en) 2017-04-03 2017-04-03 Column packing material for measuring hemoglobin and method for measuring hemoglobin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017073454A JP6841503B2 (en) 2017-04-03 2017-04-03 Column packing material for measuring hemoglobin and method for measuring hemoglobin

Publications (2)

Publication Number Publication Date
JP2018179505A true JP2018179505A (en) 2018-11-15
JP6841503B2 JP6841503B2 (en) 2021-03-10

Family

ID=64276410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017073454A Active JP6841503B2 (en) 2017-04-03 2017-04-03 Column packing material for measuring hemoglobin and method for measuring hemoglobin

Country Status (1)

Country Link
JP (1) JP6841503B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123113A (en) * 1996-10-24 1998-05-15 Sekisui Chem Co Ltd Column for liquid chromatography
JP2005308753A (en) * 2004-04-23 2005-11-04 Agilent Technol Inc Composition and method for high-efficiency chromatography
JP2011209040A (en) * 2010-03-29 2011-10-20 Sekisui Medical Co Ltd COLUMN FILLER FOR MEASURING HEMOGLOBINS, METHOD FOR MEASURING HEMOGLOBIN A1c, AND METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBINS
JP2013527447A (en) * 2010-04-26 2013-06-27 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Method for producing chromatographic media
JP2014095637A (en) * 2012-11-09 2014-05-22 Sekisui Medical Co Ltd Method of measuring stable type hemoglobin a1c value
JP2014160054A (en) * 2013-01-25 2014-09-04 Hitachi Chemical Co Ltd Column filler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123113A (en) * 1996-10-24 1998-05-15 Sekisui Chem Co Ltd Column for liquid chromatography
JP2005308753A (en) * 2004-04-23 2005-11-04 Agilent Technol Inc Composition and method for high-efficiency chromatography
JP2011209040A (en) * 2010-03-29 2011-10-20 Sekisui Medical Co Ltd COLUMN FILLER FOR MEASURING HEMOGLOBINS, METHOD FOR MEASURING HEMOGLOBIN A1c, AND METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBINS
JP2013527447A (en) * 2010-04-26 2013-06-27 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Method for producing chromatographic media
JP2014095637A (en) * 2012-11-09 2014-05-22 Sekisui Medical Co Ltd Method of measuring stable type hemoglobin a1c value
JP2014160054A (en) * 2013-01-25 2014-09-04 Hitachi Chemical Co Ltd Column filler

Also Published As

Publication number Publication date
JP6841503B2 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
Bedells et al. Micellisation of diblock copoly (oxyethylene/oxybutylene) in aqueous solution
JP6733900B2 (en) Separation carrier, method for producing separation carrier, column, and device for liquid chromatography or solid phase extraction
US20140162369A1 (en) Method for measuring hemoglobins
US6174728B1 (en) Control or calibration standard for use with instruments for optical measurement of hemoglobin concentration in blood samples
Kawaguchi et al. Cloud points in aqueous poly (N-isopropylacrylamide) solutions
US20100210458A1 (en) Biomicromolecule-separating, monolithic silica column and its production process, and separation method of biomicromolecules
CN108508109A (en) The detection method of content of acrylic acid high-carbon-alkyl
BR102020005683A2 (en) PREPARATION OF A WATER DISPERSION OF VINYL ACETATE COPOLYMER PARTICLES AND A CYCLIC ACETAL CETENE MONOMER
Cho et al. Tunable attractive and repulsive interactions between pH-responsive microgels
JP2011209040A (en) COLUMN FILLER FOR MEASURING HEMOGLOBINS, METHOD FOR MEASURING HEMOGLOBIN A1c, AND METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBINS
JP6841503B2 (en) Column packing material for measuring hemoglobin and method for measuring hemoglobin
WO2015053276A1 (en) Method for manufacturing small-diameter column for chromatography
JP6194127B2 (en) Glucose detector and glucose detection method
CN103443622A (en) Liquid chromatography column, and method for analyzing hemoglobin
JP5901081B2 (en) Column filler for measuring hemoglobin, method for producing column filler for measuring hemoglobin, and method for measuring hemoglobin by liquid chromatography
JP2020118661A (en) Methods of fractionating and capturing specific cells
Liu et al. Investigation of temperature-responsivity and aqueous chromatographic characteristics of a thermo-responsive monolithic column
JP2011047859A (en) COLUMN PACKING FOR SEPARATING HEMOGLOBIN, METHOD FOR MEASURING HEMOGLOBIN A1c, METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBIN, AND METHOD FOR PRODUCING COLUMN PACKING FOR SEPARATING HEMOGLOBIN
JP4814204B2 (en) Method for measuring glycated hemoglobin
JP2012073184A (en) Method for measuring hemoglobins
RU2638929C1 (en) Method of producing polymethyl methacrylate for solid-phase extraction
JP7331866B2 (en) Guard column and guard column manufacturing method
JP7355471B2 (en) Hemoglobin analysis method
CN103667174A (en) Composition for processing biological sample
JP5522772B2 (en) Column filler and method for producing column filler

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210210

R150 Certificate of patent or registration of utility model

Ref document number: 6841503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350