JP4814204B2 - Method for measuring glycated hemoglobin - Google Patents

Method for measuring glycated hemoglobin Download PDF

Info

Publication number
JP4814204B2
JP4814204B2 JP2007308233A JP2007308233A JP4814204B2 JP 4814204 B2 JP4814204 B2 JP 4814204B2 JP 2007308233 A JP2007308233 A JP 2007308233A JP 2007308233 A JP2007308233 A JP 2007308233A JP 4814204 B2 JP4814204 B2 JP 4814204B2
Authority
JP
Japan
Prior art keywords
hemoglobin
column
eluent
glycated hemoglobin
packing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007308233A
Other languages
Japanese (ja)
Other versions
JP2009133654A (en
Inventor
卓也 與谷
孝之 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2007308233A priority Critical patent/JP4814204B2/en
Publication of JP2009133654A publication Critical patent/JP2009133654A/en
Application granted granted Critical
Publication of JP4814204B2 publication Critical patent/JP4814204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、液体試料中、例えば血液中の糖化ヘモグロビンの測定方法に関し、より詳細には、液体クロマトグラフィーを用いた糖化ヘモグロビンの測定方法に関する。   The present invention relates to a method for measuring glycated hemoglobin in a liquid sample, for example, blood, and more particularly to a method for measuring glycated hemoglobin using liquid chromatography.

人の血液中には、様々なヘモグロビンが存在する。成人の血液中のヘモグロビンの約90%はヘモグロビンA0であり、約7%が糖化ヘモグロビンA1である。ヘモグロビンのβ鎖に結合した糖の種類により、糖化ヘモグロビンA1は、ヘモグロビンA1a1、ヘモグロビンA1a、ヘモグロビンA1b、ヘモグロビンA1cなどに分隔される。もっとも、糖化ヘモグロビンA1の約60%を占めるのがヘモグロビンA1cである。   There are various hemoglobins in human blood. About 90% of hemoglobin in adult blood is hemoglobin A0 and about 7% is glycated hemoglobin A1. The glycated hemoglobin A1 is divided into hemoglobin A1a1, hemoglobin A1a, hemoglobin A1b, hemoglobin A1c, and the like depending on the type of sugar bound to the β chain of hemoglobin. However, hemoglobin A1c accounts for about 60% of glycated hemoglobin A1.

ヘモグロビンA1cでは、血液中のグルコースがヘモグロビンのβ鎖N末端に化学的に結合している。ヘモグロビンA1cのヘモグロビン全体に対する割合は、血糖値に依存するため、ヘモグロビンA1cと非糖化ヘモグロビンとの合計に対するヘモグロビンA1cの割合は、1〜2カ月の期間の患者の血糖値の平均を反映すると言われている。そのため、ヘモグロビンA1cのヘモグロビン全体に示す割合であるヘモグロビンA1c値(%)は、血糖値と異なり一時的な変動を示さないため、糖尿病診断の指標として広く用いられている。   In hemoglobin A1c, glucose in blood is chemically bound to the β-chain N-terminus of hemoglobin. Since the ratio of hemoglobin A1c to the total hemoglobin depends on the blood glucose level, the ratio of hemoglobin A1c to the total of hemoglobin A1c and non-glycated hemoglobin is said to reflect the average blood glucose level of the patient over a period of 1 to 2 months. ing. For this reason, the hemoglobin A1c value (%), which is the ratio of hemoglobin A1c to the entire hemoglobin, is not widely changed unlike the blood glucose level, and is therefore widely used as an index for diagnosis of diabetes.

近年、ヘモグロビンA1c値は、診察前の必須の検査項目の1つとなっており、より速やかに検査結果の得られることが望まれている。   In recent years, the hemoglobin A1c value has become one of the essential test items before diagnosis, and it is desired that the test results be obtained more quickly.

一般に、ヘモグロビンA1c値を測定するにあたっては、液体クロマトグラフィーが用いられている。液体クロマトグラフィーによる検査速度を高めるには、1)カラムの小型化、2)流速を高める方法及び3)充填剤の粒径を小さくする方法などが用いられている。もっとも、流速を高めたり、充填剤の粒径を小さくした場合には、カラム内の圧力が高くなる。そのため、カラムを含む装置の設計に制約が生じる。また、装置の耐圧性能を高めるには、高価な部品を必要とする。そのため、装置のコストが高くなり、高価なカラムは汎用の臨床検査に用いることができない。   In general, liquid chromatography is used to measure the hemoglobin A1c value. In order to increase the inspection speed by liquid chromatography, 1) downsizing of the column, 2) a method of increasing the flow rate, and 3) a method of reducing the particle size of the packing material are used. However, when the flow rate is increased or the particle size of the packing material is reduced, the pressure in the column increases. This places restrictions on the design of devices that include columns. In addition, expensive parts are required to increase the pressure resistance of the apparatus. Therefore, the cost of the apparatus becomes high, and expensive columns cannot be used for general-purpose clinical tests.

液体クロマトグラフィーによりヘモグロビン類の測定を行う場合、下記の特許文献1に記載のように、カチオン交換カラムが用いられ、溶離液の溶出力を変化させることにより、ヘモグロビン類の分離が行われている。通常、溶血した血液試料をカチオン交換液体クロマトグラフィーに供給し溶離液を流して、分離を行うと、ヘモグロビン類は、ヘモグロビンA1a、ヘモグロビンA1b、ヘモグロビンF、不安定型ヘモグロビンA1c、安定型ヘモグロビンA1c及びヘモグロビンA0の順序で溶出する。
特公平8−7197号公報
When measuring hemoglobin by liquid chromatography, a cation exchange column is used as described in Patent Document 1 below, and hemoglobins are separated by changing the elution power of the eluent. . Usually, when hemolyzed blood samples are supplied to cation exchange liquid chromatography and an eluent is flowed to separate them, hemoglobins are hemoglobin A1a, hemoglobin A1b, hemoglobin F, unstable hemoglobin A1c, stable hemoglobin A1c, and hemoglobin. Elute in A0 order.
Japanese Patent Publication No. 8-7197

前述のように、従来、カラムの小型化、流速の向上あるいは充填剤の粒径を小さくする方法などにより、ヘモグロビン類の測定の高速化が図られていた。しかしながら、高価な装置を必要とすることとなり、これらの高速化手法は、汎用の臨床検査に利用し難かった。また、カラムの小型化を図るにも限界があった。   As described above, conventionally, the speed of measurement of hemoglobin has been increased by reducing the size of the column, improving the flow rate, or reducing the particle size of the packing material. However, an expensive device is required, and these high-speed methods are difficult to use for general-purpose clinical examinations. In addition, there was a limit to downsizing the column.

本発明の目的は、上述した従来技術の現状に鑑み、ヘモグロビンA1cの測定精度を低下させることなく、測定時間を大幅に短縮することを可能とする糖化ヘモグロビンの測定方法を提供することにある。   An object of the present invention is to provide a method for measuring glycated hemoglobin capable of greatly reducing the measurement time without reducing the measurement accuracy of hemoglobin A1c in view of the above-described state of the prior art.

本発明に係る糖化ヘモグロビンの測定方法は、液体試料中の糖化ヘモグロビンを液体クロマトグラフィーにより測定する方法であり、下記の構成を備えることを特徴とする。   The method for measuring glycated hemoglobin according to the present invention is a method for measuring glycated hemoglobin in a liquid sample by liquid chromatography, and has the following configuration.

すなわち、本発明の測定方法は、平均粒径が5μm〜20μmの範囲にある充填剤が収納されており、内径が3.0mm〜5.0mm、長さが10mm〜20mmの範囲にあるカラムに、液体の試料を通過させる工程と、次に、前記カラムに、溶出力を異ならせて溶離液を1.6ml/分〜2.5ml/分の速度で通過させ、ヘモグロビンA0及び糖化ヘモグロビンを含む複数種のヘモグロビンを溶出する工程とを備え、前記ヘモグロビンA0を溶出する際に溶離液に非イオン性界面活性剤を含有させることを特徴とする。 That is, in the measuring method of the present invention, a column having an average particle diameter in the range of 5 μm to 20 μm is accommodated, the inner diameter is in the range of 3.0 mm to 5.0 mm, and the length is in the range of 10 mm to 20 mm. Next, a liquid sample is passed through, and then the eluent is passed through the column at a rate of 1.6 ml / min to 2.5 ml / min with different elution powers, and hemoglobin A0 and glycated hemoglobin are passed through. And a step of eluting a plurality of types of hemoglobin, wherein the eluent contains a nonionic surfactant when eluting the hemoglobin A0.

本発明に係る糖化ヘモグロビンの測定方法でカラムに供給される液体の試料は特に限定されないが、好ましくは、溶血された血液試料が用いられ、それによって、血中の糖化ヘモグロビンであるヘモグロビンA1cを本発明に従って短時間で高精度に測定することができる。   The liquid sample supplied to the column in the method for measuring glycated hemoglobin according to the present invention is not particularly limited, but preferably a hemolyzed blood sample is used, whereby hemoglobin A1c, which is glycated hemoglobin in blood, is obtained. According to the invention, it is possible to measure with high accuracy in a short time.

以下、本発明の詳細を説明する。   Details of the present invention will be described below.

液体クロマトグラフィーによる血液中のヘモグロビン類の測定等に際しては、ヘモグロビンA1a、ヘモグロビンA1b、ヘモグロビンF、不安定型ヘモグロビンA1c、安定型ヘモグロビンA1c及びヘモグロビンA0の順でヘモグロビン類が溶出する。そして、ヘモグロビンA0は、ヘモグロビンの大部分を占め、正常人では、ヘモグロビン全体の約90%を占める。従って、測定を終了するには、ヘモグロビンA0をより短時間で溶出させることが重要である。本発明では、上記特定の平均粒径の充填剤が充填されている上記特定の内径及び長さ範囲のカラムを用い、溶離液の流速を1.6mm/分〜2.5mm/分とし、ヘモグロビンA0を溶出する際の溶離液に非イオン性界面活性剤含有させることにより、各ヘモグロビン類の分離速度を高め、ヘモグロビンA1cの分離性能を低下させることなく、大部分を占めるヘモグロビンA0の溶出時間を短縮したことに特徴を有する。それによって、ヘモグロビンA1cの測定精度を低下させることなく、測定時間の大幅な短縮が図られる。   When measuring hemoglobins in blood by liquid chromatography, hemoglobins are eluted in the order of hemoglobin A1a, hemoglobin A1b, hemoglobin F, unstable hemoglobin A1c, stable hemoglobin A1c, and hemoglobin A0. And hemoglobin A0 occupies most of hemoglobin, and in a normal person, it accounts for about 90% of the whole hemoglobin. Therefore, in order to end the measurement, it is important to elute hemoglobin A0 in a shorter time. In the present invention, the column having the above-mentioned specific inside diameter and length, which is packed with the above-mentioned filler having the specific average particle diameter, is used, the flow rate of the eluent is set to 1.6 mm / min to 2.5 mm / min, and hemoglobin is used. By incorporating a nonionic surfactant into the eluent when eluting A0, the separation rate of each hemoglobin is increased, and the elution time of hemoglobin A0, which accounts for the majority, is reduced without degrading the separation performance of hemoglobin A1c. Characterized by shortening. Thereby, the measurement time can be greatly shortened without reducing the measurement accuracy of hemoglobin A1c.

本発明において用いられる充填剤としては、従来より血液中のヘモグロビン類の分離に用いられている様々な充填剤を用いることができる。このような充填剤としては、例えば、ポリマー系、シリカ系などが挙げられる。   As the filler used in the present invention, various fillers conventionally used for separating hemoglobin in blood can be used. Examples of such fillers include polymer-based and silica-based materials.

上記充填剤の平均粒子系は、5μm〜20μmの範囲であることが必要である。平均粒径が5μm未満では、カラム内の圧力が高くなりすぎる。より好ましくは、平均粒径は6μm以上とされ、カラム内圧の上昇をより効果的に抑制することができる。   The average particle system of the filler needs to be in the range of 5 μm to 20 μm. When the average particle size is less than 5 μm, the pressure in the column becomes too high. More preferably, the average particle diameter is 6 μm or more, and the increase in the internal pressure of the column can be more effectively suppressed.

平均粒径が20μmを越えると、ヘモグロビンA1cの分離性能が低下するおそれがある。より好ましくは、平均粒径は、12μm以下であり、それによって、ヘモグロビンA1cの分離性能をより一層高めることができる。   If the average particle size exceeds 20 μm, the separation performance of hemoglobin A1c may be reduced. More preferably, the average particle size is 12 μm or less, whereby the separation performance of hemoglobin A1c can be further enhanced.

上記充填剤が充填されるカラムについてはイオン交換液体クロマトグラフィー用の公知のカラムを適宜用いることができる。このようなカラムの材料については特に限定されず、ステンレスなどの金属、ポリエーテルエーテルケトンやポリテトラフルオロエチレンなどの合成樹脂、あるいはガラスなどを挙げることができる。   As the column filled with the above packing material, a known column for ion exchange liquid chromatography can be appropriately used. The column material is not particularly limited, and examples thereof include metals such as stainless steel, synthetic resins such as polyetheretherketone and polytetrafluoroethylene, and glass.

上記カラムの内径は、3.0mm〜5.0mmの範囲である。内径が3.0mm未満では、線速度が高くなりすぎ、カラム内の圧力が上昇しすぎる。内径が5.0mmを越えると、カラム内における拡散が起こりすぎ、ヘモグロビンA1cの分離性能が低下する。   The inner diameter of the column is in the range of 3.0 mm to 5.0 mm. If the inner diameter is less than 3.0 mm, the linear velocity becomes too high and the pressure in the column rises too much. If the inner diameter exceeds 5.0 mm, diffusion in the column will occur too much, and the separation performance of hemoglobin A1c will deteriorate.

カラムの長さは、10mm〜20mmの範囲である。10mm未満では、理論段数の低下に伴ってヘモグロビンA1cの分離性能が低下する。より好ましくは、カラムの長さは15mm以上であり、それによって、ヘモグロビンA1cの分離性能をより一層高めることができる。 The length of the column is in the range of 10 mm to 20 mm. If it is less than 10 mm, the separation performance of hemoglobin A1c decreases as the number of theoretical plates decreases. More preferably, the length of the column is 15 mm or more, whereby the separation performance of hemoglobin A1c can be further enhanced.

カラムの長さが20mmを越えると、ヘモグロビン画分の溶出に時間がかかり、測定時間の短縮ができなくなる If the column length exceeds 20 mm, it takes time to elute the hemoglobin fraction, and the measurement time cannot be shortened .

また、本発明では、溶離液の溶出力を異ならせてヘモグロビン類を溶出する際の流速については、1.6ml/分〜2.5ml/分の範囲とされる。流速が1.6ml/分未満では、ヘモグロビン画分の溶出に時間がかかり、測定時間が短縮できない。より好ましくは、1.7ml/分以上とすることにより、測定時間をより一層短縮することができる。   In the present invention, the flow rate at the time of elution of hemoglobin by varying the elution power of the eluent is set in the range of 1.6 ml / min to 2.5 ml / min. When the flow rate is less than 1.6 ml / min, it takes time to elute the hemoglobin fraction, and the measurement time cannot be shortened. More preferably, measurement time can be further shortened by setting it as 1.7 ml / min or more.

流速が2.5ml/分を越えると、カラム内の圧力が上昇し、耐圧性に優れたカラムを必要とする。より好ましくは、2.0ml/分以下とすることが望ましく、それによって、より安価なカラムを用いることができる。   When the flow rate exceeds 2.5 ml / min, the pressure in the column rises and a column with excellent pressure resistance is required. More preferably, it is desirably 2.0 ml / min or less, whereby a cheaper column can be used.

また、本発明では、溶出力を異ならせて溶離液を流して様々なヘモグロビン画分を順次溶出するに際し、ヘモグロビンA0を溶出する際の溶離液に非イオン性界面活性剤が含有されている。それによって、疎水性相互作用により充填剤に強固に吸着しているヘモグロビンA0を、速やかに溶出することができる。このような非イオン性界面活性剤としては、特に限定されず、公知の任意の非イオン性界面活性剤を用いることができる。このような非イオン性界面活性剤の代表的なものとしては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシポロピレングリコール、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ソルビタン脂肪酸エステル、グリセリン脂肪酸モノエステル、ショ糖脂肪酸エステル等が挙げられる。中でも、ポリオキシエチレンソルビタン脂肪酸エステル系であるポリオキシエチレン(20)ソルビタンラウレート(Twenn20)が特に好ましい。   Further, in the present invention, when eluting various hemoglobin fractions sequentially by flowing an eluent with different elution powers, a nonionic surfactant is contained in the eluent when hemoglobin A0 is eluted. Accordingly, hemoglobin A0 that is firmly adsorbed to the filler by hydrophobic interaction can be quickly eluted. Such a nonionic surfactant is not particularly limited, and any known nonionic surfactant can be used. Typical examples of such nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol, polyoxyethylene fatty acid ester, polyoxyethylene sorbitan fatty acid. Examples include esters, sorbitan fatty acid esters, glycerin fatty acid monoesters, and sucrose fatty acid esters. Among them, polyoxyethylene (20) sorbitan laurate (Twenn 20) which is a polyoxyethylene sorbitan fatty acid ester type is particularly preferable.

なお、上記非イオン性界面活性剤は、ヘモグロビンA0を溶出する際の溶離液に含有されておればよく、ヘモグロビンA0を溶出する際の溶離液にのみ非イオン性界面活性剤を添加してもよく、他のヘモグロビン画分を溶出する際の溶離液にも非イオン性界面活性剤を添加していてもよく、添加せずともよい。もっとも、好ましくは、他のHb画分を溶出する際の溶離液に非イオン性界面活性剤を添加すると分離に影響を及ぼす可能性があるため、ヘモグロビンA0を溶出する際の溶離液にのみ非イオン性界面活性剤が存在していることが好ましい。   The nonionic surfactant only needs to be contained in the eluent when eluting hemoglobin A0. Even if the nonionic surfactant is added only to the eluent when hemoglobin A0 is eluted. Of course, a nonionic surfactant may or may not be added to the eluent used to elute other hemoglobin fractions. However, preferably, the addition of a nonionic surfactant to the eluent when eluting other Hb fractions may affect the separation, so that only non-existent eluent when eluting hemoglobin A0 is used. It is preferred that an ionic surfactant is present.

よって、好ましくは、溶離液をカラムに供給するに際し、ヘモグロビンA0を溶出する前の段階までは溶離液中に非イオン性界面活性剤を存在させず、ヘモグロビンA0を溶出するに際し、非イオン性界面活性剤を溶離液に添加することが望ましい。その場合、溶出力を異ならせるに際し、複数種の溶離液を切り換えて用いてもよく、溶離液をカラムに供給するに際し、供給される溶離液の組成を変更しつつ溶出力を変化させてもよい。   Therefore, preferably, when the eluent is supplied to the column, the nonionic surfactant is not present in the eluent until the stage before elution of hemoglobin A0, and the nonionic interface is eluted when hemoglobin A0 is eluted. It is desirable to add an activator to the eluent. In that case, when different elution outputs are used, plural types of eluents may be switched and used. When supplying eluents to the column, the elution liquid may be changed while changing the composition of the supplied eluents. Good.

また、ヘモグロビンA0を短時間で溶出させるために、特開2003−14719号公報や特開2005−128030号公報に記載のような公知の溶出効率向上方法をさらに併用してもよい。   Further, in order to elute hemoglobin A0 in a short time, a known elution efficiency improving method as described in JP-A No. 2003-14719 or JP-A No. 2005-128030 may be further used in combination.

なお、本発明でカラムに供給される液体の試料としては、患者の糖尿病の指標としてのヘモグロビンA1c値を求めるには、溶血された血液試料が用いられる。もっとも、本発明の糖化ヘモグロビンの測定方法は、溶血された血液試料以外の液体の試料中の糖化ヘモグロビンを測定するのに用いられてもよい。   As the liquid sample supplied to the column in the present invention, a hemolyzed blood sample is used to determine the hemoglobin A1c value as an index of diabetes of the patient. However, the method for measuring glycated hemoglobin of the present invention may be used to measure glycated hemoglobin in a liquid sample other than a hemolyzed blood sample.

本発明に係る糖化ヘモグロビンの測定方法では、上記特定の平均粒径範囲の充填剤が充填されており、内径及び長さが上記特定の範囲の寸法にあるカラムを用い、ヘモグロビン画分の溶出に際しての溶離液の流速を1.6ml/分〜2.5ml/分の範囲とし、しかもヘモグロビンA0を溶出する際の溶離液に非イオン性界面活性剤が添加されているため、ヘモグロビンA1cの測定精度を低下させることなく、種々のヘモグロビン画分を速やかに溶出させることができ、さらにヘモグロビン画分の大部分を占めるヘモグロビンA0を速やかに溶出させることができる。従って、測定時間の大幅な短縮を図ることができ、ヘモグロビンA1c値の測定を速やかに行うことが可能となる。   In the method for measuring glycated hemoglobin according to the present invention, a column having the above-mentioned specific average particle size range is packed, the inner diameter and the length are in the above-mentioned specific range, and the hemoglobin fraction is eluted. Since the eluent flow rate is in the range of 1.6 ml / min to 2.5 ml / min and a nonionic surfactant is added to the eluent when hemoglobin A0 is eluted, the measurement accuracy of hemoglobin A1c Various hemoglobin fractions can be promptly eluted without lowering the pH, and hemoglobin A0 occupying most of the hemoglobin fraction can be promptly eluted. Therefore, the measurement time can be greatly shortened, and the hemoglobin A1c value can be measured quickly.

また、従来の流速を高める方法や、充填剤の平均粒径を小さくする方法で測定速度を高めた場合では、耐圧性に優れたカラムを必要とし、高価な部品を用いなければならなかった。これに対し、本発明では、流速をさほど高める必要はなく、充填剤の平均粒径をさほど小さくする必要もないため、カラムを含む装置のコストを高めることなく、ヘモグロビンA1cの測定の高速化を図ることが可能となる。よって、汎用的な臨床検査に好適な糖化ヘモグロビンの測定方法を提供することができる。   Further, when the measurement speed is increased by the conventional method of increasing the flow rate or the method of reducing the average particle diameter of the packing material, a column having excellent pressure resistance is required, and expensive parts must be used. On the other hand, in the present invention, it is not necessary to increase the flow rate so much and it is not necessary to reduce the average particle size of the filler so much, so that the measurement of hemoglobin A1c can be accelerated without increasing the cost of the apparatus including the column. It becomes possible to plan. Therefore, a method for measuring glycated hemoglobin suitable for general-purpose clinical tests can be provided.

以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明をより詳細に説明する。もっとも、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by giving specific examples and comparative examples of the present invention. However, the present invention is not limited to the following examples.

(1)充填剤の調製
攪拌機付き反応器に、3重量%ポリビニルアルコール(日本合成化学社製)水溶液に、テトラエチレングリコールジメタクリレート(新中村化学社製)300g、トリエチレングリコールジメタクリレート(新中村化学社製)100g及び過酸化ベンゾイル1.0gの混合物を添加した。混合物を攪拌しながら調粒した後、窒素雰囲気下にて80℃の温度で1時間重合した。別途、イオン交換基を有する単量体として、2−メタクリルアミド−2−メチルプロパンスルホン酸(東亜合成化学社製)100gと、ポリエチレングリコールメタクリレート(日本油脂社製、エチレングリコール鎖n=4)100gをイオン交換水に溶解した。イオン交換水に上記単量体を溶解した該溶液を反応器に添加し、さらに攪拌しつつ窒素雰囲気下で80℃で2時間重合を行った。得られた重合体含有組成物を水及びアセトンで洗浄し、イオン交換基を有する親水性の被覆重合体粒子を得た。
(1) Preparation of filler In a reactor equipped with a stirrer, an aqueous solution of 3% by weight polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Co., Ltd.), 300 g of tetraethylene glycol dimethacrylate (manufactured by Shin Nakamura Chemical Co., Ltd.), triethylene glycol dimethacrylate (Shin Nakamura) A mixture of 100 g) and 1.0 g benzoyl peroxide was added. The mixture was sized while stirring, and then polymerized at 80 ° C. for 1 hour under a nitrogen atmosphere. Separately, as a monomer having an ion exchange group, 100 g of 2-methacrylamide-2-methylpropanesulfonic acid (manufactured by Toagosei Co., Ltd.) and 100 g of polyethylene glycol methacrylate (manufactured by NOF Corporation, ethylene glycol chain n = 4) Was dissolved in ion-exchanged water. The solution obtained by dissolving the monomer in ion-exchanged water was added to the reactor, and polymerization was performed at 80 ° C. for 2 hours in a nitrogen atmosphere while stirring. The obtained polymer-containing composition was washed with water and acetone to obtain hydrophilic coated polymer particles having an ion exchange group.

得られた被覆重合体粒子10gを、溶存オゾンガス濃度100ppmのオゾン水300mlに浸漬し、30分間攪拌した。攪拌後、遠心分離機(日立製作所製Himac CR20G)を用いて遠心分離し、上澄みを除去した。この操作を2回繰り返し、親水化処理を施し、イオン交換液体クロマトグラフィー用充填剤を得た。   10 g of the obtained coated polymer particles were immersed in 300 ml of ozone water having a dissolved ozone gas concentration of 100 ppm and stirred for 30 minutes. After stirring, the mixture was centrifuged using a centrifuge (Hitac CR20G manufactured by Hitachi, Ltd.), and the supernatant was removed. This operation was repeated twice to give a hydrophilic treatment to obtain a packing material for ion exchange liquid chromatography.

なお、オゾン水は、内径15cm×長さ20cmの円柱形を有する外管内に、パーフルオロアルコキシ樹脂からなる内径0.5mm×厚さ0.04mm×長さ350cmの中空管状のオゾンガス透過膜が400本収容されたオゾン溶解モジュールを含むオゾン水製造システム(積水化学工業社製)を用いて調製した。   The ozone water is a hollow tubular ozone gas permeable membrane made of perfluoroalkoxy resin having an inner diameter of 0.5 mm, a thickness of 0.04 mm and a length of 350 cm in an outer tube having a cylindrical shape with an inner diameter of 15 cm and a length of 20 cm. It was prepared using an ozone water production system (manufactured by Sekisui Chemical Co., Ltd.) including the ozone dissolution module accommodated.

上記イオン交換液体クロマトグラフィー用充填剤の作製にあたり、前述したイオン交換基を有する親水性の被覆重合体粒子を得た段階で、レーザー回折式流動分布測定装置を用いて平均粒径を測定した。また、上記被覆重合体粒子の製造に際し、調粒工程の撹拌の回転数を異ならせることにより、平均粒径が異なる以下の3種類の充填剤A〜Cを調製した。   In the preparation of the filler for ion exchange liquid chromatography, the average particle size was measured using a laser diffraction flow distribution measuring device at the stage where the above-mentioned hydrophilic coated polymer particles having an ion exchange group were obtained. Further, in the production of the coated polymer particles, the following three types of fillers A to C having different average particle diameters were prepared by varying the number of revolutions of stirring in the granulation step.

充填剤A:平均粒子径9μm、CV値15%
充填剤B:平均粒子径3μm、CV値14%
充填剤C:平均粒子径25μm、CV値12%
(2)カラム
液体クロマトグラフィー用カラムとして、以下の5種類の寸法のカラムA〜カラムHを用意した。
Filler A: average particle size 9 μm, CV value 15%
Filler B: average particle diameter 3 μm, CV value 14%
Filler C: average particle size 25 μm, CV value 12%
(2) Columns Columns A to H having the following five dimensions were prepared as liquid chromatography columns.

カラムD:内径4.6mm、長さ20mm
カラムE:内径4.6mm、長さ9mm
カラムF:内径4.6mm、長さ35mm
カラムG:内径2.0mm、長さ20mm
カラムH:内径6.0mm、長さ20mm
(3)実験例1
上記充填剤A〜C及びカラムD〜Hを組み合わせて得られた下記の表1に示す各カラム装置1〜15について、A0以外のHb画分を溶出する液を送液ポンプ(島津製作所社製、LC−10AS)を用い、1.7ml/分の速度で送液した際のカラム内の圧力を測定した。結果を下記の表1に示す。カラム内の圧力が5MPa以下のものについては、圧力が高くなりすぎないため〇を付し、5MPaを越えるものについては×を付した。
Column D: inner diameter 4.6 mm, length 20 mm
Column E: inner diameter 4.6 mm, length 9 mm
Column F: inner diameter 4.6 mm, length 35 mm
Column G: inner diameter 2.0 mm, length 20 mm
Column H: inner diameter 6.0 mm, length 20 mm
(3) Experimental example 1
About each column apparatus 1-15 shown in following Table 1 obtained combining the said fillers A-C and columns D-H, the liquid which elutes Hb fractions other than A0 is a feed pump (made by Shimadzu Corporation) LC-10AS), and the pressure in the column was measured when the solution was fed at a rate of 1.7 ml / min. The results are shown in Table 1 below. For those having a pressure in the column of 5 MPa or less, the pressure was not excessively high, and therefore, ○ was given, and for those having a pressure exceeding 5 MPa, × was given.

Figure 0004814204
Figure 0004814204

充填剤AとカラムGの組合せ、充填剤Bを充填したすべてのカラムにおいて、圧力が5MPaを超え、圧力基準を満たさなかった。   In all the columns filled with the combination of the packing material A and the column G and the packing material B, the pressure exceeded 5 MPa and the pressure standard was not satisfied.

(4)実験例2
実験例1において〇が付されたカラム装置について、以下の要領でHbA1cを測定し、クロマトグラムを比較した。もっとも、充填剤Cを充填したカラムは、HbA1cピークが溶出しなかったり、溶出しても大きくブロード化したため、HbA1c測定値を算出することができなかった。従って、充填剤AとカラムD,E,FまたはHを用いてクロマトグラフィーを行った。
(4) Experimental example 2
For the column apparatus marked with ◯ in Experimental Example 1, HbA1c was measured in the following manner, and chromatograms were compared. However, the column packed with the packing material C did not elute the HbA1c peak, or was broadened even if it was eluted, so the measured value of HbA1c could not be calculated. Therefore, chromatography was performed using packing A and columns D, E, F or H.

HbA1cの測定:
グリコHbコントロールレベル1(国際試薬社製、参考数値5.8±0.5%)を200μLの注射用水で溶解した後、希釈液(0.1%トリトンX−100を含有するリン酸緩衝液(pH7.0))で100倍に希釈したものを調製し、測定試料とした。
測定試料中のヘモグロビンA1c量及び非糖化ヘモグロビン量を測定し、ヘモグロビンA1cと非糖化ヘモグロビンとの合計に対するヘモグロビンA1cの割合(ヘモグロビンA1c値(%))を求めた。
Measurement of HbA1c:
Glyco Hb control level 1 (manufactured by Kokusai Reagent Co., Ltd., reference value 5.8 ± 0.5%) was dissolved in 200 μL of water for injection and then diluted (phosphate buffer containing 0.1% Triton X-100). (PH 7.0)) was diluted 100 times and used as a measurement sample.
The amount of hemoglobin A1c and the amount of non-glycated hemoglobin in the measurement sample were measured, and the ratio of hemoglobin A1c to the total of hemoglobin A1c and non-glycated hemoglobin (hemoglobin A1c value (%)) was determined.

システム:送液ポンプ LC−9A(島津製作所社製)
オートサンプラー ASU―420(積水化学工業社製)
検出器 SPD−6AV(島津製作所社製)
溶離液:第1液 リン酸緩衝液(pH5.3)
第2液 0.05%Tween20含250mMリン酸緩衝液(pH8.0)
※第1液は、それぞれのカラム(充填剤とカラムの組合せ)において、HbA1cが同一保持時間になるように濃度を調整。
System: Liquid feed pump LC-9A (manufactured by Shimadzu Corporation)
Autosampler ASU-420 (manufactured by Sekisui Chemical Co., Ltd.)
Detector SPD-6AV (manufactured by Shimadzu Corporation)
Eluent: 1st liquid Phosphate buffer (pH 5.3)
Second liquid 0.05% Tween20-containing 250 mM phosphate buffer (pH 8.0)
* The concentration of the first solution is adjusted so that HbA1c has the same retention time in each column (combination of filler and column).

測定時間:50秒
流速:1.7mL/分
検出波長:415nm
試料注入量:10μL
Measurement time: 50 seconds Flow rate: 1.7 mL / min Detection wavelength: 415 nm
Sample injection volume: 10 μL

結果を図1〜4に示す。なお、表2は、図1〜図4のクロマトグラムを得るのに用いた充填剤AとカラムD,E,F,Hの組み合わせを示す。図1〜図4において、1〜5は下記のピークであることを示す。   The results are shown in FIGS. Table 2 shows combinations of the packing material A and columns D, E, F, and H used to obtain the chromatograms of FIGS. 1 to 4, 1 to 5 indicate the following peaks.

1:ピーク1 HbA1a+HbA1b
2:ピーク2 HbF
3:ピーク3 不安定型HbA1c
4:ピーク4 安定型HbA1c
5:ピーク5 HbA0
1: Peak 1 HbA1a + HbA1b
2: Peak 2 HbF
3: Peak 3 unstable HbA1c
4: Peak 4 Stable HbA1c
5: Peak 5 HbA0

また、表3は、図1〜図4に示したクロマトグラムで求められたHbA1c測定値を示す。   Table 3 shows the measured values of HbA1c obtained from the chromatograms shown in FIGS.

Figure 0004814204
Figure 0004814204

Figure 0004814204
Figure 0004814204

図1〜図4から明らかなように、充填剤AとカラムDの組合せでは、測定時間50秒で、HbA1cを分離定量できた。また、HbA0も測定時間内に溶出できた。   As is apparent from FIGS. 1 to 4, with the combination of the packing material A and the column D, HbA1c could be separated and quantified in a measurement time of 50 seconds. HbA0 could also be eluted within the measurement time.

充填剤AとカラムEの組合せでは、カラムの長さが短すぎるため、ピークがブロード化し、HbA1cの定量性に問題があった。HbA0は測定時間内に溶出できた。   In the combination of the packing material A and the column E, the length of the column is too short, the peak is broadened, and there is a problem in the quantitativeness of HbA1c. HbA0 could be eluted within the measurement time.

充填剤AとカラムFの組合せでは、HbA1c値は基準値内ではあったが、カラムの長さが長すぎるため、ピーク間が圧縮され、ピークの分離に問題があった。また、カラムの長さが長すぎる影響で、測定時間内にHbA0を完全に溶出することができなかった。   In the combination of the packing material A and the column F, the HbA1c value was within the reference value, but the column length was too long, so that the peak-to-peak was compressed, and there was a problem in peak separation. Further, HbA0 could not be completely eluted within the measurement time due to the influence of the column length being too long.

充填剤AとカラムGの組合せでは、カラムの内径が大きすぎるため、ピークがブロード化し、HbA1cの定量性に問題があった。また、測定時間内にHbA0を完全に溶出することができなった。   In the combination of the packing material A and the column G, since the inner diameter of the column was too large, the peak was broadened, and there was a problem in the quantitativeness of HbA1c. Further, HbA0 could not be completely eluted within the measurement time.

第2の実験例において、充填剤AとカラムDとを用いた場合のクロマトグラムを示す図である。It is a figure which shows the chromatogram at the time of using the packing material A and the column D in a 2nd experiment example. 第2の実験例において、充填剤AとカラムEとを用いた場合のクロマトグラムを示す図である。It is a figure which shows the chromatogram at the time of using the packing material A and the column E in a 2nd experiment example. 第2の実験例において、充填剤AとカラムFとを用いた場合のクロマトグラムを示す図である。It is a figure which shows the chromatogram at the time of using the packing material A and the column F in a 2nd experiment example. 第2の実験例において、充填剤AとカラムHとを用いた場合のクロマトグラムを示す図である。It is a figure which shows the chromatogram at the time of using the packing material A and the column H in a 2nd experiment example.

符号の説明Explanation of symbols

1…ピーク1(HbA1a+HbA1b)
2…ピーク2(HbF)
3…ピーク3(不安定型HbA1c)
4…ピーク4(安定型HbA1c)
5…ピーク5(HbA0)
1 ... Peak 1 (HbA1a + HbA1b)
2 ... Peak 2 (HbF)
3 ... Peak 3 (unstable HbA1c)
4 ... Peak 4 (stable HbA1c)
5 ... Peak 5 (HbA0)

Claims (2)

液体試料中の糖化ヘモグロビンを液体クロマトグラフィーにより測定する糖化ヘモグロビンの測定方法であって、
平均粒径が5μm〜20μmの範囲にある充填剤が収納されており、内径が3.0〜5.0mm、長さが10〜20mmの範囲にあるカラムに、液体の試料を通過させる工程と、
次に、前記カラムに、溶離液を溶出力を異ならせて1.6ml/分〜2.5ml/分の速度で通過させ、ヘモグロビンA0及び糖化ヘモグロビンを含む複数種のヘモグロビンを溶出する工程とを備え、前記ヘモグロビンA0を溶出する際の溶離液として非イオン性界面活性剤を含有する溶離液を用いることを特徴とする、糖化ヘモグロビンの測定方法。
A method for measuring glycated hemoglobin in which glycated hemoglobin in a liquid sample is measured by liquid chromatography,
A step of passing a liquid sample through a column in which a filler having an average particle diameter of 5 μm to 20 μm is stored, an inner diameter of 3.0 to 5.0 mm, and a length of 10 to 20 mm. When,
Next, the eluent is passed through the column at a rate of 1.6 ml / min to 2.5 ml / min with different elution powers to elute a plurality of types of hemoglobin including hemoglobin A0 and glycated hemoglobin. And a method for measuring glycated hemoglobin, wherein an eluent containing a nonionic surfactant is used as an eluent when eluting the hemoglobin A0.
前記液体の試料が溶血している血液試料である、請求項1に記載の糖化ヘモグロビンの測定方法。   The method for measuring glycated hemoglobin according to claim 1, wherein the liquid sample is a hemolyzed blood sample.
JP2007308233A 2007-11-29 2007-11-29 Method for measuring glycated hemoglobin Active JP4814204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007308233A JP4814204B2 (en) 2007-11-29 2007-11-29 Method for measuring glycated hemoglobin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007308233A JP4814204B2 (en) 2007-11-29 2007-11-29 Method for measuring glycated hemoglobin

Publications (2)

Publication Number Publication Date
JP2009133654A JP2009133654A (en) 2009-06-18
JP4814204B2 true JP4814204B2 (en) 2011-11-16

Family

ID=40865680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308233A Active JP4814204B2 (en) 2007-11-29 2007-11-29 Method for measuring glycated hemoglobin

Country Status (1)

Country Link
JP (1) JP4814204B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209040A (en) * 2010-03-29 2011-10-20 Sekisui Medical Co Ltd COLUMN FILLER FOR MEASURING HEMOGLOBINS, METHOD FOR MEASURING HEMOGLOBIN A1c, AND METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBINS
JP2012073184A (en) * 2010-09-29 2012-04-12 Sekisui Medical Co Ltd Method for measuring hemoglobins
JP6786917B2 (en) * 2016-07-08 2020-11-18 東ソー株式会社 Hemoglobin preparation solution and hemoglobin measurement liquid chromatography method
JP7547952B2 (en) 2020-11-18 2024-09-10 東ソー株式会社 Hemoglobin preparation and method for measuring hemoglobins using the hemoglobin preparation
WO2024204291A1 (en) * 2023-03-27 2024-10-03 積水メディカル株式会社 Filler for ion exchange chromatography, method for producing same, and method for measuring hemoglobin component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2669255B2 (en) * 1992-04-01 1997-10-27 株式会社日立製作所 Method for analyzing hemoglobins, analyzer, and column deterioration suppressing liquid used therefor
JP3164641B2 (en) * 1992-04-27 2001-05-08 積水化学工業株式会社 Filler for liquid chromatography and method for producing the same
JPH1010108A (en) * 1996-06-21 1998-01-16 Sekisui Chem Co Ltd Analysis of sample by liquid chromatography
JP3429683B2 (en) * 1998-09-08 2003-07-22 積水化学工業株式会社 Method for measuring hemoglobins
JP2000171454A (en) * 1998-12-04 2000-06-23 Sekisui Chem Co Ltd Measuring method for hemoglobins
JP2003207497A (en) * 2002-01-10 2003-07-25 Sekisui Chem Co Ltd Eluting solvent, hemolyzing reagent and method for measuring hemoglobin

Also Published As

Publication number Publication date
JP2009133654A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
JP4814204B2 (en) Method for measuring glycated hemoglobin
JP6227689B2 (en) Method for reducing increase in fluid flow pressure of liquid chromatography member
EP2730920A1 (en) Method for measuring hemoglobins
JP4740036B2 (en) Method for measuring hemoglobins
JP2017102130A (en) Column for liquid chromatography
EP0315187A1 (en) Separation of hemoglobin A2 from hemoglobin mixture
JP2006189401A (en) Device for measurement and device and method for measuring hemoglobins
JP5041733B2 (en) Method for measuring hemoglobins
JP2000111539A (en) Measuring method for hemoglobins
US20140238113A1 (en) METHOD FOR MEASURING STABLE HEMOGLOBIN A1c USING LIQUID CHROMATOGRAPHY, AND METHOD FOR SIMULTANEOUS MEASUREMENT OF STABLE HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBIN USING LIQUID CHROMATOGRAPHY
JP2011209040A (en) COLUMN FILLER FOR MEASURING HEMOGLOBINS, METHOD FOR MEASURING HEMOGLOBIN A1c, AND METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBINS
JP4860133B2 (en) Method for analyzing glycated hemoglobin
JP4404428B2 (en) Method for measuring hemoglobins
JP5901081B2 (en) Column filler for measuring hemoglobin, method for producing column filler for measuring hemoglobin, and method for measuring hemoglobin by liquid chromatography
JP2012073184A (en) Method for measuring hemoglobins
JP2002082105A (en) Packing for liquid chromatography, column, and hemoglobin-measuring method using the same
JP5259225B2 (en) Method for measuring hemoglobins
JPH0115024B2 (en)
JP2007078361A (en) Measuring method of hemoglobins
EP4119941A1 (en) Hemoglobin assay method
JP3975017B2 (en) Method for measuring hemoglobin by liquid chromatography
JPWO2008023534A1 (en) Porous silica column, analytical method using the same, and diagnostic method for diabetes
JP2012073183A (en) Method for measuring hemoglobins
JP2013120162A (en) Method of measuring stable hemoglobin a1c by liquid chromatography and method of simultaneously measuring stable hemoglobin a1c and abnormal hemoglobin
JP2001349894A (en) Measuring method of hemoglobin or the like

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R151 Written notification of patent or utility model registration

Ref document number: 4814204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250