JP2018177546A - Oxide film-forming material and method for producing the same - Google Patents

Oxide film-forming material and method for producing the same Download PDF

Info

Publication number
JP2018177546A
JP2018177546A JP2017074199A JP2017074199A JP2018177546A JP 2018177546 A JP2018177546 A JP 2018177546A JP 2017074199 A JP2017074199 A JP 2017074199A JP 2017074199 A JP2017074199 A JP 2017074199A JP 2018177546 A JP2018177546 A JP 2018177546A
Authority
JP
Japan
Prior art keywords
aqueous solution
mol
oxide film
ion
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017074199A
Other languages
Japanese (ja)
Other versions
JP6697412B2 (en
Inventor
悦郎 宇田川
Etsuro Udagawa
悦郎 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2017074199A priority Critical patent/JP6697412B2/en
Publication of JP2018177546A publication Critical patent/JP2018177546A/en
Application granted granted Critical
Publication of JP6697412B2 publication Critical patent/JP6697412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film-forming material capable of uniformly forming a film with superior properties and being obtained inexpensively.SOLUTION: An aqueous acidic solution is prepared which is obtained by dissolving zinc acetate as a Znion source and which contains Znions as a main component and contains Alions. To the aqueous acidic solution, an aqueous alkali solution in an amount less than its neutralization equivalent is dropwise added to cause a precipitate of zinc aluminum acetate hydrate, and this precipitate is collected. A solution of a film-forming material thus obtained is allowed to adhere on a substrate surface and is calcined, so that an oxide with high quality and high performance can be obtained which has a favorable electrical conductivity and an oriented polycrystal structure.SELECTED DRAWING: Figure 3

Description

本発明は、例えば、太陽電池パネルの透明導電材、ZnO系透明導電材スパッタ膜形成用のシード層(スパッタ膜の下地層)、色素増感型太陽電池電極材、ガスセンサーチップ(検知部)、触媒などを構成する薄膜や厚膜を形成するための材料及びその製造方法に関する。   The present invention includes, for example, a transparent conductive material of a solar cell panel, a seed layer for forming a ZnO-based transparent conductive material sputtered film (a base layer of a sputtered film), a dye-sensitized solar cell electrode material, a gas sensor chip (detector) , A material for forming a thin film or thick film constituting a catalyst or the like, and a method of manufacturing the same.

多結晶シリコンなどの太陽電池パネルは、太陽光から電気エネルギーを取り出す導電体(電極)として機能する透明導電膜を有している。従来、この種の透明導電膜の多くは、ITO(インジウム−スズ酸化物)、ATO(アンチモン−スズ酸化物)、GZO(ガリウム−亜鉛酸化物)、及びAZO(アルミニウム−亜鉛酸化物)などを材料とし、スパッタ法などにより製膜されるのが通常である(例えば、特許文献1、特許文献2、非特許文献1など)。   A solar cell panel such as polycrystalline silicon has a transparent conductive film that functions as a conductor (electrode) that extracts electric energy from sunlight. Conventionally, many of such transparent conductive films are made of ITO (indium-tin oxide), ATO (antimony-tin oxide), GZO (gallium-zinc oxide), AZO (aluminum-zinc oxide), etc. The material is usually formed by sputtering or the like (for example, Patent Document 1, Patent Document 2, Non-Patent Document 1, etc.).

特開平7−84274号公報JP-A-7-84274 特開2000−40429号公報Japanese Patent Laid-Open No. 2000-40429

牧野久雄、外5名、「無機ナノシート上に成膜したGa添加ZnO薄膜の構造および電気特性」、第58回応用物理学関係連合講演会 講演予稿集、社団法人応用物理学会、2011年、P.21−010Hisao Makino, 5 others, "Structural and electrical properties of Ga-doped ZnO thin films deposited on inorganic nanosheets," Proceedings of the 58th Joint Conference on Applied Physics, Proceedings of the Institute of Applied Physics, 2011, P. . 21-010

しかし、ITO系透明導電膜は、原料となるインジウムが高価であり、製造コストが高くなる。また、ITO系材料の代替材としてATO系材料やAZO系材料などが期待されているが、ATO系材料は着色が生じたり、電気抵抗が大きくなるなどの問題がある。また、GZO系材料やAZO系材料は、スパッタ法による製膜では皮膜の均一性を確保することが難しく、高品質な極薄膜が得られにくい難点があり、膜厚を厚くしないと十分な電気伝導性が得られない。このため従来では、透明導電材としてはITO系材料を用いるのが一般的である。   However, the ITO-based transparent conductive film is expensive as a raw material of indium, which increases the manufacturing cost. In addition, although ATO materials, AZO materials and the like are expected as substitutes for ITO materials, ATO materials have problems such as occurrence of coloring and increase in electrical resistance. In addition, GZO-based materials and AZO-based materials are difficult to ensure the uniformity of the film in film formation by sputtering, and it is difficult to obtain a high-quality ultra thin film, and sufficient electricity is required unless the film thickness is increased. Conductivity can not be obtained. Therefore, conventionally, it is common to use an ITO-based material as the transparent conductive material.

一方、酸化亜鉛粉末などをペーストやインクとして用いる印刷法などの湿式製膜法が知られており、特に印刷法による製膜技術は、ZnO系透明導電材スパッタ膜形成用のシード層(スパッタ膜の下地層)、色素増感型太陽電池電極材、ガスセンサーチップ、触媒などを構成する薄膜や厚膜を形成するのに好適な技術であるといえる。しかし、従来の印刷法などの湿式製膜法は、スパッタ法のような真空系の装置が不要であるため、安価に製膜できる利点はあるものの、酸化亜鉛の導電性を改善するために、還元性の雰囲気中で焼成したり、焼成に高温を必要とするなどの問題があった。   On the other hand, a wet film forming method such as a printing method using zinc oxide powder or the like as a paste or ink is known, and in particular, a film forming technique by the printing method is a seed layer (sputtered film for forming a ZnO based transparent conductive material sputtered film) Underlying layer), a dye-sensitized solar cell electrode material, a gas sensor chip, a catalyst and the like, it can be said that the technique is suitable for forming a thin film or a thick film. However, the wet film forming method such as the conventional printing method does not require a vacuum apparatus such as a sputtering method, and has the advantage of being able to form a film inexpensively, but in order to improve the conductivity of zinc oxide, There are problems such as firing in a reducing atmosphere or requiring high temperature for firing.

したがって本発明の目的は、以上のような従来技術の課題を解決し、透明導電膜やガスセンサーチップなどとして利用できる高品質な酸化物皮膜、特に導電性が良好な酸化物皮膜を安価に製膜することができる酸化物皮膜形成用材料及びその製造方法を提供することにある。   Accordingly, the object of the present invention is to solve the problems of the prior art as described above, and inexpensively produce high quality oxide film which can be used as a transparent conductive film or gas sensor chip etc., particularly oxide film having good conductivity. It is an object of the present invention to provide a material for forming an oxide film which can be formed into a film and a method for producing the same.

本発明者は、特定の方法により沈殿物として得られる特定の水酸化物(亜鉛アルミニウム酢酸水和物)が、湿式製膜法による製膜用材料として好適であり、この製膜用材料を含む溶液やペーストを基板面に付着させて焼成することにより、導電性の良好な配向性多結晶構造(結晶面の向きが揃った多結晶構造)を有する高品質の酸化物皮膜を安価に製膜できることを見出した。
本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
The inventors of the present invention have found that a specific hydroxide (zinc aluminum acetate hydrate) obtained as a precipitate by a specific method is suitable as a film forming material by a wet film forming method, and includes this film forming material By depositing a solution or paste on a substrate surface and baking it, a high quality oxide film having a highly conductive oriented polycrystalline structure (a polycrystalline structure in which the directions of crystal planes are aligned) is formed at low cost. I found out what I could do.
The present invention has been made based on such findings, and the gist of the present invention is as follows.

[1]Zn2+イオン源として酢酸亜鉛を溶解させた酸性水溶液であって、Zn2+イオンを主成分とし、さらにAl3+イオンを含む酸性水溶液に、中和当量未満のアルカリ水溶液を滴下して亜鉛アルミニウム酢酸水和物の沈殿物を生成させ、該沈殿物を回収することを特徴とする酸化物皮膜形成用材料の製造方法。
[2]上記[1]の製造方法において、酸性水溶液中のZn2+イオン量をm(モル)、Al3+イオン量をn(モル)、該酸性水溶液に滴下するアルカリ水溶液中のOHイオン量をx(モル)とした時、酸性水溶液中の[Zn2+イオン量m(モル)+Al3+イオン量n(モル)]に対するAl3+イオン量n(モル)の割合を0.001〜10%とし、且つ下記(1)式を満足するように酸性水溶液にアルカリ水溶液を滴下することを特徴とする酸化物皮膜形成用材料の製造方法。
0.2X≦x<0.8X …(1)
但し X=2m+3n
[1] An acidic aqueous solution in which zinc acetate is dissolved as a Zn 2+ ion source, which is mainly composed of Zn 2+ ions and further contains an alkaline aqueous solution smaller than the neutralization equivalent dropwise to an acidic aqueous solution containing Al 3+ ions A method for producing a material for forming an oxide film, comprising forming a precipitate of aluminum acetate hydrate and recovering the precipitate.
[2] In the production method of the above-mentioned [1], the amount of Zn 2+ ions in the acidic aqueous solution is m (mole), the amount of Al 3+ ions is n (mole), and the amount of OH ions in the alkaline aqueous solution dropped into the acidic aqueous solution Ratio of Al 3+ ion amount n (mol) to [Zn 2+ ion amount m (mol) + Al 3 + ion amount n (mol)] in the acidic aqueous solution is 0.001 to 10%. And an alkaline aqueous solution is dropped to the acidic aqueous solution so as to satisfy the following equation (1):
0.2X ≦ x <0.8X (1)
Where X = 2m + 3n

[3]上記[2]の製造方法において、酸性水溶液中の[Zn2+イオン量m(モル)+Al3+イオン量n(モル)]に対するAl3+イオン量n(モル)の割合を0.01%以上2%未満とし、且つ下記(2)式を満足するように酸性水溶液にアルカリ水溶液を滴下することを特徴とする酸化物皮膜形成用材料の製造方法。
0.4X≦x≦0.6X …(2)
但し X=2m+3n
[4]上記[1]〜[3]のいずれかの製造方法において、回収した沈殿物を乾燥し、粉体とすることを特徴とする酸化物皮膜形成用材料の製造方法。
[3] above in the manufacturing method of [2], the ratio of the 0.01% of the aqueous acid solution [Zn 2+ ion amount m (mol) + Al 3+ ion amount n (mol)] for Al 3+ ion amount n (mol) An alkaline aqueous solution is dropped to an acidic aqueous solution so as to satisfy the following equation (2) by setting the amount to less than 2%, and a method of producing a material for forming an oxide film.
0.4 x ≦ x ≦ 0.6 x (2)
Where X = 2m + 3n
[4] The method for producing an oxide film-forming material according to any one of the above [1] to [3], wherein the recovered precipitate is dried to form a powder.

[5]短冊状の層状水酸化物である亜鉛アルミニウム酢酸水和物からなることを特徴とする酸化物皮膜形成用材料。
[6]上記[5]の酸化物皮膜形成用材料において、亜鉛アルミニウム酢酸水和物は、測定されるX線回折ピークがc値=39.1568±0.5206Åで特定される水和物であること特徴とする酸化物皮膜形成用材料。
[7]上記[5]又は[6]の酸化物皮膜形成用材料において、亜鉛アルミニウム酢酸水和物は、沈殿法において沈殿物として得られる水和物であることを特徴とする酸化物皮膜形成用材料。
[8]上記[5]〜[7]のいずれかの酸化物皮膜形成用材料において、ゲル状物質又は該ゲル状物質を乾燥させた粉体であることを特徴とする記載の酸化物皮膜形成用材料。
[5] An oxide film-forming material comprising zinc aluminum acetate hydrate which is a strip-like layered hydroxide.
[6] In the oxide film-forming material of the above-mentioned [5], zinc aluminum acetate hydrate is characterized in that the X-ray diffraction peak to be measured is a hydrate identified by c value = 39.1568 ± 0.5206 Å. A material for forming an oxide film.
[7] In the oxide film-forming material according to the above [5] or [6], zinc aluminum acetate hydrate is a hydrate obtained as a precipitate in a precipitation method, and an oxide film is formed. Material.
[8] In the oxide film forming material according to any one of the above [5] to [7], a gel material or a powder obtained by drying the gel material is described. Material.

[9]上記[5]〜[8]のいずれかの酸化物皮膜形成用材料を含む溶液又はペーストを基板面に付着させた後、焼成することにより、基板面に配向性多結晶構造の亜鉛アルミニウム系酸化物皮膜を形成することを特徴とする酸化物皮膜の形成方法。
[10]上記[1]〜[4]のいずれかの製造方法により得られた酸化物皮膜形成用材料を含む溶液又はペーストを基板面に付着させた後、焼成することにより、基板面に配向性多結晶構造の亜鉛アルミニウム系酸化物皮膜を形成することを特徴とする酸化物皮膜の形成方法。
[11]上記[9]又は[10]の形成方法において、酸化物皮膜形成用材料が、ゲル状物質又は該ゲル状物質を乾燥させた粉体であり、該材料を添加した溶液又はペーストを用いることを特徴とする酸化物皮膜の形成方法。
[9] A solution or paste containing the material for forming an oxide film according to any one of the above [5] to [8] is attached to a substrate surface and fired to form zinc having an oriented polycrystalline structure on the substrate surface. A method of forming an oxide film comprising forming an aluminum-based oxide film.
[10] A solution or paste containing the material for forming an oxide film obtained by the manufacturing method according to any one of the above [1] to [4] is attached to a substrate surface and then fired to orient the substrate surface. Method of forming an oxide film characterized in that a zinc aluminum-based oxide film having a crystalline polycrystalline structure is formed.
[11] In the method of forming the above [9] or [10], the oxide film-forming material is a gel-like substance or a powder obtained by drying the gel-like substance, and a solution or paste to which the material is added The formation method of the oxide film characterized by using.

本発明の酸化物皮膜形成用材料は、これを含む溶液やペーストを基板面に付着させて焼成することにより、導電性が良好な配向性多結晶構造を有する高品質・高性能の酸化物皮膜を得ることができ、且つ製膜法は湿式法であるため、目的とする酸化物皮膜を安価に得ることがきる。
また、本発明の製造方法によれば、上記のような酸化物皮膜形成用材料を安定して効率的且つ低コストに製造することができる。
The oxide film forming material of the present invention is a high quality, high performance oxide film having an oriented polycrystalline structure with good conductivity by attaching a solution or paste containing the same to a substrate surface and baking it. Since the film forming method is a wet method, the target oxide film can be obtained inexpensively.
Moreover, according to the manufacturing method of this invention, the above materials for oxide film formation can be manufactured stably, efficiently, and at low cost.

沈殿法により、Zn2+イオン濃度が0.098モル/L、Al3+イオン濃度が0.002モル/Lの酸性水溶液1L([Zn2+イオン量(モル)+Al3+イオン量(モル)]に対するAl3+イオン量(モル)の割合が2%である0.1モル/Lの酸性水溶液1L)に、OHイオン濃度が0.1モル/LのNaOH水溶液1Lを滴下して得られた沈殿物である亜鉛アルミニウム酢酸水和物のXRDチャートと、XRDライブラリーデータにある亜鉛アルミニウム酢酸水和物(ZnAl(OH)(C・2.6HO))のXRDチャートと、XRDライブラリーデータにある塩基性酢酸亜鉛(Zn(OH)1.58(CHCOO)0.42・0.31HO)のXRDチャートAccording to the precipitation method, Al relative to 1 L ([amount of Zn 2+ ions (mol) + amount of Al 3 + ions (mol)] of an acidic aqueous solution having a Zn 2+ ion concentration of 0.098 mol / L and an Al 3+ ion concentration of 0.002 mol / L) A precipitate obtained by dropping 1 L of an aqueous solution of NaOH having an OH ion concentration of 0.1 mol / L to 1 L of a 0.1 mol / L acidic aqueous solution in which the ratio of 3+ ion amount (mol) is 2% Chart of zinc aluminum acetate hydrate, which is a zinc oxide, and XRD of zinc aluminum acetate hydrate (Zn 2 Al (OH) 6 (C 2 H 3 O 2 .2.6H 2 O)) in the XRD library data. Chart and XRD chart of basic zinc acetate (Zn (OH) 1.58 (CH 3 COO) 0.42 · 0.31H 2 O) in the XRD library data 図1のXRDチャートの主ピーク付近の拡大図Enlarged view around the main peak of the XRD chart in Figure 1 図1にXRDチャートを示した亜鉛アルミニウム酢酸水和物のSEM写真An SEM photograph of zinc aluminum acetate hydrate, the XRD chart of which is shown in FIG. 図1及び図3に示した亜鉛アルミニウム酢酸水和物を含む水溶液をガラス基板上にバーコート法でコーティングした後、焼成して得られた酸化物皮膜のSEM写真An SEM photograph of an oxide film obtained by coating an aqueous solution containing zinc aluminum acetate hydrate shown in FIG. 1 and FIG. 3 on a glass substrate by a bar coating method and firing it. 図1及び図3に示した亜鉛アルミニウム酢酸水和物を含む水溶液をガラス基板上にバーコート法でコーティングした後、焼成して得られた酸化物皮膜のXRDチャートAfter an aqueous solution containing zinc aluminum acetate hydrate shown in FIG. 1 and FIG. 3 is coated on a glass substrate by a bar coating method, an XRD chart of an oxide film obtained by firing is provided. 沈殿法により、[Zn2+イオン量(モル)+Al3+イオン量(モル)]に対するAl3+イオン量(モル)の割合が10%である0.1モル/Lの酸性水溶液1Lに、OHイオン濃度が0.04〜0.23モル/LのNaOH水溶液1Lを滴下して得られた沈殿物のSEM写真According to the precipitation method, 1 L of an acidic aqueous solution of 0.1 mol / L in which the ratio of the Al 3+ ion amount (mol) to [Zn 2+ ion amount (mol) + Al 3+ ion amount (mol)] is 10% OH ion SEM photograph of the precipitate obtained by dropping 1 L of an aqueous solution of NaOH having a concentration of 0.04 to 0.23 mol / L 沈殿法により、Zn2+イオンのみを含む0.1モル/Lの酸性水溶液1Lに、OHイオン濃度が0.02〜0.22モル/LのNaOH水溶液1Lを滴下して得られた沈殿物のSEM写真A precipitate obtained by dropping 1 L of an aqueous solution of NaOH having an OH ion concentration of 0.02 to 0.22 mol / L into 1 L of a 0.1 mol / L acidic aqueous solution containing only Zn 2+ ions by a precipitation method SEM picture of 沈殿法により、[Zn2+イオン量(モル)+Al3+イオン量(モル)]に対するAl3+イオン量(モル)の割合が20%である0.1モル/Lの酸性水溶液1Lに、OHイオン濃度が0.1〜0.24モル/LのNaOH水溶液1Lを滴下して得られた沈殿物のSEM写真According to the precipitation method, 1 L of an acidic aqueous solution of 0.1 mol / L in which the ratio of the Al 3+ ion amount (mol) to the [Zn 2+ ion amount (mol) + Al 3+ ion amount (mol)] is 20% OH ion SEM photograph of the precipitate obtained by dropping 1 L of an aqueous solution of NaOH having a concentration of 0.1 to 0.24 mol / L 沈殿法により、[Zn2+イオン量(モル)+Al3+イオン量(モル)]に対するAl3+イオン量(モル)の割合が0〜25%である0.1モル/Lの酸性水溶液1Lに、それぞれOHイオン濃度が異なるNaOH水溶液1Lを滴下して沈殿物を得る場合において、滴下したNaOH水溶液のOHイオン濃度とZn歩留まりとの関係を示すグラフThe proportion of Al 3+ ion amount (mol) to [Zn 2+ ion amount (mol) + Al 3+ ion amount (mol)] by precipitation method 1 L of 0.1 mol / L acidic aqueous solution in which the ratio is 0 to 25% OH - graph showing the relationship between ion concentration and Zn yield - in the case of ion concentration to obtain a precipitate was added dropwise a different aqueous NaOH 1L, OH of the dropped aqueous NaOH 沈殿法により、[Zn2+イオン量(モル)+Al3+イオン量(モル)]に対するAl3+イオン量(モル)の割合が2〜25%である0.1モル/Lの酸性水溶液1Lに、それぞれOHイオン濃度が異なるNaOH水溶液1Lを滴下して沈殿物を得る場合において、滴下したNaOH水溶液のOHイオン濃度とAl歩留まりとの関係を示すグラフAccording to the precipitation method, 1 L of an acidic aqueous solution of 0.1 mol / L in which the ratio of the amount of Al 3+ ions (mol) to the amount of Zn 2+ ions (mol) + Al 3+ ions (mol) is 2 to 25% OH - graph showing the relationship between ion concentration and Al yields - in the case of ion concentration to obtain a precipitate was added dropwise a different aqueous NaOH 1L, OH of the dropped aqueous NaOH 沈殿法により、[Zn2+イオン量(モル)+Al3+イオン量(モル)]に対するAl3+イオン量(モル)の割合が2%である0.1モル/Lの酸性水溶液1Lに、OHイオン濃度が0.04〜0.16モル/LのNaOH水溶液1Lをそれぞれ滴下して得られた沈殿物(亜鉛アルミニウム酢酸水和物)について、XRDチャートのピーク解析により格子定数のc値を求め、そのc値とNaOH水溶液のOHイオン濃度との関係を示すグラフAccording to the precipitation method, 1 L of an acidic aqueous solution of 0.1 mol / L in which the ratio of Al 3+ ion amount (mol) to [Zn 2+ ion amount (mol) + Al 3+ ion amount (mol)] is 2% OH - ion For the precipitate (zinc aluminum acetate hydrate) obtained by dropping 1 L of an aqueous solution of NaOH at a concentration of 0.04 to 0.16 mol / L, respectively, the c value of the lattice constant is determined by peak analysis of the XRD chart Graph showing the relationship between the c value and the OH - ion concentration of NaOH aqueous solution 沈殿法により、[Zn2+イオン量(モル)+Al3+イオン量(モル)]に対するAl3+イオン量(モル)の割合が0〜33%である0.1モル/Lの酸性水溶液1Lに、それぞれOHイオン濃度が0.1モル/LのNaOH水溶液1Lを滴下して得られた沈殿物について、XRDチャートのピーク解析により格子定数のc値を求め、そのc値と酸性水溶液の[Zn2+イオン量(モル)+Al3+イオン量n(モル)]に対するAl3+イオン量(モル)の割合(Al3+イオン添加量)との関係を示すグラフThe proportion of Al 3+ ion amount (mol) to [Zn 2+ ion amount (mol) + Al 3+ ion amount (mol)] by precipitation method is 0 to 33% to 1 L of 0.1 M / L acidic aqueous solution The c value of the lattice constant is determined by peak analysis of the XRD chart for the precipitate obtained by dropping 1 L of an aqueous NaOH solution having an OH ion concentration of 0.1 mol / L, and the c value and [Zn 2+ of the acidic aqueous solution Graph showing the relationship between the ratio of the amount of Al 3+ ion (mole) to the amount of ion (mole) + Al 3 + ion amount n (mole) (Al 3 + ion addition amount) 沈殿法により、[Zn2+イオン量(モル)+Al3+イオン量(モル)]に対するAl3+イオン量(モル)の割合が0〜25%である0.1モル/Lの酸性水溶液1Lに、それぞれOHイオン濃度が0.1モル/Lと0.22モル/LのNaOH水溶液1Lを滴下して得られた沈殿物の粉体(酸化物皮膜形成用材料)を用いて形成した酸化物皮膜について、その体積抵抗率と酸性水溶液の[Zn2+イオン量(モル)+Al3+イオン量(モル)]に対するAl3+イオン量(モル)の割合(Al3+イオン添加量)との関係を示すグラフThe proportion of Al 3+ ion amount (mol) to [Zn 2+ ion amount (mol) + Al 3+ ion amount (mol)] by precipitation method 1 L of 0.1 mol / L acidic aqueous solution in which the ratio is 0 to 25% An oxide film formed using a powder of a precipitate (material for forming an oxide film) obtained by dropping 1 L of an aqueous solution of NaOH having an OH ion concentration of 0.1 mol / L and 0.22 mol / L. for a graph showing the relationship between the volume resistivity and the acidic aqueous solution [Zn 2+ ion content (mol) + Al 3+ ion content (mol)] Al 3+ ion amount with respect to the ratio of (moles) (Al 3+ ions added amount)

本発明者は、太陽電池パネル用の透明導電膜などに好適な材料(皮膜形成用材料)を見出すべく検討を行った。この材料の製造に関しては、気相法などの乾式法では実現困難な分子サイズでの高い均一性と結晶形状のコントロールを実現するため、湿式法について検討を行った。配向性多結晶体からなる皮膜は、一般的に多結晶体である酸化物バルク(厚膜材料を含む)において単結晶なみの特性発現が期待できると考えられるが、湿式法による結晶形状のコントロールにより、そのような配向性多結晶体の前駆体となる亜鉛アルミ酢酸水和物の合成が期待できる。   The present inventor examined in order to find a material (material for film formation) suitable for a transparent conductive film for solar cell panels and the like. With regard to the production of this material, in order to realize high uniformity and control of the crystal shape with a molecular size that is difficult to realize by dry methods such as gas phase method, the wet method was studied. Films consisting of oriented polycrystals are generally expected to exhibit characteristics similar to single crystals in bulk oxide polycrystals (including thick film materials), but control of crystal shape by wet method Thus, the synthesis of zinc aluminum acetate hydrate, which is a precursor of such oriented polycrystals, can be expected.

具体的には、湿式法の1つである沈殿法によって、配向性多結晶構造を有する酸化物(特に、膜厚が数十nmの薄膜〜数十μm以上の厚膜)を得るための前駆体である亜鉛アルミニウム酢酸水和物を得ること、この前駆体を用いて基板に製膜(塗布・焼成して酸化物皮膜とする)し、所望の性能を有する酸化物皮膜を得ることを狙いとして、以下のような試験、検討を行った。   Specifically, a precursor for obtaining an oxide having an oriented polycrystalline structure (in particular, a thin film having a film thickness of several tens of nm to a thick film of several tens of μm or more) by a precipitation method which is one of wet methods The objective is to obtain zinc aluminum acetate acetic acid which is a body, to form a film (by applying and baking to form an oxide film) on a substrate using this precursor, and to obtain an oxide film having desired performance. The following tests and examinations were conducted.

まず、沈殿法による亜鉛アルミニウム水和物の合成(沈殿物の生成)を以下の試験条件で行った。
Zn2+イオンとAl3+イオンを含む酸性水溶液(以下、便宜上「金属溶液」という場合がある)の作成には、Zn2+イオン源として無水酢酸亜鉛(Zn(CHCOO))、Al3+イオン源として塩基性酢酸アルミニウム2水和物(AlO(CHCOO)・2HO)をそれぞれ用いた。また、アルカリ水溶液(鉱化材)としては、NaOH水溶液を用いた。
First, the synthesis of zinc aluminum hydrate (the formation of a precipitate) by a precipitation method was performed under the following test conditions.
In the preparation of an acidic aqueous solution containing Zn 2+ ions and Al 3+ ions (hereinafter sometimes referred to as “metal solution” for convenience), anhydrous zinc acetate (Zn (CH 3 COO) 2 ), Al 3+ ions as a Zn 2+ ion source Basic aluminum acetate dihydrate (Al 2 O (CH 3 COO) 4 · 2H 2 O) was used as a source. Moreover, NaOH aqueous solution was used as alkaline aqueous solution (mineralization material).

金属溶液は、Zn2+イオンとAl3+イオンの合計が0.1モル/L、[Zn2+イオン量(モル)+Al3+イオン量(モル)]に対するAl3+イオン量(モル)の割合(以下、説明の便宜上「Al3+イオン添加量」という)が0〜25%となるように作成した。このときのAl3+イオン添加量(配合水準)を表1に示す。
送液は、金属溶液へのNaOH水溶液の滴下とし、送液速度は1L/1時間とした。NaOH水溶液のOHイオン濃度を、中和当量と考えられる約0.2モル/L前後(0.04〜0.22モル/L)で変化させ、金属溶液1LにNaOH水溶液1Lを滴下して沈殿物を得た。滴下したNaOH水溶液のOHイオン濃度の水準を表2に示す。
In the metal solution, the total of Zn 2+ ion and Al 3+ ion is 0.1 mol / L, and the ratio (below) of Al 3+ ion amount (mol) to [Zn 2+ ion amount (mol) + Al 3+ ion amount (mol)] For convenience of explanation, it is prepared so that it is referred to as "the amount of addition of Al 3+ ions" is 0 to 25%. The amount of added Al 3+ ions (blended level) at this time is shown in Table 1.
The liquid was fed by dropping an aqueous solution of NaOH into the metal solution, and the liquid feeding speed was 1 L / 1 hour. The OH - ion concentration of the aqueous NaOH solution is changed by about 0.2 mol / L (0.04 to 0.22 mol / L) considered to be a neutralization equivalent, and 1 L of the aqueous NaOH solution is added dropwise to 1 L of the metal solution. I got a precipitate. The level of the OH ion concentration of the NaOH aqueous solution dropped is shown in Table 2.

沈殿反応後の白色の沈殿物を含む溶液は、6〜24時間撹拌養生した後、吸引濾過で沈殿物を回収した。この沈殿物(ゲル状物質)は、蒸留水を加えて遠心分離により洗浄(3回)した後、30℃での真空乾燥を行うことで乾燥粉を得ることができた。なお、40℃×12hrの乾燥によっても乾燥粉を得ることができた。
以上のようにして得られた沈殿物(固形分)について、XRD(BRUKER社;D8 ADVANCE)による鉱物相の同定、SEM(HITACHI社;S-4300)による形状観察を行った。
The solution containing the white precipitate after the precipitation reaction was stirred and aged for 6 to 24 hours, and then the precipitate was collected by suction filtration. This precipitate (gel-like substance) could be obtained by adding distilled water and washing (3 times) by centrifugation, and then performing vacuum drying at 30 ° C. to obtain a dry powder. In addition, dried powder was able to be obtained also by drying at 40 ° C. × 12 hr.
Identification of the mineral phase by XRD (BRUKER; D8 ADVANCE) and shape observation by SEM (HITACHI; S-4300) were performed for the precipitate (solid content) obtained as described above.

表3に、XRDで同定された沈殿物の鉱物相を示す。表3は、金属溶液のAl3+イオン添加量の水準1〜8(表1)とNaOH水溶液のOHイオン濃度の水準a〜h(表2)を組み合わせた各試験で得られた沈殿物の鉱物相をまとめたものである。なお、表3において、符号の順序・文字の大きさは、鉱物相を同定した際の回折強度の大きさを示している。
XRDによる鉱物相の同定では、金属溶液のAl3+イオン添加量が0%の場合、すなわち金属溶液がZn2+イオンのみを含む場合には、OHイオン濃度が0.04〜0.22モル/LのNaOH水溶液の滴下で得られた沈殿物の鉱物相は、OHイオン濃度の低い方から順に、i)亜鉛酢酸水和物(表3では「ZaH」と表記)、ii)水酸化亜鉛(表3では「ZH」と表記)、及びiii)酸化亜鉛(表3では「ZnO」と表記)と同定され、i)とii)の混相、ii)とiii)の混相も、それぞれ中間領域において観察された。
Table 3 shows the mineral phase of the precipitate identified by XRD. Table 3 shows the precipitates obtained in each test combining the levels 1 to 8 (Table 1) of the added amount of Al 3+ ions of the metal solution and the levels a to h (Table 2) of the OH ion concentration of the aqueous NaOH solution. It is a compilation of mineral phases. In Table 3, the order of symbols and the size of characters indicate the magnitude of diffraction intensity when a mineral phase is identified.
In the identification of the mineral phase by XRD, when the Al 3+ ion addition amount of the metal solution is 0%, that is, when the metal solution contains only Zn 2+ ion, the OH ion concentration is 0.04 to 0.22 mol / The mineral phase of the precipitate obtained by the dropwise addition of an aqueous solution of L NaOH is, in order from the lower OH ion concentration, i) zinc acetate hydrate (denoted as “ZaH” in Table 3), ii) zinc hydroxide (Shown as "ZH" in Table 3) and iii) Zinc oxide (shown as "ZnO" in Table 3), i) mixed phase of ii) and ii) mixed phase of ii) and iii) respectively Observed in

一方、滴下したNaOH水溶液のOHイオン濃度が比較的低い場合(0.16モル/L以下)において、酸性水溶液中にAl3+イオンが添加された場合に得られた沈殿物の鉱物相は、酸性水溶液のAl3+イオン添加量が0.001〜10%の場合には亜鉛アルミニウム酢酸水和物(表3では「ZaH−Al」と表記)と同定され、酸性水溶液のAl3+イオン添加量が10%超の場合にはAl濃度が比較的高い(上記「ZaH−Al」よりも高い)亜鉛アルミニウム酢酸水和物(表3では「ZAH」と表記)と同定された。ここで、「ZAH」は、XRDライブラリーデータにある亜鉛アルミニウム酢酸水和物(ZnAl(OH)(C・2.6HO))に相当する亜鉛アルミニウム酢酸水和物であるのに対し、「ZaH−Al」は短冊状の外形を有する層状構造からなるものであり、従来知られていない新規な亜鉛アルミニウム酢酸水和物であると考えられる。 On the other hand, when the OH - ion concentration of the dropped NaOH aqueous solution is relatively low (0.16 mol / L or less), the mineral phase of the precipitate obtained when Al 3 + ion is added to the acidic aqueous solution is When the added amount of Al 3+ ions in the acidic aqueous solution is 0.001 to 10%, it is identified as zinc aluminum acetate hydrate (denoted as “ZaH-Al” in Table 3), and the added amount of Al 3+ ions in the acidic aqueous solution is When it exceeded 10%, it was identified as zinc aluminum acetate hydrate (denoted as "ZAH" in Table 3) having a relatively high Al concentration (higher than the above "ZaH-Al"). Here, “ZAH” is zinc aluminum acetate water corresponding to zinc aluminum acetate hydrate (Zn 2 Al (OH) 6 (C 2 H 3 O 2 .2.6H 2 O)) in the XRD library data. In contrast to being a hydrate, "ZaH-Al" is composed of a layered structure having a strip-like outer shape, and is considered to be a novel zinc aluminum acetate hydrate which has not been known so far.

すなわち、表3に示す沈殿物のうち、Al3+イオン添加量が0.001〜10%である0.1モル/Lの金属溶液1Lに、OHイオン濃度が0.04〜0.16モル/LのNaOH水溶液1Lを滴下して得られた沈殿物が、本発明材(酸化物皮膜形成用材料)である亜鉛アルミニウム酢酸水和物であり、この亜鉛アルミニウム酢酸水和物は短冊状の外形を有する層状構造(層状水酸化物)を有している。 That is, among the precipitates shown in Table 3, the OH - ion concentration is 0.04 to 0.16 mol in 1 L of a 0.1 mol / L metal solution in which the amount of Al 3 + ions added is 0.001 to 10%. The precipitate obtained by dropwise addition of 1 L of NaOH aqueous solution / L is zinc aluminum acetate hydrate which is a material of the present invention (material for forming an oxide film), and this zinc aluminum acetate hydrate is strip-shaped It has a layered structure (layered hydroxide) having an outer shape.

図1に、沈殿法により、Zn2+イオン濃度が0.098モル/L、Al3+イオン濃度が0.002モル/Lの金属溶液1L(Al3+イオン添加量が2%である0.1モル/Lの金属溶液1L)にOHイオン濃度が0.1モル/LのNaOH水溶液1Lを滴下して得られた沈殿物である亜鉛アルミニウム酢酸水和物(本発明材)のXRDチャートと、XRDライブラリーデータにある亜鉛アルミニウム酢酸水和物(ZnAl(OH)(C・2.6HO))のXRDチャートと、XRDライブラリーデータにある塩基性酢酸亜鉛(Zn(OH)1.58(CHCOO)0.42・0.31HO)のXRDチャートを示す。図2は、図1のXRDチャートの主ピーク付近の拡大図である。 In FIG. 1, 1 L of a metal solution having a Zn 2+ ion concentration of 0.098 mol / L and an Al 3+ ion concentration of 0.002 mol / L according to the precipitation method (0.1 mol in which the addition amount of Al 3+ ions is 2%) and XRD chart of the zinc aluminum acetate hydrate (invention material) is a precipitate ion concentration is obtained by dropping NaOH aqueous solution 1L of 0.1 mol / L, - / L of metal solution 1L) in OH XRD chart of zinc aluminum acetate hydrate (Zn 2 Al (OH) 6 (C 2 H 3 O 2 .2.6H 2 O) in the XRD library data and basic zinc acetate in the XRD library data It shows the XRD chart (Zn (OH) 1.58 (CH 3 COO) 0.42 · 0.31H 2 O). FIG. 2 is an enlarged view around the main peak of the XRD chart of FIG.

図1のXRDチャートによれば、本発明材である亜鉛アルミニウム酢酸水和物は、X線回折による主ピーク(001)の格子定数d=13.30062Åであり、塩基性酢酸亜鉛(主ピーク(001)の格子定数d=14.68000Å)の主ピークに対してはそれよりも高角側に、また、比較的一致性の見られるXRDライブラリーデータにある亜鉛アルミニウム酢酸水和物(主ピーク(001)の格子定数d=11.50000Å)の主ピークに対してはそれよりも低角側に、主ピークが見られる。このことから、本発明材の亜鉛アルミニウム酢酸水和物は、塩基性酢酸亜鉛水和物に属するものであるが、既知(XRDライブラリー)の類似水酸化物の構造とは異なった層状化合物であることが分かる。   According to the XRD chart of FIG. 1, the zinc aluminum acetate hydrate of the present invention has a lattice constant d of 13.30062 Å of the main peak (001) by X-ray diffraction, and basic zinc acetate (main peak (001 Zinc aluminum acetate hydrate (main peak (001)) which is in the higher angle side with respect to the main peak of the lattice constant d of 14.6) and in the XRD library data which is also relatively consistent For the main peak of the lattice constant d of 11.50000 Å), the main peak is seen at a lower angle side than that. From this, the zinc aluminum acetate hydrate of the present invention belongs to the basic zinc acetate hydrate, but is a layered compound different from the structure of the known (XRD library) similar hydroxide. I know that there is.

本発明材である亜鉛アルミニウム酢酸水和物の結晶構造は、本来pHの高い条件(高OHイオン濃度)であればOHイオンが入るところに、pHが低い条件(低OHイオン濃度)であるために、不足分を補う形でCHCOOイオンが入るものと考えられる。その結晶構造は、LDH(Layered Double Hydroxide)とは異なり、OH以外の陰イオンが層間ではなく基本層に入った構造となった塩基性塩のものと考えられる。考えられる組成(但し、アルミニウムを除いた組成)としては、Znx(CHCOO)y(OH)zにおいてx:y:z=2:1:3であるが、本発明材である亜鉛アルミニウム酢酸水和物においては、OHイオン濃度が低いことから、2:1+α:3−αであると推定される。図1にXRDチャートを示した塩基性酢酸亜鉛(Zn(OH)1.58(CHCOO)0.42・0.31HO)は、XRDライブラリーデータからは組成比がx:y:z=2:0.86:3.16で与えられており、本発明材である亜鉛アルミニウム酢酸水和物よりもOHイオン濃度が高い条件で得られるものと推定される。 The crystal structure of the zinc aluminum acetate hydrate is present inventive material is inherently high pH conditions where the ion enters, pH is low condition - - OH If (high OH ion concentration) (low OH - ion concentration) Therefore, it is considered that CH 3 COO ions enter in a manner to compensate for the shortfall. The crystal structure is considered to be that of a basic salt having a structure in which anions other than OH enter not the interlayer but the basic layer, unlike LDH (layered double hydroxide). As a conceivable composition (however, a composition excluding aluminum) is x: y: z = 2: 1: 3 in Zn x (CH 3 COO) y (OH) z , and zinc aluminum which is the material of the present invention In acetic acid hydrate, it is estimated that it is 2: 1 + alpha: 3- alpha from the low OH < - > ion concentration. The basic zinc acetate (Zn (OH) 1.58 (CH 3 COO) 0.42 · 0.31 H 2 O) of which the XRD chart is shown in FIG. 1 has a composition ratio of x: y from the XRD library data. z = 2: 0.86: 3.16, and it is presumed that it can be obtained under conditions where the OH - ion concentration is higher than that of the zinc aluminum acetate hydrate of the present invention.

図3に、図1にXRDチャートを示した本発明材である亜鉛アルミニウム酢酸水和物(沈殿物を真空乾燥して得られた粉体)のSEM写真を示す。XRDライブラリーに示されるZn(OH)1.58(CHCOO)0.42・0.31HOやハイドロタルサイト((Mg0.667Al0.333)(OH)(CO0.167(HO)0.5;Magnesium Aluminum Hydroxide Carbonate Hydrate)などの層状水酸化物(層状複水酸化物)は、鱗片状の粒子として観察されることが多いが、本発明材である亜鉛アルミニウム酢酸水和物は特徴的な短冊状の外形を有する層状構造となっていることが分かる。 FIG. 3 shows an SEM photograph of zinc aluminum acetate hydrate (powder obtained by vacuum-drying a precipitate) which is an inventive material of which the XRD chart is shown in FIG. Zn (OH) 1.58 (CH 3 COO) 0.42 · 0.31 H 2 O or hydrotalcite ((Mg 0.667 Al 0.333 ) (OH) 2 (CO 3 ) indicated in the XRD library Layered hydroxides (layered double hydroxides) such as 0.167 (H 2 O) 0.5 ; magnesium aluminum hydroxide carbonate hydrate) are often observed as scaly particles, but in the present invention material It can be seen that certain zinc aluminum acetate hydrates have a layered structure with a characteristic strip-like outer shape.

図1及び図3に示された本発明材である亜鉛アルミニウム酢酸水和物の水溶液(固形分比率30質量%の水溶液)を、バーコート法でガラス基板面に塗布し、100℃で乾燥した後、大気中900℃×4hrの焼成を行い、酸化物皮膜を得た。製膜するのに用いたガラス基板(コーニング社製#1737)はアセトンで表面を洗浄したものを用いた。また、水溶液塗布用のバーコーターとしては、ヨシミツ精機社製「YBA-1型」を用いた。   An aqueous solution of zinc aluminum acetate hydrate (an aqueous solution with a solid content ratio of 30% by mass) as the material of the present invention shown in FIGS. 1 and 3 was applied to a glass substrate surface by a bar coating method and dried at 100 ° C. Thereafter, firing was performed at 900 ° C. for 4 hours in the atmosphere to obtain an oxide film. The glass substrate (Corning # 1737) used for film formation was used after the surface was cleaned with acetone. Further, as a bar coater for applying an aqueous solution, “YBA-1 type” manufactured by Yoshimitsu Seiki Co., Ltd. was used.

酸化物皮膜を形成したガラス基板を切断加工し、酸化物皮膜について、SEMによる表面の観察と、XRDによる鉱物相の同定(結晶性調査)を行った。酸化物皮膜のSEM写真を図4に示す。これによれば、酸化物皮膜は、原材料(前駆体)である亜鉛アルミニウム酢酸水和物の短冊形状の痕跡が残り、表面は凹凸が大きく、ポーラスな構造であることが分かる。   The glass substrate on which the oxide film was formed was cut and processed, and with respect to the oxide film, observation of the surface by SEM and identification of a mineral phase by XRD (investigation of crystallinity) were performed. The SEM photograph of the oxide film is shown in FIG. According to this, it can be seen that the oxide film has a trace of strip shape of zinc aluminum acetate hydrate which is a raw material (precursor), and the surface has a large unevenness and a porous structure.

上記酸化物皮膜の鉱物相をXRDで同定した結果(XRDチャート)を図5に示す。これによれば、六方晶系ZnOの3本の主ピーク(100)、(002)及び(101)に相当するピークが見られるが、(002)のピーク強度が著しく大きいことが分かる。バーコート法で形成した皮膜は、膜厚が比較的厚いことや表面の凹凸が大きいことから、皮膜の厚さ方向の情報も採取され、(100)及び(101)面の情報も混在したものと考えられる。   The result (XRD chart) which identified the mineral phase of the said oxide film by XRD is shown in FIG. According to this, although peaks corresponding to three main peaks (100), (002) and (101) of hexagonal ZnO are observed, it can be seen that the peak intensity of (002) is extremely large. Since the film formed by the bar coating method has a relatively large film thickness and large surface irregularities, the information in the thickness direction of the film is also collected, and the information of (100) and (101) planes is also mixed it is conceivable that.

短冊状の亜鉛アルミニウム酢酸水和物をガラス基板上に塗布し、焼成したものは、図4のSEM写真からも分かるように、焼成後も短冊形状を有しており、またXRDの情報からは、(002)面、すなわちc面が強調される構造となっていることが分かる。c面が並んだ状態、すなわちc軸がガラス基板に直立した状態となっているものと考えられる。以上のことから、本発明材である短冊形状の亜鉛アルミニウム酢酸水和物(前駆体)により、ガラス基板などの上で配向性多結晶構造の酸化物皮膜が得られることが分かった。   The strip-like zinc aluminum acetate hydrate was coated on a glass substrate and fired, as can be seen from the SEM photograph of FIG. 4, had a strip shape after firing, and from the information of XRD, It can be seen that the (002) plane, that is, the c-plane is emphasized. It is considered that the c-planes are aligned, that is, the c-axis is upright on the glass substrate. From the above, it was found that an oxide film having an oriented polycrystalline structure can be obtained on a glass substrate or the like by the strip-shaped zinc aluminum acetate hydrate (precursor) which is the material of the present invention.

図1のXRDチャートによれば、本発明材である亜鉛アルミニウム酢酸水和物のX線回折ピークは、層状水酸化物である塩基性酢酸亜鉛(Zinc Acetate Hydrate;格子定数はa値=3.14700,c値=4.76900)に対して、高角度側に主ピークが見られるだけでなく、a値=3.1016±0.0306Å,c値=39.1568±0.5206Åとなっており、a値は近い値を持つものの、c値は大きく異なっている。本発明材である亜鉛アルミニウム酢酸水和物は、既知の塩基性酢酸亜鉛およびXRDライブラリーデータにある亜鉛アルミ酢酸水和物(Zinc Aluminum Acetate Hydrate;ZnAl(OH)(C・2.6HO)、6方晶系、a値=3.07850、c値=38.1677)の構造とは異なった層状化合物であることが分かる。 According to the XRD chart of FIG. 1, the X-ray diffraction peak of zinc aluminum acetate hydrate which is the present invention material is basic zinc acetate which is a layered hydroxide (Zinc Acetate Hydrate; lattice constant is a value = 3.14700, For c value = 4.76 900), not only the main peak is seen on the high angle side, but a value = 3. 1016 ± 0.0306 Å, c value = 39.1568 ± 0.5 206 Å, and a value is close. , C value is greatly different. The zinc aluminum acetate hydrate of the present invention comprises zinc aluminum acetate hydrate (Zn 2 Al (OH) 6 (C 2 H 3 ), which is based on known basic zinc acetate and XRD library data. It can be seen that this is a layered compound different from the structure of O 2 .2.6H 2 O), hexagonal system, a value = 3.07850, c value = 38.1677).

次に、本発明の酸化物皮膜形成用材料(亜鉛アルミニウム酢酸水和物)の製造方法について詳細を説明する。
この酸化物皮膜形成用材料は、Zn2+イオン源として酢酸亜鉛を溶解させた酸性水溶液であって、Zn2+イオンを主成分とし、さらにAl3+イオンを含む酸性水溶液に、中和当量未満のアルカリ水溶液を滴下し、その水溶液を中和当量よりも低いpH(通常、pH6.0〜7.8程度)に維持することで亜鉛アルミニウム酢酸水和物の沈殿物を生成させ、この沈殿物を回収することにより得ることができる。
酸性水溶液のAl3+イオン源には、酢酸アルミニウム、硝酸アルミニウム、塩化アルミニウムなどを用いることができ、これらの1種以上を水溶液に溶解させる。また、アルカリ水溶液としては、水酸化ナトリウム水溶液、アンモニア水溶液などの1種以上を用いることができる。
Next, the method for producing the material for forming an oxide film (zinc aluminum acetate hydrate) of the present invention will be described in detail.
The material for forming an oxide film is an acidic aqueous solution in which zinc acetate is dissolved as a Zn 2+ ion source, and the alkaline aqueous solution containing Zn 2+ ion as a main component and further containing Al 3+ ion is less than the neutralization equivalent. The aqueous solution is added dropwise, and the aqueous solution is maintained at a pH lower than the neutralization equivalent (usually, about pH 6.0 to 7.8) to form a precipitate of zinc aluminum acetate hydrate, and this precipitate is recovered It can be obtained by
Aluminum acetate, aluminum nitrate, aluminum chloride or the like can be used as the Al 3+ ion source of the acidic aqueous solution, and one or more of these are dissolved in the aqueous solution. Moreover, as alkaline aqueous solution, 1 or more types, such as sodium hydroxide aqueous solution and ammonia aqueous solution, can be used.

本発明の製造方法のより具体的な条件としては、使用する酸性水溶液中のZn2+イオン量をm(モル)、Al3+イオン量をn(モル)、この酸性水溶液に滴下するアルカリ水溶液中のOHイオン量をx(モル)とした時、酸性水溶液中のAl3+イオン添加量(すなわち[Zn2+イオン量m(モル)+Al3+イオン量n(モル)]に対するAl3+イオン量n(モル)の割合)を0.001〜10%とし、且つ下記(1)式を満足するように酸性水溶液にアルカリ水溶液を滴下することが好ましい。
0.2X≦x<0.8X …(1)
但し X=2m+3n
As more specific conditions of the production method of the present invention, the amount of Zn 2+ ions in the acidic aqueous solution to be used is m (moles), the amount of Al 3 + ions is n (moles), and the alkaline aqueous solution to be dropped into this acidic aqueous solution OH - when the amount of ions was x (mol), Al 3+ ions loading in the acidic aqueous solution (i.e. [Zn 2+ ion amount m (mol) + Al 3+ ion amount n (mol)] Al 3+ ion amount n (mol for The aqueous alkaline solution is preferably added dropwise to the acidic aqueous solution so as to satisfy the following formula (1) by setting the ratio of 0.001) to 0.001%.
0.2X ≦ x <0.8X (1)
Where X = 2m + 3n

また、酸性水溶液中のAl3+イオン添加量を0.01%以上2%未満とし、且つ下記(2)式を満足するように酸性水溶液にアルカリ水溶液を滴下することがより好ましい。
0.4X≦x≦0.6X …(2)
但し X=2m+3n
ここで、本発明法で用いる酸性水溶液は、Zn2+イオンを主成分とし、Al3+イオンを含むpH6.0〜7.5程度の水溶液であり、また、アルカリ水溶液はpH12.0〜14.0程度の水溶液である。
Further, it is more preferable to add an alkaline aqueous solution dropwise to the acidic aqueous solution so that the addition amount of Al 3+ ions in the acidic aqueous solution is 0.01% or more and less than 2%, and the following formula (2) is satisfied.
0.4 x ≦ x ≦ 0.6 x (2)
Where X = 2m + 3n
Here, the acidic aqueous solution used in the method of the present invention is an aqueous solution containing Zn 2+ ion as a main component and containing Al 3+ ion and having a pH of about 6.0 to 7.5, and an alkaline aqueous solution having a pH of 12.0 to 14.0. It is an aqueous solution of some degree.

アルカリ水溶液中のOHイオン量x(モル)は、上記のように酸性水溶液のZn2+イオン量m(モル)とAl3+イオン量n(モル)によって規定される。一方、酸性水溶液のZn2+イオンとAl3+イオンの合計濃度(m+nモル/L)については、特に制限はないが、0.05〜0.5モル/L程度が好ましい。Zn2+イオンとAl3+イオンの合計濃度が0.05モル/L未満では生産性が低く、一方、0.5モル/Lを超えると、沈殿物が高濃度、高粘性となるため撹拌養生に支障をきたすおそれがあり、また、沈殿物の均一性(沈殿物凝集粒のサイズなど)も低下することが懸念される。但し、撹拌養生の撹拌力や反応容器の形状・サイズなどについて十分な検討・配慮をすれば、0.5モル/Lを超える合計濃度(m+nモル/L)とすることも可能である。
なお、上記(1)式(好ましくは上記(2)式)を満足するように酸性水溶液にアルカリ水溶液を滴下した場合の水溶液のpHは特に限定されないが、目安として、通常、上記(1)式を満足することにより水溶液がpH6.0〜7.8程度に維持される。
The amount of OH ions x (mole) in the aqueous alkaline solution is defined by the amount of Zn 2+ ions m (mole) and the amount of Al 3+ ions n (mole) of the acidic aqueous solution as described above. On the other hand, the total concentration (m + n mol / L) of Zn 2+ ion and Al 3+ ion in the acidic aqueous solution is not particularly limited, but preferably about 0.05 to 0.5 mol / L. If the total concentration of Zn 2+ ion and Al 3+ ion is less than 0.05 mol / L, productivity is low, while if it exceeds 0.5 mol / L, precipitates become high concentration and high viscosity, so stirring and aging There is a concern that problems may occur and that the uniformity of the precipitate (such as the size of the precipitate agglomerates) may also be reduced. However, the total concentration (m + n mol / L) exceeding 0.5 mol / L can also be obtained if sufficient consideration and consideration are given to the stirring power of stirring curing and the shape and size of the reaction vessel.
The pH of the aqueous solution is not particularly limited when the alkaline aqueous solution is dropped in the acidic aqueous solution so as to satisfy the above-mentioned formula (1) (preferably the above-mentioned formula (2)). The aqueous solution is maintained at about pH 6.0 to 7.8.

本発明の製造方法の特徴は、Zn2+イオン源として酢酸亜鉛を溶解させた酸性水溶液であって、Zn2+イオンを主成分とし、さらにAl3+イオンを含む酸性水溶液に対して、中和当量未満のアルカリ水溶液を加えること、すなわち、酸性水溶液の中和に必要なOHイオンよりも少ない量のOHイオンが供給されるようにアルカリ水溶液を加えることで、短冊状の水酸化物(亜鉛アルミニウム酢酸水和物)の沈殿物を生成させる点にある。先に述べたように、この水酸化物の結晶構造は、本来pHの高い条件(高OHイオン濃度)であればOHイオンが入るところに、pHが低い条件(低OHイオン濃度)であるために、不足分を補う形でCHCOOイオンが入ることで得られるものと考えられる。 The feature of the production method of the present invention is an acidic aqueous solution in which zinc acetate is dissolved as a Zn 2+ ion source, which is mainly composed of Zn 2+ ion and further containing less than the neutralization equivalent to an acidic aqueous solution containing Al 3+ ion. of adding an alkaline aqueous solution, i.e., necessary for the neutralization of the acidic aqueous solution OH - less than ion quantity of OH - by ion adding alkaline aqueous solution to be supplied, strip-shaped hydroxide (zinc aluminum It is at the point of producing a precipitate of acetic acid hydrate). As mentioned previously, the crystal structure of the hydroxide is inherently high pH conditions where the ion enters, pH is low condition - - OH if (high OH ion concentration) (low OH - ion concentration) Therefore, it is considered that it can be obtained by the introduction of CH 3 COO ions in a form that compensates for the shortfall.

さきに説明したように、表3は、Zn2+イオン源として酢酸亜鉛を溶解させた酸性水溶液であって、Zn2+イオンを主成分とし、さらにAl3+イオンを含む酸性水溶液にアルカリ水溶液を滴下して沈殿物を得る際に、酸性水溶液のAl3+イオン添加量と滴下するアルカリ水溶液中のOHイオン濃度を表1及び表2の水準で変化させて得られた沈殿物の鉱物相を示している。
図6〜図8に、表3に示した沈殿物と同じく、沈殿法により、Al3+イオン添加量が異なる金属溶液1LにOHイオン濃度が異なるNaOH水溶液1Lを滴下して得られた沈殿物のSEM写真を示す。なお、各SEM写真に表示した数値は、使用したNaOH水溶液のOHイオン濃度(モル/L)である。
As described above, Table 3 shows an acidic aqueous solution in which zinc acetate is dissolved as a Zn 2+ ion source, and the alkaline aqueous solution is dropped into an acidic aqueous solution containing Zn 2+ ion as a main component and further containing Al 3+ ion. Showing the mineral phase of the precipitate obtained by changing the Al 3+ ion addition amount of the acidic aqueous solution and the OH ion concentration in the alkaline aqueous solution to be dropped according to the level of Table 1 and Table 2 There is.
In FIGS. 6 to 8, like the precipitates shown in Table 3, precipitates obtained by dropping 1 L of an aqueous solution of NaOH having different OH ion concentrations into 1 L of metal solutions having different amounts of added Al 3 + ions by precipitation. Shows a SEM photograph of In addition, the numerical value displayed on each SEM photograph is OH < - > ion concentration (mol / L) of the used NaOH aqueous solution.

図6は、Al3+イオン添加量が10%である0.1モル/Lの金属溶液1LにOHイオン濃度が異なるNaOH水溶液1Lを滴下して得られた沈殿物であり、このうちOHイオン濃度が0.04〜0.16モル/LのNaOH水溶液を滴下して得られた沈殿物(通常、沈殿物が生じる水溶液のpHは6.0〜7.8程度)は、短冊状の亜鉛アルミニウム酢酸水和物である。また、そのなかで、NaOH水溶液のOHイオン濃度が高いほどZn歩留まりが高くなり、OHイオン濃度が0.06〜0.16モル/LのNaOH水溶液を滴下して得られた沈殿物(通常、沈殿物が生じる水溶液のpHは6.5〜7.8程度)は、特に高いZn歩留まりが得られる(ほぼ60%以上)。これに較べて、OHイオン濃度が0.04モル/LのNaOH水溶液を滴下して得られた沈殿物(通常、沈殿物が生じる水溶液のpHは6.0程度)は、沈殿物の生成が少なくなり、Zn歩留まりが低くなる。 FIG. 6 shows a precipitate obtained by dropping 1 L of an aqueous solution of NaOH having different OH ion concentration into 1 L of a 0.1 mol / L metal solution in which the addition amount of Al 3+ ions is 10%, among which OH The precipitate obtained by dropwise addition of an aqueous solution of NaOH having an ion concentration of 0.04 to 0.16 mol / L (usually, the pH of the aqueous solution from which the precipitate is generated is about 6.0 to 7.8) is strip-shaped Zinc aluminum acetate hydrate. Among them, the higher the OH ion concentration of the aqueous NaOH solution, the higher the Zn yield, and the precipitate obtained by dropping the aqueous NaOH solution with an OH ion concentration of 0.06 to 0.16 mol / L ( In general, the pH of the aqueous solution in which the precipitate is generated is about 6.5 to 7.8), and particularly high Zn retention is obtained (approximately 60% or more). Compared to this, the precipitate obtained by dropping an aqueous solution of NaOH having an OH - ion concentration of 0.04 mol / L (usually, the pH of the aqueous solution from which the precipitate is generated is about 6.0) is a precipitate. And the Zn yield is reduced.

これに対して高アルカリ合成条件、すなわち、OHイオン濃度が0.18モル/LのNaOH水溶液を滴下して得られた沈殿物(通常、沈殿物が生じる水溶液のpHは11程度)は、六角鱗片状の水酸化亜鉛及び六角鱗片状の結晶が集積した正八面体構造を有する水酸化亜鉛が主体で、これと粒状の酸化亜鉛との混相となる。さらに、OHイオン濃度が0.20モル/L以上のNaOH水溶液を滴下して得られた沈殿物(通常、沈殿物が生じる水溶液のpHは12以上)は、粒状の酸化亜鉛が主体で、これと六角鱗片状の水酸化亜鉛及び六角鱗片状の結晶が集積した正八面体構造を有する水酸化亜鉛との混相となる。 On the other hand, under highly alkaline synthesis conditions, that is, a precipitate obtained by dropwise addition of an aqueous NaOH solution having an OH - ion concentration of 0.18 mol / L (usually, the pH of the aqueous solution from which the precipitate is generated is about 11) is The main component is a zinc oxide having a hexagonal scaly zinc hydroxide and a regular octahedral structure in which hexagonal scaly crystals are accumulated, and this is mixed with particulate zinc oxide. Furthermore, the precipitate obtained by dropping an aqueous solution of NaOH having an OH ion concentration of 0.20 mol / L or more (usually, the pH of the aqueous solution which precipitates is 12 or more) is mainly composed of granular zinc oxide, It becomes a mixed phase of this and zinc hydroxide having a regular octahedral structure in which zinc flakes having a hexagonal scale shape and crystals having a hexagonal scale shape are accumulated.

一方、図7は、Al3+イオン添加量が0%、すなわちZn2+イオンのみを含む0.1モル/Lの金属溶液1LにOHイオン濃度が異なるNaOH水溶液1Lを滴下して得られた沈殿物である。このうち、OHイオン濃度が0.04〜0.16モル/LのNaOH水溶液を滴下して得られた沈殿物は、亜鉛酢酸水和物であるが、図6の短冊状の亜鉛アルミニウム酢酸水和物と同様、短冊状の外形を有する。
また、図8は、Al3+イオン添加量が20%である0.1モル/Lの金属溶液1LにOHイオン濃度が異なるNaOH水溶液1Lを滴下して得られた沈殿物である。このうちOHイオン濃度が0.1〜0.175モル/LのNaOH水溶液を滴下して得られた沈殿物は、亜鉛アルミニウム酢酸水和物ではあるが、図6の亜鉛アルミニウム酢酸水和物のような短冊状ではない。
On the other hand, FIG. 7 shows the precipitation obtained by dropping 1 L of an aqueous solution of NaOH having different OH ion concentration into 1 L of a 0.1 mol / L metal solution containing 0% of Al 3 + ions, ie, only Zn 2+ ions. It is a thing. Among them, the precipitate obtained by dropping an aqueous solution of NaOH having an OH ion concentration of 0.04 to 0.16 mol / L is zinc acetate hydrate, but the strip-shaped zinc aluminum acetate of FIG. Similar to the hydrate, it has a strip-like outer shape.
Further, FIG. 8 is a precipitate obtained by dropping 1 L of an aqueous solution of NaOH having different OH ion concentration to 1 L of a 0.1 mol / L metal solution in which the additive amount of Al 3+ ions is 20%. Among them, the precipitate obtained by dropping an aqueous solution of NaOH having an OH ion concentration of 0.1 to 0.175 mol / L is zinc aluminum acetate hydrate, but the zinc aluminum acetate hydrate of FIG. Not like a strip of paper.

ここで、図6において、短冊状の亜鉛アルミニウム酢酸水和物が得られるNaOH水溶液のOHイオン濃度が0.04〜0.16モル/Lの場合、酸性水溶液中のZn2+イオン量m(モル)、Al3+イオン量n(モル)と、この酸性水溶液に滴下するアルカリ水溶液中のOHイオン量x(モル)は、上記(1)式、すなわち0.2X≦x<0.8X(但し、X=2m+3n)の関係になる。したがって、本発明では、上記(1)式を満足するように酸性水溶液にアルカリ水溶液を滴下することが好ましい。 Here, in FIG. 6, when the OH ion concentration of the NaOH aqueous solution from which a strip-like zinc aluminum acetate hydrate is obtained is 0.04 to 0.16 mol / L, the Zn 2+ ion amount m in the acidic aqueous solution ( Mol), Al 3+ ion amount n (mol), and OH - ion amount x (mol) in the alkaline aqueous solution dropped to this acidic aqueous solution are the above formula (1), that is, 0.2 x ≦ x <0.8 x ( However, there is a relationship of X = 2m + 3n). Therefore, in the present invention, it is preferable to drop the alkaline aqueous solution into the acidic aqueous solution so as to satisfy the above-mentioned equation (1).

また、短冊状の亜鉛アルミニウム酢酸水和物が得られるAl3+イオン添加量については、(i)図6はAl3+イオン添加量が10%であること、(ii)図3の短冊状の亜鉛アルミニウム酢酸水和物はAl3+イオン添加量が2%であること、(iii)表3によれば、Al3+イオン添加量が0.001〜10%において亜鉛アルミニウム酢酸水和物が得られていること、(iv)Al3+イオン添加量が0%の図7の場合でも、OHイオン濃度が0.04〜0.16モル/LのNaOH水溶液を滴下して得られた沈殿物(亜鉛酢酸水和物)は、図6の短冊状の亜鉛アルミニウム酢酸水和物と同様、短冊状であること、などの点からして、酸性水溶液の好適なAl3+イオン添加量は0.001〜10%であると考えられ、このAl3+イオン添加量の範囲とすることが好ましい。 In addition, with regard to the addition amount of Al 3+ ions from which strip-like zinc aluminum acetate hydrate is obtained, (i) FIG. 6 shows that the addition amount of Al 3+ ions is 10%, and (ii) strip-like zinc of FIG. The aluminum acetate hydrate is 2% of Al 3+ ion addition, (iii) According to Table 3, zinc aluminum acetate hydrate is obtained at Al 3+ ion addition of 0.001 to 10% (Iv) Even in the case of FIG. 7 in which the addition amount of Al 3+ ions is 0%, a precipitate obtained by dropping an aqueous solution of NaOH having an OH ion concentration of 0.04 to 0.16 mol / L (zinc (zinc Acetic acid hydrate is similar to the strip-like zinc aluminum acetate hydrate of FIG. 6 from the viewpoint of being strip-like, etc., and the preferable Al 3+ ion addition amount of the acidic aqueous solution is 0.001 to 1 This Al 3+ is considered to be 10%. It is preferable to set it as the range of on addition amount.

また、図6のなかで、特に異相を含まない短冊状の亜鉛アルミニウム酢酸水和物が安定的に得られるNaOH水溶液のOHイオン濃度は0.08〜0.12モル/Lであり、この場合、酸性水溶液中のZn2+イオン量m(モル)、Al3+イオン量n(モル)と、この酸性水溶液に滴下するアルカリ水溶液中のOHイオン量x(モル)は、上記(2)式、すなわち0.4X≦x≦0.6X(但し、X=2m+3n)の関係になる。したがって、本発明では、上記(2)式を満足するように酸性水溶液にアルカリ水溶液を滴下することが、より好ましい。
また、酸化物皮膜としたときにスピネルの生成がなく、電気伝導度が特に高くなるのは(後述する図13参照)、酸性水溶液のAl3+イオン添加量が0.01%以上2%未満の場合であり、このため、酸性水溶液のAl3+イオン添加量は0.01%以上2%未満とすることがより好ましい。
Further, in FIG. 6, in particular, the OH - ion concentration of the aqueous NaOH solution from which the strip-like zinc aluminum acetate hydrate containing no heterophase is stably obtained is 0.08 to 0.12 mol / L, In this case, the amount of Zn 2+ ions m (mol) in the acidic aqueous solution, the amount of Al 3 + ions n (mol), and the amount of OH ions x (mol) in the alkaline aqueous solution dropped into the acidic aqueous solution That is, the relationship of 0.4X ≦ x ≦ 0.6X (where X = 2m + 3n) is obtained. Therefore, in the present invention, it is more preferable to drop the alkaline aqueous solution into the acidic aqueous solution so as to satisfy the above-mentioned formula (2).
Moreover, there is no formation of spinel when forming an oxide film, and the electrical conductivity is particularly high (see FIG. 13 described later), because the addition amount of Al 3+ ions in the acidic aqueous solution is 0.01% or more and less than 2% In this case, the addition amount of Al 3+ ions in the acidic aqueous solution is more preferably 0.01% or more and less than 2%.

表4に、表3に示した沈殿物(金属溶液のAl3+イオン添加量の水準1〜8とNaOH水溶液のOHイオン濃度の水準a〜hを組み合わせた各試験で得られた沈殿物)を900℃で焼成して得られた焼成体について、XRDにより鉱物相を同定した結果を示す。表4によれば、NaOH水溶液のOHイオン濃度に関わりなく、金属溶液のAl3+イオン添加量が2%未満の場合には、焼成体はZnOの単相(表4では「ZnO」と表記)となる。これに対して、金属溶液のAl3+イオン添加量が2%以上になると、焼成体にはスピネル相であるZnAl(表4では「Sp」と表記)が含まれるようになり、Al3+イオン添加量が多くなるほどスピネル相の割合が高くなる。このスピネル相は絶縁体であるため酸化物皮膜の電気伝導性を低下させるので、酸化物皮膜の電気伝導性を確保する観点からは、金属溶液のAl3+イオン添加量は2%未満好ましい。なお、表4において、「Sp」の文字の大きさは、鉱物相を同定した際の回折強度の大きさを示している。 The precipitates shown in Table 4 (the precipitates obtained in each test combining the levels 1 to 8 of the added amount of Al 3 + ions of metal solution and the levels a to h of the OH ion concentration of the NaOH aqueous solution) The result of having identified the mineral phase by XRD is shown about the sintered body obtained by baking at 900 degreeC. According to Table 4, regardless of the OH ion concentration of the NaOH aqueous solution, when the Al 3 + ion addition amount of the metal solution is less than 2%, the fired body is a single phase of ZnO (in FIG. ). On the other hand, when the addition amount of Al 3 + ions in the metal solution is 2% or more, the sintered body contains ZnAl 2 O 4 (denoted as “Sp” in Table 4) which is a spinel phase, and Al The proportion of the spinel phase increases as the addition amount of 3+ ions increases. Since the spinel phase is an insulator, it reduces the electrical conductivity of the oxide film, so that the amount of Al 3+ ions added to the metal solution is preferably less than 2% from the viewpoint of securing the electrical conductivity of the oxide film. In Table 4, the size of the letter "Sp" indicates the size of the diffraction intensity when the mineral phase is identified.

図9は、沈殿法により、Al3+イオン添加量が0〜25%である0.1モル/Lの酸性水溶液1Lに、それぞれOHイオン濃度が異なるNaOH水溶液1Lを滴下して沈殿物を得る場合において、滴下したNaOH水溶液のOHイオン濃度とZn歩留まり(溶液中のZn2+イオンが沈殿物となった質量割合)との関係を調べたものである。また、図10は、沈殿法により、Al3+イオン添加量が2〜25%である0.1モル/Lの酸性水溶液1Lに、それぞれOHイオン濃度が異なるNaOH水溶液1Lを滴下して沈殿物を得る場合において、滴下したNaOH水溶液のOHイオン濃度とAl歩留まり(溶液中のAl3+イオンが沈殿物となった質量割合)との関係を調べたものである。 FIG. 9 shows that 1 L of NaOH aqueous solution having different OH ion concentrations is added dropwise to 1 L of 0.1 mol / L acidic aqueous solution containing 0 to 25% of Al 3+ ions by precipitation method to obtain a precipitate In some cases, the relationship between the OH ion concentration of the dropped NaOH aqueous solution and the Zn retention (the mass ratio at which Zn 2+ ions in the solution became a precipitate) was investigated. Further, FIG. 10 is a precipitation method in which 1 L of NaOH aqueous solution having different OH ion concentrations is dropped to 1 L of 0.1 mol / L acidic aqueous solution containing 2 to 25% of Al 3+ ions, and the precipitate is precipitated. In this case, the relationship between the OH ion concentration of the dropped NaOH aqueous solution and the Al yield (the mass ratio at which Al 3 + ions in the solution have become a precipitate) is investigated.

図9に示されるように、Zn歩留まりを60%以上とするにはNaOH水溶液のOHイオン濃度が約0.08モル/L以上(すなわちx≧0.4X)であればよいことが分かる。また、NaOH水溶液のOHイオン濃度が約0.18モル/L以上(すなわちx≧0.9X)ではZn歩留まりは100%に近くなるが、さきに述べたように、沈殿物は六角鱗片状の水酸化亜鉛及び六角鱗片状の結晶が集積した正八面体構造を有する水酸化亜鉛となるか、或いは六角鱗片状の水酸化亜鉛及び六角鱗片状の結晶が集積した正八面体構造を有する水酸化亜鉛と粒状の酸化亜鉛の混相となるか、或いは粒状の酸化亜鉛となってしまい、本発明材である短冊状水酸化物(亜鉛アルミニウム酢酸水和物)が得られなくなる。
また、Al歩留まりについては、図10に示されるように、NaOH水溶液のOHイオン濃度が約0.22モル/L未満であれば歩留まり100%が得られる。
As shown in FIG. 9, it can be seen that the OH ion concentration of the aqueous NaOH solution should be about 0.08 mol / L or more (ie, x ≧ 0.4 ×) in order to make the Zn yield 60% or more. In addition, when the OH - ion concentration of the NaOH aqueous solution is about 0.18 mol / L or more (that is, x 0.9 0.9 X), the Zn yield is close to 100%, but as mentioned earlier, the precipitate has a hexagonal scale Or zinc hydroxide having a regular octahedral structure in which crystals of hexagonal scale are accumulated, or zinc hydroxide having a regular octahedron structure in which crystals of hexagonal scale and hexagonal scale are accumulated It becomes a mixed phase of zinc oxide and granular zinc oxide, or becomes granular zinc oxide, and the strip-like hydroxide (zinc aluminum acetate hydrate) which is the material of the present invention can not be obtained.
With regard to the Al yield, as shown in FIG. 10, if the OH ion concentration of the NaOH aqueous solution is less than about 0.22 mol / L, a yield of 100% is obtained.

また、先に述べたように、本発明材である亜鉛アルミニウム酢酸水和物は格子定数のc値が既知の塩基性酢酸亜鉛と大きく異なっており、このc値と亜鉛アルミニウム酢酸水和物の生成条件や短冊形状との関係を調べた。
沈殿法により、Al3+イオン添加量が2%である0.1モル/Lの酸性水溶液1Lに、OHイオン濃度が0.04〜0.16モル/LのNaOH水溶液1Lをそれぞれ滴下して得られた沈殿物(亜鉛アルミニウム酢酸水和物)について、XRDチャートのピーク解析により格子定数のc値を求めた。このc値とNaOH水溶液のOHイオン濃度との関係を図11に示す。
Further, as described above, the zinc aluminum acetate hydrate according to the present invention is largely different from the basic zinc acetate having a lattice constant of c value, and this c value and zinc aluminum acetate hydrate The relationship between the generation conditions and the strip shape was investigated.
According to the precipitation method, 1 L of NaOH aqueous solution with an OH ion concentration of 0.04 to 0.16 mol / L is added dropwise to 1 L of 0.1 mol / L acidic aqueous solution in which the amount of Al 3+ ions added is 2%. For the obtained precipitate (zinc aluminum acetate hydrate), c value of the lattice constant was determined by peak analysis of the XRD chart. The relationship between the c value and the OH - ion concentration of the aqueous NaOH solution is shown in FIG.

また、沈殿法により、Al3+イオン添加量が0〜25%である0.1モル/Lの酸性水溶液1Lに、それぞれOHイオン濃度が0.1モル/LのNaOH水溶液1Lを滴下して得られた沈殿物(亜鉛酢酸水和物、亜鉛アルミニウム酢酸水和物)について、XRDチャートのピーク解析により格子定数のc値を求めた。このc値と酸性水溶液のAl3+イオン添加量との関係を図12に示す。なお、図12において右端の3点は、Al3+イオン添加量が20%、25%、33%の点であり、このうち33%の点のc値は、XRDデータベースからの引用値である。 In addition, 1 L of an aqueous solution of NaOH with an OH ion concentration of 0.1 mol / L is added dropwise to 1 L of a 0.1 mol / L acidic aqueous solution containing 0 to 25% of Al 3+ ions by precipitation. With respect to the obtained precipitate (zinc acetic acid hydrate, zinc aluminum acetic acid hydrate), c value of the lattice constant was determined by peak analysis of the XRD chart. The relationship between the c value and the addition amount of Al 3 + ions in the acidic aqueous solution is shown in FIG. In addition, three points of the right end in FIG. 12 are points of Al 3+ ion addition amount 20%, 25%, 33%, and the c value of the 33% point is a quoted value from the XRD database.

図11に示すように、酸性水溶液のAl3+イオン添加量が2%の場合において、OHイオン濃度が0.04〜0.16モル/LのNaOH水溶液を滴下して得られた沈殿物(亜鉛アルミニウム酢酸水和物)は、格子定数のc値がc=39.1568±0.5206Åの範囲である。一方、図12に示すように、Al3+イオン添加量が10%以下では、Al3+イオン添加量が変化しても格子定数のc値はc=39.1568±0.1229Åの範囲となり、OHイオン濃度の変化によるバラツキよりも小さくなる。したがって、本発明材である亜鉛アルミニウム酢酸水和物におけるAlは、Znサイトを置換したのか、亜鉛酢酸水和物の構造中に侵入したものか、或いは亜鉛酢酸水和物にアモルファスとして析出・付着したものなのかは、必ずしも明らかではないが、亜鉛とアルミニウムからなる酢酸水和物の鉱物相は、Al3+イオン添加量が10%以下では、格子定数の変化はAl3+イオン添加量には依存せず変化も少なく、添加するアルカリ量(OHイオン濃度)のみに依存していることが分かる。
したがって、本発明材である亜鉛アルミニウム酢酸水和物を特徴づける短冊形状の沈殿物は、測定されるX線回折ピークがc値=39.1568±0.5206Åで特定される水和物(格子定数のc値がc=39.1568±0.5206Åの水和物)であるということができる。
As shown in FIG. 11, when the addition amount of Al 3+ ions in the acidic aqueous solution is 2%, a precipitate obtained by dropping an aqueous NaOH solution having an OH ion concentration of 0.04 to 0.16 mol / L ( Zinc aluminum acetate hydrate) has a lattice constant c value of c = 39.1568 ± 0.5206 Å. On the other hand, as shown in FIG. 12, when the Al 3+ ion addition amount is 10% or less, the c value of the lattice constant is in the range of c = 39.1568 ± 0.1229 Å even if the Al 3+ ion addition amount changes, and the OH ion concentration It becomes smaller than the variation due to the change of. Therefore, Al in the zinc aluminum acetate hydrate of the present invention has Zn sites replaced, penetrates into the structure of zinc acetate hydrate, or precipitates and adheres as zinc acetate hydrate as amorphous. whether the thing for, although not necessarily clear, mineral phase of acetate hydrate consisting of zinc and aluminum, with Al 3+ ions added amount is 10% or less, the change in lattice constant depending on the Al 3+ ion amount It can be seen that the change is also small and depends only on the amount of alkali (OH - ion concentration) to be added.
Therefore, the strip-shaped precipitate characterizing the zinc aluminum acetate hydrate of the present invention is a hydrate whose measured X-ray diffraction peak is specified by the c value = 39.1568 ± 0.5206 Å (the lattice constant c It can be said that the value is a hydrate of c = 39.1568 ± 0.5206 Å).

本発明の製造方法では、Zn2+イオン源として酢酸亜鉛を溶解させた酸性水溶液であって、Zn2+イオンを主成分とし、さらにAl3+イオンを含む酸性水溶液に、中和当量未満のアルカリ水溶液を滴下して亜鉛アルミニウム酢酸水和物の沈殿物を生成させ、この沈殿物を回収し、酸化物皮膜形成用材料(製品)とする。一般に、この酸化物皮膜形成用材料の形態は、沈殿状態から回収されたゲル状物質又はこのゲル状物質を乾燥(例えば真空乾燥など)させたものとなる。具体的には、(i)水溶液中から回収されたゲル状物質(沈殿物)を洗浄してウエットな状態のままで酸化物皮膜形成用材料とする、(ii)ゲル状物質を洗浄したものを乾燥させた粉体(乾燥粉)を酸化物皮膜形成用材料とする、などの利用形態があるが、これに限定されるものではない。 In the production method of the present invention, an acidic aqueous solution in which zinc acetate is dissolved as a Zn 2+ ion source, which is mainly composed of Zn 2+ ions and further contains Al 3+ ions, is an alkaline aqueous solution less than the neutralization equivalent. The resultant is dropped to form a precipitate of zinc aluminum acetate hydrate, and this precipitate is recovered and used as a material (product) for forming an oxide film. In general, the form of the oxide film-forming material is a gel-like substance recovered from a precipitated state or a gel-like substance obtained by drying (for example, vacuum drying). Specifically, (i) a gel-like substance (precipitate) recovered from an aqueous solution is washed to form an oxide film-forming material in a wet state; (ii) a gel-like substance is washed There is an application form such as using the dried powder (dried powder) as a material for forming an oxide film, but is not limited thereto.

本発明の製造方法において、酸性水溶液にアルカリ水溶液を滴下した後、水溶液から沈殿物を回収するまでの操作や、沈殿物の回収方法については、特に制限はなく、一般的な方法でよい。
また、水溶液から回収された沈殿物(ゲル状物質)を乾燥させるには、送風乾燥機などのような一般的な乾燥手段を用いてもよいし、真空乾燥手段を用いてもよい。
In the production method of the present invention, after dropping the alkaline aqueous solution to the acidic aqueous solution, the operation until recovering the precipitate from the aqueous solution and the method for recovering the precipitate are not particularly limited, and a general method may be used.
Moreover, in order to dry the precipitate (gel-like substance) recovered from the aqueous solution, a general drying means such as a blast dryer may be used, or a vacuum drying means may be used.

上記のようにして製造された本発明の皮膜形成用材料により、基板面に皮膜(酸化物)を形成することができる。すなわち、その皮膜形成用材料を含む溶液又はペーストを、基板面に付着させた後、焼成することで皮膜を形成することができる。上述したように、皮膜形成用材料である水酸化物(亜鉛アルミニウム酢酸水和物)は、通常、沈殿状態から回収されたゲル状物質又はこのゲル状物質を乾燥させた粉体であり、このようなゲル状物質又は粉体を水などの溶媒に溶解又は分散させ、この溶液(或いは固形分が高濃度なペースト)を基板面にコーティング(あるいは印刷)した後、焼成する。コーティング法は、形成しようとする皮膜厚などに応じて、スクリーン印刷法、ディップコート法、バーコード法など任意の方法を採ることができる。焼成温度は、一般に250℃〜1100℃程度が適当である。これにより基板面に配向性多結晶構造の亜鉛アルミ複酸化物皮膜を形成することができる。
また、溶液をコーティングした後、40〜100℃程度の温度で乾燥させ、しかる後、焼成するようにしてもよい。また、ペーストの場合には、200〜400℃程度の温度でペースト化のために配合されている高分子材料などを分解・除去した後、焼成するようにしてもよい。
A film (oxide) can be formed on the substrate surface by the material for film formation of the present invention manufactured as described above. That is, after a solution or paste containing the material for forming a film is attached to the substrate surface, the film can be formed by baking. As described above, the hydroxide (zinc aluminum acetate hydrate) which is a material for forming a film is usually a gel-like substance recovered from a precipitated state or a powder obtained by drying the gel-like substance, Such gel-like substance or powder is dissolved or dispersed in a solvent such as water, and this solution (or paste with high solid content) is coated (or printed) on the substrate surface and then fired. As the coating method, any method such as screen printing method, dip coating method, bar code method can be adopted according to the thickness of the film to be formed. The firing temperature is generally about 250 ° C. to about 1100 ° C. As a result, a zinc aluminum double oxide film of oriented polycrystalline structure can be formed on the substrate surface.
Alternatively, after the solution is coated, it may be dried at a temperature of about 40 to 100 ° C., and may be fired thereafter. In the case of a paste, baking may be performed after the polymer material or the like formulated for paste formation is decomposed and removed at a temperature of about 200 to 400 ° C.

表3に示す沈殿物のうち、Al3+イオン添加量が異なる0.1モル/Lの金属溶液1LにOHイオン濃度が0.1モル/LのNaOH水溶液1Lを滴下して得られた沈殿物と、Al3+イオン添加量が異なる0.1モル/Lの金属溶液1LにOHイオン濃度が0.22モル/LのNaOH水溶液1Lを滴下して得られた沈殿物について、これを乾燥させて酸化物皮膜形成用材料(粉体)とし、この酸化物皮膜形成用材料を水に分散させた溶液(固形分比率30質量%)をバーコート法でガラス基板に塗布し、100℃で乾燥させた後、900℃×4hrで焼成し、酸化物皮膜を得た。
この酸化物皮膜について、薄膜抵抗測定器(三菱化学アナリテック社製;ロレスタGP MCP−T610)を用いて体積抵抗率を測定した。図13はその結果を示すもので、金属溶液のAl3+イオン添加量(対数メモリ)と酸化物皮膜の体積抵抗率(対数メモリ)との関係を示している。
Among the precipitates shown in Table 3, precipitation obtained by dropping 1 L of an aqueous solution of NaOH having an OH ion concentration of 0.1 mol / L to 1 L of a 0.1 mol / L metal solution having different addition amounts of Al 3+ ions And the precipitate obtained by dropping 1 L of an aqueous solution of 0.22 mol / L of OH ion into 1 L of a 0.1 mol / L metal solution containing different amounts of added Al 3+ ions, and drying this A solution (solid content ratio 30 mass%) in which the oxide film forming material is dispersed in water is applied to a glass substrate by a bar coating method, and the solution is formed at 100 ° C. After drying, it was fired at 900 ° C. for 4 hours to obtain an oxide film.
The volume resistivity of this oxide film was measured using a thin film resistance measuring device (manufactured by Mitsubishi Chemical Analytech Co., Ltd .; Loresta GP MCP-T610). FIG. 13 shows the results, and shows the relationship between the Al 3+ ion addition amount (log memory) of the metal solution and the volume resistivity (log memory) of the oxide film.

図13によれば、いずれのOHイオン濃度においても、Al3+イオン添加量が0.01%以上0.2%未満の範囲で体積抵抗率が低下しているが、OHイオン濃度0.22モル/Lの場合に較べて、OHイオン濃度0.1モル/Lの方が全体としての体積抵抗率が低く、しかもAl3+イオン添加量0.01%以上0.2%未満の範囲での体積抵抗率の低下が顕著である。ここで、OHイオン濃度0.1モル/L、Al3+イオン添加量0.001〜10%(好ましくは0.01%以上2%未満)で得られる沈殿物が本発明材である亜鉛アルミニウム酢酸水和物であるが、図13によれば、本発明材である亜鉛アルミ酢酸水和物は、電気伝導性においての優位性が認められる。これは、高アルカリ合成条件(OHイオン濃度0.22モル/L)で得られた比較材による酸化物皮膜はランダムな粒子状となるのに対して、本発明材である亜鉛アルミ酢酸水和物による酸化物皮膜は、先に述べたような配向性多結晶構造が実現されることによって、導電性に優れる6方晶系ZnOのc面がガラス基板と並行に有意差をもって形成されることによるものと考えられる。
なお、いずれのOHイオン濃度においても、Al3+イオン添加量がほぼ0.02%まではAl3+イオン添加量の増加とともに体積抵抗率が低下するが、Al3+イオン添加量が0.02%を超えると体積抵抗率が増加する傾向にあるが、これは、Al3+イオン添加量が多くなると、粒界に高抵抗であるスピネルが形成されるためであると考えられる。
According to FIG. 13, at any OH ion concentration, although the volume resistivity decreases in the range of Al 3+ ion addition amount of 0.01% or more and less than 0.2%, the OH ion concentration is 0. Compared to the case of 22 mol / L, the OH - ion concentration of 0.1 mol / L has lower overall volume resistivity, and the range of Al 3+ ion addition amount of 0.01% or more and less than 0.2%. The decrease in volume resistivity is remarkable. Here, zinc aluminum, which is a material of the present invention, is a precipitate obtained with an OH ion concentration of 0.1 mol / L and an Al 3 + ion addition amount of 0.001 to 10% (preferably 0.01% or more and less than 2%). Although it is an acetic acid hydrate, according to FIG. 13, the zinc aluminium acetic acid hydrate which is the material of the present invention shows superiority in the electric conductivity. This is because the oxide film formed by the comparative material obtained under the conditions of high alkali synthesis (OH - ion concentration 0.22 mol / L) is in the form of random particles, whereas the zinc aluminum acetate water of the present invention material is In the oxide film formed by the hydrate, the c-plane of hexagonal ZnO excellent in conductivity is formed with a significant difference in parallel to the glass substrate by realizing the oriented polycrystalline structure as described above. It is thought that it depends on the matter.
Incidentally, any of OH - also in ion concentration, but Al 3+ ions added amount up to about 0.02% decrease increases with the volume resistivity of the Al 3+ ion amount, Al 3+ ions added amount of 0.02% The volume resistivity tends to increase when the amount of Al 3+ ions is increased, which is considered to be due to the formation of spinels with high resistance at grain boundaries.

本発明の皮膜形成用材料(前駆体)により形成される皮膜は、太陽電池パネルの透明導電材、ZnO系透明導電材スパッタ膜形成用のシード層(スパッタ膜の下地層)、色素増感型太陽電池電極材、ガスセンサー、触媒などとして好適なものである。
ZnOは、六方晶系ウルツ鉱型結晶であり、光透過性に優れるc軸方向(c面に直交)と電気伝導性に優れるc面方向を有する結晶構造である。本発明材である前駆体水酸化物(亜鉛アルミニウム酢酸水和物)を用いることで、製膜する基板において、c軸が基板と直交し、c面が基板と平行となる配向性多結晶体を得ることができる。
また、本発明では適度なAl添加により電気伝導性と焼結粒子サイズの制御も可能であると考えられることから、二次元のポーラス構造を利用したガスセンサーチップに好適であると考えられる。
The film formed of the film forming material (precursor) of the present invention is a transparent conductive material of a solar cell panel, a seed layer for forming a ZnO based transparent conductive material sputtered film (a base layer of a sputtered film), a dye sensitizing type It is suitable as a solar cell electrode material, a gas sensor, a catalyst and the like.
ZnO is a hexagonal wurtzite crystal and has a crystal structure having a c-axis direction (perpendicular to the c-plane) excellent in light transmittance and a c-plane direction excellent in electric conductivity. By using a precursor hydroxide (zinc aluminum acetate hydrate) which is a material of the present invention, an oriented polycrystal in which the c-axis is orthogonal to the substrate and the c-plane is parallel to the substrate in the substrate to be formed into a film You can get
Further, in the present invention, since it is considered that control of electric conductivity and sintered particle size is also possible by appropriate addition of Al, it is considered to be suitable for a gas sensor chip utilizing a two-dimensional porous structure.

Claims (11)

Zn2+イオン源として酢酸亜鉛を溶解させた酸性水溶液であって、Zn2+イオンを主成分とし、さらにAl3+イオンを含む酸性水溶液に、中和当量未満のアルカリ水溶液を滴下して亜鉛アルミニウム酢酸水和物の沈殿物を生成させ、該沈殿物を回収することを特徴とする酸化物皮膜形成用材料の製造方法。 An acidic aqueous solution in which zinc acetate is dissolved as a Zn 2+ ion source, which is mainly composed of Zn 2+ ion, and an alkaline aqueous solution containing less than the neutralization equivalent is added dropwise to an acidic aqueous solution containing Al 3+ ion A method of producing a material for forming an oxide film, which comprises forming a precipitate of a hydrate and recovering the precipitate. 酸性水溶液中のZn2+イオン量をm(モル)、Al3+イオン量をn(モル)、該酸性水溶液に滴下するアルカリ水溶液中のOHイオン量をx(モル)とした時、酸性水溶液中の[Zn2+イオン量m(モル)+Al3+イオン量n(モル)]に対するAl3+イオン量n(モル)の割合を0.001〜10%とし、且つ下記(1)式を満足するように酸性水溶液にアルカリ水溶液を滴下することを特徴とする請求項1に記載の酸化物皮膜形成用材料の製造方法。
0.2X≦x<0.8X …(1)
但し X=2m+3n
When the amount of Zn 2+ ions in the acidic aqueous solution is m (moles), the amount of Al 3 + ions is n (moles), and the amount of OH ions in the alkaline aqueous solution dropped into the acidic aqueous solution is x (moles) of the rate of [Zn 2+ ion amount m (mol) + Al 3+ ion amount n (mol)] for Al 3+ ion amount n (mol) 0.001 to 10% and so as to satisfy the following formula (1) The method for producing an oxide film-forming material according to claim 1, wherein the alkaline aqueous solution is dropped into the acidic aqueous solution.
0.2X ≦ x <0.8X (1)
Where X = 2m + 3n
酸性水溶液中の[Zn2+イオン量m(モル)+Al3+イオン量n(モル)]に対するAl3+イオン量n(モル)の割合を0.01%以上2%未満とし、且つ下記(2)式を満足するように酸性水溶液にアルカリ水溶液を滴下することを特徴とする請求項2に記載の酸化物皮膜形成用材料の製造方法。
0.4X≦x≦0.6X …(2)
但し X=2m+3n
The proportion of the aqueous acid solution [Zn 2+ ion amount m (mol) + Al 3+ ion amount n (mol)] for Al 3+ ion amount n (mol) is less than 2% or more 0.01%, and the following equation (2) The method for producing an oxide film-forming material according to claim 2, wherein the alkaline aqueous solution is dropped to the acidic aqueous solution so as to satisfy the above.
0.4 x ≦ x ≦ 0.6 x (2)
Where X = 2m + 3n
回収した沈殿物を乾燥し、粉体とすることを特徴とする請求項1〜3のいずれかに記載の酸化物皮膜形成用材料の製造方法。   The method for producing an oxide film-forming material according to any one of claims 1 to 3, wherein the recovered precipitate is dried to form a powder. 短冊状の層状水酸化物である亜鉛アルミニウム酢酸水和物からなることを特徴とする酸化物皮膜形成用材料。   What is claimed is: 1. A material for forming an oxide film, comprising zinc aluminum acetate hydrate which is a strip-like layered hydroxide. 亜鉛アルミニウム酢酸水和物は、測定されるX線回折ピークがc値=39.1568±0.5206Åで特定される水和物であること特徴とする請求項5に記載の酸化物皮膜形成用材料。   The material for forming an oxide film according to claim 5, wherein the zinc aluminum acetate hydrate is a hydrate whose measured X-ray diffraction peak is specified by c value = 39.1568 ± 0.5206 Å. 亜鉛アルミニウム酢酸水和物は、沈殿法において沈殿物として得られる水和物であることを特徴とする請求項5又は6に記載の酸化物皮膜形成用材料。   The oxide film-forming material according to claim 5 or 6, wherein zinc aluminum acetate hydrate is a hydrate obtained as a precipitate in a precipitation method. ゲル状物質又は該ゲル状物質を乾燥させた粉体であることを特徴とする請求項5〜7のいずれかに記載の酸化物皮膜形成用材料。   The oxide film-forming material according to any one of claims 5 to 7, which is a gel-like substance or a powder obtained by drying the gel-like substance. 請求項5〜8のいずれかに記載の酸化物皮膜形成用材料を含む溶液又はペーストを基板面に付着させた後、焼成することにより、基板面に配向性多結晶構造の亜鉛アルミニウム系酸化物皮膜を形成することを特徴とする酸化物皮膜の形成方法。   A solution or paste containing the material for forming an oxide film according to any one of claims 5 to 8 is attached to a substrate surface and then fired to form a zinc aluminum oxide having an oriented polycrystalline structure on the substrate surface. A method of forming an oxide film, comprising forming a film. 請求項1〜4のいずれかに記載の製造方法により得られた酸化物皮膜形成用材料を含む溶液又はペーストを基板面に付着させた後、焼成することにより、基板面に配向性多結晶構造の亜鉛アルミニウム系酸化物皮膜を形成することを特徴とする酸化物皮膜の形成方法。   An oriented polycrystal structure on a substrate surface by adhering a solution or paste containing a material for forming an oxide film obtained by the manufacturing method according to any one of claims 1 to 4 on the substrate surface and baking it. And forming a zinc aluminum-based oxide film of 酸化物皮膜形成用材料が、ゲル状物質又は該ゲル状物質を乾燥させた粉体であり、該材料を添加した溶液又はペーストを用いることを特徴とする請求項9又は10に記載の酸化物皮膜の形成方法。   11. The oxide according to claim 9, wherein the oxide film-forming material is a gel-like substance or a powder obtained by drying the gel-like substance, and a solution or paste to which the material is added is used. How to form a film.
JP2017074199A 2017-04-04 2017-04-04 Oxide film forming material and method for producing the same Active JP6697412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017074199A JP6697412B2 (en) 2017-04-04 2017-04-04 Oxide film forming material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017074199A JP6697412B2 (en) 2017-04-04 2017-04-04 Oxide film forming material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2018177546A true JP2018177546A (en) 2018-11-15
JP6697412B2 JP6697412B2 (en) 2020-05-20

Family

ID=64280994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017074199A Active JP6697412B2 (en) 2017-04-04 2017-04-04 Oxide film forming material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6697412B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134120A (en) * 2020-02-27 2021-09-13 株式会社トクヤマ Method for producing composite aluminum nitride particle, and composite aluminum nitride particle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030855A (en) * 2008-07-30 2010-02-12 Toto Ltd Crystal-oriented structure and method for manufacturing the same
JP2012077369A (en) * 2010-10-06 2012-04-19 Jfe Steel Corp Highly corrosion resistant surface treated steel sheet
JP2017036244A (en) * 2015-08-11 2017-02-16 Jfeミネラル株式会社 Inorganic antibacterial composition and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030855A (en) * 2008-07-30 2010-02-12 Toto Ltd Crystal-oriented structure and method for manufacturing the same
JP2012077369A (en) * 2010-10-06 2012-04-19 Jfe Steel Corp Highly corrosion resistant surface treated steel sheet
JP2017036244A (en) * 2015-08-11 2017-02-16 Jfeミネラル株式会社 Inorganic antibacterial composition and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134120A (en) * 2020-02-27 2021-09-13 株式会社トクヤマ Method for producing composite aluminum nitride particle, and composite aluminum nitride particle
JP7398733B2 (en) 2020-02-27 2023-12-15 株式会社トクヤマ Method for producing composite aluminum nitride particles, and composite aluminum nitride particles

Also Published As

Publication number Publication date
JP6697412B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
Ashokkumar et al. Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method
Salam et al. Sol–gel synthesis of intrinsic and aluminum-doped zinc oxide thin films as transparent conducting oxides for thin film solar cells
JP4994068B2 (en) Oxide conductive material and manufacturing method thereof
CN106946566B (en) Preparation method of flaky barium strontium titanate powder material
Hirano et al. Preparation of ZnGa2O4 spinel fine particles by the hydrothermal method
Kumar et al. Evaluation of the structural, optical and electrical properties of AZO thin films prepared by chemical bath deposition for optoelectronics
Lee et al. Structure and characterization of Sn, Al co-doped zinc oxide thin films prepared by sol–gel dip-coating process
Abou Hammad et al. Ni2+ doping effect on potassium barium titanate nanoparticles: enhancement optical and dielectric properties
Divya et al. Dielectric properties of Er 3+ doped ZnO nanocrystals
Wang et al. Synthesis and electrical resistivity analysis of ATO-coated talc
JP6697412B2 (en) Oxide film forming material and method for producing the same
Venkatesh et al. Study of optical and dielectric properties of alkali metal cation (Li+, Na+, K+) codoped Eu3+ activated gadolinium aluminate nanoparticles
Grobelsek et al. Electrochemical synthesis of nanocrystalline zinc oxide and phase transformations of zinc hydroxides
Nie et al. Synthesis and structure analysis of aluminum doped zinc oxide powders
Premkumar Structural and electrical studies on zinc added magnesium oxide nanoparticles
Gul et al. The influence of thermal processing on microstructure of sol–gel-derived SrSnO 3 thin films
KR101740088B1 (en) Method for preparing antimony tin oxide nanoparticles
JP2017066011A (en) Material for forming oxide coating film and manufacturing method therefor
EP2737940A2 (en) Method for producing alumina-crystal-particle-dispersed alumina sol, alumina-crystal-particle-dispersed alumina sol obtained by the method, and aluminum coated member produced using the sol
Chate et al. Aluminum doped CdSe thin films: structural characterization
Chen et al. High supercapacitive stability of spray pyrolyzed ZnO-added manganese oxide coatings
Chtouki et al. Structural, Morphological and Optical Properties of ZnxCo3-xO4 (0= x= 1) Thin Films Prepared by Spray Pyrolysis Technique
CN103818946A (en) Co-doped conductive oxidation powder material and preparation method thereof
Kikkawa et al. (ZnO) 3In2O3 fine powder prepared by combustion reaction of nitrates-glycine mixture
JP4575656B2 (en) Conductive powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200424

R150 Certificate of patent or registration of utility model

Ref document number: 6697412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250