JP2018176119A - Methane fermentation method and system of garbage waste - Google Patents

Methane fermentation method and system of garbage waste Download PDF

Info

Publication number
JP2018176119A
JP2018176119A JP2017083017A JP2017083017A JP2018176119A JP 2018176119 A JP2018176119 A JP 2018176119A JP 2017083017 A JP2017083017 A JP 2017083017A JP 2017083017 A JP2017083017 A JP 2017083017A JP 2018176119 A JP2018176119 A JP 2018176119A
Authority
JP
Japan
Prior art keywords
garbage
slurry
waste
heated
methane fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017083017A
Other languages
Japanese (ja)
Other versions
JP6893380B2 (en
Inventor
美智康 亀谷
Michiyasu Kameya
美智康 亀谷
阿部 芳久
Yoshihisa Abe
芳久 阿部
一敏 菅野
Kazutoshi Sugano
一敏 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2017083017A priority Critical patent/JP6893380B2/en
Publication of JP2018176119A publication Critical patent/JP2018176119A/en
Application granted granted Critical
Publication of JP6893380B2 publication Critical patent/JP6893380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Abstract

PROBLEM TO BE SOLVED: To provide a methane fermentation method and system of garbage waste capable of separating inorganic solid material in a short time.SOLUTION: Garbage waste A is pulverized together with hot water or steam H to produce heated garbage slurry S of a predetermined temperature, the heated garbage slurry S is caused to stay in a separation tank 30 in a prescribed time, inorganic solid material C is precipitated and separated, and the heated garbage slurry S after separating the inorganic solid material C is projected into a bioreactor 3 to perform methane fermentation treatment. Preferably, an energy recovery device 9 for generating hot water or steam H by utilizing methane gas G obtained by methane fermentation of the bioreactor 3 is provided, and the hot water or steam H generated by the energy recovery device 9 is supplied to a garbage slurry forming device 10. Further preferably, the garbage slurry forming device 10 is used as a foreign matter fractionation device 10 which fractionates foreign matter B in the garbage waste A and pulverizes the garbage waste A after fractionation of the foreign matter B into a heated garbage slurry S of a predetermined temperature.SELECTED DRAWING: Figure 1

Description

本発明は生ごみ廃棄物のメタン発酵処理方法及びシステムに関し,とくに卵殻,貝殻,骨等の無機固形物が含まれる生ごみ廃棄物をメタン発酵処理する方法及びシステムに関する。   The present invention relates to a method and system for methane fermentation treatment of garbage waste, and more particularly to a method and system for methane fermentation treatment of garbage waste including inorganic solids such as eggshells, shells and bones.

一般家庭やレストラン,食品店舗,食品工場等から排出される有機性廃棄物(以下,生ごみ廃棄物という)について,従来は焼却又は埋め立て処分されていたが,最近は循環型社会形成の観点からメタン発酵処理によりエネルギーを回収する再資源化処理(リサイクル処理)が進められている(非特許文献1参照)。図5は,湿式メタン発酵法を利用した従来の再資源化システムの一例を示す。図示例のシステムは,生ごみ廃棄物Aをメタン発酵に適する粒度及び濃度の生ごみスラリーSに粉砕する前処理システム1と,生ごみスラリーSをメタン生成菌によりメタンガスGと消化液Wとに分解するバイオリアクタ3と,分解後の消化液W中の残留有機物を更に処理する二次処理施設5と,メタンガスGから電力,高温水等のエネルギーを回収するエネルギー回収施設6とで構成されている(特許文献1参照)。   In the past, organic waste (hereinafter referred to as garbage) discharged from general households, restaurants, food stores, food factories, etc. was incinerated or landfilled, but recently from the viewpoint of the formation of a recycling society A recycling process (recycling process) for recovering energy by methane fermentation process is in progress (see Non-Patent Document 1). FIG. 5 shows an example of a conventional recycling system using a wet methane fermentation method. The system in the illustrated example is a pretreatment system 1 for pulverizing garbage waste A into garbage slurry S of particle size and concentration suitable for methane fermentation, and mixing garbage S with methane gas G and digestive fluid W by methanogens. It consists of a bioreactor 3 that decomposes, a secondary treatment facility 5 that further processes residual organic substances in the digested liquid W after decomposition, and an energy recovery facility 6 that recovers energy such as power and high-temperature water from methane gas G (See Patent Document 1).

図5のバイオリアクタ3には,例えば炭素繊維製又はポリエステル繊維製の微生物担体を内部に充填してメタン生成菌を保持させ,所定濃度に希釈した生ごみスラリーSを下降流で供給する。また,槽内の生ごみスラリーSを下部から槽外に抜き出して上部に戻して循環させる循環路を設け,その循環路上にエネルギー回収施設9からの高温水Hを利用した加熱装置3aを配置し,槽内の生ごみスラリーSをメタン生成菌の活動に適した温度に加熱しながら微生物担体と接触させてメタンガスGと消化液Wとに分解する。   In the bioreactor 3 of FIG. 5, for example, a microbial carrier made of carbon fiber or polyester fiber is filled therein to hold methanogenic bacteria, and a garbage waste S diluted to a predetermined concentration is supplied in a downflow manner. Also, a circulation path is provided for extracting the garbage S in the tank from the lower part to the outside of the tank and returning it to the upper part for circulation, and the heating device 3a using high temperature water H from the energy recovery facility 9 is disposed on the circulation path. The organic waste slurry S in the tank is brought into contact with the microorganism carrier while being heated to a temperature suitable for the activity of the methanogens to be decomposed into methane gas G and digestive fluid W.

図5のエネルギー回収施設6には,バイオリアクタ3で発生したメタンガスGを精製する脱硫装置等の精製設備7と,精製後のメタンガスGを蓄えるガスホルダ8と,メタンガスGを利用して電力と高温水Hとを発生するエネルギー回収装置9とを含めている。エネルギー回収装置9の一例は燃料電池,ガスエンジン,ガスタービン,マイクロガスタービン等であり,発生した電力及び高温水Hをシステム内で利用すると共に,余剰の電力及び高温水Hをシステム外へ供給することができる。バイオリアクタ3で発生した消化液Wは,脱水機にてろ液と発酵残渣に分離する。発酵残渣は、二次処理施設5にて,好気性微生物を使った発酵処理が行なわれ,堆肥・飼料材料とする。他方、脱水機にて分離したろ液は、ろ液中の残留有機物を更に浄化して放流する。   The energy recovery facility 6 shown in FIG. 5 includes a purification facility 7 such as a desulfurization apparatus for purifying methane gas G generated by the bioreactor 3, a gas holder 8 for storing methane gas G after purification, and electric power and high temperature using the methane gas G. And an energy recovery device 9 for generating water H. An example of the energy recovery device 9 is a fuel cell, gas engine, gas turbine, micro gas turbine, etc., and the generated power and high temperature water H are used in the system, and surplus power and high temperature water H are supplied out of the system can do. The digestive juice W generated in the bioreactor 3 is separated into a filtrate and a fermentation residue by a dehydrator. The fermentation residue is subjected to fermentation treatment using an aerobic microorganism in the secondary treatment facility 5, and is used as compost and feed material. On the other hand, the filtrate separated by the dehydrator further purifies the residual organic matter in the filtrate and releases it.

生ごみ廃棄物A中には有機物だけでなくプラスチックや金属片,木片等の異物Bが混入している場合があり,図5の前処理システム1では,生ごみ廃棄物Aを生ごみスラリー化すると共に混入異物Bを分別している。図6(A)及び(B)は,生ごみ廃棄物Aを異物Bと分別しながら生ごみスラリー化する異物分別装置10の一例の横断面図及び縦断面図を示す(特許文献2及び特許文献3参照)。図示例の異物分別装置10は,断面の一部分が弧状である周壁12(弧状の半割下部12bと非弧状の半割上部12aとからなる)を有する筒体11と,筒体11の中心軸線に沿った回転軸16aに固定された複数の板状羽根(回転翼)16とを備え,筒体11の半割下部12bに複数の貫通細孔14を設けている。また,筒体11の半割上部12aと回転翼16の突端縁との間に筒体長手方向に延びる空気流路19を形成し,図中の白三角矢印で示すように,筒体11の一端の吸気口19aから取り入れた空気流を空気流路19の導風板19cによって筒体長手方向に案内して他端の排気口19bから排出している。その空気流の上流部と対向する筒体11の半割上部12aに,筒体11の中心軸線と交差する向きに,生ごみ廃棄物Aの取入口17を設ける。図中の符号17a及び17bは取入口17に取り付けた生ごみ廃棄物Aの供給ホッパー及び定量供給破砕機を示し,符号15は筒体11を支持する脚部を示す。   Garbage waste A may contain not only organic matter but also foreign matter B such as plastic, metal pieces, wood pieces, etc. In the pretreatment system 1 of FIG. At the same time, the foreign object B is separated. 6 (A) and 6 (B) show a cross-sectional view and a longitudinal cross-sectional view of an example of the foreign matter sorting apparatus 10 for forming the garbage of the waste while separating the garbage waste A with the foreign matter B (Patent Document 2 and Patent Reference 3). The foreign matter sorting apparatus 10 of the illustrated example has a cylindrical body 11 having a peripheral wall 12 (consisting of an arc-shaped half lower portion 12 b and a non-arc half upper portion 12 a) whose cross section is partially arc-shaped, and a central axis of the cylinder 11 And a plurality of plate-like blades (rotor blades) 16 fixed to a rotary shaft 16a along the axis, and a plurality of through holes 14 are provided in the lower half 12b of the cylindrical body 11. Further, an air flow passage 19 extending in the longitudinal direction of the cylinder is formed between the upper half 12a of the cylinder 11 and the tip end edge of the rotary wing 16, and as shown by the white triangle arrow in the figure, The air flow taken in from the air intake port 19a at one end is guided by the air guide plate 19c of the air flow path 19 in the longitudinal direction of the cylinder and discharged from the exhaust port 19b at the other end. An intake 17 for garbage waste A is provided in the upper half 12 a of the cylinder 11 facing the upstream portion of the air flow, in a direction intersecting the central axis of the cylinder 11. Reference numerals 17a and 17b in the figure indicate feed hoppers for food waste A attached to the inlet 17 and a fixed amount supply crusher, and reference numeral 15 indicates a leg portion for supporting the cylinder 11.

図6の異物分別装置10において,取入口17から投入された生ごみ廃棄物Aは,駆動装置16bで駆動させた回転翼16により砕かれて有機物と異物Bと分離される。分離された異物Bは,空気流路19の空気流によって気流下流側の排出口18から異物ホッパー24へ落下し,搬送パイプ25を介して所要場所まで搬送される。また,異物分離後の有機物は,回転翼16の突端縁と筒体11の半割下部12bとの間で細かく粉砕され,生ごみスラリーSとなって細孔14から生ごみスラリーホッパー20へ落下する。ホッパー20に落下した生ごみスラリーSは,スクリューコンベア21でスクリュー式送出装置22に送り出され,送出装置22から輸送パイプ23を介してスラリー調整タンク2(図5参照)へ搬送される。   In the foreign matter sorting apparatus 10 of FIG. 6, the garbage waste A introduced from the inlet 17 is broken up by the rotor 16 driven by the drive device 16 b and separated from the organic matter and the foreign matter B. The separated foreign matter B falls from the outlet 18 on the air stream downstream side to the foreign matter hopper 24 by the air flow of the air flow path 19 and is transported to a required place via the transport pipe 25. In addition, the organic matter after foreign matter separation is finely crushed between the end edge of the rotary wing 16 and the lower half 12b of the cylindrical body 11, and becomes a garbage S and falls from the pores 14 to the garbage slurry hopper 20 Do. The organic waste slurry S dropped to the hopper 20 is fed to the screw type delivery device 22 by the screw conveyor 21 and is transported from the delivery device 22 to the slurry adjustment tank 2 (see FIG. 5) via the transport pipe 23.

また,異物Bと分別した生ごみスラリーS中には,比較的小さい卵殻,貝殻,脊椎動物の骨,甲殻類の外骨等の無機固形物Cが残っていることがある。そのような無機固形物Cは,分離されずに生ごみスラリーSと共にメタン発酵処理されると酸性下でイオン化し,その後のアルカリ性下で沈殿析出物となって配管閉塞,機器摩耗,水槽内堆積等の様々な不具合を生じる。このため,図5の前処理システム1には,生ごみスラリーSから無機固形物Cを分離する分離槽30を設けている。図7は,従来の分離槽30の一例を示す。図示例の分離槽30は,略錐状の底面(錐状底面)30aとその周囲の胴部側面30bとで囲まれた内部30cに,無機固形物Cの混入した生ごみスラリーSを所定時間貯留するものであり,錐状底面30aの下方突端に設けた開閉ゲート33b,33c付き排出口33と,内部30cの生ごみスラリーSを撹拌する撹拌手段31及び循環手段32とを有している(特許文献4参照)。   In addition, in the garbage S separated from the foreign matter B, inorganic solids C such as relatively small eggshells, shells, bones of vertebrates, and outer bones of crustaceans may remain. Such inorganic solid C is ionized under acidity when it is methane-fermented with the garbage S without being separated, and it becomes a precipitate under alkaline conditions after that, the piping is clogged, equipment wear, water tank deposition It causes various problems such as Therefore, the pretreatment system 1 of FIG. 5 is provided with a separation tank 30 for separating the inorganic solid matter C from the garbage S. FIG. 7 shows an example of a conventional separation tank 30. As shown in FIG. In the separation tank 30 of the illustrated example, the garbage slurry S mixed with the inorganic solid material C for a predetermined time in the inside 30c surrounded by the substantially conical bottom (pyramidal bottom) 30a and the trunk side surface 30b around it. It stores and has an outlet 33 with opening and closing gates 33b and 33c provided at the lower end of the conical bottom surface 30a, and a stirring means 31 and a circulation means 32 for stirring the garbage S in the interior 30c. (Refer patent document 4).

図7の分離槽30の内部30cには,排出口33を閉鎖したうえで,上部の投入口34から無機固形物Cの混入した生ごみスラリーSを投入する。投入した生ごみスラリーSは,撹拌手段31及び循環手段32で撹拌しながら所定時間滞留させると徐々に可溶化し,可溶化しない無機固形物Cを比重差により分離槽30の底部に沈殿させ(沈殿物37),錐状底面30aの傾斜に沿って排出口33に集めることができる。この状態で排出口33のゲート33b,33cを開放し,集積した無機固形物Cを下方へ引き抜くことにより,可溶化時間の差を利用して生ごみスラリーSから無機固形物Cを分離することができる。無機固形物Cを分離した可溶化した生ごみスラリーSは,仕分け部材36を介して,流出口35から順次越流させて生ごみスラリー調整タンク2に搬送する。   After the outlet 33 is closed, the garbage slurry S mixed with the inorganic solid C is charged into the inside 30c of the separation tank 30 of FIG. The raw garbage slurry S that has been added gradually solubilizes when it is allowed to stay for a predetermined time while being stirred by the stirring means 31 and the circulating means 32, and the non-solubilized inorganic solid substance C is precipitated at the bottom of the separation tank The sediment 37) can be collected at the outlet 33 along the slope of the conical bottom surface 30a. In this state, the gates 33b and 33c of the discharge port 33 are opened to separate the inorganic solid C from the garbage S by utilizing the difference in solubilization time by pulling the accumulated inorganic solid C downward. Can. The solubilized food waste slurry S from which the inorganic solid C is separated is sequentially overflowed from the outlet 35 through the sorting member 36 and conveyed to the food waste slurry adjustment tank 2.

財団法人新エネルギー財団編「バイオマス技術ハンドブック〜導入と事業化のためのノウハウ〜 第3章メタン発酵」株式会社オーム社,平成20年10月25日,pp.206〜447Foundation for New Energy Foundation "Biomass Technology Handbook-Know-how for Introduction and Commercialization-Chapter 3 Methane Fermentation" Ohm Co., Ltd., October 25, 2008, pp. 206-447

特開2000−167523号公報JP 2000-167523 A 特開2002−177888号公報JP 2002-177888 A 特開2004−154624号公報JP 2004-154624 A 特開2011−167604号公報JP, 2011-167604, A

上述した図6の異物分別装置10及び図7の分離槽30が含まれる前処理システム1を設けることにより,図5の再資源化システムにおける生ごみ廃棄物Aのメタン発酵処理を長期間安定的に継続することができる。しかし,従来の前処理システム1には無機固形物Cの分離に時間がかかる問題点がある。すなわち,可溶化時間の差を利用して生ごみスラリーSから無機固形物Cを沈降分離する方法では,生ごみ廃棄物Aの種類により多少異なるが,生ごみスラリーSの可溶化に8時間程度が必要であり,その時間だけ生ごみスラリーSを滞留するための分離槽30の容量が必要となる。このため,生ごみ廃棄物Aの受入れ量が多くなると分離槽30が大きくなり,前処理システム1のために広い設置スペースが必要になると共に,システムの初期導入コスト及び維持管理コストも嵩んでしまう。図5のような生ごみ廃棄物Aの再資源化システムの普及を図るためには装置のコンパクト化が有効であり,分離槽30のコンパクト化のために生ごみスラリーSから無機固形物Cを短時間で沈降分離することができる技術の開発が望まれている。   By providing the pretreatment system 1 including the foreign matter sorting apparatus 10 of FIG. 6 and the separation tank 30 of FIG. 7 described above, the methane fermentation treatment of the garbage waste A in the recycling system of FIG. Can be continued. However, the conventional pretreatment system 1 has a problem that it takes time to separate the inorganic solid C. That is, in the method of settling and separating the inorganic solid material C from the garbage S by using the difference in solubilization time, although it differs somewhat depending on the type of garbage waste A, it takes about 8 hours to solubilize the garbage S The volume of the separation tank 30 for retaining the food waste slurry S is required only for that time. For this reason, when the amount of garbage waste A received increases, the separation tank 30 becomes large, and a large installation space is required for the pretreatment system 1, and the initial introduction cost and maintenance cost of the system also increase. . In order to promote the recycling system of garbage waste A as shown in FIG. 5, it is effective to make the apparatus compact, and to make the separation tank 30 compact, inorganic solids C from garbage slurry S are used. It is desirable to develop a technology that can settle and separate in a short time.

そこで本発明の目的は,無機固形物を短時間で沈降分離することができる生ごみ廃棄物のメタン発酵処理方法及びシステムを提供することにある。   Therefore, an object of the present invention is to provide a method and a system for methane fermentation treatment of garbage that can settle inorganic solids in a short time.

図1の実施例を参照するに,本発明による生ごみ廃棄物のメタン発酵処理方法は,生ごみ廃棄物Aを温水又は蒸気Hで加温しながら粉砕して所定温度の加温生ごみスラリーSとし,加温生ごみスラリーSを分離槽30に所定時間滞留させて無機固形物Cを沈降分離し,無機固形物Cの分離後の加温生ごみスラリーSをバイオリアクタ3に投入してメタン発酵処理してなるものである。   Referring to the embodiment of FIG. 1, the method for methane fermentation treatment of garbage according to the present invention comprises heating garbage waste at a predetermined temperature by crushing garbage waste A while warming it with warm water or steam H. Let S be the heated garbage slurry S retained in the separation tank 30 for a predetermined time to precipitate and separate the inorganic solid C, and charge the heated garbage slurry S after separation of the inorganic solid C into the bioreactor 3 It is produced by methane fermentation.

また,図1の実施例を参照するに,本発明による生ごみ廃棄物のメタン発酵処理システムは,生ごみ廃棄物Aを温水又は蒸気Hで加温しながら粉砕して所定温度の加温生ごみスラリーSとする生ごみスラリー化装置10,加温生ごみスラリーSを所定時間滞留させて無機固形物Cを沈降分離する分離槽30,及び無機固形物Cの分離後の加温生ごみスラリーSを投入してメタン発酵処理するバイオリアクタ3を備えてなるものである。   Further, referring to the embodiment of FIG. 1, the methane fermentation treatment system for garbage waste according to the present invention is crushed while heating the garbage waste A with warm water or steam H to perform heating at a predetermined temperature. Garbage slurry forming device 10 as waste slurry S, separation tank 30 for settling and separating inorganic solid material C by keeping warm raw garbage slurry S for a predetermined time, and heated garbage waste after separation of inorganic solid material C It comprises the bioreactor 3 which inputs S and performs methane fermentation processing.

好ましくは,バイオリアクタ3のメタン発酵処理で得られたメタンガスGを利用して温水又は蒸気Hを生成するエネルギー回収装置9を設け,エネルギー回収装置9で生成された温水又は蒸気Hを生ごみスラリー化装置10に供給する。更に好ましくは,生ごみスラリー化装置10を,生ごみ廃棄物A中の異物Bを分別すると共に異物Bの分別後の生ごみ廃棄物Aを所定温度の加温生ごみスラリーSに粉砕する異物分別装置10(図6参照)とする。   Preferably, an energy recovery device 9 for producing hot water or steam H using methane gas G obtained by the methane fermentation treatment of the bioreactor 3 is provided, and the hot water or steam H produced by the energy recovery device 9 is a garbage refuse Supply device 10. More preferably, the foreign matter is used to separate the foreign matter B in the raw waste waste A and to divide the raw waste waste A after the separation of the foreign matter B into the heated waste slurry S at a predetermined temperature, more preferably. It is set as the separation device 10 (see FIG. 6).

異物分別装置10には,その分別装置10から出力される加温生ごみスラリーSの温度を測定する温度センサ41と,その温度センサ41の計測温度と所定温度との差に基づき分別装置10に供給する温水又は蒸気Hの温度又は水量を調整する制御装置40とを含めることができる。望ましい実施例では,分別装置10に供給する加温生ごみスラリーSの所定温度を20〜35℃とし,分離槽30における加温生ごみスラリーSの滞留時間を2〜6時間とすることができる。   In the foreign matter sorting device 10, the temperature sensor 41 for measuring the temperature of the heated garbage slurry S outputted from the sorting device 10 and the difference between the measured temperature of the temperature sensor 41 and a predetermined temperature A controller 40 may be included to adjust the temperature or the amount of water to be supplied. In a preferred embodiment, the predetermined temperature of the heated garbage slurry S supplied to the sorting apparatus 10 can be set to 20 to 35 ° C., and the residence time of the heated garbage slurry S in the separation tank 30 can be set to 2 to 6 hours. .

本発明による本発明による生ごみ廃棄物のメタン発酵処理方法及びシステムは,生ごみ廃棄物Aを温水又は蒸気Hで加温しながら粉砕して所定温度の加温生ごみスラリーSとし,加温生ごみスラリーSを分離槽30に所定時間滞留させて無機固形物Cを沈降分離し,無機固形物Cの分離後の加温生ごみスラリーSをバイオリアクタ3に投入してメタン発酵処理するので,次の有利な効果を奏する。   In the method and system for methane fermentation treatment of garbage according to the present invention according to the present invention, the garbage waste A is pulverized while heated with warm water or steam H to be a heated garbage slurry S having a predetermined temperature, and heated Garbage slurry S is allowed to stay in separation tank 30 for a predetermined time to precipitate and separate inorganic solid C, and after heating inorganic waste C to be separated, charged biomass slurry S is fed to bioreactor 3 for methane fermentation treatment. , Produces the following advantageous effects.

(イ)生ごみスラリーSを加熱したうえで分離槽30に滞留させることにより,生ごみスラリーSの可溶化が促進され,生ごみスラリーSの粘性を早期に低下させて無機固形物Cを短時間で沈降分離することができる。
(ロ)無機固形物Cと分離するための生ごみスラリーSの滞留時間を短縮することにより,ひいては分離槽30のコンパクト化を図ることができる。
(ハ)加温により生ごみスラリーSのpHが上昇し,生ごみスラリーSだけでなく無機固形物Cの可溶化も促進されうるが,分離槽30における滞留時間を短縮することにより,無機固形物Cの可溶化が大きく進行する前に生ごみスラリーSから無機固形物Cを分離することができる。
(B) By heating the garbage slurry S and keeping it in the separation tank 30, solubilization of the garbage slurry S is promoted, the viscosity of the garbage slurry S is reduced early, and the inorganic solid C is shortened. Sedimentation can be separated in time.
(B) By shortening the residence time of the garbage S to be separated from the inorganic solid C, the separation tank 30 can be made compact.
(3) The pH of the garbage S can rise by heating, and solubilization of not only the garbage S but also the inorganic solid C can be promoted, but by shortening the residence time in the separation tank 30, the inorganic solid The inorganic solid C can be separated from the garbage S before the solubilization of the substance C progresses significantly.

(ニ)生ごみスラリーSの加温に要する温水又は蒸気Hは,メタンガスGを利用したエネルギー回収装置9から供給することができ,メタン発酵システム内で発生するエネルギーを利用して分離槽30のコンパクト化を図ることができる。
(ホ)また,従来の異物分別装置10に生ごみ廃棄物Aと共に温水又は蒸気Hを同時に導入することにより,廃棄物Aを異物Bと分別しながら粉砕して加温生ごみスラリーSとすることが可能であり,従来のメタン発酵システムの装置を利用しながら分離槽30のコンパクト化を図ることができる。
(D) The hot water or steam H required for heating the garbage S can be supplied from the energy recovery device 9 using methane gas G, and the energy of the separation tank 30 is generated using the energy generated in the methane fermentation system. It can be made compact.
(E) Also, by introducing hot water or steam H simultaneously with the garbage waste A into the conventional foreign matter sorting apparatus 10, the waste A is pulverized while being separated from the foreign matter B to be a heated garbage slurry S It is possible to make the separation tank 30 compact while utilizing the apparatus of the conventional methane fermentation system.

以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
は,本発明のメタン発酵処理システムの一実施例の説明図である。 は,加温生ごみスラリーSの温度と粘度との関係を示す実験結果である。 は,加温生ごみスラリーSの温度とpHとの関係を示す実験結果である。 は,加温生ごみスラリーSの温度とカルシウム溶解濃度との関係を示す実験結果である。 は,従来のメタン発酵処理システムの一例の説明図である。 は,メタン発酵の前処理システムで用いる異物分別装置の一例の説明図である。 は,メタン発酵の前処理システムで用いる無機固形物の分離槽の一例の説明図である。
Hereinafter, modes and examples for carrying out the present invention will be described with reference to the attached drawings.
These are explanatory drawings of one Example of the methane fermentation processing system of this invention. These are experimental results which show the relationship between the temperature and viscosity of the heated garbage slurry S. These are experimental results showing the relationship between the temperature and pH of the heated garbage S. These are experimental results which show the relationship between the temperature of the heated garbage S and the concentration of dissolved calcium. These are explanatory drawings of an example of the conventional methane fermentation processing system. These are explanatory drawings of an example of the foreign material classification device used with the pretreatment system of methane fermentation. These are explanatory drawings of an example of the separation tank of the inorganic solid substance used with the pretreatment system of methane fermentation.

図1は,図5を参照して上述した従来の湿式メタン発酵処理システム(再資源化システム)に本発明を適用した実施例のブロック図を示す。図示例のシステムは,図5のシステムと同様に,生ごみ廃棄物Aを生ごみスラリーSに粉砕する前処理システム1と,その生ごみスラリーSをメタンガスGと消化液Wとに分解するバイオリアクタ3とを備えている。図示例のバイオリアクタ3は,従来のバイオリアクタと同様のものである。しかし,図示例の前処理システム1は,生ごみ廃棄物Aを温水又は蒸気Hで加温しながら粉砕する生ごみスラリー化装置10を有しており,生ごみ廃棄物Aを常温ではなく所定温度の加温生ごみスラリーSに粉砕することができる。   FIG. 1 shows a block diagram of an embodiment in which the present invention is applied to the conventional wet methane fermentation processing system (recycling system) described above with reference to FIG. Similar to the system shown in FIG. 5, the system of the illustrated example is a pretreatment system 1 for pulverizing garbage waste A into garbage slurry S and a bio that decomposes the garbage slurry S into methane gas G and digested liquid W. And a reactor 3. The illustrated bioreactor 3 is similar to a conventional bioreactor. However, the pretreatment system 1 of the illustrated example has the garbage scraping device 10 for pulverizing the garbage waste A while heating it with warm water or steam H, and the garbage waste A is not a normal temperature but a predetermined temperature It can be crushed into a heated garbage slurry S at a temperature.

また,図1の前処理システムは,所定温度の加温生ごみスラリーSを滞留させて無機固形物Cを分離する分離槽30を有している。生ごみスラリーSを加熱したうえで分離槽30に滞留させることにより,図5のように常温で滞留させた場合に比して生ごみスラリーSの可溶化を促進して粘性を早期に低下させ,生ごみスラリーSから無機固形物Cを短時間で沈降分離することができる。また,無機固形物Cを短時間で沈降分離できることから,分離槽30での生ごみスラリーSの滞留時間を短縮することができ,ひいては分離槽30をコンパクトなものとすることができる。   Further, the pretreatment system of FIG. 1 has a separation tank 30 for retaining the heated garbage S at a predetermined temperature to separate the inorganic solid material C. By heating the garbage slurry S and keeping it in the separation tank 30, the solubilization of the garbage slurry S is promoted and the viscosity is reduced early, as compared with the case where the garbage slurry S is kept at normal temperature as shown in FIG. , The inorganic solid C can be precipitated and separated from the garbage S in a short time. Moreover, since the inorganic solid material C can be precipitated and separated in a short time, the residence time of the garbage S in the separation tank 30 can be shortened, and hence the separation tank 30 can be made compact.

図示例の生ごみスラリー化装置10は,例えば図6に示すように,複数の給水ノズル28を設けた異物分別装置10とすることができる。図6の異物分別装置10は,取入口17から取り入れる生ごみ廃棄物Aの水分を調整して希釈するため,筒体11及び生ごみスラリーホッパー20に複数の給水ノズル28を設けている。図1の実施例では,異物分別装置10の取入口17から生ごみ廃棄物Aを投入する際に,筒体11の給水ノズル28から温水又は蒸気Hを供給し,回転翼16により生ごみ廃棄物Aを温水又は蒸気Hと共に粉砕することにより,廃棄物A中の異物Bを分別すると同時に,筒体11の細孔14から生ごみスラリーホッパー20へ落下する生ごみスラリーSを所定温度に加熱することができる。   For example, as shown in FIG. 6, the garbage separating apparatus 10 of the illustrated example can be a foreign matter sorting apparatus 10 provided with a plurality of water supply nozzles 28. The foreign matter sorting apparatus 10 of FIG. 6 is provided with a plurality of water supply nozzles 28 in the cylindrical body 11 and the garbage refuse hopper 20 in order to adjust and dilute the moisture of the garbage waste A taken in from the inlet 17. In the embodiment of FIG. 1, when the garbage waste A is introduced from the inlet 17 of the foreign matter sorting apparatus 10, the hot water or the steam H is supplied from the water supply nozzle 28 of the cylindrical body 11, and the garbage 16 is discarded by the rotary wing 16. By grinding the substance A with warm water or steam H, the foreign matter B in the waste A is separated, and at the same time the garbage slurry S falling from the pores 14 of the cylinder 11 to the garbage slurry hopper 20 is heated to a predetermined temperature can do.

図6において,筒体11の給水ノズル28に代えて又は加えて,生ごみスラリーホッパー20の給水ノズル28から温水又は蒸気Hを供給してもよい。生ごみスラリーホッパー20に温水又は蒸気Hを供給することにより,筒体11の細孔14から落下した後の生ごみスラリーSを所定温度に加熱して加温生ごみスラリーSとすることができる。或いは,図1に一点鎖線で示すように.生ごみスラリー化装置10を,異物分別装置10又は分離槽30に設けた熱交換器42とすることも可能である。例えば,異物分別装置10から分離槽30に至る生ごみスラリーSの流路(例えば図6の輸送パイプ23)に熱交換器42を配置し,その熱交換器42に温水又は蒸気Hを供給して生ごみスラリーSを加熱することにより,生ごみ廃棄物Aを所定温度の加温生ごみスラリーSとする。   In FIG. 6, hot water or steam H may be supplied from the water supply nozzle 28 of the garbage slurry hopper 20 instead of or in addition to the water supply nozzle 28 of the cylindrical body 11. By supplying hot water or steam H to the garbage refuse hopper 20, the garbage slurry S after falling from the pores 14 of the cylindrical body 11 can be heated to a predetermined temperature to be a heated garbage slurry S . Or, as shown by the alternate long and short dash line in FIG. It is also possible to use the heat exchanger 42 provided in the foreign matter sorting apparatus 10 or the separation tank 30 as the organic waste slurry forming device 10. For example, the heat exchanger 42 is disposed in the flow path (for example, the transport pipe 23 of FIG. 6) of the garbage S from the foreign matter sorting apparatus 10 to the separation tank 30 and hot water or steam H is supplied to the heat exchanger 42 By heating the organic waste slurry S, the organic waste waste A is made to be a heated organic waste slurry S having a predetermined temperature.

生ごみスラリー化装置10に供給する温水又は蒸気Hは,バイオリアクタ3のメタン発酵処理で得られたメタンガスGを利用して加熱することができる。図1の図示例では,メタンガスGを利用して温水又は蒸気Hを生成するエネルギー回収装置9を設け,エネルギー回収装置9で生成した温水又は蒸気Hの一部分をバイオリアクタ3に供給すると共に,他の一部分を生ごみスラリー化装置10に供給している。メタン発酵システム内で発生するメタンガスGを利用して生ごみスラリーSを加温することにより,システム外部からエネルギーを追加的に供給することなく本発明を実施することができる。また,エネルギー回収装置9で生成する温水又は蒸気Hを生ごみスラリー化装置10に供給して生ごみスラリーSを加温することにより,図5の従来例に比してエネルギー回収装置9からバイオリアクタ3に供給する温水又は蒸気Hを削減することも期待でき,エネルギー回収装置9で生成するエネルギーを有効に利用して分離槽30のコンパクト化を図ることができる。   The hot water or steam H supplied to the raw material slurry slurrying apparatus 10 can be heated using the methane gas G obtained by the methane fermentation treatment of the bioreactor 3. In the illustrated example of FIG. 1, an energy recovery device 9 for producing hot water or steam H using methane gas G is provided, and a part of the hot water or steam H produced by the energy recovery device 9 is supplied to the bioreactor 3 A portion of the waste water is supplied to the garbage recycling device 10. By heating the garbage S by using the methane gas G generated in the methane fermentation system, the present invention can be implemented without additionally supplying energy from the outside of the system. Also, by supplying warm water or steam H generated by the energy recovery device 9 to the garbage recycling device 10 to heat the garbage slurry S, bio from the energy recovery device 9 as compared with the conventional example of FIG. It can also be expected to reduce the hot water or steam H supplied to the reactor 3, and the separation tank 30 can be made compact by effectively utilizing the energy generated by the energy recovery device 9.

好ましくは,生ごみスラリー化装置10で生成する加温生ごみスラリーSの所定温度を20〜35℃とし,更に望ましくは25〜30℃とする。生ごみ廃棄物Aの種類により多少異なるが,生ごみスラリーSの温度を20℃以上とすることにより,常温の場合の1/2程度の時間で生ごみスラリーSの粘性が初期値の半分程度に低下し,無機固形物Cが短時間で沈降分離することを本発明者は実験的に確認することができた。他方,生ごみスラリーSの温度が35℃以上になると,生ごみスラリーSだけでなく無機固形物Cの可溶化も短時間のうちに促進されてしまう。加温生ごみスラリーSを20〜35℃とすることにより,無機固形物Cの可溶化が大きく進行する前に生ごみスラリーSから無機固形物Cを分離することができる。また,加温生ごみスラリーSを25〜30℃とすることにより,無機固形物Cの可溶化を抑えつつスラリーSから無機固形物Cを分離することが可能となる。   Preferably, the predetermined temperature of the heated garbage slurry S generated by the garbage slurry forming apparatus 10 is 20 to 35 ° C., and more preferably 25 to 30 ° C. The viscosity of the food waste slurry S is about half of the initial value in about 1/2 time in the case of normal temperature by setting the temperature of the food waste slurry S to 20 ° C. or more although it differs somewhat depending on the type of the food waste waste A The present inventors were able to confirm experimentally that the inorganic solid C settles and separates in a short time. On the other hand, when the temperature of the garbage S becomes 35 ° C. or higher, the solubilization of not only the garbage S but also the inorganic solid C is promoted in a short time. By setting the heated garbage slurry S to 20 to 35 ° C., it is possible to separate the inorganic solids C from the garbage slurry S before the solubilization of the inorganic solids C greatly progresses. Moreover, it becomes possible to separate the inorganic solid C from the slurry S while suppressing the solubilization of the inorganic solid C by setting the heated garbage slurry S to 25 to 30 ° C.

更に好ましくは,生ごみスラリー化装置10で生成する加温生ごみスラリーSの温度を制御するため,図1に示すように,生ごみスラリー化装置10に,温水又は蒸気Hの温度又は水量を調整する制御装置40と加温生ごみスラリーSの温度を測定する温度センサ41とを含める。例えば異物分別装置10を生ごみスラリー化装置10とした場合は,異物分別装置10から分離槽30に至る生ごみスラリーSの流路(例えば図6の輸送パイプ23)に温度センサ41を取り付け,エネルギー回収装置9から異物分離装置10に至る温水又は蒸気Hの供給ラインに流量調整弁V1を取り付け,その温度センサ41と調整弁V1を制御装置40に接続する。   More preferably, in order to control the temperature of the heated garbage slurry S generated by the garbage slurrying apparatus 10, as shown in FIG. The controller 40 to adjust and the temperature sensor 41 to measure the temperature of the heated garbage S are included. For example, when the foreign matter sorting apparatus 10 is a garbage separating apparatus 10, a temperature sensor 41 is attached to a flow path (for example, the transport pipe 23 of FIG. 6) of the garbage slurry S from the foreign matter sorting apparatus 10 to the separation tank 30; A flow rate adjusting valve V1 is attached to a supply line of warm water or steam H from the energy recovery device 9 to the foreign matter separating device 10, and the temperature sensor 41 and the adjusting valve V1 are connected to the control device 40.

図1の制御装置40は,生ごみスラリー化装置10で生成する加温生ごみスラリーSの設定温度を予め記憶しておき,温度センサ41の計測温度と設定温度との差に基づき調整弁V1の開度を調整することにより,生ごみスラリー化装置10に供給する温水又は蒸気Hの温度又は水量を調整する。必要に応じて,温水又は蒸気Hの供給ラインに水(冷水)の供給ラインを接続すると共にその水供給ラインに流量調整弁V2を取り付け,制御装置40により調整弁V1及びV2の開度を調整することにより,生ごみスラリー化装置10に供給する温水又は蒸気Hの温度又は水量を調整してもよい。   The control device 40 of FIG. 1 stores in advance the set temperature of the heated garbage S generated by the garbage slurrying apparatus 10, and adjusts the adjustment valve V1 based on the difference between the measured temperature of the temperature sensor 41 and the set temperature. The temperature or the amount of water of the hot water or steam H supplied to the food waste slurrying device 10 is adjusted by adjusting the opening degree of If necessary, connect the water (cold water) supply line to the hot water or steam H supply line, attach the flow adjustment valve V2 to the water supply line, and adjust the opening degree of the adjustment valve V1 and V2 by the controller 40 By doing this, the temperature or the amount of water of the hot water or the steam H to be supplied to the garbage separating apparatus 10 may be adjusted.

図示例の分離槽30は,図5に示す従来の分離槽30と同様のものであるが,無機固形物Cを短時間で沈降分離できるので,従来に比して容量の小さいコンパクトなものとすることができる。具体的には,生ごみスラリーSの温度を20℃以上とすることにより,常温の場合に比して無機固形物Cの沈降完了に要する時間を1/2〜3/4程度に短縮できることを実験的に確認することができた。従って,従来に比して容積が1/2〜3/4程度のコンパクトな分離槽30を用いて生ごみスラリーSから無機固形物Cを沈降分離することが可能である。   The separation tank 30 of the illustrated example is the same as the conventional separation tank 30 shown in FIG. 5, but since the inorganic solid material C can be separated by sedimentation in a short time, it is compact can do. Specifically, by setting the temperature of the organic waste slurry S to 20 ° C. or higher, the time required to complete the settling of the inorganic solid C can be shortened to about 1/2 to 3/4 as compared with the case of normal temperature. It could be confirmed experimentally. Therefore, it is possible to precipitate and separate the inorganic solid matter C from the garbage S by using a compact separation tank 30 having a volume of about 1/2 to 3/4 as compared with the conventional case.

[実験例1]
生ごみスラリーSを加温することで無機固形物Cの沈降分離時間を短縮できることを確認するため,図6に示す従来の異物分別装置10から排出された常温の生ごみスラリーSを用いて次のA〜Dの4試料を調製し,その各試料の温度変化,粘度変化,pH変化,及び無機固形物Cであるカルシウム濃度(Ca2+濃度)の変化を24時間にわたって計測する実験を行った。試料B及び試料Dは,実験開始直後の8時間だけ恒温水槽に浸漬し,その後は水槽から出して室温で24時間まで実験を継続した。試料C及び試料Dに加えた生ごみスラリー調整タンク2からの返送生ごみスラリーは,前日から分離槽30に残った生ごみスラリーSを模擬したものである。
[Experimental Example 1]
In order to confirm that the settling time of the inorganic solid C can be shortened by heating the organic waste slurry S, the organic waste slurry S at normal temperature discharged from the conventional foreign matter sorting apparatus 10 shown in FIG. 4 samples of A to D were prepared, and experiments were conducted to measure changes in temperature, viscosity, pH, and calcium concentration (Ca 2+ concentration) of inorganic solid C over 24 hours for each sample. . The samples B and D were immersed in the constant temperature water bath for 8 hours immediately after the start of the experiment, and then the water bath was taken out and the experiment was continued for 24 hours at room temperature. The returned food waste slurry from the food waste slurry adjustment tank 2 added to the sample C and the sample D simulates the food waste slurry S remaining in the separation tank 30 from the previous day.

試料A:常温の生ごみスラリーS
試料B:30〜40℃の恒温水槽に8時間浸漬して加温した生ごみスラリーS
試料C:スラリー調整タンク2からの返送スラリーを返送して加えた常温の生ごみスラリーS(図1のタンク2から分離槽30への矢印を参照)
試料D:生ごみスラリー調整タンク2(図1参照)からの返送生ごみスラリーを加え,更に30〜40℃の恒温水槽に8時間浸漬して加温した生ごみスラリーS
Sample A: Garbage slurry S at normal temperature
Sample B: Garbage slurry S immersed and heated in a 30 to 40 ° C. constant temperature water bath for 8 hours
Sample C: Garbage slurry S at normal temperature added by returning the returned slurry from the slurry adjustment tank 2 (see the arrow from the tank 2 to the separation tank 30 in FIG. 1)
Sample D: Garbage slurry S that was added by returning the garbage scrap from the garbage slurry adjustment tank 2 (see FIG. 1) and further immersed in a 30 to 40 ° C. constant temperature water bath for 8 hours and heated

先ず,各試料A〜Dの24時間にわたる温度変化及び粘度変化を計測した実験結果を図2に示す。図2のグラフa〜dはそれぞれ試料A〜Dの粘度変化を表し,グラフeは試料A及びCの温度変化を表し,グラフfは試料B及びDの温度変化を表している。図2のグラフaは常温の試料Aの粘度が初期値の半分以下になるために約4時間を要するのに対し,グラフbは約20℃に加温された試料Bの粘度が初期値の半分以下になるために約2時間を要することを示している。この実験結果から,生ごみスラリーSの温度を20℃以上に加温することにより,常温の場合に比して粘性が初期値の半分以下に低下するための時間を1/2程度に短縮できることが確認できる。   First, FIG. 2 shows the experimental results of measuring the temperature change and the viscosity change of each sample A to D over 24 hours. Graphs a to d in FIG. 2 represent the viscosity changes of the samples A to D, graph e represents the temperature changes of the samples A and C, and graph f represents the temperature changes of the samples B and D. The graph a in FIG. 2 requires about 4 hours for the viscosity of the sample A at normal temperature to be less than half the initial value, while the graph b has the viscosity of the sample B heated to about 20 ° C. It shows that it takes about 2 hours to become less than half. According to this experimental result, by heating the temperature of the garbage S to 20 ° C. or higher, the time for the viscosity to fall to half or less of the initial value can be shortened to about half compared to the case of normal temperature. Can be confirmed.

また,図2のグラフcは返送生ごみスラリーを加えた常温の試料Cの粘度が初期値の半分以下になるために約2時間を要し,グラフdは返送生ごみスラリーを加えて加温した試料Dの粘度が初期値の半分以下になるために約2時間を要することを示している。この実験結果から,生ごみスラリー調整タンク2の生ごみスラリーS(前日から残った生ごみスラリーS)では既に酸発酵がかなり進行しており,酸生成に寄与する微生物群が優勢化しているため,生ごみスラリー調整タンク2の生ごみスラリーSを返送して加えることにより,常温であっても粘性が短時間で低下したと推定することができる。   Also, graph c in FIG. 2 requires about 2 hours for the viscosity of sample C at normal temperature to which return garbage slurry is added to be less than or equal to half of the initial value, and graph d heats up by adding return garbage slurry It shows that it takes about 2 hours for the viscosity of sample D to be less than half of the initial value. From this experimental result, acid fermentation has already progressed considerably in the raw garbage slurry S of the raw garbage slurry adjustment tank 2 (raw garbage slurry S left from the previous day), and the microbe group contributing to the acid generation is predominant By returning and adding the organic waste slurry S of the organic waste slurry adjustment tank 2, it can be estimated that the viscosity decreases in a short time even at normal temperature.

また,各試料A〜Dの24時間にわたる温度変化及びpH変化を計測した実験結果を図3に示す。図3のグラフa〜dはそれぞれ試料A〜DのpH変化を表し,グラフeは試料A及びCの温度変化を表し,グラフfは試料B及びDの温度変化を表している。図3のグラフa,cは,常温の試料A,CのpHが比較的緩やかに減少(酸性化)したことを示しており,グラフb,dは,加温した試料B,DのpHが比較的激しく減少(酸性化)したことを示しており,とくに試料B,Dの温度が25℃以上になるとpHが急低下することを示している。   Moreover, the experimental result which measured the temperature change and pH change over 24 hours of each sample AD is shown in FIG. Graphs a to d in FIG. 3 represent pH changes of samples A to D, graph e represents temperature changes of samples A and C, and graph f represents temperature changes of samples B and D. Graphs a and c in FIG. 3 indicate that the pH of the samples A and C at ordinary temperature decreased relatively slowly (acidification), and graphs b and d indicate that the pH of the heated samples B and D is It shows that it has decreased relatively strongly (acidification), and in particular, it shows that the pH drops sharply when the temperature of the samples B and D becomes 25 ° C. or higher.

また,図3のグラフa,cは常温の試料A,Cの24時間経過後のpHが3.8程度となったことを示し,グラフb,dは加温した試料B,Dの24時間経過後のpHが3.6程度となったことを示し,加温した試料はより酸性化したことを示している。この実験結果から,生ごみスラリーSは何れも時間の経過に応じて酸発酵が進行するが,加温することにより酸発酵が促進され,とくに25℃以上に加温する酸発酵が大きく促進されることが確認できる。また,酸発酵が大きく促進されていることから,生ごみスラリーSの温度を25℃以上に加温することにより,生ごみスラリーSの粘性が効率的に低下していることを推定できる。   The graphs a and c in FIG. 3 indicate that the pH of the samples A and C after 24 hours passed at normal temperature became about 3.8, and the graphs b and d represent 24 hours of the heated samples B and D. It indicates that the pH after aging has become about 3.6, indicating that the heated sample is more acidified. According to the experimental results, acid fermentation proceeds with time for all the raw garbage slurry S, but acid fermentation is promoted by heating, particularly acid fermentation which is heated to 25 ° C. or more is greatly promoted. Can be confirmed. Moreover, since the acid fermentation is greatly promoted, it can be estimated that the viscosity of the garbage slurry S is efficiently lowered by heating the temperature of the garbage slurry S to 25 ° C. or higher.

更に,各試料A〜Dの24時間にわたる温度変化及びカルシウム濃度(Ca2+濃度)変化を計測した実験結果を図4に示す。図4のグラフa〜dはそれぞれ試料A〜DのpH変化を表し,グラフeは試料A及びCの温度変化を表し,グラフfは試料B及びDの温度変化を表している。図3のグラフa,cは,常温の試料A,Cのカルシウム濃度が比較的緩やかに増加したことを示しており,グラフb,dは,加温した試料B,Dのカルシウム濃度が比較的激しく増加したことを示しており,とくに試料B,Dの温度が30℃以上(加温時間が6時間程度)になるとカルシウム濃度が急激に増加することを示している。 Furthermore, the experimental result which measured the temperature change and calcium concentration (Ca <2+ > concentration) change over 24 hours of each sample AD is shown in FIG. Graphs a to d in FIG. 4 represent pH changes of the samples A to D, graph e represents temperature changes of the samples A and C, and graph f represents temperature changes of the samples B and D. Graphs a and c in FIG. 3 indicate that the calcium concentration of samples A and C at room temperature increased relatively slowly, and graphs b and d indicate that the calcium concentrations of heated samples B and D are relatively It shows that the calcium concentration increases sharply, especially when the temperature of the samples B and D becomes 30 ° C. or more (warming time is about 6 hours).

図4の実験結果は,生ごみスラリーSを加温すると無機固形物Cの可溶化も促進されることを示しており,とくに生ごみスラリーSの温度が30℃以上になると無機固形物Cの可溶化が大きく促進されることを示している。この実験結果から,加温生ごみスラリーSの温度を30℃以下に抑えることにより,無機固形物Cの可溶化を効果的に抑えつつ生ごみスラリーSから無機固形物Cを分離できることを確認できる。また,上述した図2の実験結果から,生ごみスラリーSの粘性を効率的に低下させるためには生ごみスラリーSの温度を25℃以上とすることが分かるので,無機固形物Cの可溶化を効果的に抑えつつ生ごみスラリーSから無機固形物Cを分離するためには,生ごみスラリーSの温度を20〜35℃,好ましくは25〜30℃とし,分離槽30における生ごみスラリーSの滞留時間を2〜6時間とすることが有効であることが確認できる。   The experimental results in FIG. 4 indicate that heating of the garbage S promotes the solubilization of the inorganic solid C, particularly when the temperature of the garbage S becomes 30 ° C. or higher. It shows that solubilization is greatly promoted. From this experimental result, it can be confirmed that the inorganic solid C can be separated from the garbage S while the solubilization of the inorganic solid C is effectively suppressed by suppressing the temperature of the heated garbage S to 30 ° C. or lower. . Further, it can be seen from the experimental results of FIG. 2 described above that the temperature of the garbage slurry S is set to 25 ° C. or more in order to efficiently reduce the viscosity of the garbage slurry S, so the inorganic solid C can be solubilized In order to separate the inorganic solid matter C from the garbage S while effectively suppressing the problem, the temperature of the garbage S is set to 20 to 35 ° C., preferably 25 to 30 ° C., and the garbage slurry S in the separation tank 30 is It can be confirmed that setting the residence time of 2 to 6 hours is effective.

以上の実験結果から確認できたように,本発明は生ごみスラリーSを加熱したうえで分離槽30に滞留させるので,生ごみスラリーSの可溶化を促進すると共に生ごみスラリーSの粘性を低下させ,無機固形物Cを短時間で沈降分離することができ,ひいては分離槽30のコンパクト化を図ることができる。また,加温により生ごみスラリーSだけでなく無機固形物Cの可溶化も促進されるが,生ごみスラリーSの温度を20〜35℃,好ましくは25〜30℃とし,分離槽30における生ごみスラリーSの滞留時間を2〜6時間とすることにより,無機固形物Cの可溶化を抑えつつ生ごみスラリーSから無機固形物Cを分離することができる。   As confirmed from the above experimental results, since the present invention heats the garbage S and keeps it in the separation tank 30, it promotes the solubilization of the garbage S and reduces the viscosity of the garbage S As a result, the inorganic solid C can be sedimented and separated in a short time, and the separation tank 30 can be made compact. Moreover, solubilization of not only the garbage S but also the inorganic solid C is promoted by heating, but the temperature of the garbage S is set to 20 to 35 ° C., preferably 25 to 30 ° C. By setting the residence time of the waste slurry S to 2 to 6 hours, it is possible to separate the inorganic solid C from the garbage S while suppressing the solubilization of the inorganic solid C.

こうして本発明の目的である「無機固形物を短時間で沈降分離することができる生ごみ廃棄物のメタン発酵処理方法及びシステム」の提供を達成することができる。   Thus, it is possible to achieve the object of the present invention, "a method and system for methane fermentation treatment of garbage, capable of settling and separating inorganic solids in a short time".

1…前処理施設 2…生ごみスラリー調整タンク
2a…生ごみスラリーポンプ 3…バイオリアクタ
3a…加熱装置 5…二次処理施設
6…エネルギー回収施設 7…メタン精製設備(脱硫装置)
8…ガスホルダ 9…エネルギー回収装置
10…生ごみスラリー化装置(異物分別装置)
11…筒体 12a…周壁(半割上部)
12b…周壁(半割下部) 14…細孔
15…脚部 16…回転翼(板状羽根)
16a…回転軸 16b…駆動装置
17…取入口 17a…供給ホッパー
17b…定量供給破砕機 18…排出口
19…空気流路 19a…吸気口
19b…排気口 19c…導風板
20…生ごみスラリーホッパー 21…スクリューコンベア
22…スクリュー式送出装置 23…輸送パイプ
24…異物ホッパー 25…搬送パイプ
28…給水ノズル
30…分離槽 30a…錐状底面
30b…胴部側面 30c…内部
31…撹拌手段 31a…撹拌羽根
32…循環手段 32a…採取口
32b…吐出口 33…排出口
33a…排出流路 33b,33c…ゲート
33d…供液手段 33e…ポンプ
33f…噴射口
34…投入口 35…流出口
36…仕分け部材 37…沈殿物
40…制御装置 41…温度センサ
42…熱交換器
A…生ごみ有機物
B…異物
C…無機固形物
S…有機物
G…バイオガス
W…消化液
H…温水又は蒸気(高温水)
DESCRIPTION OF SYMBOLS 1 ... Pretreatment facility 2 ... Garbage slurry adjustment tank 2a ... Garbage slurry pump 3 ... Bioreactor 3a ... Heating device 5 ... Secondary treatment facility 6 ... Energy recovery facility 7 ... Methane purification equipment (desulfurization device)
8: Gas holder 9: Energy recovery device 10: Garbage slurrying device (foreign matter sorting device)
11 ... cylinder 12a ... peripheral wall (half upper part)
12b ... peripheral wall (half lower part) 14 ... pore 15 ... leg part 16 ... rotor blade (plate-like blade)
16a: rotation shaft 16b: drive device 17: intake 17a: supply hopper 17b: fixed amount supply crusher 18: discharge port 19: air flow path 19a: intake port 19b: exhaust port 19c: air guide plate 20: garbage refuse hopper 21 ... screw conveyor 22 ... screw type delivery device 23 ... transport pipe 24 ... foreign material hopper 25 ... transport pipe 28 ... water supply nozzle 30 ... separation tank 30 a ... conical bottom surface 30 b ... body side surface 30 c ... inside 31 ... stirring means 31 a ... stirring Vane 32: circulation means 32a: collection port 32b: discharge port 33: discharge port 33a: discharge flow path 33b, 33c: gate 33d: liquid supply means 33e: pump 33f: injection port 34: inlet port 35: outlet port 36: sorting Member 37: Sediment 40: Control device 41: Temperature sensor 42: Heat exchanger A: Garbage organic matter B: Foreign matter C: Inorganic solid matter S The organics G ... Biogas W ... digestive juices H ... hot water or steam (hot water)

Claims (10)

生ごみ廃棄物を温水又は蒸気で加温しながら粉砕して所定温度の加温生ごみスラリーとし,前記加温生ごみスラリーを分離槽に所定時間滞留させて無機固形物を沈降分離し,前記無機固形物分離後の加温生ごみスラリーをバイオリアクタに投入してメタン発酵処理してなる生ごみ廃棄物のメタン発酵処理方法。 Garbage waste is crushed while heated with warm water or steam to form a heated garbage slurry at a predetermined temperature, and the heated garbage slurry is retained in a separation tank for a predetermined time to separate and separate inorganic solids, The methane fermentation processing method of the garbage waste which inputs the biomass waste matter after heating the garbage waste after inorganic solid matter isolation | separation, and carries out the methane fermentation process. 請求項1の方法において,前記温水又は蒸気を,前記バイオリアクタのメタン発酵処理で得られたメタンガスにより加熱してなる生ごみ廃棄物のメタン発酵処理方法。 The method for methane fermentation treatment of garbage according to claim 1, wherein the hot water or steam is heated by methane gas obtained by methane fermentation treatment of the bioreactor. 請求項1又は2の方法において,前記生ごみ廃棄物を温水又は蒸気と共に異物分別装置に導入して当該廃棄物中の異物を分別すると共に異物分別後の生ごみ廃棄物を所定温度の加温生ごみスラリーに粉砕してなる生ごみ廃棄物のメタン発酵処理方法。 The method according to claim 1 or 2, wherein the garbage waste is introduced into the foreign matter sorting apparatus together with the hot water or steam to separate foreign matter in the waste and heating the garbage waste after the foreign matter sorting to a predetermined temperature The methane fermentation processing method of the garbage waste formed by crushing to garbage garbage. 請求項3の方法において,前記分別装置から排出される加温生ごみスラリーが所定温度となるように前記分別装置に供給する温水又は蒸気の温度又は水量を調整してなる生ごみ廃棄物のメタン発酵処理方法。 4. The method according to claim 3, wherein the temperature or amount of hot water or steam supplied to the separating device is adjusted so that the heated refuse slurry discharged from the separating device reaches a predetermined temperature. Fermentation process method. 請求項1から4の何れかの方法において,前記加温生ごみスラリーの所定温度を20〜35℃とし,前記加温生ごみスラリーの分離槽での滞留時間を2〜6時間としてなる生ごみ廃棄物のメタン発酵処理方法。 The method according to any one of claims 1 to 4, wherein the predetermined temperature of the heated garbage is 20 to 35 ° C, and the residence time of the heated garbage slurry in the separation tank is 2 to 6 hours. Methane fermentation treatment method of waste. 生ごみ廃棄物を温水又は蒸気で加温しながら粉砕して所定温度の加温生ごみスラリーとする生ごみスラリー化装置,前記加温生ごみスラリーを所定時間滞留させて無機固形物を沈降分離する分離槽,及び前記無機固形物分離後の加温生ごみスラリーを投入してメタン発酵処理するバイオリアクタを備えてなる生ごみ廃棄物のメタン発酵処理システム。 Garbage slurry making device which crushes garbage waste while heating it with warm water or steam and makes it a heated garbage slurry of a predetermined temperature, let the above-mentioned heated garbage slurry stay for a predetermined time and settle inorganic solids by settling The methane fermentation processing system of the garbage waste provided with the separation tank which carries out, and the bioreactor which inputs the heated garbage slurry after the said inorganic solid matter separation, and carries out methane fermentation processing. 請求項6のシステムにおいて,前記バイオリアクタのメタン発酵処理で得られたメタンガスを利用して温水又は蒸気を生成するエネルギー回収装置を設け,前記エネルギー回収装置で生成された温水又は蒸気を生ごみスラリー化装置に供給してなる生ごみ廃棄物のメタン発酵処理システム。 7. The system according to claim 6, further comprising: an energy recovery device for producing hot water or steam using methane gas obtained by methane fermentation treatment of the bioreactor, wherein the hot water or steam produced by the energy recovery device is a garbage refuse Methane fermentation treatment system for garbage waste that is supplied to the plant. 請求項6又は7のシステムおいて,前記生ごみスラリー化装置を,前記生ごみ廃棄物中の異物を分別すると共に異物分別後の生ごみ廃棄物を所定温度の加温生ごみスラリーに粉砕する異物分別装置としてなる生ごみ廃棄物のメタン発酵処理システム。 The system according to claim 6 or 7, wherein the garbage separating device separates the foreign matter in the garbage waste and crushes the garbage waste after the foreign matter separation into a heated garbage slurry having a predetermined temperature A methane fermentation treatment system for garbage waste that becomes a foreign matter separation device. 請求項8のシステムにおいて,前記異物分別装置に,当該分別装置から出力される加温生ごみスラリーの温度を測定する温度センサと,当該温度センサの計測温度と所定温度との差に基づき分別装置に供給する温水又は蒸気の温度又は水量を調整する制御装置とを含めてなる生ごみ廃棄物のメタン発酵処理システム。 9. The system according to claim 8, wherein said foreign matter sorting device includes a temperature sensor for measuring the temperature of the heated garbage slurry outputted from said sorting device, and a sorting device based on the difference between the measured temperature of said temperature sensor and a predetermined temperature. And a control device for adjusting temperature or amount of hot water or steam supplied to the system. 請求項6から9の何れかのシステムにおいて,前記加温生ごみスラリーの所定温度を20〜35℃とし,前記分離槽における加温生ごみスラリーの滞留時間を2〜6時間としてなる生ごみ廃棄物のメタン発酵処理システム。 The system according to any one of claims 6 to 9, wherein the predetermined temperature of the heated garbage is 20 to 35 ° C, and the residence time of the heated garbage slurry in the separation tank is 2 to 6 hours. Methane fermentation processing system.
JP2017083017A 2017-04-19 2017-04-19 Methane fermentation treatment method and system for kitchen waste Active JP6893380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017083017A JP6893380B2 (en) 2017-04-19 2017-04-19 Methane fermentation treatment method and system for kitchen waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017083017A JP6893380B2 (en) 2017-04-19 2017-04-19 Methane fermentation treatment method and system for kitchen waste

Publications (2)

Publication Number Publication Date
JP2018176119A true JP2018176119A (en) 2018-11-15
JP6893380B2 JP6893380B2 (en) 2021-06-23

Family

ID=64280333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083017A Active JP6893380B2 (en) 2017-04-19 2017-04-19 Methane fermentation treatment method and system for kitchen waste

Country Status (1)

Country Link
JP (1) JP6893380B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109897766A (en) * 2019-03-28 2019-06-18 北京云水浩瑞环境科技有限公司 Anaerobic fermentation of kitchen waste system and method
CN110014018A (en) * 2019-03-28 2019-07-16 北京云水浩瑞环境科技有限公司 The pretreated system of kitchen garbage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283100A (en) * 1985-10-09 1987-04-16 Kubota Ltd Method for treating sludge
JP2003260448A (en) * 2002-03-11 2003-09-16 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for solubilization treatment of organic waste
JP2004154624A (en) * 2002-11-01 2004-06-03 Kajima Corp Deodorized sorter of foreign matter
JP2006224062A (en) * 2005-02-21 2006-08-31 Kurita Water Ind Ltd Methane fermentation method and equipment
JP2011167604A (en) * 2010-02-17 2011-09-01 Kajima Corp Method for removing calcium-containing foreign matter, calcium-containing foreign matter removal part, methane fermentation pretreatment system, and methane fermentation system
JP2012110833A (en) * 2010-11-24 2012-06-14 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Device for pretreatment for methane fermentation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283100A (en) * 1985-10-09 1987-04-16 Kubota Ltd Method for treating sludge
JP2003260448A (en) * 2002-03-11 2003-09-16 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for solubilization treatment of organic waste
JP2004154624A (en) * 2002-11-01 2004-06-03 Kajima Corp Deodorized sorter of foreign matter
JP2006224062A (en) * 2005-02-21 2006-08-31 Kurita Water Ind Ltd Methane fermentation method and equipment
JP2011167604A (en) * 2010-02-17 2011-09-01 Kajima Corp Method for removing calcium-containing foreign matter, calcium-containing foreign matter removal part, methane fermentation pretreatment system, and methane fermentation system
JP2012110833A (en) * 2010-11-24 2012-06-14 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Device for pretreatment for methane fermentation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109897766A (en) * 2019-03-28 2019-06-18 北京云水浩瑞环境科技有限公司 Anaerobic fermentation of kitchen waste system and method
CN110014018A (en) * 2019-03-28 2019-07-16 北京云水浩瑞环境科技有限公司 The pretreated system of kitchen garbage

Also Published As

Publication number Publication date
JP6893380B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
CN103624066B (en) A kind of half dry type changing food waste continous processing system and processing method thereof
CN102836863A (en) Comprehensive treatment method for kitchen waste, town excrement and municipal sludge
CN102268310A (en) Method for preparing biomass fuel by utilizing food wastes
CN102489496A (en) Method for carrying out anaerobic digestion on kitchen waste after heat-moisture treatment
RU2566997C2 (en) Method and device for hydrolysis of preferably solid organic substrates
KR101785611B1 (en) Treatment plant for resourcing of organic waste
KR100787074B1 (en) Apparatus of biogas production for organic waste
US20100233778A1 (en) Device and process for generating biogas from organic materials
KR20060059919A (en) The process and operation of using enzymatic pre- treatment of the suspended solids for the anaerobic bioreactor of food wastes using hammer milling and centrifuge
TWI782027B (en) fuel manufacturing method
JP5574398B2 (en) Method and system for methane fermentation of organic solid waste
JP6893380B2 (en) Methane fermentation treatment method and system for kitchen waste
JP2009154104A (en) Storage method and fuelization method for organic waste slurry, and storage device for biomass fuel and organic waste slurry
EP2554653B1 (en) Method and system for transferring and mixing a biomass slurry in a hydrolyser and in a fermenter.
JP7132118B2 (en) Fermentation processing equipment
RU2580221C1 (en) Animal waste disposal unit
KR101552317B1 (en) Energy use for heating in the aerobic fermentation balhyoyeol large organic waste anaerobic digestion system
JP4988695B2 (en) Anaerobic treatment apparatus and waste treatment system provided with the same
US20190322597A1 (en) Waste material processing system
KR20090100477A (en) Biological waste bio-gas generating devices
JP2011167604A (en) Method for removing calcium-containing foreign matter, calcium-containing foreign matter removal part, methane fermentation pretreatment system, and methane fermentation system
JP2009248042A (en) Method and system for methane fermentation treatment of organic waste
KR101650241B1 (en) Apparatus for organic waste pretreatment apparatus and method
CN210787794U (en) Kitchen waste desanding device
US20200039858A1 (en) Horizontal anaerobic digestor with sediment separator for the organic fraction of municipal solid waste and related process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210528

R150 Certificate of patent or registration of utility model

Ref document number: 6893380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250