JP2018172529A - Semiconductor adhesion sheet and semiconductor device - Google Patents

Semiconductor adhesion sheet and semiconductor device Download PDF

Info

Publication number
JP2018172529A
JP2018172529A JP2017071583A JP2017071583A JP2018172529A JP 2018172529 A JP2018172529 A JP 2018172529A JP 2017071583 A JP2017071583 A JP 2017071583A JP 2017071583 A JP2017071583 A JP 2017071583A JP 2018172529 A JP2018172529 A JP 2018172529A
Authority
JP
Japan
Prior art keywords
semiconductor
resin
sheet
adhesive
support base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017071583A
Other languages
Japanese (ja)
Other versions
JP6769912B2 (en
Inventor
優 田納
Masaru Tano
優 田納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2017071583A priority Critical patent/JP6769912B2/en
Publication of JP2018172529A publication Critical patent/JP2018172529A/en
Application granted granted Critical
Publication of JP6769912B2 publication Critical patent/JP6769912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor adhesive sheet capable of reducing a warp after reflow in a semiconductor device that mounts a semiconductor element that is more thinned and made larger in size in response to tendency toward smaller size, lighter weight and higher function of an electronic device.SOLUTION: A semiconductor device obtained by adhering a semiconductor element on a support substrate via three-layer structured semiconductor adhesive sheet 1 including a support substrate 2 having elastic modulus in the range of 100 to 250 GPa, and an adhesive layer 3 containing (A) a thermosetting resin containing a bismaleimide, (B) a curing agent, and (C) a filler provided on both sides of the support substrate 2, and the semiconductor adhesive sheet 1. Here, the support substrate 2 is preferably a gold foil having a thickness of 3 to 20 μm and the adhesive layer 3 is preferably formed from a resin composition containing 25 to 75 vol.% of silver particles.SELECTED DRAWING: Figure 1

Description

本発明は、半導体素子を金属リードフレームやセラミックス基板、有機基板等の支持基材に固定するための半導体接着用シート及びその接着用シートを用いた半導体装置に関する。   The present invention relates to a semiconductor bonding sheet for fixing a semiconductor element to a supporting base material such as a metal lead frame, a ceramic substrate, or an organic substrate, and a semiconductor device using the bonding sheet.

半導体装置において、金属リードフレームやセラミック基板、有機基板上の所定部分にLED、IC、LSI等の半導体素子(以下、半導体チップとも称する)を固定する工程は、半導体装置の信頼性に影響を与える重要な工程の一つである。従来から、この接続方法として、樹脂に充填材を分散させたペースト状の樹脂組成物を接着剤として使用する方法が知られている。   In a semiconductor device, a process of fixing a semiconductor element (hereinafter also referred to as a semiconductor chip) such as an LED, IC, LSI or the like to a predetermined portion on a metal lead frame, a ceramic substrate, or an organic substrate affects the reliability of the semiconductor device. This is one of the important steps. Conventionally, as this connection method, a method of using a paste-like resin composition in which a filler is dispersed in a resin as an adhesive is known.

電子機器の小型軽量化、高機能化の動向に対応して、半導体パッケージの小型化、薄型化、狭ピッチ化が益々加速する中、半導体素子においては薄型化、大型化の傾向があり、半導体パッケージの体積に占める半導体素子の比率が大きくなってきている。このため、半導体素子の応力歪の影響が無視できなくなってきた。   In response to the trend toward smaller and lighter electronic devices and higher functionality, semiconductor packages are becoming increasingly thinner, thinner and narrower, and semiconductor devices are becoming thinner and larger. The proportion of semiconductor elements in the package volume is increasing. For this reason, the influence of the stress strain of the semiconductor element cannot be ignored.

これに対して、特許文献1には、特殊な化学構造を有するエポキシ樹脂を用いることで、応力緩和性に優れたダイボンディングペーストが得られることが開示されている。   On the other hand, Patent Document 1 discloses that a die bonding paste having excellent stress relaxation properties can be obtained by using an epoxy resin having a special chemical structure.

特開2007−294712号公報JP 2007-294712 A

しかしながら、より薄型化、大型化する半導体素子に関し、これを実装する半導体装置においては、リフロー後の反りが問題となり、この反りを低減できる半導体接着用材料が求められている。   However, with respect to semiconductor elements that are thinner and larger in size, warpage after reflow becomes a problem in semiconductor devices that mount the semiconductor elements, and a semiconductor bonding material that can reduce this warpage is required.

本発明者らは、鋭意検討した結果、両面に接着剤層を有する3層構造の半導体接着用シートにおいて、中心に配置された支持基材の弾性率を所定の範囲のものにすることで、半導体装置のリフロー後の反りを小さくできることを見出し本発明を完成した。   As a result of diligent study, the inventors of the present invention have a three-layer structure semiconductor bonding sheet having adhesive layers on both sides, and by making the elastic modulus of the support substrate disposed at the center within a predetermined range, The present invention was completed by finding that the warpage after reflow of a semiconductor device can be reduced.

すなわち、本発明の半導体接着用シートは、弾性率が100〜250GPaの範囲の支持基材と、前記支持基材の両面に設けられた(A)少なくとも脂肪族炭化水素基を有するビスマレイミド樹脂を含む熱硬化性樹脂、(B)硬化剤、及び(C)充填材を含有してなる接着剤層と、からなることを特徴とする。ここで、支持基材は、厚さ3〜20μmの金属箔であることが好ましく、接着剤層は、銀粒子を25〜75体積%含む熱硬化性樹脂組成物から形成されることが好ましい。   That is, the semiconductor adhesive sheet of the present invention comprises a support base having an elastic modulus in the range of 100 to 250 GPa and (A) a bismaleimide resin having at least an aliphatic hydrocarbon group provided on both sides of the support base. And (B) a curing agent, and (C) an adhesive layer containing a filler. Here, the supporting substrate is preferably a metal foil having a thickness of 3 to 20 μm, and the adhesive layer is preferably formed from a thermosetting resin composition containing 25 to 75% by volume of silver particles.

本発明の半導体装置は、本発明の半導体接着用シートを介して、半導体素子が支持基材に接着されてなることを特徴とする。   The semiconductor device of the present invention is characterized in that a semiconductor element is bonded to a support substrate via the semiconductor bonding sheet of the present invention.

本発明の半導体接着用シートによれば、支持基材上に安定して対象物を固定することができ、特に、半導体装置の製造にあたって半導体素子等がリフロー工程を経る場合であっても、リフロー後の反りを小さくすることができる。   According to the semiconductor bonding sheet of the present invention, it is possible to stably fix the object on the support substrate, and in particular, even when a semiconductor element or the like undergoes a reflow process in manufacturing a semiconductor device, the reflow process is performed. Later warping can be reduced.

本発明の半導体装置によれば、上記本発明の半導体接着用シートを用いるため、リフロー後の反りが小さく、半導体素子を支持基板上に安定して接着できるため、製品信頼性が高いものとなる。   According to the semiconductor device of the present invention, since the semiconductor bonding sheet of the present invention is used, warpage after reflow is small, and the semiconductor element can be stably bonded onto the support substrate, so that the product reliability is high. .

本発明の一実施形態である半導体接着用シートの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the sheet | seat for semiconductor adhesion which is one Embodiment of this invention. 本発明の一実施形態である半導体装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the semiconductor device which is one Embodiment of this invention.

以下、本発明について、一実施形態を参照しながら詳細に説明する。
<半導体接着用シート>
図1に示したように、本発明の一実施形態である半導体接着用シート1は、弾性率が100〜250GPaの範囲の支持基材2と、該支持基材2の両面に設けられた接着剤層3と、を有してなる。この半導体接着用シート1は、支持基材2の両面に接着剤層3が形成されているため、接着対象物を任意の箇所に接着可能とできる。
Hereinafter, the present invention will be described in detail with reference to an embodiment.
<Semiconductor bonding sheet>
As shown in FIG. 1, a semiconductor bonding sheet 1 according to an embodiment of the present invention includes a support base 2 having an elastic modulus in a range of 100 to 250 GPa and an adhesive provided on both sides of the support base 2. And an agent layer 3. Since the adhesive layer 3 is formed on both surfaces of the support substrate 2, the semiconductor bonding sheet 1 can bond an object to be bonded to an arbitrary location.

ここで、この半導体接着用シート1は、通常、片面を半導体素子の固定用の支持基材に、もう片面を半導体素子に、それぞれ接触、固着させて、半導体素子を支持基材に実装させた半導体装置とできる。このとき、接着剤層3は、それぞれ接着対象となる支持基材や半導体素子等に応じて適宜選択可能である。   Here, the semiconductor bonding sheet 1 is usually mounted on the support base material by contacting and fixing one side to the support base for fixing the semiconductor element and the other side to the semiconductor element. It can be a semiconductor device. At this time, the adhesive layer 3 can be appropriately selected according to a support base material, a semiconductor element, or the like to be bonded.

この半導体接着用シート1は、半導体素子と支持基材とを接合するのに好適であり、特に大型の半導体素子の接合において、従来よりも反りの低減効果が良好である。   The semiconductor bonding sheet 1 is suitable for bonding a semiconductor element and a supporting base material, and has a better warp reduction effect than that in the past, particularly when bonding a large semiconductor element.

〈支持基材〉
本実施形態において、支持基材2は、後述する接着剤層3を安定して保持できる支持基材であって、100〜250GPaの範囲となる弾性率を有する基材である。
<Supporting substrate>
In this embodiment, the support base material 2 is a support base material which can hold | maintain the adhesive bond layer 3 mentioned later stably, and is a base material which has the elasticity modulus used as the range of 100-250 GPa.

ここで、支持基材2としては、上記特性を有するものであれば特に限定されないが、金属、セラミックス、樹脂等の材料が挙げられる。この支持基材2の厚さは、3〜20μmが好ましい。   Here, the supporting substrate 2 is not particularly limited as long as it has the above characteristics, and examples thereof include materials such as metals, ceramics, and resins. As for the thickness of this support base material 2, 3-20 micrometers is preferable.

支持基材2の弾性率が上記のように100〜250GPaの範囲にあると、作業性が良好であるとともに、大型の半導体素子を金属リードフレームやセラミック基板、有機基板に実装してもリフロー後の反りが抑制できる。   When the elastic modulus of the support base 2 is in the range of 100 to 250 GPa as described above, the workability is good and after reflow even if a large semiconductor element is mounted on a metal lead frame, ceramic substrate, or organic substrate. Can be suppressed.

この弾性率が100GPaよりも小さいと反りの抑制が十分でなく、弾性率が250GPaよりも大きいと作業性や取り扱い性に劣る。また、この厚さが3μmより薄いと作業性に劣るとともに反りの抑制が十分でなく、厚さが20μmより厚いと取り扱い性に劣るため好ましくない。   When this elastic modulus is less than 100 GPa, warpage is not sufficiently suppressed, and when the elastic modulus is greater than 250 GPa, workability and handleability are poor. Further, if the thickness is less than 3 μm, the workability is inferior and the warpage is not sufficiently suppressed, and if the thickness is more than 20 μm, the handleability is inferior.

なお、本明細書における弾性率は、ヤング率(Pa)を意味し、一方向の引張応力の方向に対するひずみ量との関係で定義され、例えば、引張試験機を用いて、JISZ2241に準拠したサンプルの標線が示すひずみと、それに対応する応力が直線的な関係を示す領域において、ひずみ量に対する応力の傾きを求めることで算出できる。   The elastic modulus in this specification means Young's modulus (Pa), which is defined by the relationship with the amount of strain with respect to the direction of tensile stress in one direction. For example, a sample conforming to JISZ2241 using a tensile tester. It can be calculated by obtaining the slope of the stress with respect to the strain amount in a region where the strain indicated by the standard line and the stress corresponding thereto show a linear relationship.

本実施形態で使用可能な支持基材2の材料としては、例えば、鉄および鉄合金、アルミニウムおよびアルミニウム合金、銅および銅合金等の金属製のものが好ましいものとして挙げられる。より具体的には、例えば、ハステロイ、パーマロイ、インバー合金、コバール、42アロイ、45アロイ、50アロイ等に代表される鉄ニッケル合金、クロファー合金、ZMG、SUS304、SUS400番台等に代表されるFe−Crフェライト系合金(ステンレス鋼を包含する)、A2000番台〜7000番台、ジュラルミン(A2024)、超ジュラルミン(A2017)等に代表されるアルミニウム合金、ニモニック、インコネル等に代表されるニッケル基合金、Ducrolloy(Cr−5Fe−1Y)、Mo−Fe−Cr合金に代表されるCr基合金、C1000番台〜C6000番台に代表される銅合金、チタン、タンタル、ジルコニウム、モリブデンおよびタングステンが挙げられる。 Examples of the material of the support base 2 that can be used in the present embodiment include those made of metal such as iron and iron alloy, aluminum and aluminum alloy, copper and copper alloy, and the like. More specifically, for example, iron-nickel alloys typified by Hastelloy, Permalloy, Invar alloy, Kovar, 42 alloy, 45 alloy, 50 alloy, etc., Clofer alloy, ZMG, SUS304, SUS400 series, etc. Cr ferritic alloys (including stainless steel), A2000 series to 7000 series, aluminum alloys typified by duralumin (A2024), super duralumin (A2017), nickel base alloys typified by mnemonic, inconel, etc. Cr-5Fe-1Y 2 O 3 ), Cr -based alloy typified by Mo-Fe-Cr alloy, a copper alloy represented by C1000 series ~C6000 series, titanium, tantalum, zirconium, molybdenum and tungsten.

〈接着剤層〉
ここで用いる接着剤層3は、(A)熱硬化性樹脂、(B)硬化剤、及び(C)充填材を含有してなる樹脂組成物から形成される接着剤層である。この接着剤層3は、半導体装置の製造に用いることができ、上記成分を含有する公知の樹脂組成物から形成されるものである。
<Adhesive layer>
The adhesive layer 3 used here is an adhesive layer formed from a resin composition containing (A) a thermosetting resin, (B) a curing agent, and (C) a filler. The adhesive layer 3 can be used for manufacturing a semiconductor device, and is formed from a known resin composition containing the above components.

ここで用いられる(A)熱硬化性樹脂は、少なくとも脂肪族炭化水素基を有するビスマレイミド樹脂を含む熱硬化性樹脂である。本実施形態の半導体接着用シートは半導体素子を支持基材に接着する用途に使用されることから、耐吸湿性、耐熱性が良好であることが求められ、このような観点から、上記マレイミド樹脂が用いられる。   The (A) thermosetting resin used here is a thermosetting resin containing at least a bismaleimide resin having an aliphatic hydrocarbon group. Since the semiconductor bonding sheet of this embodiment is used for the purpose of bonding a semiconductor element to a supporting substrate, it is required that the moisture absorption resistance and heat resistance are good. From such a viewpoint, the maleimide resin Is used.

なかでも、主鎖に脂肪族炭化水素基を有するビスマレイミド樹脂が、耐吸湿性、耐熱性、フィルム性が良好であるため好ましい。脂肪族炭化水素基を有するビスマレイミド樹脂は、2つのマレイミド基を連結する主鎖が、炭素数が1以上の脂肪族炭化水素基を有して構成されるものである。ここで、脂肪族炭化水素基は、直鎖状、分枝鎖状及び環状のいずれの形態でもよい。この脂肪族炭化水素基について、一つの実施形態では炭素数は6以上である。その他の実施形態では、炭素数は12以上である。さらに、その他の実施形態では、炭素数は24以上である。
また、この脂肪族炭化水素基はマレイミド基に直接結合していることがよい。
このようなビスマレイミド樹脂を含有することで、耐熱性に優れるとともに、低応力で吸湿後の熱時接着強度の良好な半導体接着用シートが得られる。
Among these, a bismaleimide resin having an aliphatic hydrocarbon group in the main chain is preferable because it has good moisture absorption resistance, heat resistance, and film properties. The bismaleimide resin having an aliphatic hydrocarbon group is configured such that a main chain connecting two maleimide groups has an aliphatic hydrocarbon group having 1 or more carbon atoms. Here, the aliphatic hydrocarbon group may be any of linear, branched, and cyclic forms. In this embodiment, the aliphatic hydrocarbon group has 6 or more carbon atoms. In other embodiments, the carbon number is 12 or more. In another embodiment, carbon number is 24 or more.
In addition, the aliphatic hydrocarbon group is preferably directly bonded to the maleimide group.
By containing such a bismaleimide resin, it is possible to obtain a semiconductor bonding sheet that is excellent in heat resistance and has a low stress and good heat-bonding strength after moisture absorption.

具体的には、次の一般式(1)で表されるイミド拡張型のビスマレイミド化合物(A1)が挙げられる。

Figure 2018172529
(式中、nは1〜10の整数である。) Specific examples include an imide-extended bismaleimide compound (A1) represented by the following general formula (1).
Figure 2018172529
(In the formula, n is an integer of 1 to 10.)

このビスマレイミド化合物(A1)としては、例えば、BMI−3000(デジグナーモレキュールズ社製、商品名;分子量3000)、BMI−5000(デジグナーモレキュールズ社製、商品名;分子量5000)、等が挙げられる。   As this bismaleimide compound (A1), for example, BMI-3000 (manufactured by Designer Molecules, trade name; molecular weight 3000), BMI-5000 (manufactured by Desiner Molecules, trade name: molecular weight 5000), Etc.

このビスマレイミド化合物(A1)はポリスチレン換算による数平均分子量は500以上5000以下であり、1000以上3000以下が好ましい。数平均分子量が500未満では耐熱性が低下し、5000を超えると半導体装置製造時の仮貼り性が低下する傾向にある。   This bismaleimide compound (A1) has a number average molecular weight in terms of polystyrene of from 500 to 5,000, preferably from 1,000 to 3,000. When the number average molecular weight is less than 500, the heat resistance is lowered, and when it exceeds 5000, the temporary sticking property at the time of manufacturing a semiconductor device tends to be lowered.

また、その他のビスマレイミド樹脂としては、次の一般式(2)で表されるビスマレイミド化合物(A2)が挙げられる。

Figure 2018172529
(式中、Qは炭素数6以上の2価の直鎖状、分枝鎖状又は環状の脂肪族炭化水素基を示し、Pは2価の原子又は有機基であって、O、CO、COO、CH、C(CH、C(CF、S、S、SO及びSOから選ばれる2価の原子又は有機基を少なくとも1つ以上含む基であり、mは1〜10の整数を表す。) Moreover, as another bismaleimide resin, the bismaleimide compound (A2) represented by following General formula (2) is mentioned.
Figure 2018172529
(In the formula, Q represents a divalent linear, branched or cyclic aliphatic hydrocarbon group having 6 or more carbon atoms, P is a divalent atom or organic group, and O, CO, M is a group containing at least one divalent atom or organic group selected from COO, CH 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , S, S 2 , SO and SO 2; Represents an integer of 1 to 10.)

ここで、Qで表される基は、炭素数6〜44であることが好ましい。Pで表される2価の原子は、O、S等が挙げられ、2価の有機基は、CO、COO、CH、C(CH、C(CF、S、SO、SO等、また、これらの原子又は有機基を少なくとも1つ以上含む有機基が挙げられる。上記した原子又は有機基を含む有機基としては、上記以外の構造として、炭素数1〜3の炭化水素基、ベンゼン環、シクロ環、ウレタン結合等を有するものが挙げられ、その場合のPとして次の化学式で表される基が例示できる。 Here, the group represented by Q preferably has 6 to 44 carbon atoms. Examples of the divalent atom represented by P include O and S. Examples of the divalent organic group include CO, COO, CH 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , S 2 , Examples thereof include SO and SO 2 and organic groups containing at least one of these atoms or organic groups. Examples of the organic group including the above-described atom or organic group include those having a hydrocarbon group having 1 to 3 carbon atoms, a benzene ring, a cyclo ring, a urethane bond, etc. as a structure other than the above, and as P in that case Examples include groups represented by the following chemical formula.

Figure 2018172529
Figure 2018172529

このビスマレイミド化合物(A2)としては、BMI−1500(デジグナーモレキュールズ社製、商品名;分子量1500)、BMI−1700(デジグナーモレキュールズ社製、商品名;分子量 1700)、等が挙げられる。
この(A)成分は1種を単独で使用してもよく、2種以上を混合して使用してもよい。
Examples of the bismaleimide compound (A2) include BMI-1500 (manufactured by Designer Molecules, trade name: molecular weight 1500), BMI-1700 (manufactured by Desiner Molecules, trade name: molecular weight 1700), and the like. Can be mentioned.
This (A) component may be used individually by 1 type, and 2 or more types may be mixed and used for it.

ここで用いられる(A)熱硬化性樹脂としては、上記マレイミド樹脂に、例えば、シアネート樹脂、エポキシ樹脂、ラジカル重合性のアクリル樹脂、マレイミド樹脂などの他の熱硬化性樹脂を併用してもよい。併用する熱硬化性樹脂としてはエポキシ樹脂が好ましい。   As the thermosetting resin (A) used here, other thermosetting resins such as cyanate resin, epoxy resin, radical polymerizable acrylic resin and maleimide resin may be used in combination with the maleimide resin. . The thermosetting resin used in combination is preferably an epoxy resin.

さらに、エポキシ樹脂のなかでも、(A3)アリル化ビスフェノールとエピクロルヒドリンの重合物であるアリル化エポキシ樹脂が好ましく用いられる。この(A3)アリル化エポキシ樹脂は、例えば、多価フェノール化合物をメタノール、イソプロパノール、n−プロパノール等のアルコール類やアセトン、メチルエチルケトン等のケトン類等の溶剤に溶解後、水酸化ナトリウムや水酸化カリウム等の塩基を用いて塩化アリルや臭化アリル等のハロゲン化アリルと反応させて多価フェノール化合物のアリルエーテルを得た後、アリル化多価フェノール化合物とエピハロヒドリン類の混合物に触媒として水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の固体を一括添加又は徐々に添加しながら20〜120℃で0.5〜10時間反応させることによって得ることができる。   Further, among the epoxy resins, (A3) an allylated epoxy resin which is a polymer of allylated bisphenol and epichlorohydrin is preferably used. This (A3) allylated epoxy resin is prepared by, for example, dissolving a polyhydric phenol compound in a solvent such as alcohols such as methanol, isopropanol or n-propanol, or ketones such as acetone or methyl ethyl ketone, and then sodium hydroxide or potassium hydroxide. After reacting with allyl halides such as allyl chloride and allyl bromide using a base such as polyhydric phenol compound allyl ether, sodium hydroxide as a catalyst in a mixture of allylated polyphenol compound and epihalohydrin It can be obtained by reacting at 20 to 120 ° C. for 0.5 to 10 hours while adding or gradually adding a solid of alkali metal hydroxide such as potassium hydroxide.

さらに、本実施形態において、(A3)成分のアリル化ビスフェノールとエピクロルヒドリンの重合物は、次の一般式(3)で表される化合物

Figure 2018172529
(式中、R〜Rは、それぞれ独立に水素原子、置換又は無置換のアルキル基及び置換又は無置換のアリル基から選ばれる基であって、そのうちの少なくとも1つは置換又は無置換のアリル基であり、XはSO、SO、CH、C(CH、C(CF、O、CO及びCOOから選ばれる2価の原子又は有機基であり、kは0又は1である。)が好ましく用いられる。 Furthermore, in this embodiment, the polymer of allylated bisphenol and epichlorohydrin as the component (A3) is a compound represented by the following general formula (3):
Figure 2018172529
Wherein R 1 to R 8 are each independently a group selected from a hydrogen atom, a substituted or unsubstituted alkyl group and a substituted or unsubstituted allyl group, at least one of which is substituted or unsubstituted X is a divalent atom or organic group selected from SO, SO 2 , CH 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , O, CO and COO, and k is 0 or 1) is preferably used.

このように、本実施形態は(A1)成分および/または(A2)成分と(A3)成分の特定の樹脂成分を併用することが好ましい。ここで、(A3)成分の配合量は、(A)成分の合計質量中に5〜50質量%含まれるものが好ましい。5質量%未満であると熱硬化性樹脂組成物の硬化性に問題が生じるおそれがあり、50質量%を超えるとフィルム性、接着性や吸水性が劣るおそれがある。   Thus, in this embodiment, it is preferable to use the component (A1) and / or the component (A2) and the specific resin component (A3) in combination. Here, the compounding amount of the component (A3) is preferably 5 to 50% by mass in the total mass of the component (A). If it is less than 5% by mass, there may be a problem in curability of the thermosetting resin composition, and if it exceeds 50% by mass, the film property, adhesiveness and water absorption may be inferior.

一方、本実施形態に用いられる(A1)成分と(A2)成分の配合割合は、(A)成分の合計質量中に50〜95質量%含まれるものが好ましい。また、質量%での[(A1)成分の含有量/(A2)の含有量]の比が0/100〜90/10であることが好ましい。   On the other hand, the blending ratio of the component (A1) and the component (A2) used in this embodiment is preferably 50 to 95% by mass in the total mass of the component (A). Moreover, it is preferable that the ratio of [(A1) component content / (A2) content] in mass% is from 0/100 to 90/10.

ここで用いられる(B)硬化剤は、使用する樹脂に応じて適宜選択すればよく、一般に、半導体接着用シートに用いられる硬化剤が使用できる。この(B)硬化剤としては、例えば、イミダゾール系硬化剤、ラジカル重合開始剤、フェノール系硬化剤、酸無水物系硬化剤、アミン系硬化剤、イミダゾリン系硬化剤、トリアジン系硬化剤及びホスフィン系硬化剤等が挙げられる。
なかでも、(B1)イミダゾール系硬化剤と(B2)ラジカル重合開始剤との組み合わせが好ましく、これによりラミネータによる仮貼り性と硬化性の両立が図れる。
What is necessary is just to select suitably the (B) hardening | curing agent used here according to resin to be used, and generally the hardening | curing agent used for the sheet | seat for semiconductor adhesion can be used. Examples of the curing agent (B) include imidazole curing agents, radical polymerization initiators, phenol curing agents, acid anhydride curing agents, amine curing agents, imidazoline curing agents, triazine curing agents, and phosphine curing agents. Examples thereof include a curing agent.
Especially, the combination of (B1) imidazole type hardening | curing agent and (B2) radical polymerization initiator is preferable, and it can aim at coexistence of temporary sticking property and curability by a laminator by this.

本実施形態に用いられる(B1)イミダゾール系硬化剤は、例えば、2−メチルイミダゾール、2−ウンデシルイミダゾール、1−デシル−2−フェニルイミダゾール、1−シアノメチル−2−ウンデシルイミダゾール、2,4−ジアミノ−6−(2’−メチルイミダゾリル−(1’))−エチル−s−トリアジンイソシアヌル酸付与物、2−メチルイミダゾールイソシアヌル酸付与物、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2,3−ジヒドロ−1H−ピロロ(1,2−a)ベンズイミダゾールなどが挙げられる。   Examples of the (B1) imidazole curing agent used in the present embodiment include 2-methylimidazole, 2-undecylimidazole, 1-decyl-2-phenylimidazole, 1-cyanomethyl-2-undecylimidazole, and 2,4. -Diamino-6- (2'-methylimidazolyl- (1 '))-ethyl-s-triazine isocyanuric acid contributor, 2-methylimidazole isocyanuric acid contributor, 2-phenyl-4-methyl-5-hydroxymethylimidazole 2,3-dihydro-1H-pyrrolo (1,2-a) benzimidazole and the like.

本実施形態に用いられる(B2)ラジカル重合開始剤は、通常、ラジカル重合に用いられている重合触媒であれば特に限定されないが、好ましくは、急速加熱試験(試料1gを電熱板の上に乗せ、4℃/分で昇温したときの分解開始温度の測定試験)における分解開始温度が40〜140℃となるものである。分解開始温度が40℃未満であると、接着性熱硬化型樹脂組成物の常温における保存性が不良となり、140℃を超えると硬化時間が極端に長くなる可能性がある。なお、ここで試料の加熱前の質量に対する1%質量減少時の温度を分解開始温度とする。   The (B2) radical polymerization initiator used in the present embodiment is not particularly limited as long as it is a polymerization catalyst usually used for radical polymerization, but preferably a rapid heating test (1 g of sample is placed on an electric heating plate). The decomposition start temperature in the measurement test of the decomposition start temperature when the temperature is raised at 4 ° C./min) is 40 to 140 ° C. When the decomposition start temperature is less than 40 ° C, the storage stability of the adhesive thermosetting resin composition at room temperature becomes poor, and when it exceeds 140 ° C, the curing time may become extremely long. In addition, the temperature at the time of 1% mass reduction | decrease with respect to the mass before a sample is heated here is set as decomposition | disassembly start temperature.

この条件を満たすラジカル重合触媒の具体例としては、例えば、1,1−ビス(t−ブチルパーオキシ)−2−メチルシクロヘキサン、t−ブチルパーオキシネオデカノエート、ジクミルパーオキサイド等が挙げられる。これらは単独でも、硬化性を制御するために2種類以上を混合して使用してもよい。   Specific examples of the radical polymerization catalyst satisfying this condition include 1,1-bis (t-butylperoxy) -2-methylcyclohexane, t-butylperoxyneodecanoate, dicumyl peroxide, and the like. It is done. These may be used alone or in combination of two or more in order to control curability.

なお、熱硬化性樹脂組成物の保存性を向上するために、各種の重合禁止剤を予め添加しておくことも可能である。そのような重合禁止剤としては、例えば、ヒドロキノン、メチルヒドロキノン、ジブチルヒドロキシトルエン(BHT)等が挙げられる。   In addition, in order to improve the preservability of the thermosetting resin composition, it is possible to add various polymerization inhibitors in advance. Examples of such a polymerization inhibitor include hydroquinone, methylhydroquinone, dibutylhydroxytoluene (BHT) and the like.

この(B)硬化剤の配合量は、(A)成分の合計質量100質量部に対して、0.1〜10質量部が好ましい。この配合量が10質量部を超えると、熱硬化性樹脂組成物の粘度の経時変化が大きくなり作業性が低下するおそれがあり、0.1質量部未満では、硬化性が著しく低下する可能性がある。   As for the compounding quantity of this (B) hardening | curing agent, 0.1-10 mass parts is preferable with respect to 100 mass parts of total mass of (A) component. If this amount exceeds 10 parts by mass, the change over time in the viscosity of the thermosetting resin composition may increase and workability may decrease, and if it is less than 0.1 parts by mass, the curability may be significantly reduced. There is.

ここで用いられる(C)充填剤としては、一般に、半導体接着用シートに用いられる充填材として公知のものが使用できる。例えば、無機充填材、有機充填材等が挙げられる。ここで、無機充填材としては、例えば、金粉、銀粉、銅粉、アルミニウム粉、ニッケル粉等の金属粉や、溶融シリカ、結晶シリカ、窒化珪素、アルミナ、窒化アルミニウム、炭酸カルシウム、タルク等の無機粉末及び該無機粉末の表面を金属で被覆した金属被覆型無機充填材等が挙げられる。   As the filler (C) used here, generally known fillers can be used as the filler used in the semiconductor bonding sheet. For example, an inorganic filler, an organic filler, etc. are mentioned. Here, as the inorganic filler, for example, metal powder such as gold powder, silver powder, copper powder, aluminum powder and nickel powder, and inorganic such as fused silica, crystalline silica, silicon nitride, alumina, aluminum nitride, calcium carbonate and talc Examples thereof include a powder and a metal-coated inorganic filler in which the surface of the inorganic powder is coated with a metal.

この(C)充填剤としては、例えば、導電性の用途には、特に銀粉が好ましい。銀粉は、入手が容易で、取扱いやすい上、形状、粒径の種類が多く、導電性が良好で、かつ、加熱しても導電性が変化しない等の有利な特性を有する。また、絶縁用途には、特にシリカが好ましい。シリカは、入手が容易で、取り扱いやすい特性を有する。   As this (C) filler, for example, silver powder is particularly preferable for conductive applications. Silver powder is easy to obtain, easy to handle, has many types of shapes and particle sizes, has good conductivity, and has advantageous properties such as no change in conductivity even when heated. In addition, silica is particularly preferable for insulating applications. Silica is easily available and easy to handle.

この(C)充填材の形状は特に限定されず、例えば、フレーク状(鱗片状)、樹枝状、球状のもの等が用いられる。また、半導体接着用の接着剤層に用いることができれば、その粒径も特に限定されず、例えば、平均粒径が10nm〜10μmの充填材を用いることができる。この(C)充填材の平均粒径は、0.1〜10μmが好ましく、0.5〜10μmがより好ましい。ここで、許容される最大粒径は10μm程度が好ましい。なお、本明細書において、平均粒径はレーザー回折式粒度分布測定装置を用いて得られる体積基準の粒度分布における50%積算値(D50)である。 The shape of the filler (C) is not particularly limited, and for example, a flake shape (scale shape), a dendritic shape, a spherical shape, or the like is used. Moreover, if it can use for the adhesive bond layer for semiconductor adhesion, the particle size will not be specifically limited, For example, a filler with an average particle diameter of 10 nm-10 micrometers can be used. The average particle size of the filler (C) is preferably 0.1 to 10 μm, and more preferably 0.5 to 10 μm. Here, the allowable maximum particle diameter is preferably about 10 μm. In the present specification, the average particle diameter is 50% cumulative value in the volume-based particle size distribution obtained with a laser diffraction type particle size distribution measuring apparatus (D 50).

また、この(C)充填材の配合割合は、樹脂組成物を100体積%としたとき、25〜75体積%が好ましく、50〜75体積%がより好ましい。充填材の配合割合が多いほど、接着剤層の弾性率が大きくなるため半導体装置の反り低減に有効である。この配合割合が、75体積%を超えると接着力低下のおそれがあり、25体積%未満であると接着シートの熱膨張率が大きくなり、半導体装置の反りが大きくなるおそれがある。   Moreover, 25-75 volume% is preferable and, as for the mixture ratio of this (C) filler, when a resin composition is 100 volume%, 50-75 volume% is more preferable. As the blending ratio of the filler increases, the elastic modulus of the adhesive layer increases, which is effective in reducing the warpage of the semiconductor device. If the blending ratio exceeds 75% by volume, the adhesive force may be reduced, and if it is less than 25% by volume, the thermal expansion coefficient of the adhesive sheet increases, and the warp of the semiconductor device may increase.

この接着剤層を形成する樹脂組成物には、以上の他、この種の組成物に一般に配合される、カップリング剤、希釈剤、硬化促進剤、ゴムやシリコーン等の低応力化剤、消泡剤、界面活性剤、着色剤(顔料、染料)、各種重合禁止剤、酸化防止剤、その他の各種添加剤を、必要に応じて配合することができる。   In addition to the above, the resin composition that forms this adhesive layer includes coupling agents, diluents, curing accelerators, low stress agents such as rubber and silicone, Foaming agents, surfactants, colorants (pigments, dyes), various polymerization inhibitors, antioxidants, and other various additives can be blended as necessary.

これらの各添加剤はいずれも1種を単独で使用してもよく、2種以上を混合して使用してもよい。   Each of these additives may be used alone or in combination of two or more.

この樹脂組成物は、公知の方法を適用して製造することができる。例えば、上記成分、及び必要に応じて配合される各種成分を、ポットミル、ボールミル、ビーズミル、ロールミル、ホモジナイザー、スーパーミル、ライカイ機等の公知の混練機を用いて、室温あるいは加熱下において混練した後、必要に応じて溶剤希釈して得られる。   This resin composition can be manufactured by applying a known method. For example, after kneading the above components and various components to be blended as necessary, using a known kneader such as a pot mill, a ball mill, a bead mill, a roll mill, a homogenizer, a super mill, a lyca mill, at room temperature or under heating. It is obtained by diluting with a solvent if necessary.

〈半導体接着用シートの製造方法〉
本実施形態の半導体接着用シート1は、まず、上記したような接着材層3を形成する樹脂組成物を溶剤希釈して、その粘度を0.1〜2Pa・s程度に調製する。次いで、調製された樹脂組成物を、用意した支持基材2上に、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等の公知の塗布方法により塗布し、乾燥処理し、半硬化状態とすることにより製造できる。
<Semiconductor bonding sheet manufacturing method>
In the semiconductor bonding sheet 1 of the present embodiment, first, the resin composition for forming the adhesive layer 3 as described above is diluted with a solvent, and the viscosity thereof is adjusted to about 0.1 to 2 Pa · s. Next, the prepared resin composition is applied onto the prepared support substrate 2 by a known coating method such as a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, or a gravure coating method. It can be produced by drying and semi-curing.

支持フィルムを使用する場合は、表面に離型剤層を設けた、ポリエチレン、ポリプロピレン、ポリエステル、ポリカーボネート、ポリアリレート、ポリアクリロニトリル等のプラスチックフィルムが使用される。この支持フィルムの厚みは、ハンドリング性の点から、通常10〜50μm、好ましくは25〜38μmである。この場合、一旦接着剤層3を支持フィルムに形成した後、得られたフィルム付きの接着剤層3を支持基材2の両面に転写することにより半導体接着用シート1が得られる。   When using a support film, a plastic film such as polyethylene, polypropylene, polyester, polycarbonate, polyarylate, polyacrylonitrile, etc., having a release agent layer on the surface is used. The thickness of this support film is usually 10 to 50 μm, preferably 25 to 38 μm, from the viewpoint of handling properties. In this case, after the adhesive layer 3 is once formed on the support film, the obtained adhesive layer 3 with a film is transferred to both surfaces of the support substrate 2 to obtain the semiconductor bonding sheet 1.

また、上記方法により得られる半導体接着用シート1は、上記樹脂組成物からなる接着剤層3の乾燥後の厚みが3〜20μmとなるように塗布することが好ましい。乾燥後の厚みが3μmより薄いとカスレやフィラー脱離などが起こり、乾燥後の厚みが20μmより厚いと樹脂割れなどのおそれがある。   Moreover, it is preferable to apply | coat the sheet | seat 1 for semiconductor adhesion obtained by the said method so that the thickness after drying of the adhesive bond layer 3 which consists of the said resin composition may be set to 3-20 micrometers. If the thickness after drying is less than 3 μm, scraping or filler detachment occurs, and if the thickness after drying is more than 20 μm, there is a risk of resin cracking.

ここで得られる半導体接着用シート1の厚さは、10〜60μm程度が好ましく、10〜30μmがより好ましい。   About 10-60 micrometers is preferable and, as for the thickness of the sheet | seat 1 for semiconductor adhesion obtained here, 10-30 micrometers is more preferable.

<半導体装置>
本実施形態の半導体装置10は、図2に示したように、半導体素子11をリードフレーム12の所定の箇所に、半導体接着用シート1の硬化物1aを介して接合されてなり、上記のようにして得られた半導体接着用シート1を、リードフレーム12上に半導体素子11を接合する際、該半導体素子とリードフレーム12とを、半導体接着用シート1を介して接合する公知の方法により製造できる。
<Semiconductor device>
As shown in FIG. 2, the semiconductor device 10 of this embodiment is formed by bonding the semiconductor element 11 to a predetermined portion of the lead frame 12 via the cured product 1a of the semiconductor bonding sheet 1 as described above. The semiconductor bonding sheet 1 obtained as described above is manufactured by a known method of bonding the semiconductor element and the lead frame 12 via the semiconductor bonding sheet 1 when the semiconductor element 11 is bonded to the lead frame 12. it can.

さらに具体的には、例えば、本実施形態の半導体接着用シート1を介して半導体素子11をその支持基材である銅フレーム、PPF(パラジウム プリプレーティング リードフレーム)等の金属リードフレームにマウントし、半導体接着用シート1を加熱硬化させた後、リードフレーム12の電極部と半導体素子11上の電極13とをワイヤボンディング14により接続し、次いで、これらを封止樹脂15を用いて封止する、あるいはパッケージに収納することにより製造することができる。ボンディングワイヤ14としては、例えば、銅、金、アルミ、金合金、アルミ−シリコン等からなるワイヤが例示される。また、半導体接着用シート1を硬化させる際の温度は、通常、100〜230℃、好ましくは、100〜200℃であり、銅製のリードフレームの場合は190℃以下が特に好ましい。また、加熱時間は0.5〜2時間程度が好ましい。   More specifically, for example, the semiconductor element 11 is mounted on a metal lead frame such as a copper frame or PPF (palladium pre-plating lead frame) as a supporting base via the semiconductor bonding sheet 1 of the present embodiment, After the semiconductor bonding sheet 1 is heated and cured, the electrode portion of the lead frame 12 and the electrode 13 on the semiconductor element 11 are connected by wire bonding 14, and then these are sealed using a sealing resin 15. Or it can manufacture by accommodating in a package. Examples of the bonding wire 14 include wires made of copper, gold, aluminum, gold alloy, aluminum-silicon, and the like. Moreover, the temperature at the time of hardening the sheet | seat 1 for semiconductor adhesion is 100-230 degreeC normally, Preferably, it is 100-200 degreeC, and 190 degrees C or less is especially preferable in the case of a copper lead frame. The heating time is preferably about 0.5 to 2 hours.

ここで、半導体素子11は、トランジスタ、ダイオード、発光素子等公知の半導体素子が挙げられる。   Here, examples of the semiconductor element 11 include known semiconductor elements such as transistors, diodes, and light emitting elements.

なお、図面では、半導体素子の支持基材として金属リードフレームを例示しているが、半導体素子を支持固定する部材であればよく、特に限定されない。例えば、有機基板やセラミック基板といった回路基板や放熱部材等に適用することもできる。   In the drawing, a metal lead frame is illustrated as a support base of the semiconductor element, but it is not particularly limited as long as it is a member that supports and fixes the semiconductor element. For example, the present invention can be applied to a circuit board such as an organic substrate or a ceramic substrate, a heat radiating member, or the like.

次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.

(実施例1)
<接着剤樹脂組成物の原料>
(A2)成分:イミド拡張型ビスマレイミド(デジグナーモレキュールズ社製、商品名:BMI−1500;数平均分子量 1500) 80質量部
(A3)成分:ジアリルビスフェノールAジグリシジルエーテル型エポキシ樹脂(日本化薬株式会社製、商品名:RE−810NM;エポキシ当量 223、加水分解性塩素 150ppm(1N KOH−エタノール、ジオキサン溶媒、還流30分) 20質量部
(B1)成分:2−ウンデシルイミダゾール(四国化成工業株式会社製、商品名:キュアゾールC11Z) 1質量部
(B2)成分:ジクミルパーオキサイド(日本油脂株式会社製、商品名:パークミルD) 1質量部
(C)成分:銀粉(商品名;AgC−212D、福田金属箔粉工業(株)製) 250質量部
(D)成分:KBM−803(信越化学工業株式会社製、商品名;チオール系シランカップリング剤) 2質量部
(E)成分:FA−513M(日立化成工業株式会社製、商品名) 43質量部
Example 1
<Raw material of adhesive resin composition>
(A2) Component: Imido-expanded bismaleimide (manufactured by Designa Molecules, Inc., trade name: BMI-1500; number average molecular weight 1500) 80 parts by mass (A3) Component: diallyl bisphenol A diglycidyl ether type epoxy resin (Japan) Kayaku Co., Ltd., trade name: RE-810NM; epoxy equivalent 223, hydrolyzable chlorine 150 ppm (1N KOH-ethanol, dioxane solvent, reflux 30 minutes) 20 parts by mass (B1) component: 2-undecylimidazole (Shikoku) Made by Kasei Kogyo Co., Ltd., trade name: Curesol C11Z) 1 part by mass (B2) Component: Dicumyl peroxide (manufactured by NOF Corporation, trade name: Park Mill D) 1 part by mass (C) Ingredient: Silver powder AgC-212D, Fukuda Metal Foil Powder Industry Co., Ltd.) 250 parts by mass (D) Component: KBM-8 3 (manufactured by Shin-Etsu Chemical Co., Ltd., trade name; thiol-based silane coupling agent) 2 parts by weight of component (E): FA-513M (Hitachi Chemical Co., Ltd., trade name) 43 parts by weight

<支持基材>
支持基材A:厚さ 15μm、材質 SUS304、竹内金属箔粉工業(株)製(弾性率 193GPa)
<Support base material>
Support base material A: thickness 15 μm, material SUS304, manufactured by Takeuchi Metal Foil Co., Ltd. (elastic modulus 193 GPa)

<シート作製方法>
上記接着剤樹脂組成物の原料である(A)〜(E)成分を十分に混合し、さらに三本ロールで混練した後、メチルエチルケトン(MEK)で溶剤希釈して、その粘度を1Pa・s程度に調製し、接着剤樹脂組成物Aを得た。
支持基材A(SUS304)の両主面に、得られた接着剤樹脂組成物Aを、それぞれ厚さが10μm±3μmとなるようバーコート法により塗布し、150℃で3分間乾燥処理し、半硬化状態として半導体接着用シートを得た。
<Sheet preparation method>
The ingredients (A) to (E), which are the raw materials for the adhesive resin composition, are sufficiently mixed and further kneaded with three rolls, then diluted with methyl ethyl ketone (MEK), and the viscosity is about 1 Pa · s. To obtain an adhesive resin composition A.
The obtained adhesive resin composition A was applied to both main surfaces of the supporting substrate A (SUS304) by a bar coating method so that the thickness was 10 μm ± 3 μm, respectively, and dried at 150 ° C. for 3 minutes, A semi-cured semiconductor bonding sheet was obtained.

(実施例2)
接着剤樹脂組成物の原料として、上記(A2)成分の代わりに、(A1)成分:イミド拡張型ビスマレイミド(デジグナーモレキュールズ社製、商品名:BMI−3000;数平均分子量 3000) 80質量部、を用いた以外は、実施例1と同様の操作により、接着剤組成物Bを得て、半導体接着用シートを得た。
(Example 2)
As a raw material of the adhesive resin composition, instead of the component (A2), the component (A1): an imide-expanded bismaleimide (manufactured by Designer Molecules, Inc., trade name: BMI-3000; number average molecular weight 3000) 80 Except having used the mass part, by the same operation as Example 1, adhesive composition B was obtained and the sheet for semiconductor adhesion was obtained.

(実施例3)
支持基材Aの代わりに支持基材B(厚さ 15μm、材質 42アロイ、竹内金属箔粉工業(株)製(弾性率 147GPa))を用いた以外は実施例1と同様の操作により、半導体接着用シートを得た。
(Example 3)
In the same manner as in Example 1 except that the support substrate B (thickness 15 μm, material 42 alloy, manufactured by Takeuchi Metal Foil Powder Industry Co., Ltd. (elastic modulus 147 GPa)) was used instead of the support substrate A, the semiconductor An adhesive sheet was obtained.

(比較例1)
支持基板Aの代わりに、支持基材C(厚さ 12.5μm、材質 ユーピレックス−S(ポリイミドフィルム)、宇部興産製(弾性率 9GPa))を用いた以外は実施例1と同様の操作により、半導体接着用シートを得た。
(比較例2)
支持基材Aの代わりに、支持基材Cを用いた以外は実施例2と同様の操作により、半導体接着用シートを得た。
(比較例3)
接着剤樹脂組成物の原料として、上記(A2)成分の代わりに、熱可塑ポリイミド(SABIC社製、商品名:Ultem) 80質量部、を用い、MEKの代わりにn−メチルピロリドン(NMP)で溶剤希釈した以外は、実施例1と同様の操作により接着剤樹脂組成物Cを得て、半導体接着用シートを得た。
(Comparative Example 1)
Instead of the support substrate A, a support base C (thickness 12.5 μm, material Upilex-S (polyimide film), manufactured by Ube Industries (elasticity 9 GPa)) was used in the same manner as in Example 1, A semiconductor bonding sheet was obtained.
(Comparative Example 2)
A semiconductor bonding sheet was obtained in the same manner as in Example 2 except that the supporting substrate C was used instead of the supporting substrate A.
(Comparative Example 3)
As a raw material of the adhesive resin composition, 80 parts by mass of thermoplastic polyimide (manufactured by SABIC, trade name: Ultem) is used in place of the component (A2), and n-methylpyrrolidone (NMP) is used instead of MEK. Except for solvent dilution, an adhesive resin composition C was obtained by the same operation as in Example 1 to obtain a semiconductor bonding sheet.

<評価方法>
上記により得られた半導体接着用シートの特性を、以下の各試験により評価した。これらの結果を表1にまとめて示した。
<Evaluation method>
The characteristics of the semiconductor adhesive sheet obtained as described above were evaluated by the following tests. These results are summarized in Table 1.

[熱時接着強度]
6mm×6mmのシリコンチップと得られた半導体接着用シートをラミネーターによって仮貼りし、銅リードフレームにマウントした後、170℃、60分で加熱により半導体接着用シートを硬化させた。硬化後に引張り接着強度測定装置を用い、垂直方向における260℃環境下での接着強度を測定した。
[Heat bond strength]
A 6 mm × 6 mm silicon chip and the obtained semiconductor bonding sheet were temporarily attached by a laminator and mounted on a copper lead frame, and then the semiconductor bonding sheet was cured by heating at 170 ° C. for 60 minutes. After curing, the adhesive strength under a 260 ° C. environment in the vertical direction was measured using a tensile adhesive strength measuring device.

[吸湿後接着強度]
6mm×6mmのシリコンチップと得られた半導体接着用シートをラミネーターによって仮貼りし、銅リードフレームにマウントした後、170℃、60分で加熱により半導体接着用シートを硬化させた。硬化後に、85℃/相対湿度85%/168時間吸湿処理し、引張り接着強度測定装置を用い、垂直方向における260℃環境下での接着強度を測定した。
[Adhesive strength after moisture absorption]
A 6 mm × 6 mm silicon chip and the obtained semiconductor bonding sheet were temporarily attached by a laminator and mounted on a copper lead frame, and then the semiconductor bonding sheet was cured by heating at 170 ° C. for 60 minutes. After curing, moisture absorption treatment was performed at 85 ° C./85% relative humidity / 168 hours, and the adhesive strength in a 260 ° C. environment in the vertical direction was measured using a tensile adhesive strength measuring device.

[リフロー後の反り]
8mm×8mmのシリコンチップと得られた半導体接着用シートをラミネーターによって仮貼りし、銅リードフレームにマウントした後、オーブンを使用し170℃、60分(OV硬化)で硬化した。
[Warpage after reflow]
An 8 mm × 8 mm silicon chip and the obtained semiconductor bonding sheet were temporarily attached by a laminator, mounted on a copper lead frame, and then cured using an oven at 170 ° C. for 60 minutes (OV curing).

シャドウモアレ測定装置(ThermoireAXP:Akrometrix製)を用いて、電子情報技術産業協会規格のJEITA ED−7306に準じて、室温から260℃まで加熱し、その後室温まで冷却した時の高さ方向の変位を測定し、変位差の最も大きい値をリフロー後の反りとした。   Displacement in the height direction when heated from room temperature to 260 ° C and then cooled to room temperature according to JEITA ED-7306 of the Japan Electronics and Information Technology Industries Association using a shadow moire measuring device (Thermoire AXP: manufactured by Akrometrix) The maximum value of the displacement difference was measured as the warp after reflow.

[耐半田リフロー性]
8mm×8mmのシリコンチップと得られた半導体接着用シートをラミネーターによって仮貼りし、銅リードフレームにマウントした後、オーブンを使用し、170℃、60分(OV硬化)で硬化した。これを京セラ(株)製エポキシ封止材(商品名:KE−G3000D(K))を用い、下記の条件で成形した。
[Solder reflow resistance]
An 8 mm × 8 mm silicon chip and the obtained semiconductor bonding sheet were temporarily attached by a laminator, mounted on a copper lead frame, and then cured using an oven at 170 ° C. for 60 minutes (OV curing). This was molded under the following conditions using an epoxy sealing material (trade name: KE-G3000D (K)) manufactured by Kyocera Corporation.

得られたパッケージを85℃、相対湿度60%、168時間吸湿処理した後、IRリフロー処理(260℃、10秒)を3回行い、パッケージの外部クラックの発生数を顕微鏡(倍率:15倍)で、また、パッケージの内部クラックの発生数を超音波顕微鏡で観察した。5個のサンプルについてクラックの発生したサンプル数を示す。   The obtained package was subjected to moisture absorption treatment at 85 ° C. and relative humidity 60% for 168 hours, followed by IR reflow treatment (260 ° C., 10 seconds) three times, and the number of external cracks generated in the package was measured with a microscope (magnification: 15 times). In addition, the number of internal cracks in the package was observed with an ultrasonic microscope. The number of samples in which cracks occurred for five samples is shown.

・パッケージ:PBGA(30×30×1.7mm厚さ)
・チップサイズ:8mm×8mm(表面アルミ配線のみ)
・リードフレーム:銅
・封止材の成形:175℃、1分間
・ポストモールドキュアー:175℃、6時間
Package: PBGA (30 x 30 x 1.7 mm thickness)
・ Chip size: 8mm × 8mm (surface aluminum wiring only)
Lead frame: Copper Molding of sealing material: 175 ° C, 1 minute Post mold cure: 175 ° C, 6 hours

Figure 2018172529
Figure 2018172529

表1からも明らかなように、弾性率193GPaのSUS304、弾性率147GPaの42アロイを支持基材として使用し、その両面に所定の熱硬化性樹脂組成物からなる接着剤層を形成した半導体接着用シートを介してシリコンチップと銅リードフレームを接着した半導体装置である実施例1〜3は、十分な接着力が得られ、耐半田リフロー性に優れると同時に、リフロー後の反り抑制に有効であることがわかった。   As is clear from Table 1, SUS304 having an elastic modulus of 193 GPa and 42 alloy having an elastic modulus of 147 GPa were used as a supporting substrate, and an adhesive layer made of a predetermined thermosetting resin composition was formed on both surfaces thereof. Examples 1 to 3, which are semiconductor devices in which a silicon chip and a copper lead frame are bonded via a sheet for use, are capable of obtaining a sufficient adhesive force, excellent in solder reflow resistance, and effective in suppressing warpage after reflow. I found out.

したがって、本発明の樹脂シートは半導体接着用途に有用であり、これを用いて、十分に接着固定され、反りの抑制された、信頼性の高い半導体装置を得ることができる。   Therefore, the resin sheet of the present invention is useful for semiconductor bonding applications. By using this, a highly reliable semiconductor device that is sufficiently bonded and fixed and suppressed in warping can be obtained.

1…半導体接着用シート、2…支持基材、3…接着剤層、10…半導体装置、11…半導体素子、12…リードフレーム、13…電極、14…ボンディングワイヤ、15…封止樹脂   DESCRIPTION OF SYMBOLS 1 ... Sheet | seat for semiconductor bonding, 2 ... Support base material, 3 ... Adhesive layer, 10 ... Semiconductor device, 11 ... Semiconductor element, 12 ... Lead frame, 13 ... Electrode, 14 ... Bonding wire, 15 ... Sealing resin

Claims (8)

弾性率が100〜250GPaの範囲の支持基材と、前記支持基材の両面に設けられた(A)少なくとも脂肪族炭化水素基を有するビスマレイミド樹脂を含む熱硬化性樹脂、(B)硬化剤、及び(C)充填材を含有してなる接着剤層と、からなることを特徴とする半導体接着用シート。   A thermosetting resin comprising a support base having an elastic modulus in the range of 100 to 250 GPa and (A) a bismaleimide resin having at least an aliphatic hydrocarbon group provided on both sides of the support base; (B) a curing agent And (C) an adhesive layer containing a filler, and a semiconductor bonding sheet. 前記支持基材が、厚さ3〜20μmの金属箔であることを特徴とする請求項1記載の半導体接着用シート。   The sheet for semiconductor adhesion according to claim 1, wherein the support base is a metal foil having a thickness of 3 to 20 μm. 前記脂肪族炭化水素基を有するビスマレイミド樹脂が、次の一般式(1)で表されるビスマレイミド化合物(A1)
Figure 2018172529
(式中、nは1〜10の整数を表す。)を含むことを特徴とする請求項1又は2記載の半導体接着用シート。
The bismaleimide resin having an aliphatic hydrocarbon group is a bismaleimide compound (A1) represented by the following general formula (1):
Figure 2018172529
(Wherein, n represents an integer of 1 to 10).
前記脂肪族炭化水素基を有するビスマレイミド樹脂が、次の一般式(2)で表されるビスマレイミド化合物(A2)を含むことを特徴とする請求項1〜3のいずれか1項記載の半導体接着用シート。
Figure 2018172529
(式中、Qは炭素数6以上の2価の直鎖状、分枝鎖状又は環状の脂肪族炭化水素基を示し、PはO、CO、COO、CH、C(CH、C(CF、S、S、SO及びSOから選ばれる2価の原子又は有機基、或いは、これら原子又は有機基を少なくとも1つ以上含む有機基であり、mは1〜10の整数を表す。)
4. The semiconductor according to claim 1, wherein the bismaleimide resin having an aliphatic hydrocarbon group contains a bismaleimide compound (A2) represented by the following general formula (2). Adhesive sheet.
Figure 2018172529
(In the formula, Q represents a divalent linear, branched or cyclic aliphatic hydrocarbon group having 6 or more carbon atoms, and P represents O, CO, COO, CH 2 , C (CH 3 ) 2. , C (CF 3 ) 2 , S, S 2 , SO and SO 2 or a divalent atom or an organic group, or an organic group containing at least one or more of these atoms or organic groups, m is 1 to Represents an integer of 10.)
前記(A)熱硬化性樹脂が、エポキシ樹脂を含むことを特徴とする請求項1〜4のいずれか1項に記載の半導体接着用シート。   The said (A) thermosetting resin contains an epoxy resin, The sheet | seat for semiconductor adhesion of any one of Claims 1-4 characterized by the above-mentioned. 前記接着剤層を形成する樹脂組成物が、前記充填材として銀粒子を25〜75体積%含むことを特徴とする請求項1〜5のいずれか1項記載の半導体接着用シート。   The semiconductor adhesive sheet according to claim 1, wherein the resin composition forming the adhesive layer contains 25 to 75% by volume of silver particles as the filler. 前記接着剤層が、厚さ3〜20μmであることを特徴とする請求項1〜6のいずれか1項記載の半導体接着用シート。   The semiconductor adhesive sheet according to claim 1, wherein the adhesive layer has a thickness of 3 to 20 μm. 請求項1〜7のいずれか1項記載の半導体接着用シートを介して、半導体素子が支持基材に接着されてなることを特徴とする半導体装置。   A semiconductor device, wherein a semiconductor element is bonded to a support base via the semiconductor bonding sheet according to claim 1.
JP2017071583A 2017-03-31 2017-03-31 Semiconductor adhesive sheet and semiconductor device Active JP6769912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071583A JP6769912B2 (en) 2017-03-31 2017-03-31 Semiconductor adhesive sheet and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071583A JP6769912B2 (en) 2017-03-31 2017-03-31 Semiconductor adhesive sheet and semiconductor device

Publications (2)

Publication Number Publication Date
JP2018172529A true JP2018172529A (en) 2018-11-08
JP6769912B2 JP6769912B2 (en) 2020-10-14

Family

ID=64107213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071583A Active JP6769912B2 (en) 2017-03-31 2017-03-31 Semiconductor adhesive sheet and semiconductor device

Country Status (1)

Country Link
JP (1) JP6769912B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584451A (en) * 2019-02-18 2020-08-25 艾普凌科有限公司 Semiconductor device with a plurality of semiconductor chips
JP2020128500A (en) * 2019-02-08 2020-08-27 日立化成株式会社 Adhesive composition, adhesive film, adhesive sheet, and semiconductor device and manufacturing method therefor
WO2020262588A1 (en) * 2019-06-28 2020-12-30 三菱瓦斯化学株式会社 Film, multilayer body, semiconductor wafer with film layer, substrate for mounting semiconductor with film layer, and semiconductor device
JPWO2020035906A1 (en) * 2018-08-14 2021-08-26 昭和電工マテリアルズ株式会社 Method for manufacturing adhesive composition and semiconductor device
WO2023190227A1 (en) * 2022-03-28 2023-10-05 タツタ電線株式会社 Double-sided adhesive sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106455A (en) * 1997-10-06 1999-04-20 Hitachi Chem Co Ltd Resin paste composition and semiconductor device using the same
JP2008095063A (en) * 2006-09-13 2008-04-24 Hitachi Chem Co Ltd Adhesive film for semiconductor, lead frame with adhesive film for semiconductor and, semiconductor device with adhesive film for semiconductor, and semiconductor device
WO2010027017A1 (en) * 2008-09-05 2010-03-11 住友ベークライト株式会社 Electroconductive connecting material, method for connecting terminals to each other using the electroconductive connecting material, and method for manufacturing connecting terminal
WO2016114286A1 (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
JP2017002181A (en) * 2015-06-10 2017-01-05 京セラ株式会社 Semiconductor adhesive resin composition, semiconductor adhesive sheet and semiconductor device using the same
WO2017027482A1 (en) * 2015-08-08 2017-02-16 Designer Molecules, Inc. Anionic curable compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106455A (en) * 1997-10-06 1999-04-20 Hitachi Chem Co Ltd Resin paste composition and semiconductor device using the same
JP2008095063A (en) * 2006-09-13 2008-04-24 Hitachi Chem Co Ltd Adhesive film for semiconductor, lead frame with adhesive film for semiconductor and, semiconductor device with adhesive film for semiconductor, and semiconductor device
WO2010027017A1 (en) * 2008-09-05 2010-03-11 住友ベークライト株式会社 Electroconductive connecting material, method for connecting terminals to each other using the electroconductive connecting material, and method for manufacturing connecting terminal
WO2016114286A1 (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
JP2017002181A (en) * 2015-06-10 2017-01-05 京セラ株式会社 Semiconductor adhesive resin composition, semiconductor adhesive sheet and semiconductor device using the same
WO2017027482A1 (en) * 2015-08-08 2017-02-16 Designer Molecules, Inc. Anionic curable compositions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020035906A1 (en) * 2018-08-14 2021-08-26 昭和電工マテリアルズ株式会社 Method for manufacturing adhesive composition and semiconductor device
JP7210849B2 (en) 2018-08-14 2023-01-24 株式会社レゾナック ADHESIVE COMPOSITION AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
US11795356B2 (en) 2018-08-14 2023-10-24 Resonac Corporation Adhesive composition and semiconductor device production method
JP2020128500A (en) * 2019-02-08 2020-08-27 日立化成株式会社 Adhesive composition, adhesive film, adhesive sheet, and semiconductor device and manufacturing method therefor
JP7230554B2 (en) 2019-02-08 2023-03-01 株式会社レゾナック Adhesive composition, adhesive film, adhesive sheet, semiconductor device and manufacturing method thereof
CN111584451A (en) * 2019-02-18 2020-08-25 艾普凌科有限公司 Semiconductor device with a plurality of semiconductor chips
JP2020136425A (en) * 2019-02-18 2020-08-31 エイブリック株式会社 Semiconductor device
WO2020262588A1 (en) * 2019-06-28 2020-12-30 三菱瓦斯化学株式会社 Film, multilayer body, semiconductor wafer with film layer, substrate for mounting semiconductor with film layer, and semiconductor device
WO2023190227A1 (en) * 2022-03-28 2023-10-05 タツタ電線株式会社 Double-sided adhesive sheet

Also Published As

Publication number Publication date
JP6769912B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6769912B2 (en) Semiconductor adhesive sheet and semiconductor device
JP4894779B2 (en) Adhesive film
JP4793565B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
CN103797083B (en) The BMI of softness, benzimidazole dihydrochloride, epoxy anhydride adduct mixed adhesive
TWI708810B (en) Epoxy resin composition, its manufacturing method and use of the composition
JP6348700B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device using the same
JP2006249415A (en) Adhesive composition for semiconductor device, adhesive sheet for the semiconductor device given by using the same, substrate for connecting semiconductor, and the semiconductor device
US9169425B2 (en) Adhesive film and electronic device including the same
JPH07126591A (en) Adhesive tape for electronic part and liquid adhesive
JPH07126592A (en) Adhesive tape for electronic part and liquid adhesive
JP6700653B2 (en) Semiconductor adhesive resin composition and semiconductor device
JP5200386B2 (en) Adhesive sheet for electronic materials
JP2003138241A (en) Heat-resistant adhesive and laminate using the same adhesive-applied heatsink and adhesive-applied metallic foil
KR100941315B1 (en) Thermosetting adhesive composition and adhesive film using thereof
JP5760702B2 (en) Adhesive composition for electronic device and adhesive sheet for electronic device
JP2007284670A (en) Adhesive film and semiconductor device by using the same
JP2001288244A (en) Thermosetting resin composition, production method thereof, and product produced by using the same
JP2013147522A (en) Adhesive composition for electronic instrument
JP2011162622A (en) Resin composition for printed wiring board, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device
JP4281104B2 (en) Resin composition and electronic component device
JP6228732B2 (en) Resin sheet
JPWO2011118664A1 (en) Liquid adhesive and adhesive tape for electronic parts
JP6616201B2 (en) Resin composition for semiconductor bonding and semiconductor device
JP2003268071A (en) Epoxy resin composition and semiconductor device using the same
JP3599659B2 (en) Adhesive tape for semiconductor devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200924

R150 Certificate of patent or registration of utility model

Ref document number: 6769912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150