JP2018172234A - Microbe-encapsulated microcapsule, cement admixture including microbe-encapsulated microcapsule, and repair material of cement-based structure - Google Patents

Microbe-encapsulated microcapsule, cement admixture including microbe-encapsulated microcapsule, and repair material of cement-based structure Download PDF

Info

Publication number
JP2018172234A
JP2018172234A JP2017071341A JP2017071341A JP2018172234A JP 2018172234 A JP2018172234 A JP 2018172234A JP 2017071341 A JP2017071341 A JP 2017071341A JP 2017071341 A JP2017071341 A JP 2017071341A JP 2018172234 A JP2018172234 A JP 2018172234A
Authority
JP
Japan
Prior art keywords
microorganism
cement
calcium
encapsulated microcapsule
encapsulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017071341A
Other languages
Japanese (ja)
Other versions
JP6940090B2 (en
Inventor
慶有 河合
Keiyu Kawaai
慶有 河合
孝弘 西田
Takahiro Nishida
孝弘 西田
齋藤 淳
Atsushi Saito
淳 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehime University NUC
Kyoto University NUC
Hazama Ando Corp
Original Assignee
Ehime University NUC
Kyoto University NUC
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehime University NUC, Kyoto University NUC, Hazama Ando Corp filed Critical Ehime University NUC
Priority to JP2017071341A priority Critical patent/JP6940090B2/en
Publication of JP2018172234A publication Critical patent/JP2018172234A/en
Application granted granted Critical
Publication of JP6940090B2 publication Critical patent/JP6940090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microbe-encapsulated microcapsule for enhancing a cement-based hardened material protecting the internal microbe from a high pH environment and capable of contributing to precipitation of calcium carbonate even in a capsule-undestroyed state, and to provide a cement admixture and repair material for a cement-based structure including the above microcapsule.SOLUTION: An objective microbe-encapsulated microcapsule encapsulates microbes generating carbon dioxide by metabolism and is used for enhancing a cement-based hardened material by calcium carbonate precipitating through bond of the carbonate ions originated from carbon dioxide and the calcium ions included in the cement-based hardened material. The capsule wall of the microcapsule is a gelated material in which at least one water-soluble polymer selected from the group consisting of alginic acid, alginate, pectin, gellan gum, poly(meth)acrylic acid, carboxymethyl cellulose, gum arabic and salts thereof is crosslinked by the calcium ion.SELECTED DRAWING: Figure 3

Description

本発明は、セメント系硬化物強化用の微生物封入マイクロカプセル、この微生物封入マイクロカプセルを含むセメント混和材料及びセメント系構造物の補修材料に関する。   The present invention relates to a microorganism-encapsulated microcapsule for reinforcing a cement-based cured product, a cement admixture containing the microorganism-encapsulated microcapsule, and a repair material for a cement-based structure.

コンクリートやモルタル等のセメントの硬化物は経年劣化により中性化やひび割れ等の劣化が生じる。特に、コンクリートの中性化は大気中の二酸化炭素がセメント系硬化物中に侵入して炭酸化反応を起こし、セメント系硬化物中のpHを低下させることにより生じる。   Hardened cement, such as concrete and mortar, is subject to neutralization and cracking due to aging. In particular, the neutralization of concrete occurs when carbon dioxide in the atmosphere enters the cement-based cured product to cause a carbonation reaction and lowers the pH in the cement-based cured product.

この中性化がセメント系硬化物内部の鉄筋まで達すると、鉄筋の不働態皮膜が破壊されて鉄筋の腐食が進行することから、セメント系硬化物の経年劣化を抑制するためにはセメントの硬化物の中性化を抑制することが必要である。   When this neutralization reaches the reinforcing bar inside the cement-based cured product, the passive film of the reinforcing bar is destroyed and corrosion of the reinforcing bar progresses. It is necessary to suppress the neutralization of things.

ここで、非特許文献1には、コンクリート中の所定の細孔径を有する細孔の量がコンクリートの中性化進行速度に影響を与えることが報告されており、コンクリートの緻密化によりその中性化進行速度を低下させれば、セメント系硬化物の経年劣化を抑制できることが期待される。   Here, Non-Patent Document 1 reports that the amount of pores having a predetermined pore diameter in concrete affects the speed of neutralization of the concrete. It is expected that deterioration of the cement-based cured product over time can be suppressed by reducing the crystallization progress rate.

非特許文献1に開示されるように、セメント系硬化物を緻密化させるには、セメントの種類、配合条件、養生方法、養生期間等、様々な条件を調整する方法もあるが、出願人は非特許文献2に記載された、コンクリートのひび割れ補修に用いられる微生物を活用することに着目した。具体的には、非特許文献2は、微生物の代謝を介して生じた炭酸イオンとセメント系硬化物から溶出したカルシウムイオンとの結合により炭酸カルシウムを析出させ、この炭酸カルシウムによりひび割れ部位を補修する方法を開示する。   As disclosed in Non-Patent Document 1, in order to densify the cement-based cured product, there are methods of adjusting various conditions such as cement type, blending conditions, curing method, curing period, etc. It paid attention to utilizing the microorganisms described in the nonpatent literature 2 and used for the crack repair of concrete. Specifically, Non-Patent Document 2 discloses that calcium carbonate is precipitated by the combination of carbonate ions generated through the metabolism of microorganisms and calcium ions eluted from the cement-based cured product, and the cracked portion is repaired by this calcium carbonate. A method is disclosed.

この微生物をセメントの練り混ぜ水の一部として混入させることで、セメントの硬化物中のカルシウムイオンを微生物の代謝を介して生じた炭酸イオンとの結合により析出させ、セメントの硬化物を緻密化させようというものである。   By mixing these microorganisms as part of the cement mixing water, calcium ions in the hardened cement are precipitated by binding with carbonate ions generated through the metabolism of the microorganisms, and the hardened cement hardened. Let's make it happen.

しかし、高pH環境のセメント系硬化物中においては微生物の活動は抑制されてしまうため、微生物の活性を高めるための手立てが求められていた。   However, since the activity of microorganisms is suppressed in a cement-based cured product in a high pH environment, a means for increasing the activity of microorganisms has been demanded.

ここで、特許文献1は、微生物及び添加剤を含む粒子を(コ)ポリマーベースの被覆により被覆してセメント出発材料と混合する発明を開示する。具体的には、特許文献1は、セメント出発材料及び粒子状修復剤を混合してセメント系材料を用意するステップを含むセメント系材料の作製方法であって、粒子状修復剤が、細菌材料及び添加剤を含む粒子が(コ)ポリマーベースにより被覆されたものである被覆粒子を含む。   Here, Patent Document 1 discloses an invention in which particles containing microorganisms and additives are coated with a (co) polymer-based coating and mixed with a cement starting material. Specifically, Patent Document 1 is a method for producing a cementitious material including a step of preparing a cementitious material by mixing a cement starting material and a particulate restorative agent, wherein the particulate restorative agent is a bacterial material and The particles containing the additive include coated particles that are coated with a (co) polymer base.

この方法により製造されたセメント系材料によれば、(コ)ポリマーベースの被覆が実質的に耐漏出性であることから、被覆粒子内の細菌材料及び添加剤はセメント系材料の硬化後においても被覆内に維持され、硬化後のセメントがひび割れた際に被覆が破損して細菌材料及び添加剤が漏出し、細菌の活動により当該ひび割れ部位を自己修復することが可能となる。   According to the cementitious material produced by this method, since the (co) polymer-based coating is substantially leak-proof, the bacterial material and additives in the coated particles remain after the cementitious material has hardened. When the cured cement is cracked in the coating, the coating breaks and the bacterial material and additives leak out, and the cracked site can be self-repaired by the activity of the bacteria.

特許第6040147号公報Japanese Patent No. 6040147

郭度連、他3名、「養生条件によるコンクリートの組織変化と中性化を支配する細孔径の評価」、土木学会論文集、公益社団法人土木学会、平成14年11月、No.718、V−57、p.59−68Guo Deren and three others, “Evaluation of pore size governing the structural change and neutralization of concrete under curing conditions”, Proceedings of Japan Society of Civil Engineers, Japan Society of Civil Engineers, November 2002, No. 718, V-57, p. 59-68 久保郁貴、他3名、「微生物を利用した補修工法における多析出可能な配合の検討」、コンクリート工学年次論文集、公益社団法人日本コンクリート工学会、平成26年、Vol.36、No.1、p.1948−1953Yuki Kubo and three others, “Examination of compounding capable of multiple precipitation in the repair method using microorganisms”, Annual report on concrete engineering, Japan Concrete Institute, 2014, Vol. 36, no. 1, p. 1948-1953

特許文献1のセメント系材料の作製方法によれば、(コ)ポリマーベースの被覆が実質的に耐漏出性であることから、細菌材料は硬化セメント系材料の高pH環境から隔離されて保護されるものの、逆に硬化セメント系材料中において細菌材料の代謝物が被覆外に漏出することがなく、硬化セメント中のカルシウムイオンが被覆内に浸入することもない。したがって、硬化セメント中におけるカルシウムイオンが微生物の代謝を介して生じた炭酸イオンと結合することがなく、非特許文献1のセメント系材料の作製方法によっては、硬化セメントを微生物の活動によって緻密化させることはできなかった。   According to the method for producing a cement-based material of Patent Document 1, since the (co) polymer-based coating is substantially leak-proof, the bacterial material is isolated and protected from the high pH environment of the hardened cement-based material. However, conversely, the metabolite of the bacterial material does not leak out of the coating in the hardened cementitious material, and the calcium ions in the hardened cement do not enter the coating. Therefore, calcium ions in the hardened cement do not bind to carbonate ions generated through the metabolism of microorganisms, and depending on the method for producing the cement-based material of Non-Patent Document 1, the hardened cement is densified by the activity of microorganisms. I couldn't.

本発明は、上記課題に鑑みてなされたものであり、その目的は、高pH環境から内部の微生物を保護すると共にカプセル未破壊の状態でも炭酸カルシウムの析出に寄与しうる、セメント系硬化物の強化用微生物封入カプセル、この微生物封入マイクロカプセルを含むセメント混和材料及びセメント系構造物補修材料を提供する。   The present invention has been made in view of the above problems, and its purpose is to protect a cement-based cured product that protects internal microorganisms from a high pH environment and can contribute to precipitation of calcium carbonate even in an unbroken state of the capsule. Provided are a reinforcing microorganism-encapsulated capsule, a cement admixture containing the microorganism-encapsulated microcapsule, and a cement-based structure repair material.

本発明者は、セメントの硬化物中において、カプセルが未破壊の状態でも微生物の代謝を介した炭酸カルシウムの析出を可能とするために、マイクロカプセルのカプセル壁をカルシウムイオンや二酸化炭素由来の炭酸イオンが浸透可能な半透性の膜により形成することを着想した。そして、鋭意研究の結果、この半透性の膜は、所定の水溶性ポリマーをカルシウムイオンで架橋したゲル化物により形成することができた。   In order to enable precipitation of calcium carbonate through the metabolism of microorganisms in a hardened cement product, the present inventor used a calcium ion or carbon dioxide-derived carbon The idea was to use a semipermeable membrane that allows ions to penetrate. As a result of intensive studies, this semipermeable membrane could be formed from a gelled product obtained by crosslinking a predetermined water-soluble polymer with calcium ions.

したがって、上記目的は、代謝により二酸化炭素を生成する微生物を封入すると共に、前記二酸化炭素由来の炭酸イオンとセメント系硬化物に含まれるカルシウムイオンとの結合により析出する炭酸カルシウムによってセメント系硬化物を強化するために用いられるセメント系硬化物強化用の微生物封入マイクロカプセルであって、前記マイクロカプセルのカプセル壁が、アルギン酸、アルギン酸エステル、ペクチン、ポリ(メタ)アクリル酸、ジェランガム、カルボキシメチルセルロース、アラビアガム及びこれらの塩からなる群から選択される1種以上の水溶性ポリマーがカルシウムイオンで架橋されたゲル化物であることを特徴とする微生物封入マイクロカプセルによって達成される。   Therefore, the above object is to encapsulate microorganisms that generate carbon dioxide by metabolism, and to remove the cement-based cured product by calcium carbonate that is precipitated by the combination of carbonate ions derived from the carbon dioxide and calcium ions contained in the cement-based cured product. A microcapsule encapsulating microorganisms for reinforcing cement-based hardened material used for strengthening, wherein the capsule wall of the microcapsule is alginic acid, alginic ester, pectin, poly (meth) acrylic acid, gellan gum, carboxymethylcellulose, gum arabic And one or more water-soluble polymers selected from the group consisting of these salts are gelled products crosslinked with calcium ions.

セメント系硬化物内に微生物封入マイクロカプセルが存在する場合、微生物はマイクロカプセル内で代謝により二酸化炭素を発生する。そして、カプセル壁は所定の水溶性ポリマーがカルシウムイオンで架橋されたゲル化物であることから半透性を有しており、発生した二酸化炭素由来の炭酸イオンはカプセル壁を透過してカプセル外に移行し、セメント系硬化物から溶出したカルシウムイオンはカプセル壁を透過してカプセル内に移行する。したがって、カプセル内外において炭酸イオンがカルシウムイオンと結合して炭酸カルシウムとなってセメント系硬化物内で析出し、セメント系硬化物の緻密化が図られる。   When microorganism-encapsulated microcapsules exist in the cement-based cured product, the microorganisms generate carbon dioxide by metabolism in the microcapsules. The capsule wall is semi-permeable because a predetermined water-soluble polymer is a gelled product cross-linked with calcium ions, and the generated carbon dioxide-derived carbonate ions permeate the capsule wall and leave the capsule. The calcium ions that have migrated and eluted from the cement-based cured product permeate the capsule wall and migrate into the capsule. Accordingly, carbonate ions are combined with calcium ions inside and outside the capsule to form calcium carbonate and precipitate in the cement-based cured product, thereby densifying the cement-based cured product.

本発明の微生物封入マイクロカプセルの好ましい態様は以下の通りである。   Preferred embodiments of the microorganism-encapsulated microcapsule of the present invention are as follows.

(1)前記微生物が、偏性嫌気性微生物及び通性嫌気性微生物から選択される。
(2)前記微生物が、酵母である。
(3)前記微生物が、偏性好気性微生物である。
(4)微生物が、通性嫌気性微生物と偏性好気性微生物との組み合わせである。
(5)微生物封入マイクロカプセルが、pH7.0以上の範囲に緩衝能を有するpH緩衝剤を含む。
(1) The microorganism is selected from an obligate anaerobic microorganism and a facultative anaerobic microorganism.
(2) The microorganism is yeast.
(3) The microorganism is an obligate aerobic microorganism.
(4) The microorganism is a combination of facultative anaerobic microorganisms and obligate aerobic microorganisms.
(5) The microorganism-encapsulated microcapsule contains a pH buffer having a buffering ability in the range of pH 7.0 or higher.

また、上記目的は、セメントに混合して使用される混和材料であって、上記微生物封入マイクロカプセルを含む混和材料によっても達成される。   The above object is also achieved by an admixture used by mixing with cement, the admixture including the microbe-encapsulated microcapsules.

さらに、上記目的は、セメント系構造物の補修材料であって、上記微生物封入マイクロカプセルと、アルギン酸、アルギン酸エステル、ペクチン、ジェランガム、ポリ(メタ)アクリル酸、カルボキシメチルセルロース、アラビアガム及びこれらの塩からなる群から選択される1種以上の水溶性ポリマーと、を含む補修材料によっても達成される。   Furthermore, the object is a repair material for cement-based structures, comprising the microbe-encapsulated microcapsules, alginic acid, alginic ester, pectin, gellan gum, poly (meth) acrylic acid, carboxymethylcellulose, gum arabic and salts thereof. It is also achieved by a repair material comprising one or more water soluble polymers selected from the group consisting of:

本発明の微生物封入マイクロカプセルによれば、セメント系硬化物内に微生物封入マイクロカプセルが存在する場合、微生物はマイクロカプセル内で代謝により二酸化炭素を発生する。そして、カプセル壁は所定の水溶性ポリマーがカルシウムイオンで架橋されたゲル化物であることから半透性を有しており、発生した二酸化炭素由来の炭酸イオンはカプセル壁を透過してカプセル外に移行し、セメント系硬化物から溶出したカルシウムイオンはカプセル壁を透過してカプセル内に移行する。したがって、カプセル内外において炭酸イオンがカルシウムイオンと結合して炭酸カルシウムとなってセメント系硬化物内で析出し、セメント系硬化物の緻密化が図られる。   According to the microorganism-encapsulated microcapsule of the present invention, when the microorganism-encapsulated microcapsule is present in the cement-based cured product, the microorganism generates carbon dioxide by metabolism in the microcapsule. The capsule wall is semi-permeable because a predetermined water-soluble polymer is a gelled product cross-linked with calcium ions, and the generated carbon dioxide-derived carbonate ions permeate the capsule wall and leave the capsule. The calcium ions that have migrated and eluted from the cement-based cured product permeate the capsule wall and migrate into the capsule. Accordingly, carbonate ions are combined with calcium ions inside and outside the capsule to form calcium carbonate and precipitate in the cement-based cured product, thereby densifying the cement-based cured product.

実施例1に用いた微生物封入マイクロカプセルの外観写真である。2 is an appearance photograph of a microcapsule encapsulating microorganisms used in Example 1. FIG. 実施例1の、酢酸カルシウム水溶液中のpH及びカルシウムイオン濃度の経時的な変化を示すグラフである。It is a graph which shows the time-dependent change of pH and calcium ion concentration in the calcium acetate aqueous solution of Example 1. 実施例1の、(a)試料A、(b)試料B、及び(c)試料CのFE−SEM画像である。2 is an FE-SEM image of (a) sample A, (b) sample B, and (c) sample C in Example 1. FIG.

本発明の実施の形態について以下に説明する。本発明は、セメント系硬化物を強化するために用いられるセメント系硬化物強化用の微生物封入マイクロカプセル、微生物封入マイクロカプセルを含む混和材料、及びセメント系構造物の微生物封入マイクロカプセルを含む補修材料に関するが、まず、微生物封入マイクロカプセルについて説明する。   Embodiments of the present invention will be described below. The present invention relates to a microorganism-encapsulated microcapsule for reinforcing a cement-based cured product used to reinforce a cement-based cured product, an admixture containing the microorganism-encapsulated microcapsule, and a repair material including a microorganism-encapsulated microcapsule of a cement-based structure. First, the microorganism-encapsulated microcapsule will be described.

[微生物封入マイクロカプセル]
微生物封入マイクロカプセルは、封入された微生物が代謝により二酸化炭素を生成し、この二酸化炭素由来の炭酸イオンがセメント系硬化物に含まれるカルシウムイオンと結合することにより析出する炭酸カルシウムによってセメント系硬化物を強化する。
[Microcapsules containing microorganisms]
Microorganism-encapsulated microcapsules are cement-based hardened products by calcium carbonate that precipitates when the encapsulated microorganisms produce carbon dioxide by metabolism and carbonate ions derived from this carbon dioxide combine with calcium ions contained in the cement-based hardened product. To strengthen.

炭酸カルシウム析出までの反応は、以下の式により説明される。すなわち、栄養源または栄養源の代謝生成物がグルコースである場合、嫌気性微生物は酸素不在下で下記式(1)によりエタノールと二酸化炭素を生成する。   The reaction up to calcium carbonate precipitation is explained by the following equation. That is, when the nutrient source or the metabolic product of the nutrient source is glucose, anaerobic microorganisms produce ethanol and carbon dioxide according to the following formula (1) in the absence of oxygen.

12 → 2COH + 2CO … 式(1) C 6 H 12 O 6 → 2C 2 H 5 OH + 2CO 2 Formula (1)

同じく、栄養源または栄養源の代謝生成物がグルコースである場合、好気性微生物は酸素の存在下で下記式(2)により水と二酸化炭素を生成する。   Similarly, when the nutrient source or the metabolic product of the nutrient source is glucose, aerobic microorganisms produce water and carbon dioxide according to the following formula (2) in the presence of oxygen.

12 + 6O → 6CO+6HO …式(2) C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O ... formula (2)

式(1)又は(2)で発生した二酸化炭素が水と反応すると、下記式(3)のように炭酸イオンが発生する。   When carbon dioxide generated in the formula (1) or (2) reacts with water, carbonate ions are generated as in the following formula (3).

CO + HO → CO 2− + 2H … 式(3) CO 2 + H 2 O → CO 3 2− + 2H + Formula (3)

セメント系硬化物からは水酸化カルシウム(Ca(OH))由来のカルシウムイオンが遊離するが、このカルシウムイオンは式(3)で生じた炭酸イオンと反応し、下記式(4)のように炭酸カルシウムが析出することとなる。 Calcium ions derived from calcium hydroxide (Ca (OH 2 )) are liberated from the cement-based cured product, but this calcium ion reacts with carbonate ions generated in the formula (3), as shown in the following formula (4). Calcium carbonate will precipitate.

Ca2+ + CO 2− → CaCO … 式(4) Ca 2+ + CO 3 2− → CaCO 3 Formula (4)

微生物封入マイクロカプセルの大きさは、特に限定されるものではないが、直径数mm〜数μmの範囲であり、セメントに混合された際のマイクロカプセルの安定性の観点から、5mm以下であることが好ましい。好ましくは、1mm以下である。   The size of the microorganism-encapsulated microcapsule is not particularly limited, but is in the range of several mm to several μm in diameter, and is 5 mm or less from the viewpoint of the stability of the microcapsule when mixed with cement. Is preferred. Preferably, it is 1 mm or less.

−微生物
微生物は、栄養源を直接又は間接に代謝し、二酸化炭素を生成する微生物であれば特に限定されない。この栄養源の代謝には、式(1)の酸素を利用しない代謝や、式(2)の酸素を利用した代謝の双方を含む。
-Microorganism A microorganism is not particularly limited as long as it is a microorganism that directly or indirectly metabolizes a nutrient source and generates carbon dioxide. The metabolism of the nutrient source includes both metabolism that does not use oxygen of formula (1) and metabolism that uses oxygen of formula (2).

微生物としては、偏性(絶対)嫌気性微生物、通性嫌気性微生物、偏性好気性微生物、微好気性微生物から1種以上を選択して用いることができるが、後述するセメントに混合された後の代謝の継続性を考慮すると偏性嫌気性微生物、通性嫌気性微生物が好ましく、取り扱いの簡易さからは通性嫌気性微生物が特に好ましい。   As the microorganism, one or more kinds selected from obligate (absolute) anaerobic microorganisms, facultative anaerobic microorganisms, obligate aerobic microorganisms, and microaerobic microorganisms can be selected and used. Considering the continuity of subsequent metabolism, obligate anaerobic microorganisms and facultative anaerobic microorganisms are preferable, and facultative anaerobic microorganisms are particularly preferable from the viewpoint of easy handling.

一方で、後述するように、セメント系硬化物内で酸素を消費し、セメント系硬化物中に埋設された鋼材の腐食を防止するという観点からすると、通性嫌気性微生物、偏性好気性微生物、微好気性微生物が好ましく、偏性好気性微生物が特に好ましい。   On the other hand, as will be described later, from the viewpoint of consuming oxygen in the cement-based cured product and preventing corrosion of the steel material embedded in the cement-based cured product, facultative anaerobic microorganisms, obligate aerobic microorganisms Slightly aerobic microorganisms are preferred, and obligate aerobic microorganisms are particularly preferred.

さらに、代謝の継続性及び酸素の消費の双方の観点からすると、通性嫌気性微生物が最も好ましい。   Furthermore, facultative anaerobic microorganisms are most preferable from the viewpoint of both continuity of metabolism and consumption of oxygen.

なお、微生物とは、細菌類、酵母、真菌、原生生物、原生動物等広く使用することが可能である。これらの中でも、強化される対象であるセメント系硬化物がアルカリ環境であることを考慮すると、胞子(子嚢胞子、芽胞、分正子)形成能がある胞子形成微生物が好ましい。   The microorganism can be widely used for bacteria, yeasts, fungi, protozoa, protozoa and the like. Among these, considering that the cement-based cured product to be strengthened is an alkaline environment, a spore-forming microorganism capable of forming spores (ascospores, spores, and spermatozoa) is preferable.

胞子形成微生物としては、例えば、枯草菌(Bacillus属、主に偏性好気性)、放線菌(Streptomyces属等)、真菌類(不完全菌門、子嚢菌門、接合菌門、担子菌門、ツボカビ門)などを1種以上使用することが可能である。これらの中でも、真菌類が特に好ましく、取扱いと、嫌気代謝効率の点で特に酵母が好ましい。   Examples of spore-forming microorganisms include Bacillus subtilis (genus Bacillus, mainly obligate aerobic), actinomycetes (genus Streptomycins, etc.), fungi (incomplete fungi, ascomycetes, zygomycota, basidiomycetes, It is possible to use one or more types such as Aspergillus. Among these, fungi are particularly preferable, and yeast is particularly preferable in terms of handling and anaerobic metabolic efficiency.

酵母は、Saccharomyces属、Candida属、Zygosaccharomyces属、Schizosaccharomyces属、Kluyveromyces属、Saccharomycopsis属、Pachysolen属など多様な属種から1種以上を選択でき、特に、Saccharomyces属のものが好ましい。   As the yeast, one or more species can be selected from various genus species such as Saccharomyces, Candida, Zygosaccharomyces, Schizosaccharomyces, Kluyveromyces, Saccharomycopsis, Pachysolen, etc.

Saccharomyces属では、具体的には、Saccharomyces cerevisiae、Saccharomyces Pastorianus、Saccharomyces intermedius、Saccharomyces validus、saccharomyces ellipsoiders、Saccharomyces mali risler、Saccharomyces mandschuricus、Saccharomyces Vordermannii、Saccharomyces Peka、Saccharomyces shasshing、Saccharomyces piriformis、Saccharomyces anamensis、saccharomyces cartilaginosus、Saccharomyces Awamori、Saccharomyces Batatae、Saccharomyces Coreanus、Saccharomyces robustus、Saccharomyces Carlsbergensis、Saccharomyces Monacensis、Saccharomyces Marxianus、Saccharomyces lactes、Saccharomyces Rouxiiなどから選択される1種以上を用いることができ、好ましくはSaccharomyces cerevisiae(通性嫌気性)である。   The genus Saccharomyces, specifically, Saccharomyces cerevisiae, Saccharomyces Pastorianus, Saccharomyces intermedius, Saccharomyces validus, saccharomyces ellipsoiders, Saccharomyces mali risler, Saccharomyces mandschuricus, Saccharomyces Vordermannii, Saccharomyces Peka, Saccharomyces shasshing, Saccharomyces piriformis, Saccharomyces anamensis, saccharomyces ca rtilaginosus, Saccharomyces Awamori, Saccharomyces Batatae, Saccharomyces Coreanus, Saccharomyces robustus, Saccharomyces Carlsbergensis, Saccharomyces Monacensis, Saccharomyces Marxianus, Saccharomyces lactes, can be used one or more selected from such Saccharomyces rouxii, preferably Saccharomyces cerevisiae (facultative anaerobic Sex).

Candida属では、具体的には、Candida atmosphaerica、Candida auris、Candida blattae、Candida bromeliacearum、Candida carvajalis、Candida cerambycidarum、Candida chauliodes、Candida dosseyi、Candida dubliniensis、Candida ergatensis、Candida fructus、Candida glabrata、Candida guilliermondii、Candida humilis、Candida insectamens、Candida insectorum、Candida intermedia、Candida jeffresii、Candida kefyr、Candida keroseneae、Candida krusei、Candida lyxosophila、Candida maltosa、Candida marina、Candida membranifaciens、Candida mogii、Candida oleophila、Candida tsuchiyae、Candida sinolaborantium、Candida sojae、Candida subhashii、Candida viswanathii、Candida ubatubensis、Candida zempliniなどから選択される1種以上を用いることができる。   The genus Candida, specifically, Candida atmosphaerica, Candida auris, Candida blattae, Candida bromeliacearum, Candida carvajalis, Candida cerambycidarum, Candida chauliodes, Candida dosseyi, Candida dubliniensis, Candida ergatensis, Candida fructus, Candida glabrata, Candida guilliermondii, Candida humilis , Candida insectamens, Candida insectrum, Candida intermedia, Candida jeffresii, Candida kefyr, Candida keroseneae, Candida krusei, Candida lyxosophila, Candida maltosa, Candida marina, Candida membranifaciens, Candida mogii, Candida oleophila, Candida tsuchiyae, Candida sinolaborantium, Candida sojae, Candida subhashii, Candida viswanathii, Candida ubatubensis, Candida zemplini One or more selected from the above can be used.

Schizosaccharomyces属では、具体的には、Schizosaccharomyces cryophilus、Schizosaccharomyces japonicus、Schizosaccharomyces octosporus、Schizosaccharomyces pombeから選択される1種以上を用いることができる。   In the genus Schizosaccharomyces, specifically, Schizosaccharomyces cryophilus, Schizosaccharomyces japonicus, Schizosaccharomyces octosporus, and Schizosaccharomyces can be selected from Schizosaccharomyces species.

Zygosaccharomyces属では、具体的には、Zygosaccharomyces tikumaensis、Zygosaccharomyces lactis、Zygosaccharomyces marxianus、Zygosaccharomyces cidri、Zygosaccharomyces fermentati、Zygosaccharomyces thermotolerans、Zygosaccharomyces tikumaensis、Zygosaccharomyces chevalieri、Zygosaccharomyces mongolicusなどから選択される1種以上を用いることができる。   In Zygosaccharomyces genus, specifically, it can be used Zygosaccharomyces tikumaensis, Zygosaccharomyces lactis, Zygosaccharomyces marxianus, Zygosaccharomyces cidri, Zygosaccharomyces fermentati, Zygosaccharomyces thermotolerans, Zygosaccharomyces tikumaensis, Zygosaccharomyces chevalieri, one or more selected from such Zygosaccharomyces Mongolicus.

なお、Saccharomyces cerevisiaeのような嫌気性微生物と、他の微生物と組み合わせて使用することも可能である。この場合は、多様な環境に対応できるように異なる性質の微生物(例えば偏性好気性微生物)と組み合わせることが好ましく、特に、Bacillus subtilisのような胞子(芽胞)形成能がある偏性好気性微生物との組み合わせが好ましい。   It should be noted that anaerobic microorganisms such as Saccharomyces cerevisiae can be used in combination with other microorganisms. In this case, it is preferable to combine with microorganisms having different properties (for example, an obligate aerobic microorganism) so as to cope with various environments, and in particular, an obligate aerobic microorganism having the ability to form spores such as Bacillus subtilis. The combination with is preferable.

このような組み合わせによれば、偏性好気性微生物(Bacillus subtilis)がセメント系硬化物中の酸素を消費し、セメント系硬化物中に埋設された鋼材の下記式(5)で示すカソード反応を抑制し、鋼材の腐食を抑制することができる。   According to such a combination, the obligate aerobic microorganism (Bacillus subtilis) consumes oxygen in the cement-based cured product, and the cathode reaction represented by the following formula (5) of the steel material embedded in the cement-based cured product is performed. It is possible to suppress the corrosion of the steel material.

1/2O + HO + 2e(鋼材のFe由来)→ 2OH …式(5) 1 / 2O 2 + H 2 O + 2e (from steel Fe) → 2OH Formula (5)

上記のような微生物は、自家培養品、市販品のいずれか一方又は両方を用いてもよい。例えば、Saccharomyces cerevisiaeの場合は、多様な市販品(オリエンタル酵母工業(株)製、ルサッフル社製、秋田十条化成株式会社)が公知である。   As the above-mentioned microorganisms, either one or both of self-cultured products and commercial products may be used. For example, in the case of Saccharomyces cerevisiae, various commercially available products (made by Oriental Yeast Co., Ltd., Rusaffle, Akita Jujo Kasei Co., Ltd.) are known.

微生物は生菌(栄養細胞)、乾燥品、冷凍品、真空凍結乾燥品など多様な態様で用いることができるが、酵母のような胞子形成微生物を用いる場合は、その微生物にストレスを与えて胞子数を増加させると同時に、他の微生物数を減少(滅菌)させてから使用することもできる。ここで、ストレス環境とは、貧栄養、乾燥、高温、低温、高圧、化学処理のいずれか1種以上のストレスを胞子形成微生物に付与する状態を意味する。   Microorganisms can be used in various forms such as viable bacteria (vegetative cells), dried products, frozen products, and vacuum freeze-dried products. When using spore-forming microorganisms such as yeast, the microorganisms are stressed to produce spores. At the same time as increasing the number, the number of other microorganisms can be decreased (sterilized) before use. Here, the stress environment means a state in which one or more stresses of oligotrophic, dry, high temperature, low temperature, high pressure, and chemical treatment are applied to the spore-forming microorganism.

−水溶性ポリマー
水溶性ポリマーは、カルボキシル基を含み、カルシウムイオンの存在下で下記式(6)のようなイオン架橋を生じ、親水性が低下してゲル化を起こす水溶性ポリマーである。
-Water-soluble polymer A water-soluble polymer is a water-soluble polymer which contains a carboxyl group and causes ionic crosslinking as shown by the following formula (6) in the presence of calcium ions, resulting in a decrease in hydrophilicity and gelation.

2R−COO + Ca2+ + RCOO−Ca−OOCR … 式(6)
具体的には、アルギン酸(アルギン酸塩、アルギン酸エステルも含む)、ポリ(メタ)アクリル酸、ペクチン、ジェランガム、カルボキシメチルセルロース、アラビアガム及びこれらの塩からなる群より選択される1種以上のカルボキシル基含有水溶性ポリマーを用いることができる。ここで、塩とは、ナトリウムやカリウム等のアルカリ金属塩の他、アンモニウム塩をも含む概念ではあるが、より好ましくはナトリウムとカリウムから選択する。
2R—COO + Ca 2+ + RCOO—Ca—OOCR Formula (6)
Specifically, it contains at least one carboxyl group selected from the group consisting of alginic acid (including alginate and alginate), poly (meth) acrylic acid, pectin, gellan gum, carboxymethylcellulose, gum arabic, and salts thereof. Water-soluble polymers can be used. Here, the salt is a concept including an ammonium salt in addition to an alkali metal salt such as sodium or potassium, but is more preferably selected from sodium and potassium.

ペクチンは特に限定されないが、ゲル化性を考慮すると、エステル化度(ガラクチュロン酸メチルエステルの割合)が50%未満のLMペクチン(Low Methylester pectin)が好ましい。また、ジェランガムは二価陽イオンと結合してゲル化するもの、例えばLAジェランガム(脱アシル化ジェランガム)などが好ましい。   Pectin is not particularly limited, but considering gelling properties, LM pectin (Low Methylester pentin) having a degree of esterification (a ratio of galacturonic acid methyl ester) of less than 50% is preferable. In addition, gellan gum is preferably one that gels by combining with a divalent cation, such as LA gellan gum (deacylated gellan gum).

但し、取扱い性、ゲル化速度などを考慮すると、上記水溶性ポリマーの中でもアルギン酸とポリ(メタ)アクリル酸が好ましく、特に好ましくはアルギン酸である。   However, in consideration of handleability, gelation speed, etc., among the water-soluble polymers, alginic acid and poly (meth) acrylic acid are preferable, and alginic acid is particularly preferable.

水溶性ポリマーは、水溶性ポリマーの水溶液をカルシウムイオン含有水溶液と接触・混合することでゲル化し、カプセル壁を形成する。   The water-soluble polymer is gelled by contacting and mixing an aqueous solution of the water-soluble polymer with a calcium ion-containing aqueous solution to form a capsule wall.

−カルシウムイオン含有水溶液
カルシウムイオン含有水溶液の製造には、カルシウム塩が用いられる。カルシウム塩としては、例えば、塩化カルシウム、ギ酸カルシウム、酢酸カルシウム、乳酸カルシウム等、水に対する溶解性の大きいカルシウム塩を用いることができる。
-Calcium ion containing aqueous solution A calcium salt is used for manufacture of a calcium ion containing aqueous solution. As the calcium salt, for example, calcium salts having high solubility in water, such as calcium chloride, calcium formate, calcium acetate, calcium lactate, and the like can be used.

−その他のマイクロカプセル内に封入される物質
マイクロカプセル内には、微生物だけでなく、微生物栄養源、pH緩衝剤を含むことができる。
-Other substances encapsulated in microcapsules Microcapsules can contain not only microorganisms but also microbial nutrients and pH buffering agents.

微生物栄養源は特に限定されず、有機炭素源(糖類、デンプン、脂質等)、無機炭素源(炭酸ナトリウム等)、有機窒素源(アミノ酸、ペプチド、タンパク質等)、無機窒素源(アンモニウム塩、硝酸塩等)、無機栄養源(P、S、K、Na等)を1種以上用いることができる。ただし、無機栄養源のうち、カルシウム、Fe等の水溶液で多価金属イオンを形成するものはマイクロカプセルを製造する前に水溶性ポリマーのゲル化をまねくため、添加することができない。   Microbial nutrient source is not particularly limited, organic carbon source (sugar, starch, lipid etc.), inorganic carbon source (sodium carbonate etc.), organic nitrogen source (amino acid, peptide, protein etc.), inorganic nitrogen source (ammonium salt, nitrate) Etc.) and one or more inorganic nutrient sources (P, S, K, Na, etc.) can be used. However, among inorganic nutrient sources, those that form polyvalent metal ions in an aqueous solution such as calcium and Fe cannot be added because they cause gelation of the water-soluble polymer before the microcapsules are produced.

栄養源は、代謝により腐食性物質を排出しないものが好ましい。栄養源としての炭素源(糖類等)が有機酸(酢酸、乳酸、ピルビン酸)のような腐食性物質の原因となる場合は、栄養源に窒素源を添加し、微生物が産出するアンモニアにより有機酸をマスクしてもよい。特に、バチルス属細菌を嫌気性微生物と併用する場合に効果的である。微生物が胞子形成微生物の場合には、栄養源として発芽誘導物質を添加することもできる。   The nutrient source is preferably one that does not excrete corrosive substances due to metabolism. When a carbon source (such as sugar) as a nutrient source causes a corrosive substance such as an organic acid (acetic acid, lactic acid, pyruvic acid), a nitrogen source is added to the nutrient source, and the organic matter is produced by ammonia produced by the microorganism. The acid may be masked. This is particularly effective when Bacillus bacteria are used in combination with anaerobic microorganisms. When the microorganism is a spore-forming microorganism, a germination inducer can be added as a nutrient source.

pH緩衝剤は、微生物が生成した二酸化炭素由来の炭酸イオンによるマイクロカプセル内のpHの低下を抑制するために用いられる。pHが低下し、マイクロカプセル内の環境が酸性となると、析出した炭酸カルシウムが溶解し、セメント系硬化物の緻密化が実現できなくなるからである。   The pH buffer is used to suppress a decrease in pH in the microcapsule due to carbon dioxide-derived carbonate ions generated by microorganisms. This is because when the pH is lowered and the environment inside the microcapsule becomes acidic, the precipitated calcium carbonate dissolves and densification of the cement-based cured product cannot be realized.

pH緩衝剤としては、カプセル内環境をpH7.0(中性)以上に保持可能なものであればどのようなものを用いても良い。また、pHの上限は、微生物の活性を維持できるpHであればどのようなものであっても良い。例えば、微生物として酵母を用いる場合、pHは7.0以上9.0以下の範囲に維持し得るpH緩衝剤を用いることができる。   Any pH buffering agent may be used as long as the environment in the capsule can be maintained at pH 7.0 (neutral) or higher. The upper limit of the pH may be any pH as long as the activity of the microorganism can be maintained. For example, when yeast is used as the microorganism, a pH buffer that can maintain the pH in the range of 7.0 or more and 9.0 or less can be used.

このようなpH緩衝剤としては、TAPSO、POPSO、HEPPSO、EPPS、Tricine、Bicine、TAPS、CHES、CAPSO、CAPS、Tris、Bis−Tris等の水溶液に塩酸溶液または水酸化ナトリウム溶液を加えて調整したものを用いることができる。   Such pH buffering agents were prepared by adding a hydrochloric acid solution or a sodium hydroxide solution to an aqueous solution of TAPSO, POPSO, HEPPSO, EPPS, Tricine, Bicine, TAPS, CHES, CAPSO, CAPS, Tris, Bis-Tris, etc. Things can be used.

[微生物封入マイクロカプセルの製造方法]
微生物封入マイクロカプセルは、微生物及と水溶性ポリマーと任意の添加剤(栄養源等)を混合した混合溶液とカルシウムイオン含有水溶液とを混合することにより製造することができる。
[Method for producing microcapsules encapsulating microorganisms]
Microbe-encapsulated microcapsules can be produced by mixing a mixed solution in which microorganisms, a water-soluble polymer, and an optional additive (nutrient source, etc.) are mixed with a calcium ion-containing aqueous solution.

混合は、いずれか一方の溶液を他方の溶液に流し込み、撹拌すれば良いが、マイクロカプセル同士の大きさの均一化を図る観点から、何れか一方の溶液を他方の溶液に滴下することが好ましく、特に、微生物及と水溶性ポリマーと任意の添加剤(栄養源等)を混合した混合溶液を、緩速撹拌するカルシウムイオン含有水溶液に滴下することが好ましい。   Mixing may be performed by pouring one of the solutions into the other solution and stirring, but from the viewpoint of making the sizes of the microcapsules uniform, it is preferable to drop one of the solutions into the other solution. In particular, it is preferable to drop a mixed solution obtained by mixing microorganisms, a water-soluble polymer, and an optional additive (nutrient source, etc.) into a calcium ion-containing aqueous solution that is slowly stirred.

なお、マイクロカプセルの大きさは、一方の溶液を他方の溶液に滴下する滴下速度、滴下に用いる管の内径により調整することができる。例えば、管の内径としては3mm以下が好ましい。   The size of the microcapsule can be adjusted by the dropping speed at which one solution is dropped onto the other solution and the inner diameter of the tube used for dropping. For example, the inner diameter of the tube is preferably 3 mm or less.

水溶性ポリマーと混合する微生物の量は、水溶性ポリマーの水溶液1リットル当たり40g(乾燥品)以下である。また、水溶液1リットルあたり5g以上であることが好ましく、特に、水溶性ポリマーの水溶液1リットル当たり15g以上30g以下であることが好ましい。   The amount of the microorganism mixed with the water-soluble polymer is 40 g (dry product) or less per liter of the water-soluble polymer aqueous solution. Further, it is preferably 5 g or more per liter of aqueous solution, and particularly preferably 15 g or more and 30 g or less per liter of aqueous solution of the water-soluble polymer.

また、水溶性ポリマーの混合溶液中の濃度は、カプセル壁の強度の維持及び半透性の維持の観点から、0.5wt%以上2.0wt%以下とすることが好ましい。   Moreover, it is preferable that the density | concentration in the mixed solution of a water-soluble polymer shall be 0.5 wt% or more and 2.0 wt% or less from a viewpoint of maintenance of the strength of a capsule wall and semi-permeable property.

さらに、カルシウムイオン含有水溶液中のカルシウムイオンの濃度は、例えば、0.05mol/L以上1.0mol/L以下とすることができる。   Furthermore, the density | concentration of the calcium ion in calcium ion containing aqueous solution can be 0.05 mol / L or more and 1.0 mol / L or less, for example.

[微生物封入マイクロカプセルを含む混和材料]
本発明の混和材料は、セメントと混合して使用される混和材料である。混和材料は、微生物封入マイクロカプセル以外に、添加剤としてフィラー、分散剤、界面活性剤、pH調整、pH緩衝剤等を使用可能であり、添加剤は1種類のみ単独で使用することもできるし、2種類以上を用いることもできる。
[Admixtures containing microcapsules containing microorganisms]
The admixture of the present invention is an admixture used by mixing with cement. In addition to the microcapsules encapsulating microorganisms, the admixture can use fillers, dispersants, surfactants, pH adjusters, pH buffering agents, etc. as additives, and only one type of additive can be used alone. Two or more types can also be used.

混和材料は、液状、固体(乾燥品)のいずれの形態でもよく、液状の場合は上記微生物封入マイクロカプセルと、必要に応じて添加剤とを、水、有機溶媒等の媒質に分散させて液状とする。媒質は好ましくは水を含有し、より好ましくは水を主成分とし、より好ましくは水で構成される。   The admixture may be either liquid or solid (dried product). In the case of liquid, the above-mentioned microorganism-encapsulated microcapsules and, if necessary, additives are dispersed in a medium such as water or an organic solvent to form a liquid. And The medium preferably contains water, more preferably contains water as a main component, and more preferably consists of water.

本発明の混和材料は、コンクリート、モルタル等の多様なセメント系硬化物を作成する目的で、セメントと混合して使用することができる。   The admixture of the present invention can be used by mixing with cement for the purpose of preparing various cement-based hardened materials such as concrete and mortar.

[セメント]
本発明の混和材料は多様なセメントに対し使用可能であり、例えば、ポルトランドセメント(JIS R5210)、混合セメント(JIS R5211、R5212、R5213)、エコセメント等を1種以上使用することができる。
[cement]
The admixture of the present invention can be used for various cements. For example, one or more kinds of Portland cement (JIS R5210), mixed cement (JIS R5211, R5212, R5213), ecocement, and the like can be used.

本発明の混和材料は1種以上のセメントと混練してペースト状にされ、必要により細骨材(砂等)や粗骨材(砂利等)が混合されて使用され、所定期間養生することでセメント系硬化物が形成される。   The admixture of the present invention is kneaded with one or more types of cement to form a paste. If necessary, fine aggregate (sand, etc.) or coarse aggregate (gravel, etc.) is mixed and used for curing for a predetermined period. A cement-based cured product is formed.

したがって、本発明の微生物封入マイクロカプセル及び混和材料によれば、高pH環境のセメント系硬化物内であっても微生物はマイクカプセル内で保護されるので活性が維持され、栄養源又はその代謝生成物を代謝して二酸化炭素を生成する。   Therefore, according to the microorganism-encapsulated microcapsule and admixture of the present invention, the microorganism is protected in the microphone capsule even in a cement-based cured product in a high pH environment, so that the activity is maintained, and the nutrient source or its metabolic production Metabolizes things to produce carbon dioxide.

生成された二酸化炭素由来の炭酸イオン及びセメント系構造物から溶出したカルシウムイオンは半透性のカプセル壁を互いに透過して結合し、マイクロカプセルの内外で炭酸カルシウムが析出する。これにより、セメント系硬化物が緻密化され、強化される。   The generated carbon dioxide-derived carbonate ions and calcium ions eluted from the cementitious structure are bonded to each other through the semipermeable capsule wall, and calcium carbonate is deposited inside and outside the microcapsules. Thereby, a cement-type hardened | cured material is densified and strengthened.

なお、本発明の微生物封入マイクロカプセルは、混和材料に含ませることに限らず、製造された微生物封入マイクロカプセルはそのままセメントの練り混ぜ水中に添加されてもよい。すなわち、セメント系硬化物を緻密化して強化する用途で最終的にセメント系硬化物中に分散させることができるのであれば、セメント系硬化物を形成する途中の任意の段階で本発明の微生物封入マイクロカプセルを添加してよい。   The microorganism-encapsulated microcapsules of the present invention are not limited to be included in the admixture, and the produced microorganism-encapsulated microcapsules may be added as it is to the cement-mixed water. That is, if the cement-based cured product can be finally dispersed in the cement-based cured product for the purpose of densifying and strengthening the cement-based cured product, the microorganism encapsulation of the present invention can be performed at any stage during the formation of the cement-based cured product. Microcapsules may be added.

[微生物封入マイクロカプセルを含む補修材料]
本発明の微生物封入マイクロカプセルを含む補修材料は、微生物封入マイクロカプセル以外に、水溶性ポリマーを含む。水溶性ポリマーは、上記[微生物封入カプセル]の項目に記載した水溶性ポリマーと同じものの中から選択することができる。中でも、微生物封入マイクロカプセルに使用した水溶性ポリマーと同一の種類のものを用いると、マイクロカプセルとゲル化した補修材料とが一体化し、ゲル化後の補修材料の機械的強度が向上する。
[Repair materials including microcapsules containing microorganisms]
The repair material containing the microorganism-encapsulated microcapsule of the present invention contains a water-soluble polymer in addition to the microorganism-encapsulated microcapsule. The water-soluble polymer can be selected from the same water-soluble polymers as described in the above item [Microbe-encapsulated capsule]. Among these, when the same type of water-soluble polymer as that used for the microcapsules encapsulating microorganisms is used, the microcapsules and the gelated repair material are integrated, and the mechanical strength of the repair material after gelation is improved.

−その他の添加剤
本発明の微生物封入マイクロカプセルを含む補修材料は、上記微生物封入マイクロカプセルと水溶性ポリマーに限定されず、他のポリマー(バインダー)、微生物栄養源(有機、無機)、着色剤、フィラー、pH緩衝剤、pH調整剤、老化防止剤、分散剤、界面活性剤など1種以上の添加剤を添加することができる。
-Other additives The repair material containing the microcapsules encapsulating microorganisms of the present invention is not limited to the above microencapsulated microcapsules and water-soluble polymers, but other polymers (binders), microbial nutrient sources (organic, inorganic), and coloring agents. One or more additives such as a filler, a pH buffer, a pH adjuster, an anti-aging agent, a dispersant, and a surfactant can be added.

微生物栄養源は特に限定されず、有機炭素源(糖類、デンプン等)、無機炭素源(炭酸ナトリウム等)、有機窒素源(アミノ酸、ペプトン等)、無機窒素源(アンモニウム塩、硝酸塩等)、無機栄養源(P、S、K、Mg、Fe、Na等)を1種以上用いることができる。ただし、無機栄養源のうち、カルシウム等のセメント系構造物に含まれる無機栄養源は、別途添加する必要はない。   Microbial nutrient source is not particularly limited, organic carbon source (sugar, starch etc.), inorganic carbon source (sodium carbonate etc.), organic nitrogen source (amino acid, peptone etc.), inorganic nitrogen source (ammonium salt, nitrate etc.), inorganic One or more nutrient sources (P, S, K, Mg, Fe, Na, etc.) can be used. However, among the inorganic nutrient sources, it is not necessary to add an inorganic nutrient source contained in a cement-based structure such as calcium.

栄養源は、代謝により腐食性物質を排出しないものが好ましい。栄養源としての炭素源(糖類等)が有機酸(酢酸、乳酸、ピルビン酸)のような腐食性物質の原因となる場合は、栄養源に窒素源を添加し、微生物が産出するアンモニアにより有機酸をマスクしてもよい。特に、バチルス属細菌を嫌気性微生物と併用する場合に効果的である。   The nutrient source is preferably one that does not excrete corrosive substances due to metabolism. When a carbon source (such as sugar) as a nutrient source causes a corrosive substance such as an organic acid (acetic acid, lactic acid, pyruvic acid), a nitrogen source is added to the nutrient source, and the organic matter is produced by ammonia produced by the microorganism. The acid may be masked. This is particularly effective when Bacillus bacteria are used in combination with anaerobic microorganisms.

本発明の微生物封入マイクロカプセルを含む補修材料は、セメント系硬化物を使用した構造物(以下、セメント系構造物という)の欠陥部分に適用される。ここで、セメント系構造物の欠陥部分とは、乾燥収縮、熱膨張、熱収縮、機械的ストレス、化学的ストレス、製法上の問題(例:コールドジョイント)などの様々な理由で表面や内部に生じた欠陥部分(ひび割れ、凹部)をいう。   The repair material including the microorganism-encapsulated microcapsule of the present invention is applied to a defective portion of a structure using a cement-based cured product (hereinafter referred to as a cement-based structure). Here, the defective part of the cementitious structure is the surface or the interior due to various reasons such as drying shrinkage, thermal expansion, thermal shrinkage, mechanical stress, chemical stress, and manufacturing problems (eg, cold joint). It refers to the defective part (crack, recess) that has occurred.

まず、本発明の微生物封入マイクロカプセルを含む補修材料は、粉体の場合には媒質に分散させて液状とし、この液状の補修材料を欠陥部分に塗布、散布又は注入して適量を供給する。   First, in the case of a powder, the repair material containing the microcapsules encapsulating microorganisms of the present invention is dispersed in a medium to form a liquid, and this liquid repair material is applied to the defective portion, sprayed or injected to supply an appropriate amount.

欠陥部分において補修材料中の水溶性ポリマーはセメント系構造物由来カルシウムイオンによりゲル化する。マイクロカプセル内の微生物は栄養源を代謝して二酸化炭素をマイクロカプセル外部に排出し、補修材料中に移行してきたカルシウムイオンと結合して炭酸カルシウムを析出させ、補修材料中のゲル膜を緻密化する。   In the defective part, the water-soluble polymer in the repair material is gelled by calcium ions derived from the cementitious structure. Microorganisms in the microcapsule metabolize nutrient sources and discharge carbon dioxide outside the microcapsule, which binds to calcium ions that have migrated into the repair material, precipitates calcium carbonate, and densifies the gel film in the repair material To do.

したがって、本発明の微生物封入マイクロカプセルを含む補修材料によれば、セメント系構造物の欠陥部分は炭酸カルシウムが充填された緻密な水溶性ポリマーのゲル膜により補修され、セメント系構造物の機械的強度が回復する。   Therefore, according to the repair material including the microcapsules encapsulating microorganisms of the present invention, the defective portion of the cement-based structure is repaired by the gel film of a dense water-soluble polymer filled with calcium carbonate, and the mechanical structure of the cement-based structure is repaired. Strength is restored.

以下、本発明を実施例により説明する。   Hereinafter, the present invention will be described with reference to examples.

[実施例1]
実施例1では、微生物として酵母を用いた検討を行った。
[Example 1]
In Example 1, examination using yeast as a microorganism was performed.

(1)微生物封入マイクロカプセルの製造
撹拌している500mlの蒸留水に1.0wt%となるようにアルギン酸ナトリウム(関東化学株式会社製、鹿1級、カタログNo,37094−01)を添加し、そのまま30分間撹拌した。その後、微生物として市販のドライイースト(秋田十条化成株式会社製、商品名「白新こだま酵母ドライ」)及びグルコースを加えてさらに30分間撹拌し、これらの原料が完全に溶解したことを目視で確認し、微生物含有アルギン酸ナトリウム水溶液を得た。
(1) Manufacture of microorganism-encapsulated microcapsules Sodium alginate (manufactured by Kanto Chemical Co., Ltd., deer grade 1, catalog No. 37094-01) was added to 500 ml of distilled water being stirred so as to be 1.0 wt%. The mixture was stirred for 30 minutes. Then, commercially available dry yeast (trade name “Shirashin Kodama Yeast Dry” manufactured by Akita Jujo Kasei Co., Ltd.) and glucose were added as microorganisms and stirred for another 30 minutes to visually confirm that these materials were completely dissolved. A microorganism-containing aqueous sodium alginate solution was obtained.

次に、0.5Lの蒸留水に酢酸カルシウムを溶解し、ここにTris緩衝溶液(2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール緩衝溶液 pH9.0)を添加し、カルシウムイオン含有水溶液を得た。   Next, calcium acetate is dissolved in 0.5 L of distilled water, and a Tris buffer solution (2-amino-2-hydroxymethyl-1,3-propanediol buffer solution pH 9.0) is added thereto to contain calcium ions. An aqueous solution was obtained.

使用材料の濃度を表1に示す。   Table 1 shows the concentrations of the materials used.

次に、微生物含有アルギン酸ナトリウム水溶液をペリスタルティックポンプ(アトー株式会社製、AC−2110II)を用いて流量1,500ml/hourでカルシウムイオン源溶液中に滴下し、微生物封入マイクロカプセルを得た。なお、使用したペリスタルティックポンプのチューブの内径は3mmである。   Next, the microorganism-containing sodium alginate aqueous solution was dropped into the calcium ion source solution at a flow rate of 1,500 ml / hour using a peristaltic pump (AC-2110II, manufactured by Ato Co., Ltd.) to obtain microorganism-encapsulated microcapsules. In addition, the internal diameter of the tube of the used peristaltic pump is 3 mm.

得られたマイクロカプセルはガーゼで濾し、ろ紙で挟んでマイクロカプセル周囲の水分を拭き取り、次の検討に用いた。   The obtained microcapsules were filtered with gauze and sandwiched between filter papers to wipe off the water around the microcapsules and used for the next examination.

また、得られたマイクロカプセルは、図1に示すように、球形であって、アルギン酸のカルボキシル基をカルシウムイオンで架橋させて形成されるゲル被膜によるカプセル壁を有していた。   Further, as shown in FIG. 1, the obtained microcapsule was spherical and had a capsule wall with a gel coating formed by crosslinking the carboxyl group of alginic acid with calcium ions.

(2)微生物封入マイクロカプセルを用いた炭酸カルシウム析出課程の試験管試験による検討
(2−1)カルシウムイオン濃度及びpH変化の測定
水溶液中のカルシウムイオン濃度が4.5g/Lとなるように酢酸カルシウムを添加し、さらにTris緩衝溶液(2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール緩衝溶液 pH9.0)濃度を0.1mol/Lとするように調整した1Lの酢酸カルシウム水溶液に上記(1)で作製した微生物封入マイクロカプセルを全量投入し、水溶液中のカルシウムイオン濃度とpHの測定を6時間毎に48時間後まで行った。
(2) Examination by test tube test of calcium carbonate precipitation process using microcapsules containing microorganisms (2-1) Measurement of calcium ion concentration and pH change Acetic acid so that calcium ion concentration in aqueous solution is 4.5 g / L To the 1 L calcium acetate aqueous solution which was adjusted so that the concentration of Tris buffer solution (2-amino-2-hydroxymethyl-1,3-propanediol buffer solution pH 9.0) was adjusted to 0.1 mol / L. The whole amount of the microcapsules encapsulating microorganisms prepared in the above (1) was added, and the calcium ion concentration and pH in the aqueous solution were measured every 6 hours until 48 hours later.

なお、カルシウムイオン濃度の測定にはポータブルイオン計(株式会社東亜DKK製)を用い、pH測定にはハンディ型pH計(株式会社佐藤計量器製作所製、SK−620PH)を使用した。   A portable ion meter (manufactured by Toa DKK Co., Ltd.) was used for measuring the calcium ion concentration, and a handy pH meter (SK-620PH, manufactured by Sato Keiki Seisakusho Co., Ltd.) was used for pH measurement.

測定結果を図2のグラフに示す。図2のグラフは、酢酸カルシウム水溶液中のpH及びカルシウムイオン濃度の経時的な変化を示す。   The measurement results are shown in the graph of FIG. The graph of FIG. 2 shows changes over time in pH and calcium ion concentration in an aqueous calcium acetate solution.

図示のように、試験開始後から徐々にマイクロカプセルを添加した酢酸カルシウム水溶液中のpHは低下し、24時間以降はほぼ一定の値となった。これは、マイクロカプセル中の微生物の代謝生成物がカプセル壁を浸透し、酢酸カルシウム水溶液中に拡散されていることによるものと推察される。   As shown in the figure, the pH in the aqueous calcium acetate solution to which microcapsules were added gradually decreased from the start of the test, and became a substantially constant value after 24 hours. This is presumably because the metabolite of the microorganism in the microcapsule penetrates the capsule wall and is diffused in the aqueous calcium acetate solution.

また、溶液中のpHは12時間後に7.5より低下しており、炭酸カルシウムの析出速度は徐々に低下していると考えられる。   Further, the pH in the solution is lower than 7.5 after 12 hours, and it is considered that the precipitation rate of calcium carbonate is gradually decreased.

また、酢酸カルシウム水溶液中のカルシウムイオン濃度はpHの低下に伴い徐々に低下している。これは、溶液中のカルシウムイオンが炭酸イオンと反応し、炭酸カルシウムとなっていることを示している。   In addition, the calcium ion concentration in the aqueous calcium acetate solution gradually decreases as the pH decreases. This indicates that calcium ions in the solution react with carbonate ions to form calcium carbonate.

(2−2)FE−SEM(電界放出形走査電子顕微鏡)による観察
次に、「(2−1)カルシウムイオン濃度及びpH変化の測定」において試験管のアルカリ環境下に置かれた微生物封入カプセルを取りだし、室内環境で乾燥させた。この乾燥させた微生物封入マイクロカプセルを用いてFE−SEM(日本電子株式会社製、JSM−7001FA)による観察を行った。
(2-2) Observation by FE-SEM (Field Emission Scanning Electron Microscope) Next, a microorganism-encapsulated capsule placed in an alkaline environment of a test tube in “(2-1) Measurement of calcium ion concentration and pH change”. Was taken out and dried in an indoor environment. Observation using an FE-SEM (manufactured by JEOL Ltd., JSM-7001FA) was carried out using the dried microorganism-encapsulated microcapsules.

観察に用いた微生物封入カプセルは、
試料A:「(1)微生物封入マイクロカプセルの製造」による製造直後のもの
試料B:「(2−1)カルシウムイオン濃度及びpH変化の測定」における酢酸カルシウム水溶液に添加して6時間後に取り出したもの及び、
試料C:「(2−1)カルシウムイオン濃度及びpH変化の測定」における酢酸カルシウム水溶液に添加して24時間後に取り出したもの
である。
Microbe-encapsulated capsules used for observation are
Sample A: immediately after production according to “(1) Production of microorganism-encapsulated microcapsules” Sample B: added to calcium acetate aqueous solution in “(2-1) Measurement of calcium ion concentration and pH change” and taken out after 6 hours. Things and
Sample C: Added to the calcium acetate aqueous solution in “(2-1) Measurement of calcium ion concentration and pH change” and taken out after 24 hours.

試料A〜CのFE−SEM画像を図3に示す。   FE-SEM images of Samples A to C are shown in FIG.

同図に示すように、試料AのFE−SEM画像においては、アルギン酸被膜(カプセル壁)の表面に、封入された球形(3−4μm)のイースト菌(微生物)による起伏形状が確認される。   As shown in the figure, in the FE-SEM image of Sample A, the undulating shape of the spherical (3-4 μm) yeast (microorganism) encapsulated on the surface of the alginic acid coating (capsule wall) is confirmed.

また、試料BのFE−SEM画像においては、アルギン酸被膜の内側に、幅1μm程度の大きさの炭酸カルシウムの結晶(カルサイト)が析出していることが認められる。   Further, in the FE-SEM image of Sample B, it is recognized that crystals (calcite) of calcium carbonate having a width of about 1 μm are deposited inside the alginic acid coating.

さらに、試料CのFE−SEM画像においては、アルギン酸被膜の内外に亘って炭酸カルシウムの結晶が成長し、その大きさが3倍程度になっていることが認められる。   Furthermore, in the FE-SEM image of Sample C, it is recognized that calcium carbonate crystals grow inside and outside the alginic acid coating, and the size thereof is about three times.

したがって、微生物封入マイクロカプセルの内外に微生物代謝により炭酸カルシウムが析出されることを利用して、このマイクロカプセルがセメント系材料に含まれた場合に、得られたセメント系硬化物の緻密化が可能となる。   Therefore, by utilizing the fact that calcium carbonate is precipitated by microbial metabolism inside and outside the microorganism-encapsulated microcapsules, when the microcapsules are contained in a cement-based material, it is possible to densify the resulting cement-based cured product It becomes.

なお、微生物として、実施例1の酵母(通性嫌気性微生物)に代えて枯草菌(偏性好気性微生物)を用い、実施例1と同様に微生物封入マイクロカプセルを製造し、この微生物封入マイクロカプセルを用いた炭酸カルシウム析出課程の試験管試験を行った。   In addition, instead of the yeast (facultative anaerobic microorganism) of Example 1, Bacillus subtilis (obligately aerobic microorganism) was used as a microorganism to produce a microorganism-encapsulated microcapsule as in Example 1, and this microorganism-encapsulated microcapsule was produced. A test tube test of a calcium carbonate precipitation process using a capsule was performed.

その結果、酵母と比べると析出速度が劣るものの、枯草菌を用いた場合でも炭酸カルシウムの析出が生じたことが確認された。   As a result, it was confirmed that precipitation of calcium carbonate occurred even when Bacillus subtilis was used, although the deposition rate was inferior to that of yeast.

Claims (8)

代謝により二酸化炭素を発生する微生物を封入すると共に、前記二酸化炭素由来の炭酸イオンとセメント系硬化物に含まれるカルシウムイオンとの結合により析出する炭酸カルシウムによってセメント系硬化物を強化するために用いられるセメント系硬化物強化用の微生物封入マイクロカプセルであって、
前記マイクロカプセルのカプセル壁が、アルギン酸、アルギン酸エステル、ペクチン、ポリ(メタ)アクリル酸、ジェランガム、カルボキシメチルセルロース、アラビアガム及びこれらの塩からなる群から選択される1種以上の水溶性ポリマーがカルシウムイオンで架橋されたゲル化物であることを特徴とする微生物封入マイクロカプセル。
Used to encapsulate microorganisms that generate carbon dioxide through metabolism, and to strengthen cement-based cured products by calcium carbonate precipitated by the combination of carbonate ions derived from carbon dioxide and calcium ions contained in cement-based cured products A microorganism-encapsulated microcapsule for reinforcing a cement-based cured product,
One or more water-soluble polymers selected from the group consisting of alginic acid, alginic acid ester, pectin, poly (meth) acrylic acid, gellan gum, carboxymethylcellulose, gum arabic and salts thereof are calcium ions. A microcapsule encapsulating microorganisms, which is a gelled product cross-linked with 1.
前記微生物が、偏性嫌気性微生物及び通性嫌気性微生物から選択される請求項1に記載の微生物封入マイクロカプセル。   The microorganism-encapsulated microcapsule according to claim 1, wherein the microorganism is selected from an obligate anaerobic microorganism and a facultative anaerobic microorganism. 前記微生物が、酵母である請求項1に記載の微生物封入マイクロカプセル。   The microorganism-encapsulated microcapsule according to claim 1, wherein the microorganism is yeast. 前記微生物が、偏性好気性微生物である請求項1に記載の微生物封入マイクロカプセル。   The microorganism-encapsulated microcapsule according to claim 1, wherein the microorganism is an obligate aerobic microorganism. 前記微生物が、通性嫌気性微生物と偏性好気性微生物との組み合わせである請求項1に記載の微生物封入マイクロカプセル。   The microorganism-encapsulated microcapsule according to claim 1, wherein the microorganism is a combination of a facultative anaerobic microorganism and an obligate aerobic microorganism. pH7.0以上の範囲に緩衝能を有するpH緩衝剤を含む請求項1〜5の何れか1項に記載の微生物封入マイクロカプセル。   The microorganism-encapsulated microcapsule according to any one of claims 1 to 5, comprising a pH buffer having a buffer capacity in a range of pH 7.0 or higher. セメントに混合して使用される混和材料であって、
請求項1〜6の何れか1項に記載の微生物封入マイクロカプセルを含む混和材料。
An admixture used by mixing with cement,
An admixture comprising the microorganism-encapsulated microcapsule according to any one of claims 1 to 6.
セメント系構造物の補修材料であって、
請求項1〜6の何れか1項に記載の微生物封入マイクロカプセルと、
アルギン酸、アルギン酸エステル、ペクチン、ジェランガム、ポリ(メタ)アクリル酸、カルボキシメチルセルロース、アラビアガム及びこれらの塩からなる群から選択される1種以上の水溶性ポリマーと、
を含む補修材料。
A repair material for cement-based structures,
The microorganism-encapsulated microcapsule according to any one of claims 1 to 6,
One or more water-soluble polymers selected from the group consisting of alginic acid, alginic acid ester, pectin, gellan gum, poly (meth) acrylic acid, carboxymethylcellulose, gum arabic and salts thereof;
Repair material including.
JP2017071341A 2017-03-31 2017-03-31 Microorganism-encapsulated microcapsules, cement admixtures containing microbial-encapsulated microcapsules, and repair materials for cement-based structures Active JP6940090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071341A JP6940090B2 (en) 2017-03-31 2017-03-31 Microorganism-encapsulated microcapsules, cement admixtures containing microbial-encapsulated microcapsules, and repair materials for cement-based structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071341A JP6940090B2 (en) 2017-03-31 2017-03-31 Microorganism-encapsulated microcapsules, cement admixtures containing microbial-encapsulated microcapsules, and repair materials for cement-based structures

Publications (2)

Publication Number Publication Date
JP2018172234A true JP2018172234A (en) 2018-11-08
JP6940090B2 JP6940090B2 (en) 2021-09-22

Family

ID=64108185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071341A Active JP6940090B2 (en) 2017-03-31 2017-03-31 Microorganism-encapsulated microcapsules, cement admixtures containing microbial-encapsulated microcapsules, and repair materials for cement-based structures

Country Status (1)

Country Link
JP (1) JP6940090B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408847A (en) * 2020-11-20 2021-02-26 安徽理工大学 Natural retarder, preparation method and application thereof
CN115073055A (en) * 2022-07-11 2022-09-20 中建商品混凝土有限公司 Preparation method of concrete self-repairing microcapsule
KR102447271B1 (en) * 2021-10-08 2022-09-28 경기대학교 산학협력단 Preparing method of pill for self healing with biodegradable membrane coating
KR102481342B1 (en) * 2022-04-12 2022-12-26 경기대학교 산학협력단 Manufacturing and construction methods for crack self-healing materials to prevent leakage and faulty at the concrete joints of structures
KR102481335B1 (en) * 2022-03-28 2022-12-27 경기대학교 산학협력단 Manufacturing method for crack self-healing repair mortars with improved carbonation and salt resistance capacities
CN116161983A (en) * 2022-12-30 2023-05-26 山东高速城乡发展集团有限公司 Microbial microcapsule for self-repairing concrete cracks, preparation method of microbial microcapsule and self-repairing concrete
CN118598572A (en) * 2024-08-12 2024-09-06 长沙市保灵建材助剂有限公司 Cement-based material activity excitant and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06502080A (en) * 1991-06-28 1994-03-10 ブラウン ユニバーシティ リサーチ ファウンディション In-vivo release of active factors by co-cultured cell implants
JP2003026460A (en) * 2001-07-17 2003-01-29 Inax Corp Admixture for hydration cured body and hydration cured body
JP2012020890A (en) * 2010-07-13 2012-02-02 Dc Co Ltd Dust suppressor for calcium-based powder, calcium-based powder, method for manufacturing the calcium-based powder, and method for suppressing calcium-based powder
US20140248681A1 (en) * 2013-03-01 2014-09-04 Universiteit Gent Microcapsules and concrete containing the same
CN106242341A (en) * 2016-07-13 2016-12-21 深圳大学 Ternary microorganism renovation agent, preparation method and applications for repairing concrete crack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06502080A (en) * 1991-06-28 1994-03-10 ブラウン ユニバーシティ リサーチ ファウンディション In-vivo release of active factors by co-cultured cell implants
JP2003026460A (en) * 2001-07-17 2003-01-29 Inax Corp Admixture for hydration cured body and hydration cured body
JP2012020890A (en) * 2010-07-13 2012-02-02 Dc Co Ltd Dust suppressor for calcium-based powder, calcium-based powder, method for manufacturing the calcium-based powder, and method for suppressing calcium-based powder
US20140248681A1 (en) * 2013-03-01 2014-09-04 Universiteit Gent Microcapsules and concrete containing the same
CN106242341A (en) * 2016-07-13 2016-12-21 深圳大学 Ternary microorganism renovation agent, preparation method and applications for repairing concrete crack

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408847A (en) * 2020-11-20 2021-02-26 安徽理工大学 Natural retarder, preparation method and application thereof
KR102447271B1 (en) * 2021-10-08 2022-09-28 경기대학교 산학협력단 Preparing method of pill for self healing with biodegradable membrane coating
KR102481335B1 (en) * 2022-03-28 2022-12-27 경기대학교 산학협력단 Manufacturing method for crack self-healing repair mortars with improved carbonation and salt resistance capacities
KR20230140334A (en) * 2022-03-28 2023-10-06 경기대학교 산학협력단 Manufacturing method for crack self-healing repair mortars with improved carbonation and salt resistance capacities
KR102643249B1 (en) 2022-03-28 2024-03-05 경기대학교 산학협력단 Manufacturing method for crack self-healing repair mortars with improved carbonation and salt resistance capacities
KR102481342B1 (en) * 2022-04-12 2022-12-26 경기대학교 산학협력단 Manufacturing and construction methods for crack self-healing materials to prevent leakage and faulty at the concrete joints of structures
CN115073055A (en) * 2022-07-11 2022-09-20 中建商品混凝土有限公司 Preparation method of concrete self-repairing microcapsule
CN115073055B (en) * 2022-07-11 2023-02-17 中建商品混凝土有限公司 Preparation method of concrete self-repairing microcapsule
CN116161983A (en) * 2022-12-30 2023-05-26 山东高速城乡发展集团有限公司 Microbial microcapsule for self-repairing concrete cracks, preparation method of microbial microcapsule and self-repairing concrete
CN116161983B (en) * 2022-12-30 2024-03-26 山东高速城乡发展集团有限公司 Microbial microcapsule for self-repairing concrete cracks, preparation method of microbial microcapsule and self-repairing concrete
CN118598572A (en) * 2024-08-12 2024-09-06 长沙市保灵建材助剂有限公司 Cement-based material activity excitant and preparation method and application thereof

Also Published As

Publication number Publication date
JP6940090B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
JP6940090B2 (en) Microorganism-encapsulated microcapsules, cement admixtures containing microbial-encapsulated microcapsules, and repair materials for cement-based structures
Wang et al. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability
Wiktor et al. Bacteria-based concrete: from concept to market
JP6040147B2 (en) Restoration agents for self-healing cementitious materials
JP5328811B2 (en) Cementitious materials and structural repair agents and methods for their preparation
TWI414664B (en) An improved method of using microbiological sites
Li et al. Bacterial technology-enabled cementitious composites: A review
CN111056799B (en) Hydrogel-encapsulated bacterial spore self-repairing material with pH responsiveness and cement-based concrete self-repairing method
CN101607833B (en) Reinforcing material of permeable hydraulic degraded unconsolidated rock and reinforcing method thereof
Hermawan et al. Understanding the impacts of healing agents on the properties of fresh and hardened self-healing concrete: a review
Xu et al. Coupled effects of carbonation and bio-deposition in concrete surface treatment
WO2022236998A1 (en) Microbial self-repair agent having viscous product and application thereof
Abdullah et al. Development and performance of bacterial self-healing concrete-A review
JP6871570B2 (en) Repair materials and repair methods
CN110395884A (en) A kind of bionical self-repair concrete and preparation method thereof
Hungria et al. Effect of using magnesium acetate on the self-healing efficiency of hydrogel-encapsulated bacteria in concrete
WO2024146253A1 (en) High-crack-resistance and corrosion-resistant ultra-high-performance concrete and preparation method therefor
CN114591025B (en) Preparation method of microorganism self-repairing concrete
CN113213806A (en) Delayed permeation type core-shell structure chloride ion curing agent and preparation method thereof
CN1253401C (en) Cement-containing compositions and method of use
CN116855108A (en) Ammonium phosphate magnesium-based steel base material anti-corrosion coating and preparation method thereof
JP2021175701A (en) Method for producing cement-containing molded body, and cement-containing molded body
JP6183621B2 (en) Manufacturing method for civil engineering materials
CN111205079B (en) Lanthanum-doped yttrium aluminum garnet ceramic and preparation method thereof
CN114010841A (en) Preparation method of biomedical degradable metal material surface calcium carbonate film layer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170426

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210824

R150 Certificate of patent or registration of utility model

Ref document number: 6940090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250