JP2018171728A - Fiber-reinforced resin molding block and method of producing fiber-reinforced resin using the same - Google Patents

Fiber-reinforced resin molding block and method of producing fiber-reinforced resin using the same Download PDF

Info

Publication number
JP2018171728A
JP2018171728A JP2017070203A JP2017070203A JP2018171728A JP 2018171728 A JP2018171728 A JP 2018171728A JP 2017070203 A JP2017070203 A JP 2017070203A JP 2017070203 A JP2017070203 A JP 2017070203A JP 2018171728 A JP2018171728 A JP 2018171728A
Authority
JP
Japan
Prior art keywords
mold
reinforced resin
cavity
sealing material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017070203A
Other languages
Japanese (ja)
Inventor
祐介 津村
Yusuke Tsumura
祐介 津村
有輝 彦坂
Yuki Hikosaka
有輝 彦坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2017070203A priority Critical patent/JP2018171728A/en
Publication of JP2018171728A publication Critical patent/JP2018171728A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide fiber-reinforced resin molding blocks and a method of molding fiber-reinforced resin using the same capable of easily maintaining vacuum, preventing resin from leaking, and eliminating seal exchanging work by preventing breakage of a seal member.SOLUTION: Fiber-reinforced resin molding blocks of this invention are at least a pair of blocks facing one another to form a cavity, in which a groove is disposed in a substantially circumferential shape outside the cavity of one of the blocks and a seal member is provided to the groove. The other one of the blocks includes an engaging face formed of at least two faces: one face to be engaged with the seal member being in a substantially parallel direction to a block open/close direction and one face being in a substantially vertical direction to the block open/close direction. When the blocks are open where the seal member and the engaging face are completely apart from one another, a relation of L1≤L2 is satisfied between the shortest distance (L1 (mm)) between the seal member and the face of the substantially parallel direction; and the shortest distance (L2 (mm)) between the seal member and the face of the substantially vertical direction.SELECTED DRAWING: Figure 1

Description

本発明は、繊維強化樹脂成形型およびそれを用いた繊維強化樹脂の製造方法に関し、特に、型のシール構造を改良した繊維強化樹脂成形型およびそれを用いた繊維強化樹脂の製造方法に関する。   The present invention relates to a fiber reinforced resin mold and a method for producing a fiber reinforced resin using the same, and more particularly to a fiber reinforced resin mold having an improved mold seal structure and a method for producing a fiber reinforced resin using the same.

生産性に優れた繊維強化樹脂の成形方法として、強化繊維基材を成形型のキャビティに配置し、マトリックス樹脂を型内に注入して強化繊維基材内に含浸させ、樹脂を硬化させた後、繊維強化樹脂成形品を脱型する、いわゆるRTM(Resin Transfer Molding)成形が知られている。RTM成形においては、比較的大型の繊維強化樹脂成形品や肉厚の繊維強化樹脂成形品を製造する場合、先に強化繊維基材積層体(例えば、複数枚の強化繊維基材)を所定形状に賦形して、繊維強化樹脂の成形前躯体である強化繊維基材積層体のプリフォームを作製し、そのプリフォームを成形型内に配置して、マトリックス樹脂を型内に注入し、基材に含浸した樹脂を硬化させる方法が用いられることが多い。   As a method of molding fiber-reinforced resin with excellent productivity, after placing the reinforcing fiber base in the mold cavity, injecting the matrix resin into the mold and impregnating the reinforcing fiber base, and curing the resin So-called RTM (Resin Transfer Molding) molding, in which a fiber-reinforced resin molded product is removed, is known. In RTM molding, when manufacturing relatively large fiber reinforced resin molded products or thick fiber reinforced resin molded products, a reinforcing fiber substrate laminate (for example, a plurality of reinforcing fiber substrates) is formed in a predetermined shape. To form a preform for a reinforcing fiber substrate laminate, which is a pre-molding body of the fiber reinforced resin, place the preform in a mold, and inject the matrix resin into the mold. A method of curing the resin impregnated in the material is often used.

従来の繊維強化樹脂成形型のシール部には、特許文献1〜3に記載されているような矩形や丸断面のシール材が使用されていた。これらのシール材は一方の型のキャビティ外周に沿って延在するように設けられた溝に装着され、型締めにより他方の型から押圧されることで弾性変形し、キャビティ内の真空保持性と樹脂注入後の耐樹脂漏れ性という2つのシール機能を発揮していた。   The sealing part of the conventional fiber reinforced resin molding die used the sealing material of the rectangle and the round section which are described in patent documents 1-3. These sealing materials are mounted in grooves provided so as to extend along the outer periphery of the cavity of one mold, are elastically deformed by being pressed from the other mold by clamping, and have a vacuum retaining property in the cavity. Two sealing functions of resin leakage resistance after resin injection were exhibited.

特許文献1、2には、シール材の溝から突出した突出部を他方の型の平面部や傾斜部で押圧する樹脂注入成形装置が記載されている。また、特許文献2には、シール材の突出部に凹部を設けて、該凹部に対応する突起でシール材を押圧する樹脂注入成形装置が記載されている。   Patent Documents 1 and 2 describe a resin injection molding apparatus that presses a protruding portion protruding from a groove of a sealing material with a flat portion or an inclined portion of the other mold. Patent Document 2 describes a resin injection molding apparatus in which a recess is provided in a protruding portion of a seal material and the seal material is pressed by a protrusion corresponding to the recess.

また、近年では、基材への樹脂の含浸性を高める方法として、特許文献3に開示されているような、キャビティの厚みを最終的な繊維強化樹脂成形品の厚みよりも大きくした状態で強化繊維基材と型の間の空隙に樹脂を注入し、次いでキャビティの厚みを減少させて樹脂を加圧、流動せしめて基材に樹脂を含浸させ、その後、硬化させるギャップRTM成形が用いられている。特許文献3では、キャビティ内の真空度を高める第1シール材と、液状樹脂がキャビティ外に漏洩することを防止する第2シール材を用いる方法が記載されている。   Further, in recent years, as a method for improving the resin impregnation property to the base material, as disclosed in Patent Document 3, the cavity is reinforced with a thickness larger than the final fiber reinforced resin molded product. Gap RTM molding is used, in which resin is injected into the gap between the fiber substrate and the mold, then the cavity thickness is reduced, the resin is pressurized and fluidized, the substrate is impregnated with resin, and then cured. Yes. Patent Document 3 describes a method using a first sealing material that increases the degree of vacuum in the cavity and a second sealing material that prevents liquid resin from leaking out of the cavity.

また、繊維強化樹脂成形品の表面意匠を向上させる方法として、特許文献4に開示されているような、RTM成形において繊維強化樹脂成形品が硬化した後、繊維強化樹脂成形品と型の間に空隙を設け、この空隙に樹脂を注入し、硬化させるインモールドコーティング法が用いられることがある。   Further, as a method for improving the surface design of the fiber reinforced resin molded product, after the fiber reinforced resin molded product is cured in the RTM molding as disclosed in Patent Document 4, the fiber reinforced resin molded product is placed between the fiber reinforced resin molded product and the mold. An in-mold coating method may be used in which a void is provided and a resin is injected into the void and cured.

特開2012−187923号公報JP 2012-187923 A 特開平7−186199号公報JP-A-7-186199 特開2014−43071号公報JP 2014-43071 A 特許5846638号公報Japanese Patent No. 5846638

ところが、特許文献3に開示された方法では、真空用および樹脂用にシール材を2つ設けなければならないため生産性が低下する課題や、シール部を複数設けるスペースが必要なことから装置寸法が大きくなる課題があった。   However, in the method disclosed in Patent Document 3, since two sealing materials must be provided for vacuum and resin, there is a problem that productivity is lowered, and a space for providing a plurality of seal portions is required, so that the apparatus size is large. There was a growing problem.

一方、特許文献1、2に開示された単一のシール材が設けられたシール構造をギャップRTM成形に用いる場合は、キャビティの厚みを変化させる必要から、嵩高のシール材を大変形させて使用する必要があった。このとき、特許文献1に開示されたシール材を他方の型の平面部で押圧する方法では、繰り返し使用した場合に、真空が保持しにくい場合や、樹脂漏れを生じてしまう場合も見られる。また、特許文献2に開示されたシール材の略端部を他方の型の傾斜突起で押圧する方法では、シール材の両端で変形に差が生じ、繰り返し使用した場合に溝端部で亀裂を生じやすく、型の長期使用に耐えるものとは言えない。加えて、プレス圧を上げた際に破損しやすいとの課題もある。   On the other hand, when the seal structure provided with a single seal material disclosed in Patent Documents 1 and 2 is used for gap RTM molding, it is necessary to change the thickness of the cavity. There was a need to do. At this time, in the method of pressing the sealing material disclosed in Patent Document 1 with the flat portion of the other mold, there are cases where it is difficult to maintain a vacuum or a resin leak occurs when repeatedly used. Further, in the method of pressing the substantially end portion of the sealing material disclosed in Patent Document 2 with the other type of inclined projection, there is a difference in deformation at both ends of the sealing material, and cracks occur at the groove end portion when repeatedly used. It is easy and cannot be said to withstand long-term use of the mold. In addition, there is a problem that it is easily damaged when the press pressure is increased.

したがって、従来のシール構造では、たとえシール材の材質を改善したとしても、単一のシール材で真空保持性と耐樹脂漏れ性を同時に満足しつつ繰り返しの長期使用に供することはできず、破損したシール材の交換や樹脂の清掃等により、型の稼働率が低くなってしまい、RTM部材の生産性を低下させる要因となっていた。   Therefore, with the conventional seal structure, even if the material of the seal material is improved, it cannot be used for repeated long-term use while simultaneously satisfying vacuum retention and resin leakage resistance with a single seal material, resulting in damage. As a result of the replacement of the sealing material and the cleaning of the resin, the operating rate of the mold is lowered, which is a factor of reducing the productivity of the RTM member.

一方、特許文献4に記載のインモールドコーティング法においても、キャビティの厚みを変化させる必要から前記の問題が生じて、十分なシール性を得られない課題や、生産性が低下する課題があった。   On the other hand, the in-mold coating method described in Patent Document 4 also has a problem that the above-mentioned problem arises because it is necessary to change the thickness of the cavity, and sufficient sealing performance cannot be obtained, and productivity is reduced. .

そこで本発明の目的は、上記のような問題点に着目し、従来のシール構造と比較して真空が保持しやすく、樹脂が漏洩しにくく、かつシール材の破損を防止することによりシール材交換の手間を省くことができる繊維強化樹脂成形型、およびそれを用いた繊維強化樹脂の成形方法を提供することにある。また、前記のようなキャビティの厚みの変化するRTM成形に好適な繊維強化樹脂成形型、およびそれを用いた繊維強化樹脂の成形方法を提供することにある。   Accordingly, the object of the present invention is to replace the sealing material by paying attention to the above-mentioned problems, making it easier to maintain a vacuum, preventing resin from leaking, and preventing damage to the sealing material as compared with the conventional sealing structure. An object of the present invention is to provide a fiber reinforced resin molding die that can save the labor of the above, and a method for molding a fiber reinforced resin using the same. Another object of the present invention is to provide a fiber reinforced resin mold suitable for RTM molding in which the thickness of the cavity changes as described above, and a fiber reinforced resin molding method using the same.

本発明者らは、このような課題に基づいて検討を重ねた結果、型開閉方向と略平行方向の面と型開閉方向と略垂直方向の面との少なくとも2つの面からなるシール材との当接部を繊維強化樹脂成形型に設けることで、成形中にキャビティの厚みを変化させた場合や、そのような成形を繰り返した場合でも、シール材が破損しにくく、真空を保持しやすく、樹脂が漏洩しにくいことを見出した。   As a result of repeated studies based on such problems, the present inventors have found that the sealing material is composed of at least two surfaces, that is, a surface that is substantially parallel to the mold opening / closing direction and a surface that is substantially perpendicular to the mold opening / closing direction. By providing the contact part in the fiber reinforced resin molding die, even when the thickness of the cavity is changed during molding or when such molding is repeated, the sealing material is not easily damaged, and it is easy to maintain a vacuum. It was found that the resin is difficult to leak.

本発明の繊維強化樹脂成形型は、前述の課題を解決するために以下の構成を採るものである。すなわち、
(1)互いに対向しキャビティを形成する少なくとも一対の型であり、一方の型の前記キャビティの外側に略周状に溝が設けられており、前記溝にシール材を備えた繊維強化樹脂成形型であって、他方の型は前記シール材と当接する型開閉方向と略平行方向の面と前記型開閉方向と略垂直方向の面との少なくとも2つの面からなる当接部を有し、前記シール材と前記当接部が完全に離間した型開き時に、前記シール材と前記略平行方向の面との最短距離(L1(mm))と前記シール材と前記略垂直方向の面との最短距離(L2(mm))の関係がL1≦L2である、繊維強化樹脂成形型。
(2)前記シール材と前記略平行方向の面と前記略垂直方向の面が接した第2型閉じ状態において、前記キャビティが以下の(A)、(B)、および(C)によって密閉されている、上記(1)に記載の繊維強化樹脂成形型。
(A)一方の型
(B)他方の型
(C)一方の型と他方の型によってシール材が型開閉方向に挟み込まれたクランプ領域
(3)前記略平行方向の面と前記略垂直方向の面のなす角度(α(度))が80≦α≦135である、上記(1)または(2)に記載の繊維強化樹脂成形型。
(4)前記溝への前記シール材の挿入方向と前記型開閉方向のなす角度(β(度))が15≦β≦75である、上記(1)から(3)のいずれかに記載の繊維強化樹脂成形型。
(5)前記当接部の周方向に対して垂直な断面における前記溝の底部の形状が略半円形状である、上記(1)から(4)のいずれかに記載の繊維強化樹脂成形型。
(6)前記略垂直方向の面が突起を有する、上記(1)から(5)のいずれかに記載の繊維強化樹脂成形型。
(7)上記(1)から(6)のいずれかに記載の繊維強化樹脂成形型のキャビティに強化繊維基材を配置する基材配置工程と、前記キャビティに樹脂を注入する樹脂注入含浸工程とを含む、繊維強化樹脂の製造方法。
(8)上記(1)から(6)のいずれかに記載の繊維強化樹脂成形型のキャビティに中間基材を配置する中間基材配置工程と、前記キャビティの厚みを減少させて前記中間基材を加圧するプレス工程とを含む、繊維強化樹脂の製造方法。
(9)上記(1)から(6)のいずれかに記載の繊維強化樹脂成形型のキャビティに繊維強化樹脂成形品を配置する繊維強化樹脂成形品配置工程と、前記キャビティに樹脂を注入する表面樹脂注入工程とを含む、繊維強化樹脂の製造方法。
The fiber-reinforced resin molding die of the present invention adopts the following configuration in order to solve the above-described problems. That is,
(1) At least a pair of molds facing each other and forming a cavity, and a fiber reinforced resin molding die having a groove provided in a substantially circumferential shape on the outer side of the cavity of one of the molds. The other mold has an abutting portion composed of at least two surfaces, a surface in a direction substantially parallel to the mold opening / closing direction and a surface in the direction perpendicular to the mold opening / closing direction. At the time of mold opening when the sealing material and the contact portion are completely separated, the shortest distance (L1 (mm)) between the sealing material and the substantially parallel surface and the shortest distance between the sealing material and the substantially vertical surface A fiber-reinforced resin mold in which the relationship of distance (L2 (mm)) is L1 ≦ L2.
(2) In the second mold closed state in which the sealing material, the substantially parallel surface and the substantially vertical surface are in contact, the cavity is sealed by the following (A), (B), and (C). The fiber-reinforced resin mold according to (1) above.
(A) One mold (B) The other mold (C) A clamp region in which a sealing material is sandwiched by one mold and the other mold in the mold opening / closing direction (3) The substantially parallel surface and the substantially vertical direction The fiber-reinforced resin mold according to (1) or (2) above, wherein an angle (α (degree)) formed by the surface is 80 ≦ α ≦ 135.
(4) The angle between the insertion direction of the sealing material into the groove and the mold opening / closing direction (β (degree)) is 15 ≦ β ≦ 75, according to any one of (1) to (3) above Fiber reinforced resin mold.
(5) The fiber reinforced resin mold according to any one of (1) to (4), wherein the shape of the bottom of the groove in a cross section perpendicular to the circumferential direction of the contact portion is a substantially semicircular shape. .
(6) The fiber-reinforced resin mold according to any one of (1) to (5), wherein the substantially vertical surface has a protrusion.
(7) A substrate placement step of placing a reinforcing fiber substrate in the cavity of the fiber-reinforced resin molding die according to any one of (1) to (6), and a resin injection impregnation step of injecting resin into the cavity A method for producing a fiber reinforced resin, comprising:
(8) An intermediate base material disposing step of disposing an intermediate base material in the cavity of the fiber reinforced resin molding die according to any one of (1) to (6), and reducing the thickness of the cavity to form the intermediate base material And a pressing step of pressing the fiber.
(9) A fiber-reinforced resin molded product placement step for placing a fiber-reinforced resin molded product in the cavity of the fiber-reinforced resin mold according to any one of (1) to (6) above, and a surface for injecting resin into the cavity A method for producing a fiber reinforced resin, comprising a resin injection step.

本発明に係る繊維強化樹脂成形型によれば、成形中にキャビティの厚みを変化させた場合や、そのような成形を繰り返した場合でも、シール材が損傷しにくく、真空を保持しやすく、樹脂が漏洩しにくい。   According to the fiber reinforced resin molding die according to the present invention, even when the thickness of the cavity is changed during molding or when such molding is repeated, the sealing material is not easily damaged and the vacuum is easily maintained. Is difficult to leak.

本発明のシール部の構成要素の位置関係の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the positional relationship of the component of the seal | sticker part of this invention. 本発明の一方の型と他方の型によって型開閉方向に両面が挟み込まれたシール材のクランプ領域の一例を示す説明図である。It is explanatory drawing which shows an example of the clamp area | region of the sealing material by which both surfaces were inserted | pinched by the type | mold opening / closing direction by one type | mold and the other type | mold of this invention. 本発明の溝とシール材の関係の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the relationship between the groove | channel and sealing material of this invention. 本発明の製造方法の第一の実施態様に係る繊維強化樹脂成形型をRTM成形に適用した場合の一例を示すRTM成形装置の概略断面図である。It is a schematic sectional drawing of the RTM shaping | molding apparatus which shows an example at the time of applying the fiber reinforced resin shaping | molding die which concerns on the 1st embodiment of the manufacturing method of this invention to RTM shaping | molding. 本発明の製造方法の第二の実施態様に係る繊維強化樹脂成形型をRTM成形に適用した場合の一例を示すRTM成形装置の概略断面図である。It is a schematic sectional drawing of the RTM shaping | molding apparatus which shows an example at the time of applying the fiber reinforced resin shaping | molding die which concerns on the 2nd embodiment of the manufacturing method of this invention to RTM shaping | molding. 図2のRTM成形装置においてキャビティの厚みが繊維強化樹脂成形品の厚みよりも大きい状態に保持された状態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the state hold | maintained in the state where the thickness of a cavity is larger than the thickness of a fiber reinforced resin molded product in the RTM molding apparatus of FIG. 本発明のシール部の構造および型締めから脱型までの一連の工程の一例を示す図である。It is a figure which shows an example of the structure of the seal | sticker part of this invention, and a series of processes from mold clamping to mold removal. 本発明のシール部の構造および型締めから脱型までの一連の工程の別の一例を示す図である。It is a figure which shows another example of the structure of the seal | sticker part of this invention, and a series of processes from mold clamping to mold removal. 本発明のシール部の構造および型締めから脱型までの一連の工程のさらに別の一例を示す図である。It is a figure which shows another example of the structure of the seal | sticker part of this invention, and a series of processes from mold clamping to mold removal. 本発明のシール材と略平行方向の面と略垂直方向の面からなるシール部の例を示す概略断面図である。It is a schematic sectional drawing which shows the example of the seal | sticker part which consists of the surface of a substantially parallel direction and the surface of a substantially perpendicular direction with the sealing material of this invention. 本発明の実施例のシール材と当接部の関係を示す概略断面図である。It is a schematic sectional drawing which shows the relationship between the sealing material of the Example of this invention, and a contact part. 比較例のシール材と当接部の関係を示す概略断面図である。It is a schematic sectional drawing which shows the relationship between the sealing material of a comparative example, and a contact part.

本発明は、型開閉方向と略平行方向の面と型開閉方向と略垂直方向の面からなるシール材との当接部を有する繊維強化樹脂成形型、およびこれを用いた繊維強化樹脂の製造方法である。   The present invention relates to a fiber reinforced resin mold having a contact portion between a surface that is substantially parallel to the mold opening / closing direction and a sealing material that is substantially perpendicular to the mold opening / closing direction, and production of a fiber reinforced resin using the same. Is the method.

ここで、一対の型の型開き状態を、図1を用いて説明する。図1に、キャビティ4の外側にシール材2を有する一方の型7、シール材2と当接する型開閉方向3と略平行方向の面101と型開閉方向3と略垂直方向の面102からなる当接部1を有する他方の型8が図示される。また、本発明の当接部の一例として、突起5を有する略垂直方向の面102と、略垂直方向の面102と曲面を介して滑らかに接続する略平行方向の面101が図示される。このとき、一対の型の型開き状態を、型の当接部1とシール材2の位置関係から、シール材2と当接部1が完全に離間した型開き状態、シール材2と当接部1の略平行方向の面101のみが接した第1型閉じ状態、シール材2と当接部1の略平行方向の面101と略垂直方向の面102が接した第2型閉じ状態の3つの状態に分類する。   Here, the mold open state of the pair of molds will be described with reference to FIG. 1 includes a mold 7 having a sealing material 2 outside the cavity 4, a surface 101 in a direction substantially parallel to the mold opening / closing direction 3 in contact with the sealing material 2, and a surface 102 in a direction substantially perpendicular to the mold opening / closing direction 3. The other mold 8 with the abutment 1 is shown. Further, as an example of the contact portion of the present invention, a substantially vertical surface 102 having protrusions 5 and a substantially parallel surface 101 smoothly connected to the substantially vertical surface 102 via a curved surface are illustrated. At this time, the mold open state of the pair of molds is determined based on the positional relationship between the mold contact portion 1 and the seal material 2, and the mold open state in which the seal material 2 and the contact portion 1 are completely separated from each other. The first mold closed state in which only the substantially parallel surface 101 of the part 1 is in contact, and the second mold closed state in which the seal material 2 and the substantially parallel surface 101 of the contact part 1 are in contact with the substantially vertical surface 102. Classify into three states.

次に、本発明の実施形態の詳細を説明する。
[当接部]
本発明の繊維強化樹脂成形型において、型のシール材との当接部は型開閉方向と略平行方向の面と型開閉方向と略垂直方向の面との少なくとも2つの面から構成される。
Next, details of the embodiment of the present invention will be described.
[Contact part]
In the fiber reinforced resin molding die of the present invention, the contact portion of the mold with the sealing material is composed of at least two surfaces: a surface in the direction parallel to the mold opening / closing direction and a surface in the direction perpendicular to the mold opening / closing direction.

略平行方向の面と型開閉方向のなす角度に特に限定はないが、型閉じでシール材の押圧量がほとんど変化せずシール材が破損しにくいため0度以上30度以下とすることが好ましく、当接部との擦れによるシール材の損傷を軽減できるため、0度以上10度以下とすることがさらに好ましい。   There is no particular limitation on the angle formed between the plane in the substantially parallel direction and the mold opening / closing direction, but it is preferable that the angle is 0 degree or more and 30 degrees or less because the pressing amount of the sealing material hardly changes when the mold is closed and the sealing material is not easily damaged. In order to reduce damage to the sealing material due to rubbing with the abutting portion, it is more preferable that the angle is 0 degree or more and 10 degrees or less.

また、略垂直方向の面と型開閉方向のなす角度に特に限定はないが、型閉じに伴ってシール材の押圧量を増加させてキャビティの耐樹脂漏れ性を向上させることができるため45度以上90度以下とすることが好ましい。   In addition, the angle formed between the surface in the substantially vertical direction and the mold opening / closing direction is not particularly limited, but the resin leakage resistance of the cavity can be improved by increasing the pressing amount of the sealing material as the mold is closed. The angle is preferably 90 degrees or less.

また、略平行方向の面と略垂直方向の面は曲面を介して滑らかに接続しても良いし、角部や凹みを介して接続しても良い。略平行方向の面と略垂直方向の面のなす角度(α(度))に特に限定はないが、第2型閉じ状態においてキャビティ内の樹脂が高圧になった場合に、略平行方向の面がキャビティと反対方向へのシール材の変形を抑制するバックアップとなるため、80≦α≦135とすることが好ましく、シール材を押圧した時に破損させることなく、十分な対樹脂漏れ性を得ることができるため、90≦α≦105とすることがさらに好ましい。   Further, the substantially parallel surface and the substantially vertical surface may be smoothly connected via a curved surface, or may be connected via a corner or a recess. There is no particular limitation on the angle (α (degrees)) formed by the substantially parallel surface and the substantially perpendicular surface, but when the resin in the cavity becomes a high pressure in the second mold closed state, the substantially parallel surface Is a backup that suppresses deformation of the seal material in the direction opposite to the cavity, so that 80 ≦ α ≦ 135 is preferable, and sufficient resin leakage is obtained without damaging the seal material when pressed. Therefore, it is more preferable that 90 ≦ α ≦ 105.

本発明の繊維強化樹脂成形型において、シール材と当接部が完全に離間した型開き時に、シール材と略平行方向の面との最短距離(L1(mm))とシール材と略垂直方向の面との最短距離(L2(mm))の関係はL1≦L2である。このような構成とすることで、第1型閉じ状態において略平行方向の面がシール材と接することで、前述の理由からシール材の破損を抑制しつつ真空保持性を得られるため、第2型閉じ状態に至るまでにキャビティ内を排気して真空度を高めることができ、生産性の観点から好ましい。さらに第2型閉じ状態においては、略垂直方向の面がシール材と接触し、型閉じに伴ってシール材の押圧量を増加させることができ、加えてシール材が型開閉方向と略垂直方向と、型開閉方向と略平行方向から押圧固定されるため、キャビティからの樹脂漏洩を防ぐことができ好ましい。   In the fiber reinforced resin molding die of the present invention, when the mold is opened with the sealing material and the contact portion completely separated from each other, the shortest distance (L1 (mm)) between the sealing material and the surface in the substantially parallel direction and the sealing material in the substantially vertical direction. The relationship of the shortest distance (L2 (mm)) with respect to the surface is L1 ≦ L2. By adopting such a configuration, the surface in the substantially parallel direction is in contact with the sealing material in the closed state of the first mold, so that vacuum retention can be obtained while suppressing damage to the sealing material for the above-described reason. The degree of vacuum can be increased by evacuating the cavity until the mold is closed, which is preferable from the viewpoint of productivity. Further, in the second mold closed state, the surface in the substantially vertical direction comes into contact with the sealing material, and the pressing amount of the sealing material can be increased along with the mold closing. In addition, the sealing material is in the direction substantially perpendicular to the mold opening / closing direction. Since the resin is pressed and fixed in a direction substantially parallel to the mold opening / closing direction, resin leakage from the cavity can be prevented, which is preferable.

本発明の繊維強化樹脂成形型において、型の当接部の断面形状は一定である必要は無く、例えば略平行方向の面や略垂直方向の面の形状や寸法が周方向で変化しても良い。略平行方向の面の寸法に特に限定はないが、第1型閉じ状態においてキャビティ内の排気時間を確保してキャビティの真空度を高めることができるため、型開閉方向に対する長さが5mm以上1000mm以下であることが好ましく、第2型閉じ状態においてシール材を押圧固定できるため10mm以上300mm以下であることがさらに好ましい。   In the fiber reinforced resin molding die of the present invention, the cross-sectional shape of the abutting portion of the die does not need to be constant. For example, even if the shape or size of a substantially parallel surface or a substantially vertical surface changes in the circumferential direction, good. Although there is no particular limitation on the dimension of the surface in the substantially parallel direction, the length in the mold opening / closing direction is 5 mm or more and 1000 mm because the vacuum degree of the cavity can be increased by securing the exhaust time in the cavity in the first mold closed state. It is preferable that the thickness is 10 mm or more and 300 mm or less because the sealing material can be pressed and fixed in the second mold closed state.

また、略平行方向の面と略垂直方向の面は、例えば、面内に収まる凹凸の変化として、湾曲形状や突起を有することができる。特に略垂直な面に突起を設けることで、突起との接触により押しのけられるシール材の体積が突起の無い場合に比べて小さくなるため、第2型閉じ状態においてシール材に生じるひずみが小さくなり、損傷が防止されやすくなり好ましい。   In addition, the substantially parallel surface and the substantially vertical surface can have, for example, a curved shape or a protrusion as a change in the unevenness that falls within the surface. In particular, by providing the protrusion on the substantially vertical surface, the volume of the sealing material that is pushed away by contact with the protrusion is smaller than when there is no protrusion, so the strain generated in the sealing material in the second mold closed state is reduced, It is preferable because damage is easily prevented.

また、第1型閉じ状態開始から第2型締め状態開始までの時間に特に限定はないが、真空引きにより型閉じ中にキャビティの真空度をより高めることができるため1秒以上であることが好ましく、サイクルタイムを短くして生産性を高めることができるため1000秒以下であることが好ましい。
[クランプ領域]
本発明の繊維強化樹脂成形型は、図2(a)に例を示すように、第2型閉じ状態においてシール材2が一方の型と他方の型によって型開閉方向3に両面が挟み込まれたクランプ領域6を持つことができる。比較として、クランプ領域を持たない場合を図2(b)、(c)に示す。クランプ領域を設けることで、型閉じに伴ってシール材の押圧量を増加させることでき、耐樹脂漏れ性が向上する。つまり、前記シール材と前記略平行方向の面と前記略垂直方向の面が接した第2型閉じ状態において、前記キャビティが(A)一方の型、(B)他方の型、および(C)一方の型と他方の型によってシール材が型開閉方向に挟み込まれたクランプ領域によって密閉されていることにより、キャビティ内が高圧となった場合でも樹脂が漏れにくい。
The time from the start of the first mold closed state to the start of the second mold clamped state is not particularly limited. However, since the degree of vacuum of the cavity can be further increased during the mold closing by evacuation, it should be 1 second or longer. The cycle time is preferably 1000 seconds or less because the cycle time can be shortened to increase the productivity.
[Clamping area]
As shown in FIG. 2 (a), the fiber-reinforced resin molding die of the present invention has the sealing material 2 sandwiched in both the mold opening and closing direction 3 by one mold and the other mold when the second mold is closed. It can have a clamping area 6. For comparison, FIGS. 2B and 2C show a case where the clamp area is not provided. By providing the clamp region, the pressing amount of the sealing material can be increased as the mold is closed, and the resin leakage resistance is improved. That is, in the second mold closed state in which the seal material, the substantially parallel surface and the substantially vertical surface are in contact, the cavity has (A) one mold, (B) the other mold, and (C) Since the sealing material is sealed by the clamp region in which the sealing material is sandwiched in the mold opening and closing direction by the one mold and the other mold, the resin is difficult to leak even when the inside of the cavity is at a high pressure.

クランプ領域の幅に特に限定はないが、0.5MPa以上の高圧樹脂に対してシール材の変形による漏れを防止するには1mm以上であることが好ましく、2MPa以上の高圧樹脂に対して十分な封止を発現するには5mm以上であることがさらに好ましい。また、型寸法を小さくできるため50mm以下であることが好ましく、シール材の反力が小さくなり型締め力を低減できるため20mm以下であることがさらに好ましい。
[溝]
ここで、本発明の繊維強化樹脂成形型の一方の型7のキャビティ4の外側に略周状に設けられた溝9とシール材2の関係の一例を図3に示す。図3において、シール材2は溝9に挿入方向10の方向に挿入される。
Although there is no particular limitation on the width of the clamp region, it is preferably 1 mm or more to prevent leakage due to deformation of the sealing material for high pressure resin of 0.5 MPa or more, and is sufficient for high pressure resin of 2 MPa or more. In order to exhibit sealing, it is more preferable that it is 5 mm or more. Moreover, it is preferable that it is 50 mm or less because a mold dimension can be made small, and it is more preferable that it is 20 mm or less because a reaction force of the sealing material becomes small and a clamping force can be reduced.
[groove]
Here, FIG. 3 shows an example of the relationship between the groove 9 provided on the outer side of the cavity 4 of one mold 7 of the fiber-reinforced resin mold of the present invention and the sealing material 2. In FIG. 3, the sealing material 2 is inserted into the groove 9 in the direction of the insertion direction 10.

本発明の繊維強化樹脂成形型において、溝の断面形状に特に限定はないが、溝を型に立体的に形成する場合の加工が容易であるため、当接部の周方向に対して垂直な断面における溝の底部の形状が略半円形状であることが好ましい。   In the fiber reinforced resin molding die of the present invention, there is no particular limitation on the cross-sectional shape of the groove, but since the processing is easy when the groove is three-dimensionally formed in the die, it is perpendicular to the circumferential direction of the contact portion. It is preferable that the shape of the bottom of the groove in the cross section is a substantially semicircular shape.

また、溝へのシール材の挿入方向と型開閉方向のなす角度(β(度))に特に限定はないが、第2型閉じ状態において略垂直方向の面と略平行方向の面によってシール材が押圧固定されやすく、シール材の脱落やシール材と溝の間への樹脂の差込を抑制できるため、15≦β≦75とすることが好ましい。
[シール材]
シール材の断面形状に特に限定はないが、中実とすることで、高い樹脂圧によるシール材の押し込みが抑制されるため、シール材と溝の間への樹脂の差込を防止することができ好ましい。一方、シール材を中空とすることでシール材の当接部への追従性が向上するとともに耐久性も高まるため好ましい。
There is no particular limitation on the angle (β (degrees)) between the insertion direction of the sealing material into the groove and the mold opening / closing direction, but the sealing material is defined by the substantially vertical surface and the substantially parallel surface in the second mold closed state. Is preferably pressed and fixed, and it is possible to suppress the dropping of the sealing material and the insertion of the resin between the sealing material and the groove.
[Sealant]
There is no particular limitation on the cross-sectional shape of the sealing material, but by making it solid, it is possible to prevent the resin from being inserted between the sealing material and the groove because the pressing of the sealing material due to high resin pressure is suppressed. This is preferable. On the other hand, it is preferable to make the sealing material hollow because the followability of the sealing material to the contact portion is improved and the durability is also increased.

シール材の具体的な材質については、特に限定されず、好ましいシール材の材質は樹脂との相性によっても異なるが、シリコーン系やフッ素系の材質であることが好ましい。すなわち、このような材質では、樹脂に対し優れた離型性を有するので、シール材を長持ちさせることができる。   The specific material of the sealing material is not particularly limited, and the preferable material of the sealing material is preferably a silicone-based or fluorine-based material, although it varies depending on the compatibility with the resin. That is, since such a material has excellent releasability with respect to the resin, the sealing material can be prolonged.

また、シール材の硬さについては、例えば、ISO7691に基づき、デュロメータ硬さ、ショアAでA10〜90の範囲であることが好ましく、より好ましくはA30〜70の範囲である。硬い場合には樹脂が溝とシール材の間に入ることを抑制でき、一方で柔らかい場合には潰し代の設計範囲が広く工業的に利用しやすい。これらの両者の兼ね合いから、上記のような範囲が好ましい。
[型]
本発明の繊維強化樹脂成形型において、溝が設けられた一方の型および当接部を有する他方の型はシール材よりも線膨張率が小さいことが好ましく、好ましくは線膨張率が30×10−6以下の範囲である。この線膨張率の範囲は、−20〜300℃の温度域の少なくとも一部に含まれていることが好ましい。本発明における成形は樹脂成形であり、ダイキャストなどとは異なるため、樹脂成形温度域のみで上記のような範囲の線膨張率を発現できれば十分である。
Further, the hardness of the sealing material is preferably in the range of A10 to 90 in terms of durometer hardness and Shore A based on, for example, ISO 7691, and more preferably in the range of A30 to 70. When it is hard, the resin can be prevented from entering between the groove and the sealing material, while when it is soft, the design range of the crushing allowance is wide and easy to use industrially. From the balance of both, the above range is preferable.
[Type]
In the fiber-reinforced resin molding die of the present invention, it is preferable that one die provided with a groove and the other die having a contact portion have a smaller linear expansion coefficient than that of the sealing material, and preferably the linear expansion coefficient is 30 × 10. It is in the range of -6 or less. The range of the linear expansion coefficient is preferably included in at least a part of the temperature range of −20 to 300 ° C. Since the molding in the present invention is resin molding and is different from die casting or the like, it is sufficient that the linear expansion coefficient in the above range can be expressed only in the resin molding temperature range.

本発明の繊維強化樹脂成形型において、溝が設けられた一方の型の溝の仕上げ面には、シール材の傷みを抑制するためにツールマークが無いことが好ましい。また、仕上げ面の表面粗さとしては、一定値以下に保つことが好ましく、Ra:2.5(μm)以下が好ましい。   In the fiber reinforced resin molding die of the present invention, it is preferable that the finished surface of the groove of one mold provided with the groove does not have a tool mark in order to suppress damage to the sealing material. Further, the surface roughness of the finished surface is preferably maintained at a certain value or less, and Ra: 2.5 (μm) or less is preferable.

上記のような本発明の繊維強化樹脂成形型は、例えばRTM成形や、強化繊維等の長繊維からなる繊維補強材に樹脂を含浸したプリプレグや、強化繊維等の短繊維からなる繊維補強材に樹脂を含浸したシートモールドコンパウンド(SMC)などの中間基材のプレス成形にも使用できる。   The fiber reinforced resin molding die of the present invention as described above can be applied to, for example, RTM molding, a prepreg obtained by impregnating a fiber reinforcing material made of long fibers such as reinforcing fibers, or a fiber reinforcing material made of short fibers such as reinforcing fibers. It can also be used for press molding of an intermediate substrate such as a sheet mold compound (SMC) impregnated with a resin.

本発明の繊維強化樹脂成形型は、短時間で繊維強化樹脂の成形を行いたい場合にも好適に用いられる。短時間で成形を行う場合に注入される樹脂の粘度は、強化繊維基材に含浸しやすいことから、低粘度であることが好ましく、例えば、2000cP以下であることが好ましい。注入される樹脂が低粘度である場合、型締め時にシール材まで樹脂が到達し、しばしば樹脂漏れにつながることがあるが、本発明の繊維強化樹脂成形型は高い真空保持性、耐樹脂漏れ性を有することから、シール材まで樹脂が到達する場合であっても樹脂漏れを起こさずに短時間で成形できる。   The fiber reinforced resin mold of the present invention is also suitably used when it is desired to mold the fiber reinforced resin in a short time. The viscosity of the resin injected when molding in a short time is preferably low, for example, 2000 cP or less because it is easy to impregnate the reinforcing fiber substrate. If the injected resin has a low viscosity, the resin may reach the sealing material when the mold is clamped, which often leads to resin leakage, but the fiber-reinforced resin mold of the present invention has high vacuum retention and resin leakage resistance. Therefore, even if the resin reaches the sealing material, it can be molded in a short time without causing resin leakage.

本発明の繊維強化樹脂成形型は、繰り返し使用してもシール材が破損しにくいことから、溝に装着されたシール材を、複数回のRTM成形やプレス成形に繰り返しそのまま使用することが可能である。   Since the fiber-reinforced resin mold of the present invention is not easily damaged even if it is repeatedly used, it is possible to use the seal material mounted in the groove repeatedly as it is for a plurality of RTM moldings and press moldings. is there.

本発明の繊維強化樹脂成形型は、キャビティを密閉して厚みを変化させた場合もシール材の破損が生じにくく、高い真空保持性と耐樹脂漏れ性を両立できるため、ボイドや樹脂ヒケの少ない良質な製品を得ることができる。さらに、シール材を交換する手間が省け、シール材近傍の樹脂バリを脱型しやすいため、サイクルタイムを短縮することができ、生産性が向上する。加えて、キャビティの厚みが変化する場合もシール材の破損がなく、高い真空保持性と高い耐樹脂漏れ性を繰り返し発現できることにより、キャビティの厚みを変化させながらRTM成形やプレス成形を行うことが可能になるため、強化繊維基材への樹脂含浸性を高めることや、繊維強化樹脂成形品の表面意匠性を向上させることや、複数の異なる厚みの繊維強化樹脂成形品を同一のRTM成形型で製造することが可能になる。
[製造方法]
以下、本発明の繊維強化樹脂の製造方法を、単に「本発明の製造方法」という場合がある。
(第一の態様)
本発明の繊維強化樹脂の製造方法の第一の態様は、本発明の繊維強化樹脂成形型のキャビティに強化繊維基材を配置する基材配置工程と、前記キャビティに樹脂を注入する樹脂注入含浸工程とを含む。
The fiber-reinforced resin molding die of the present invention is less likely to cause damage to the sealing material even when the thickness is changed by sealing the cavity, and can have both high vacuum retention and resin leakage resistance. You can get a good product. Furthermore, since the trouble of replacing the sealing material can be saved and the resin burr near the sealing material can be easily removed, the cycle time can be shortened and the productivity is improved. In addition, even when the thickness of the cavity changes, there is no damage to the sealing material, and high vacuum retention and high resin leakage resistance can be expressed repeatedly, so that RTM molding and press molding can be performed while changing the cavity thickness. It is possible to improve the resin impregnation property to the reinforced fiber base material, improve the surface design of the fiber reinforced resin molded product, and use the same RTM mold for multiple fiber reinforced resin molded products with different thicknesses. It becomes possible to manufacture with.
[Production method]
Hereinafter, the manufacturing method of the fiber reinforced resin of the present invention may be simply referred to as “the manufacturing method of the present invention”.
(First aspect)
The first aspect of the method for producing a fiber reinforced resin of the present invention includes a base material arranging step of arranging a reinforced fiber base material in the cavity of the fiber reinforced resin mold of the present invention, and a resin injection impregnation for injecting the resin into the cavity. Process.

本発明の製造方法の第一の態様について、図面を参照しながら説明する。なお、本発明は図面に記載された発明に限定されるものではない。   A first aspect of the production method of the present invention will be described with reference to the drawings. The present invention is not limited to the invention described in the drawings.

図4は、本発明の製造方法の第一の態様に係る繊維強化樹脂成形型をRTM成形に適用した場合の一例を示している。図4において、RTM成形装置1001は、本発明の製造方法の第一の態様に係る繊維強化樹脂成形型としてのRTM成形装置を示しており、上型701は本発明における溝が設けられた一方の型を、下型801は、プレス機構11によって型締めされる、本発明における当接部を有する他方の型を、それぞれ示している。下型701と上型801との間には、所定形状の成形を行うためのキャビティ4が形成され、キャビティの周囲にはシール部15が設けられる。キャビティ4内には強化繊維基材12が配置される。また、上型701には、樹脂を供給するための樹脂供給路13、樹脂注入口14が設けられている。加えて、キャビティ4の厚みは、型位置調整機構17によって調整される。   FIG. 4 shows an example in which the fiber reinforced resin mold according to the first embodiment of the production method of the present invention is applied to RTM molding. In FIG. 4, an RTM molding device 1001 shows an RTM molding device as a fiber-reinforced resin molding die according to the first aspect of the manufacturing method of the present invention, and an upper mold 701 is provided with a groove in the present invention. The lower mold 801 indicates the other mold having the contact portion in the present invention, which is clamped by the press mechanism 11. A cavity 4 for forming a predetermined shape is formed between the lower mold 701 and the upper mold 801, and a seal portion 15 is provided around the cavity. A reinforcing fiber substrate 12 is disposed in the cavity 4. The upper mold 701 is provided with a resin supply path 13 and a resin injection port 14 for supplying resin. In addition, the thickness of the cavity 4 is adjusted by the mold position adjusting mechanism 17.

本発明の製造方法の第一の態様では、キャビティ内に、強化繊維基材が配置される(基材配置工程)。前記強化基材は、予め賦形したプリフォームであってもよい。この強化繊維基材がキャビティ内に配置された状態で、上型が下型に対し型締めされる(型締め工程)。続いて、樹脂供給路から繊維強化樹脂を構成するための樹脂が、強化繊維基材に対し適切な位置で開口された樹脂注入口を介して注入され、強化繊維基材に含浸される(樹脂注入含浸工程)。樹脂含浸後には、樹脂が硬化し、所定の繊維強化樹脂成形品が作製される。   In the first aspect of the production method of the present invention, the reinforcing fiber base material is placed in the cavity (base material placement step). The reinforced base material may be a preform formed in advance. The upper mold is clamped with respect to the lower mold in a state where the reinforcing fiber base is disposed in the cavity (clamping process). Subsequently, a resin for constituting the fiber reinforced resin from the resin supply path is injected through a resin injection port opened at an appropriate position with respect to the reinforcing fiber base, and impregnated into the reinforcing fiber base (resin Injection impregnation step). After the resin impregnation, the resin is cured and a predetermined fiber-reinforced resin molded product is produced.

以上のような繊維強化樹脂成形型としてのRTM成形装置において、キャビティの周囲にシール部が設けられる。ここで、本発明におけるシール部のいくつかの例について、図10に示す。なお、図10は第1型閉じ状態について示した図である。
(第二の態様)
本発明の繊維強化樹脂の製造方法の第二の態様は、本発明の繊維強化樹脂成形型のキャビティに中間基材を配置する中間基材配置工程と、前記キャビティの厚みを減少させて前記中間基材を加圧するプレス工程とを含む。
In the RTM molding device as the fiber reinforced resin molding die as described above, a seal portion is provided around the cavity. Here, some examples of the seal portion in the present invention are shown in FIG. FIG. 10 is a view showing the first mold closed state.
(Second embodiment)
A second aspect of the method for producing a fiber reinforced resin of the present invention includes an intermediate substrate arranging step of arranging an intermediate substrate in a cavity of the fiber reinforced resin molding die of the present invention, and reducing the thickness of the cavity to the intermediate Pressing the substrate.

本発明の製造方法の第二の態様について、図面を参照しながら説明する。なお、本発明は図面に記載された発明に限定されるものではない。   A second aspect of the production method of the present invention will be described with reference to the drawings. The present invention is not limited to the invention described in the drawings.

図5は、本発明の製造方法の第二の態様に係る繊維強化樹脂成形型をプレス成形に適用した場合の一例を示している。図5において、プレス成形装置1002は、本発明の製造方法の第二の態様に係る繊維強化樹脂成形型としてのプレス成形装置を示しており、上型701は本発明における溝が設けられた一方の型を、下型801は、プレス機構11によって型締めされる、本発明における当接部を有する他方の型を、それぞれ示している。下型701と上型801との間には、所定形状の成形を行うためのキャビティ4が形成され、キャビティの周囲にはシール部15が設けられる。キャビティ4内には中間基材18が配置される。また、キャビティ4の厚みは、型位置調整機構17によって調整される。   FIG. 5 shows an example when the fiber-reinforced resin mold according to the second embodiment of the production method of the present invention is applied to press molding. In FIG. 5, a press molding apparatus 1002 shows a press molding apparatus as a fiber reinforced resin molding die according to the second aspect of the manufacturing method of the present invention, and an upper mold 701 is provided with a groove in the present invention. The lower mold 801 indicates the other mold having the contact portion in the present invention, which is clamped by the press mechanism 11. A cavity 4 for forming a predetermined shape is formed between the lower mold 701 and the upper mold 801, and a seal portion 15 is provided around the cavity. An intermediate substrate 18 is disposed in the cavity 4. The thickness of the cavity 4 is adjusted by the mold position adjusting mechanism 17.

本発明の製造方法の第二の態様では、キャビティ内に、プリプレグやSMCなどの中間基材が配置される(中間基材配置工程)。中間基材は、予め賦形したプリフォームであってもよい。   In the second aspect of the production method of the present invention, an intermediate substrate such as a prepreg or SMC is arranged in the cavity (intermediate substrate arrangement step). The intermediate substrate may be a preform shaped in advance.

この中間基材がキャビティ内に配置された状態で、上型が下型に対し型締めされる(型締め工程)。型締め工程では、型位置調整機構によって、キャビティの厚みが作製される繊維強化樹脂成形品の厚みよりも大きな厚みに保持される。   The upper mold is clamped with respect to the lower mold in a state where the intermediate substrate is disposed in the cavity (clamping process). In the mold clamping process, the mold position adjusting mechanism maintains the thickness of the cavity larger than the thickness of the fiber reinforced resin molded product to be produced.

次いで、キャビティの厚みを減少させることで、中間基材が加圧される(プレス工程)。   Next, the intermediate substrate is pressurized by reducing the thickness of the cavity (pressing process).

加圧後には、樹脂が硬化し、所定の繊維強化樹脂成形品が作製される
以上のような繊維強化樹脂成形型としてのプレス成形装置において、キャビティの周囲に本発明の製造方法の第一の態様で説明したものと同様のシール部が設けられる。
(第三の態様)
本発明の繊維強化樹脂の製造方法の第三の態様は、繊維強化樹脂成形型のキャビティに繊維強化樹脂成形品を配置する繊維強化樹脂成形品配置工程と、前記キャビティに樹脂を注入する表面樹脂注入工程とを含む。
After pressurization, the resin is cured and a predetermined fiber reinforced resin molded product is produced. In the press molding apparatus as the fiber reinforced resin molding die as described above, the first of the manufacturing method of the present invention is provided around the cavity. A seal portion similar to that described in the embodiment is provided.
(Third embodiment)
A third aspect of the method for producing a fiber reinforced resin according to the present invention includes a fiber reinforced resin molded product arrangement step of arranging a fiber reinforced resin molded product in a cavity of a fiber reinforced resin molding die, and a surface resin injecting the resin into the cavity. Injection step.

本発明の製造方法の第三の態様について、図面を参照しながら説明する。なお、本発明は図面に記載された発明に限定されるものではない。   A third aspect of the production method of the present invention will be described with reference to the drawings. The present invention is not limited to the invention described in the drawings.

本発明の製造方法の第三の態様は、本発明の製造方法の第一の態様に係る繊維強化樹脂成形装置と同様の構成を用いて実施することができる(図4)。   The 3rd aspect of the manufacturing method of this invention can be implemented using the structure similar to the fiber reinforced resin molding apparatus which concerns on the 1st aspect of the manufacturing method of this invention (FIG. 4).

本発明の製造方法の第三の態様では、キャビティ内に、繊維強化樹脂成形品が配置される(繊維強化樹脂成形品配置工程)。   In the third aspect of the production method of the present invention, a fiber reinforced resin molded product is arranged in the cavity (fiber reinforced resin molded product arranging step).

この繊維強化樹脂成形品がキャビティ内に配置された状態で、上型が下型に対し型締めされる(型締め工程)。型締め工程では、型位置調整機構によって、キャビティの厚みがキャビティ内に配置された繊維強化樹脂成形品の厚みよりも大きな厚みに保持される。   The upper mold is clamped with respect to the lower mold in a state where the fiber-reinforced resin molded product is arranged in the cavity (clamping process). In the mold clamping process, the thickness of the cavity is kept larger than the thickness of the fiber-reinforced resin molded article disposed in the cavity by the mold position adjusting mechanism.

続いて、必要に応じて、図示しない真空吸引口を介してキャビティ内が排気され、キャビティ内の真空度が高められる。次いで、樹脂供給路から繊維強化樹脂成形品をコーティングするための樹脂が、繊維強化樹脂成形品に対し適切な位置で開口された樹脂注入口を介して注入され、繊維強化樹脂成形品の表面の少なくとも一部がコーティングされる(表面樹脂注入工程)。   Subsequently, if necessary, the inside of the cavity is evacuated through a vacuum suction port (not shown), and the degree of vacuum in the cavity is increased. Next, a resin for coating the fiber reinforced resin molded product is injected from the resin supply path through a resin inlet that is opened at an appropriate position with respect to the fiber reinforced resin molded product. At least a part is coated (surface resin injection step).

コーティング後には樹脂が硬化し、表面意匠性の向上した繊維強化樹脂成形品が作製される。   After coating, the resin is cured, and a fiber-reinforced resin molded article with improved surface design is produced.

以上のような繊維強化樹脂成形型としてのRTM成形装置において、キャビティの周囲に本発明の製造方法の第一の態様で説明したものと同様のシール部が設けられる。   In the RTM molding apparatus as the fiber reinforced resin molding die as described above, a seal portion similar to that described in the first aspect of the manufacturing method of the present invention is provided around the cavity.

以下、本発明の製造方法の好ましい実施態様について説明する。
(第一の好ましい実施態様)
本発明の製造方法の第一の態様に係る、第一の好ましい実施態様のRTM成形の工程について説明する。
Hereinafter, preferred embodiments of the production method of the present invention will be described.
(First preferred embodiment)
The process of the RTM shaping | molding of the 1st preferable embodiment based on the 1st aspect of the manufacturing method of this invention is demonstrated.

本発明の製造方法の第一の好ましい実施態様のシール部の構造および型締めから脱型までの一連の工程を、図7を参照しながら説明する。上型701のキャビティ4の周囲には、シール材2を挿入するための溝がキャビティ4の外周に沿って延在するように設けられており、この溝中に、図7(a)に示すようにシール材2が装着される。また、下型801のシール材2との当接部には、キャビティの外周に沿って略平行方向の面101と略垂直方向の面102からなる当接部1が設けられており、当接部1は型締めによってシール材2と接触する。シール材は、弾性変形、弾性復元可能なゴム等の材質で構成されている。   The structure of the seal portion and the series of steps from clamping to demolding according to the first preferred embodiment of the production method of the present invention will be described with reference to FIG. A groove for inserting the sealing material 2 is provided around the cavity 4 of the upper mold 701 so as to extend along the outer periphery of the cavity 4. In this groove, as shown in FIG. Thus, the sealing material 2 is mounted. Further, the contact portion of the lower mold 801 with the sealing material 2 is provided with a contact portion 1 composed of a substantially parallel surface 101 and a substantially vertical surface 102 along the outer periphery of the cavity. The part 1 comes into contact with the sealing material 2 by clamping. The sealing material is made of a material such as rubber that can be elastically deformed and elastically restored.

基材配置工程において、キャビティ4内に強化繊維基材12が配置される。前記強化基材は、予め賦形したプリフォームであってもよい。   In the substrate arranging step, the reinforcing fiber substrate 12 is arranged in the cavity 4. The reinforced base material may be a preform formed in advance.

型締め工程では、まず図7の(b)に示すように上型701の型締めによりシール材2が略平行方向の面101と接触し、キャビティ4内が密閉され、図示しない真空吸引口を介してキャビティ4内の排気を開始できる(第1型閉じ状態)。型締め工程では、さらに型を閉じてシール材2を略垂直な面102に接触させ、第2型閉じ状態とすることもできる。シール材の押圧量は、溝とシール材の寸法、キャビティの厚みの関係から任意に調整可能であり、必要以上にシール材が押圧されて破損することなく、十分な真空保持性を得ることができる。   In the mold clamping process, first, as shown in FIG. 7B, the sealing material 2 comes into contact with the surface 101 in the substantially parallel direction by clamping the upper mold 701, the inside of the cavity 4 is sealed, and a vacuum suction port (not shown) is provided. Then, the exhaust in the cavity 4 can be started (first mold closed state). In the mold clamping process, the second mold can be closed by further closing the mold and bringing the sealing material 2 into contact with the substantially vertical surface 102. The pressing amount of the sealing material can be arbitrarily adjusted from the relationship between the dimensions of the groove and the sealing material and the thickness of the cavity, and sufficient vacuum retention can be obtained without damaging the sealing material by being pressed more than necessary. it can.

樹脂注入工程では、図7(c)に示すように、特に樹脂の粘度が小さい場合に、樹脂16がシール材2にまで達する場合がある。樹脂がシール材にまで達した場合であっても、略垂直な面がシール材を押圧し、また略平行方向の面がバックアップとなってキャビティと反対方向へのシール材の変形を抑制するため、必要以上にシール材を押圧して破損させることなく、十分な耐樹脂漏れ性を得ることができる。   In the resin injection process, as shown in FIG. 7C, the resin 16 may reach the sealing material 2 particularly when the viscosity of the resin is small. Even when the resin reaches the sealing material, the substantially vertical surface presses the sealing material, and the substantially parallel surface serves as a backup to suppress deformation of the sealing material in the direction opposite to the cavity. Sufficient resin leakage resistance can be obtained without damaging the seal material by pressing it more than necessary.

樹脂含浸後には、樹脂が硬化し、所定の繊維強化樹脂成形品が作製される。
(第二の好ましい実施態様)
さらに、本発明の製造方法の第一の態様に係る、第二の好ましい実施態様のRTM成形の工程について説明する。
After the resin impregnation, the resin is cured and a predetermined fiber-reinforced resin molded product is produced.
(Second preferred embodiment)
Furthermore, the process of the RTM shaping | molding of the 2nd preferable embodiment based on the 1st aspect of the manufacturing method of this invention is demonstrated.

本発明の製造方法の第二の好ましい実施態様では、基材配置工程において、キャビティ内に強化繊維基材が配置される。前記強化基材は、予め賦形したプリフォームであってもよい。   In the second preferred embodiment of the production method of the present invention, the reinforcing fiber substrate is disposed in the cavity in the substrate disposing step. The reinforced base material may be a preform formed in advance.

基材配置工程を実施した後、型締め工程が実施される。型締め工程では、図7(b)に示すように上型701の型締めによりシール材2が略平行方向の面101と接触し、型位置調整機構17によって、キャビティ4の厚みを作製する繊維強化樹脂成形品の厚みよりも大きく保った図6に示す状態で下型801と上型701との間が気密にシールされ、キャビティ4内の真空が保持される。   After performing a base-material arrangement | positioning process, a mold clamping process is implemented. In the mold clamping step, as shown in FIG. 7B, the sealing material 2 comes into contact with the surface 101 in the substantially parallel direction by clamping the upper mold 701, and the fiber for forming the thickness of the cavity 4 by the mold position adjusting mechanism 17 In the state shown in FIG. 6 which is kept larger than the thickness of the reinforced resin molded product, the space between the lower mold 801 and the upper mold 701 is hermetically sealed, and the vacuum in the cavity 4 is maintained.

続いて、樹脂供給路13から繊維強化樹脂を構成するための樹脂が、強化繊維基材12に対し適切な位置で開口された樹脂注入口14を介して、強化繊維基材12と型の間の空隙に注入される(樹脂注入含浸工程)。   Subsequently, the resin for constituting the fiber reinforced resin from the resin supply path 13 is interposed between the reinforcing fiber base 12 and the mold via the resin inlet 14 opened at an appropriate position with respect to the reinforcing fiber base 12. The resin is injected into the voids (resin injection impregnation step).

そして、樹脂の注入中および/または樹脂の注入後にキャビティの厚みを減少させることで、加圧された樹脂が強化繊維基材に含浸される。このとき、シール材が略垂直な面によりさらに押圧されるが、シール材の押圧量は溝とシール材の寸法、キャビティの厚みの関係から任意に調整可能であり、必要以上にシール材を押圧して破損させることなく、十分な耐樹脂漏れ性を得ることができる。   Then, the reinforcing fiber base material is impregnated with the pressurized resin by reducing the thickness of the cavity during the injection of the resin and / or after the injection of the resin. At this time, the sealing material is further pressed by the substantially vertical surface, but the pressing amount of the sealing material can be arbitrarily adjusted based on the relationship between the dimensions of the groove and the sealing material and the thickness of the cavity, and the sealing material is pressed more than necessary. Thus, sufficient resin leakage resistance can be obtained without causing damage.

樹脂含浸後には、樹脂が硬化し、所定の繊維強化樹脂成形品が作製される。
(第三の好ましい実施態様)
また、本発明の製造方法の第一の態様に係る、第三の好ましい実施態様のRTM成形の工程について説明する。本発明の製造方法の第三の好ましい実施態様では、第一の好ましい実施態様と同じ装置構成を用いて、第一の好ましい実施態様と厚みの異なる成形品を製作することが可能となる。
After the resin impregnation, the resin is cured and a predetermined fiber-reinforced resin molded product is produced.
(Third preferred embodiment)
Moreover, the process of the RTM shaping | molding of the 3rd preferable embodiment based on the 1st aspect of the manufacturing method of this invention is demonstrated. In the third preferred embodiment of the production method of the present invention, a molded product having a thickness different from that of the first preferred embodiment can be produced using the same apparatus configuration as that of the first preferred embodiment.

基材配置工程において、キャビティ内に強化繊維基材が配置される。前記強化基材は、予め賦形したプリフォームであってもよい。   In the substrate arranging step, the reinforcing fiber substrate is arranged in the cavity. The reinforced base material may be a preform formed in advance.

型締め工程では、型位置調整機構によってキャビティの厚みが第一の好ましい実施態様で作製した繊維強化樹脂成形品の厚みよりも小さな、または大きな厚みに保持される。このとき、図7(b)に示す第1型閉じ状態、もしくは、図7(c)に示す第2型閉じ状態に保たれるため、キャビティ内が気密にシールされる。   In the mold clamping step, the thickness of the cavity is kept smaller or larger than the thickness of the fiber reinforced resin molded product produced in the first preferred embodiment by the mold position adjusting mechanism. At this time, since the first mold closed state shown in FIG. 7B or the second mold closed state shown in FIG. 7C is maintained, the inside of the cavity is hermetically sealed.

続いて、樹脂注入含浸工程が実施され、樹脂含浸後には第一の実施態様の繊維強化樹脂成形品の厚みよりも小さな、または大きな厚みを有する繊維強化樹脂成形品が作製される。
(第四の好ましい実施態様)
加えて、本発明の製造方法の第二の態様に係る、本発明の製造方法の第四の好ましい実施態様について説明する。
Subsequently, a resin injection impregnation step is performed, and after the resin impregnation, a fiber reinforced resin molded product having a thickness smaller or larger than the thickness of the fiber reinforced resin molded product of the first embodiment is produced.
(Fourth Preferred Embodiment)
In addition, a fourth preferred embodiment of the production method of the present invention according to the second aspect of the production method of the present invention will be described.

本発明の製造方法の第四の好ましい実施態様のシール部の構造および型締めから脱型までの一連の工程を、図8を参照しながら説明する。上型701のキャビティ4の周囲には、シール材2を挿入するための溝がキャビティ4の外周に沿って延在するように設けられており、この溝中に、図8(a)に示すようにシール材2が装着される。また、下型801のシール材2との当接部には、キャビティの外周に沿って略平行方向の面101と略垂直方向の面102からなる当接部1が設けられており、当接部1は型締めによってシール材2と接触する。シール材は、弾性変形、弾性復元可能なゴム等の材質で構成されている。   The structure of the seal portion and the series of steps from clamping to demolding according to the fourth preferred embodiment of the production method of the present invention will be described with reference to FIG. A groove for inserting the sealing material 2 is provided around the cavity 4 of the upper mold 701 so as to extend along the outer periphery of the cavity 4. In this groove, as shown in FIG. Thus, the sealing material 2 is mounted. Further, the contact portion of the lower mold 801 with the sealing material 2 is provided with a contact portion 1 composed of a substantially parallel surface 101 and a substantially vertical surface 102 along the outer periphery of the cavity. The part 1 comes into contact with the sealing material 2 by clamping. The sealing material is made of a material such as rubber that can be elastically deformed and elastically restored.

基材配置工程にてプリプレグやSMCなどの中間基材18をキャビティ4内に配置した後、型締め工程が実施される。型締め工程では、型位置調整機構によって、キャビティの厚みが製作される繊維強化樹脂成形品の厚みよりも大きな厚みに保持される。このとき、図8(b)に示す第1型閉じ状態、もしくは、図8(c)に示す第2型閉じ状態に型が保たれ、キャビティ内が気密にシールされる。   After the intermediate base material 18 such as prepreg or SMC is placed in the cavity 4 in the base material placement step, a mold clamping step is performed. In the mold clamping process, the thickness of the cavity is kept larger than the thickness of the fiber-reinforced resin molded product to be manufactured by the mold position adjusting mechanism. At this time, the mold is kept in the first mold closed state shown in FIG. 8B or the second mold closed state shown in FIG. 8C, and the inside of the cavity is hermetically sealed.

次いで、必要に応じて図示しない真空吸引口を介してキャビティ内が排気され、キャビティ内の真空度が高められ、同時に、中間基材が予熱される。   Next, if necessary, the inside of the cavity is evacuated through a vacuum suction port (not shown), the degree of vacuum in the cavity is increased, and at the same time, the intermediate substrate is preheated.

続いて、プレス工程では、キャビティの厚みを減少させることで、加圧された樹脂が強化繊維基材に含浸される。   Subsequently, in the pressing step, the reinforcing fiber base material is impregnated with the pressurized resin by reducing the thickness of the cavity.

プレス工程では、図8(c)に示すように、特に樹脂の粘度が小さい場合に、中間基材に含まれる樹脂16がシール材2にまで達する場合がある。樹脂がシール材にまで達した場合であっても、略垂直な面がシール材を押圧し、また略平行方向の面がバックアップとなってキャビティと反対方向へのシール材の変形を抑制するため、必要以上にシール材を押圧して破損させることなく、十分な耐樹脂漏れ性を得ることができる。   In the pressing step, as shown in FIG. 8C, the resin 16 contained in the intermediate base material may reach the sealing material 2 particularly when the viscosity of the resin is small. Even when the resin reaches the sealing material, the substantially vertical surface presses the sealing material, and the substantially parallel surface serves as a backup to suppress deformation of the sealing material in the direction opposite to the cavity. Sufficient resin leakage resistance can be obtained without damaging the seal material by pressing it more than necessary.

樹脂含浸後には、樹脂が硬化し、所定の繊維強化樹脂成形品が作製される。
(第五の好ましい実施態様)
さらに、本発明の製造方法の第三の態様に係る、本発明の製造方法の第五の好ましい実施態様について説明する。
After the resin impregnation, the resin is cured and a predetermined fiber-reinforced resin molded product is produced.
(Fifth Preferred Embodiment)
Furthermore, the 5th preferable embodiment of the manufacturing method of this invention based on the 3rd aspect of the manufacturing method of this invention is demonstrated.

本発明の製造方法の第五の好ましい実施態様のシール部の構造および型締めから脱型までの一連の工程を、図9を参照しながら説明する。上型701のキャビティ4の周囲には、シール材2を挿入するための溝がキャビティ4の外周に沿って延在するように設けられており、この溝中に、図9(a)に示すようにシール材2が装着される。また、下型801のシール材2との当接部には、キャビティの外周に沿って略平行方向の面101と略垂直方向の面102からなる当接部1が設けられており、当接部1は型締めによってシール材2と接触する。シール材は、弾性変形、弾性復元可能なゴム等の材質で構成されている。   The structure of the seal part and the series of steps from clamping to demolding according to the fifth preferred embodiment of the manufacturing method of the present invention will be described with reference to FIG. A groove for inserting the sealing material 2 is provided around the cavity 4 of the upper mold 701 so as to extend along the outer periphery of the cavity 4. In this groove, as shown in FIG. Thus, the sealing material 2 is mounted. Further, the contact portion of the lower mold 801 with the sealing material 2 is provided with a contact portion 1 composed of a substantially parallel surface 101 and a substantially vertical surface 102 along the outer periphery of the cavity. The part 1 comes into contact with the sealing material 2 by clamping. The sealing material is made of a material such as rubber that can be elastically deformed and elastically restored.

繊維強化樹脂成形品配置工程において、キャビティ4内に繊維強化樹脂成形品19が配置される。繊維強化樹脂成形品は、例えば本発明の製造方法の第一の態様、第二の態様により作製された繊維強化樹脂成形品を用いてもよい。また、本発明の製造方法の第一の態様により繊維強化樹脂成形品を作製した後、キャビティ内に繊維強化樹脂成形品をキャビティから取り出すことなく、続く表面樹脂注入工程を実施してもよい。   In the fiber reinforced resin molded product arrangement step, the fiber reinforced resin molded product 19 is arranged in the cavity 4. As the fiber reinforced resin molded article, for example, the fiber reinforced resin molded article produced by the first aspect and the second aspect of the production method of the present invention may be used. Moreover, after producing the fiber reinforced resin molded product according to the first aspect of the production method of the present invention, the subsequent surface resin injection step may be performed without taking the fiber reinforced resin molded product into the cavity.

続いて、図6に示すように型位置調整機構17によってキャビティ4の厚みが繊維強化樹脂成形品の厚みよりも大きい状態に保持され、必要に応じて図示しない真空吸引口を介してキャビティ内が排気され、キャビティ内の真空度が高められる。   Subsequently, as shown in FIG. 6, the mold position adjusting mechanism 17 holds the cavity 4 in a state where the thickness of the cavity 4 is larger than the thickness of the fiber reinforced resin molded product. It is evacuated and the degree of vacuum in the cavity is increased.

次いで、樹脂供給路13から繊維強化樹脂成形品の表面意匠性を高めるための樹脂が、繊維強化樹脂成形品に対し適切な位置で開口された樹脂注入口14を介して、繊維強化樹脂成形品と型の間の空隙に注入される(表面樹脂注入工程)。   Subsequently, the resin for improving the surface design of the fiber reinforced resin molded product from the resin supply path 13 is passed through the resin injection port 14 opened at an appropriate position with respect to the fiber reinforced resin molded product. It is injected into the gap between the mold and the mold (surface resin injection process).

表面樹脂注入工程では、図9(b)に示すように上型701の型締めによりシール材2が略平行方向の面101と接触し、キャビティ4の厚みを繊維強化樹脂成形品の厚みよりも大きく保った状態で下型801と上型701との間が気密にシールされ、キャビティ内の真空保持性と耐樹脂漏れ性が保持される。   In the surface resin injection step, as shown in FIG. 9B, the sealing material 2 comes into contact with the surface 101 in the substantially parallel direction by clamping the upper die 701, and the thickness of the cavity 4 is made larger than the thickness of the fiber-reinforced resin molded product. In a state where it is kept large, the space between the lower mold 801 and the upper mold 701 is hermetically sealed, and the vacuum retention and resin leakage resistance in the cavity are maintained.

さらに、表面樹脂注入工程では、図9(c)に示すように、特に樹脂の粘度が小さい場合に、樹脂16がシール材2にまで達する場合がある。樹脂がシール材にまで達した場合であっても、略垂直な面がシール材を押圧し、また略平行方向の面がバックアップとなってキャビティと反対方向へのシール材の変形を抑制するため、必要以上にシール材を押圧して破損させることなく、十分な耐樹脂漏れ性を得ることができる。   Furthermore, in the surface resin injection process, as shown in FIG. 9C, the resin 16 may reach the sealing material 2 particularly when the viscosity of the resin is small. Even when the resin reaches the sealing material, the substantially vertical surface presses the sealing material, and the substantially parallel surface serves as a backup to suppress deformation of the sealing material in the direction opposite to the cavity. Sufficient resin leakage resistance can be obtained without damaging the seal material by pressing it more than necessary.

そして、注入した樹脂が硬化し、表面意匠性に優れた繊維強化樹脂成形品が作製される。   Then, the injected resin is cured, and a fiber-reinforced resin molded product having excellent surface design is produced.

なお、本発明において、前記第一から第五の実施態様は、任意に組み合わせて実施することができる。   In the present invention, the first to fifth embodiments can be implemented in any combination.

以下に、本発明について、実施例を用いて、より具体的に説明する。
(1)シール部およびシール材
シール材として、日本ケミカル機器株式会社製シリコーン押出し成形品(硬さA50、引張強さ9.1MPa、切断時伸び400%)を用いた。シール部およびシール材の構成を表1に示す。また、実施例については図11に、比較例については図12にシール材と当接部の関係を示す。
Hereinafter, the present invention will be described more specifically with reference to examples.
(1) Sealing part and sealing material As a sealing material, a silicone extruded product (hardness A50, tensile strength 9.1 MPa, elongation at cutting 400%) manufactured by Nippon Chemical Equipment Co., Ltd. was used. Table 1 shows the configuration of the seal portion and the seal material. FIG. 11 shows the relationship between the embodiment and FIG. 12 shows the relationship between the sealing material and the contact portion for the comparative example.

Figure 2018171728
Figure 2018171728

(2)RTM成形
図5に示す構成のRTM成形装置を準備し、RTM成形を行った。強化繊維基材として、東レ(株)製炭素繊維織物(織組織:平織、織物目付:330g/m、強化繊維:T700S−12K)を用いた。樹脂として、2液性エポキシ樹脂(主剤:Momentive社製、硬化剤:東レ株式会社製、酸無水物系硬化剤)を用いた。
(実施例1〜7)
シール部およびシール材の構成を表1、図11のとおりとした後、前述の基材配置工程、型締め工程、樹脂注入工程、加圧含浸工程、脱型工程を行った。なお、加圧含浸工程では、キャビティ厚みを2mm減少させた。
(2) RTM shaping | molding The RTM shaping | molding apparatus of the structure shown in FIG. 5 was prepared, and RTM shaping | molding was performed. A carbon fiber woven fabric (woven structure: plain weave, woven fabric weight: 330 g / m 2 , reinforcing fiber: T700S-12K) manufactured by Toray Industries, Inc. was used as the reinforcing fiber substrate. As the resin, a two-component epoxy resin (main agent: manufactured by Momentive, curing agent: manufactured by Toray Industries, Inc., acid anhydride curing agent) was used.
(Examples 1-7)
After the configurations of the seal part and the seal material were as shown in Table 1 and FIG. 11, the above-described base material placement process, mold clamping process, resin injection process, pressure impregnation process, and demolding process were performed. In the pressure impregnation step, the cavity thickness was reduced by 2 mm.

シール材を溝から取り外して観察したところ、表面に亀裂やえぐれ、むしれ、白変は存在せず、損傷がないことを確認した。実施例6のみ、シール材と略垂直方向の面の間に樹脂が入り込んで固まった跡が見られたが、キャビティ外部への樹脂漏れは発生しなかった。
(比較例1〜5)
シール部およびシール材の構成を表1のとおりとした後、前述の基材配置工程、型締め工程、樹脂注入工程、加圧含浸工程、脱型工程を行った。なお、加圧含浸工程では、キャビティ厚みを2mm減少させた。
When the sealing material was removed from the groove and observed, it was confirmed that the surface was free of cracks, scuffing, peeling, whitening, and no damage. In Example 6 only, traces of the resin entering and solidifying between the sealing material and the substantially vertical surface were observed, but no resin leakage to the outside of the cavity occurred.
(Comparative Examples 1-5)
After making the structure of the sealing part and the sealing material as shown in Table 1, the above-described base material arranging process, mold clamping process, resin injection process, pressure impregnation process, and demolding process were performed. In the pressure impregnation step, the cavity thickness was reduced by 2 mm.

シール材を溝から取り外して観察したところ、比較例2、3、5では表面に亀裂やえぐれ、むしれ、白変が存在してシール材が損傷していた。また、比較例1、4では樹樹脂漏れが発生した。   When the sealing material was removed from the groove and observed, in Comparative Examples 2, 3, and 5, the surface was cracked, swollen, peeled, whitened, and the sealing material was damaged. Further, in Comparative Examples 1 and 4, resin resin leakage occurred.

1 当接部
101 略平行方向の面
102 略垂直方向の面
2 シール材
3 型開閉方向
4 キャビティ
5 突起
6 クランプ領域
7 一方の型
701 上型
8 他方の型
801 下型
9 溝
10 挿入方向
1001 RTM成形装置
1002 プレス成形装置
11 プレス機構
12 強化繊維基材
13 樹脂供給路
14 樹脂注入口
15 シール部
16 樹脂
17 型位置調整機構
18 中間基材
19 繊維強化樹脂成形品
DESCRIPTION OF SYMBOLS 1 Contact part 101 Surface in substantially parallel direction 102 Surface in substantially vertical direction 2 Seal material 3 Mold opening / closing direction 4 Cavity 5 Protrusion 6 Clamp region 7 One mold 701 Upper mold 8 Other mold 801 Lower mold 9 Groove 10 Insertion direction 1001 RTM molding device 1002 Press molding device 11 Press mechanism 12 Reinforced fiber base material 13 Resin supply path 14 Resin inlet 15 Seal portion 16 Resin 17 Mold position adjusting mechanism 18 Intermediate base material 19 Fiber reinforced resin molded product

Claims (9)

互いに対向しキャビティを形成する少なくとも一対の型であり、一方の型の前記キャビティの外側に略周状に溝が設けられており、前記溝にシール材を備えた繊維強化樹脂成形型であって、他方の型は前記シール材と当接する型開閉方向と略平行方向の面と前記型開閉方向と略垂直方向の面との少なくとも2つの面からなる当接部を有し、前記シール材と前記当接部が完全に離間した型開き時に、前記シール材と前記略平行方向の面との最短距離(L1(mm))と前記シール材と前記略垂直方向の面との最短距離(L2(mm))の関係がL1≦L2である、繊維強化樹脂成形型。   It is at least a pair of molds that face each other to form a cavity, and is a fiber reinforced resin molding mold in which a groove is provided in a substantially circumferential shape outside the cavity of one mold, and a sealing material is provided in the groove. The other mold has an abutting portion consisting of at least two surfaces of a surface in a direction substantially parallel to the mold opening / closing direction and a surface in a direction substantially perpendicular to the mold opening / closing direction. At the time of mold opening in which the contact portions are completely separated, the shortest distance (L1 (mm)) between the sealing material and the substantially parallel surface and the shortest distance (L2) between the sealing material and the substantially vertical surface. (Mm)) is a fiber reinforced resin mold in which the relationship of L1 ≦ L2. 前記シール材と前記略平行方向の面と前記略垂直方向の面が接した第2型閉じ状態において、前記キャビティが以下の(A)、(B)、および(C)によって密閉されている、請求項1に記載の繊維強化樹脂成形型。
(A)一方の型
(B)他方の型
(C)一方の型と他方の型によってシール材が型開閉方向に挟み込まれたクランプ領域
In the second mold closed state where the sealing material, the substantially parallel surface and the substantially vertical surface are in contact, the cavity is sealed by the following (A), (B), and (C). The fiber-reinforced resin mold according to claim 1.
(A) One mold (B) The other mold (C) Clamp region in which the sealing material is sandwiched between the one mold and the other mold in the mold opening / closing direction
前記略平行方向の面と前記略垂直方向の面のなす角度(α(度))が80≦α≦135である、請求項1または2に記載の繊維強化樹脂成形型。   The fiber reinforced resin mold according to claim 1 or 2, wherein an angle (α (degree)) formed by the plane in the substantially parallel direction and the plane in the substantially vertical direction is 80 ≦ α ≦ 135. 前記溝への前記シール材の挿入方向と前記型開閉方向のなす角度(β(度))が15≦β≦75である、請求項1から3のいずれかに記載の繊維強化樹脂成形型。   The fiber reinforced resin mold according to any one of claims 1 to 3, wherein an angle (β (degree)) formed by an insertion direction of the sealing material into the groove and the mold opening / closing direction is 15 ≦ β ≦ 75. 前記当接部の周方向に対して垂直な断面における前記溝の底部の形状が略半円形状である、請求項1から4のいずれかに記載の繊維強化樹脂成形型。   The fiber reinforced resin mold according to any one of claims 1 to 4, wherein a shape of a bottom portion of the groove in a cross section perpendicular to a circumferential direction of the contact portion is a substantially semicircular shape. 前記略垂直方向の面が突起を有する、請求項1から5のいずれかに記載の繊維強化樹脂成形型。   The fiber-reinforced resin molding die according to any one of claims 1 to 5, wherein the substantially vertical surface has a protrusion. 請求項1から6のいずれかに記載の繊維強化樹脂成形型のキャビティに強化繊維基材を配置する基材配置工程と、前記キャビティに樹脂を注入する樹脂注入含浸工程とを含む、繊維強化樹脂の製造方法。   A fiber reinforced resin comprising: a base material arranging step of arranging a reinforcing fiber base material in a cavity of the fiber reinforced resin molding die according to claim 1; and a resin injection impregnation step of injecting resin into the cavity. Manufacturing method. 請求項1から6のいずれかに記載の繊維強化樹脂成形型のキャビティに中間基材を配置する中間基材配置工程と、前記キャビティの厚みを減少させて前記中間基材を加圧するプレス工程とを含む、繊維強化樹脂の製造方法。   An intermediate base material placement step of placing an intermediate base material in the cavity of the fiber-reinforced resin mold according to any one of claims 1 to 6, and a pressing step of pressurizing the intermediate base material by reducing the thickness of the cavity. A method for producing a fiber reinforced resin, comprising: 請求項1から6のいずれかに記載の繊維強化樹脂成形型のキャビティに繊維強化樹脂成形品を配置する繊維強化樹脂成形品配置工程と、前記キャビティに樹脂を注入する表面樹脂注入工程とを含む、繊維強化樹脂の製造方法。   A fiber reinforced resin molded product arrangement step of arranging a fiber reinforced resin molded product in the cavity of the fiber reinforced resin molding die according to any one of claims 1 to 6, and a surface resin injection step of injecting a resin into the cavity. The manufacturing method of fiber reinforced resin.
JP2017070203A 2017-03-31 2017-03-31 Fiber-reinforced resin molding block and method of producing fiber-reinforced resin using the same Pending JP2018171728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017070203A JP2018171728A (en) 2017-03-31 2017-03-31 Fiber-reinforced resin molding block and method of producing fiber-reinforced resin using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017070203A JP2018171728A (en) 2017-03-31 2017-03-31 Fiber-reinforced resin molding block and method of producing fiber-reinforced resin using the same

Publications (1)

Publication Number Publication Date
JP2018171728A true JP2018171728A (en) 2018-11-08

Family

ID=64108169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017070203A Pending JP2018171728A (en) 2017-03-31 2017-03-31 Fiber-reinforced resin molding block and method of producing fiber-reinforced resin using the same

Country Status (1)

Country Link
JP (1) JP2018171728A (en)

Similar Documents

Publication Publication Date Title
US10821683B2 (en) Method for molding flame-retardant bending beam integrated with three-dimensional nylon air duct and production mould thereof
WO2014192601A1 (en) Method and device for manufacturing fiber-reinforced plastic
JP2012071595A (en) Method of manufacturing composite molded object
US10576700B2 (en) Method for producing a fiber-reinforced plastic molded article
KR20160108519A (en) Fiber-reinforced composite material molding and manufacturing method therefor
CN108778661B (en) Method and apparatus for press-molding FRP sheet, and FRP molded article
CN110091521B (en) Forming method of composite material component and composite material component
JP2013028159A (en) Composite molding and method of manufacturing the same
JP2009028939A (en) Rtm molding method
JP2014156012A (en) Method for manufacturing thermoplastic resin molding
CN108360304B (en) Pulp molding product and local thickening process method
JP5920655B2 (en) Resin injection molding apparatus and RTM molding method using the same
JP2018171728A (en) Fiber-reinforced resin molding block and method of producing fiber-reinforced resin using the same
JP6750735B2 (en) Composite material molding method and composite material molding apparatus
JP2012214042A (en) Method of manufacturing fiber-reinforced plastic
JP5198336B2 (en) Resin injection molding method
JPH06190847A (en) Production of carbon fiber-reinforced plastic molded body
JP2009039955A (en) Molding method of composite material
JP2017013260A (en) Resin injection molding die, resin injection molding device, and method for producing fiber-reinforced resin using the same
TW201636196A (en) Manufacturing apparatus and manufacturing method of resin molded article
JP2009286006A (en) Vacuum molding device
JP5421625B2 (en) Equipment for manufacturing fiber reinforced resin parts
JP6880835B2 (en) Molding mold and resin molded product manufacturing method
JP2020199636A (en) Manufacturing method of two-color molded product
JP2015199321A (en) Method for producing molded part