JP2012214042A - Method of manufacturing fiber-reinforced plastic - Google Patents

Method of manufacturing fiber-reinforced plastic Download PDF

Info

Publication number
JP2012214042A
JP2012214042A JP2012071316A JP2012071316A JP2012214042A JP 2012214042 A JP2012214042 A JP 2012214042A JP 2012071316 A JP2012071316 A JP 2012071316A JP 2012071316 A JP2012071316 A JP 2012071316A JP 2012214042 A JP2012214042 A JP 2012214042A
Authority
JP
Japan
Prior art keywords
reinforced plastic
fiber
resin
mold
resin sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012071316A
Other languages
Japanese (ja)
Other versions
JP6040547B2 (en
JP2012214042A5 (en
Inventor
Koji Kotani
浩司 小谷
Kensuke Kunigome
健介 國米
Kenji Fujita
憲治 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012071316A priority Critical patent/JP6040547B2/en
Publication of JP2012214042A publication Critical patent/JP2012214042A/en
Publication of JP2012214042A5 publication Critical patent/JP2012214042A5/ja
Application granted granted Critical
Publication of JP6040547B2 publication Critical patent/JP6040547B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a fiber-reinforced plastic using a mold and a bag material, wherein the fiber-reinforced plastic of a complex shape superior in surface smoothness can be manufactured without preparing an upper mold or a press plate shaped into a product shape in advance even when the mold has a complex shape having a curved or bent shape.SOLUTION: This method of manufacturing a fiber-reinforced plastic includes the steps of: (a) an arrangement step of arranging a molding material including at least a fiber-reinforced substrate and a resin sheet material having smoothness equivalent to or higher than the surface roughness required in the final product on a mold having a curved or bent shape; (b) a shaping/heating step of pressing the molding material against the mold and along the mold and shaping and heating the molding material; (c) a curing step of curing a matrix resin impregnated into the fiber-reinforced substrate; and (d) the removal step of removing the resin sheet material from the fiber-reinforced substrate.

Description

本発明は、バッグ材内部を真空吸引して強化繊維材料を金型に押し付けて成形する、繊維強化プラスチックの製造方法に関し、特に金型が湾曲または屈曲形状を有する複雑形状の繊維強化プラスチックの製造方法に関する。   The present invention relates to a method of manufacturing a fiber reinforced plastic, in which a bag material is vacuum-sucked to press a reinforced fiber material against a mold, and more particularly, to manufacture a fiber reinforced plastic having a complicated shape in which the mold has a curved or bent shape. Regarding the method.

近年、地球環境問題への関心の高まりから、部品を軽量化することができる繊維強化プラスチックが材料として広く使用されるようになってきた。繊維強化プラスチックの製造方法は、強化繊維材料を所望の形状の金型の上に沿わせて配置し、強化繊維材料に含浸させたマトリックス樹脂を硬化させて強化繊維とマトリクス樹脂を一体化する方法が一般的である。   In recent years, fiber reinforced plastic capable of reducing the weight of components has been widely used as a material due to increasing interest in global environmental problems. A method for producing a fiber reinforced plastic is a method in which a reinforcing fiber material is placed on a mold having a desired shape, and a matrix resin impregnated in the reinforcing fiber material is cured to integrate the reinforcing fiber and the matrix resin. Is common.

繊維強化プラスチックの製造方法としては、所望の形状の下型と上型を用いて強化繊維基材を上下金型で加圧プレスして成形するRTM(ResinTransfer Molding)法やSMC(Sheet Molding Compaund)法などの加圧成形法と、所望の形状の下型の上に強化繊維材料を配置し、強化繊維材料の上側はフィルム材などのバッグ材で覆って、バッグ材内部を真空吸引して強化繊維材料を金型に押し付けて成形するプリプレグ法やVaRTM(Vacuumassisted ResinTransfer Molding)法などのバギング成形法がある。   As a method for producing fiber reinforced plastic, an RTM (Resin Transfer Molding) method or SMC (Sheet Molding Compound), in which a reinforcing fiber base material is press-pressed with upper and lower molds using a lower mold and an upper mold of a desired shape, and SMC (Sheet Molding Compound). Reinforced fiber material is placed on the lower mold of the desired shape and pressure molding method such as the method, the upper side of the reinforcing fiber material is covered with bag material such as film material, and the bag material inside is reinforced by vacuum suction There are bagging molding methods such as a prepreg method in which a fiber material is pressed against a mold and a VaRTM (Vacuum Resist Transfer Molding) method.

加圧成形法は、成形品の両面側に金型が接触するため、寸法精度が高く、かつ、成形品表面の平滑性に優れると言うメリットがある。しかしながら、上型と下型の2つの高精度な金型が必要であり、かつ、加圧するためのプレス装置が必要になることから、設備が大規模かつ複雑であり、また設備費用が高価であると言うデメリットがあった。   The pressure molding method has an advantage that the dimensional accuracy is high and the smoothness of the surface of the molded product is excellent because the mold contacts both sides of the molded product. However, two high-precision molds, an upper mold and a lower mold, are required, and a press device for pressurization is required. Therefore, the facilities are large and complex, and the equipment costs are expensive. There was a demerit to be.

一方で、バギング成形法においては、下型のみで製造することが可能であり、かつ、大型設備が不要と言うメリットがある。しかし、可撓性のあるバッグ材が成形品の表面に当たるため、バギングしにくい形態であると、成形品の表面に沿ってバッグ材の凸凹が転写されることがあり、高精度の表面平滑性が実現困難になる場合もあった。   On the other hand, the bagging molding method has an advantage that it can be manufactured only with the lower mold and that no large-scale equipment is required. However, since the bag material with flexibility hits the surface of the molded product, the bag material may be unevenly transferred along the surface of the molded product if it is in a form that is difficult to baggage. In some cases, it became difficult to achieve.

上記問題を解決するために、特許文献1の如く、押圧板(簡易上型、プレッシャープレート、カウルプレートと呼ばれる場合もある)を用いる方法が知られている。表面が平滑な押圧板を使用し、その表面が成形品に転写することにより、成形品の表面平滑性が改善される。しかしながら、特許文献1の如く、平板に適用する場合は、板状の押圧板を用いれば良いが、複雑形状に適用するためには、加圧成形法の上型と同じように押圧板を予め製品形状に加工する必要がある。例えば、図1の如く、凸状の金型を使用する場合には、押圧板を予め製品形状(本例では円弧形状)に加工する必要があり、形状固定された押圧板で強化繊維基材を押さえつけると、平面部が先に押さえられるため、コーナー部にしわが生じて、繊維強化プラスチックの強度が低下する場合もあった。   In order to solve the above problem, a method using a pressing plate (sometimes called a simple upper die, a pressure plate, or a cowl plate) is known as in Patent Document 1. By using a pressing plate having a smooth surface and transferring the surface to the molded product, the surface smoothness of the molded product is improved. However, as in Patent Document 1, when applied to a flat plate, a plate-like pressing plate may be used. However, in order to apply to a complicated shape, the pressing plate is previously set in the same manner as the upper mold of the pressure molding method. It is necessary to process the product shape. For example, as shown in FIG. 1, when a convex mold is used, it is necessary to process the pressing plate into a product shape (in this example, an arc shape) in advance, and the reinforcing fiber base with the pressing plate fixed in shape. When pressing the flat surface portion, the flat portion is pressed first, so that the corner portion is wrinkled, and the strength of the fiber reinforced plastic may be lowered.

また、特許文献2の如く、従来のVaRTM方法においては、表面方向への樹脂拡散を目的に配置されたメディア(樹脂拡散媒体とも呼ばれる)の凹凸が成形品に転写することがあった。この凹凸を解消するために、嵩密度が高い(目の細かい)パスメディアを使用する方法により表面品位の改善がなされているが、依然パスメディア模様の転写を完全に除去するには至っていない。また、特許文献3の如く、樹脂拡散媒体の凹凸が成形品へ転写することを防止するために、平板上のプリフォームと樹脂拡散媒体の間に多孔性シートを適用することが例示されている。しかしながら、特許文献1と同様に、当該多孔性シートを複雑形状に沿わせるためには、加圧成形法の上型と同じように多孔性シートを予め製品形状に加工する必要がある。もしくは、複雑形状に沿いやすくするために、薄い多孔性シートを用いることも考えられるが、複雑形状に容易に沿うまでシートを薄くすると剛性が不足して(結局バッグ材と同等レベルとなり)、表面平滑性が改善しないことが考えられる。   Further, as disclosed in Patent Document 2, in the conventional VaRTM method, irregularities of a medium (also referred to as a resin diffusion medium) arranged for the purpose of resin diffusion in the surface direction may be transferred to a molded product. In order to eliminate the unevenness, the surface quality is improved by a method using a pass medium having a high bulk density (fine), but the transfer of the pass media pattern has not been completely removed. Further, as disclosed in Patent Document 3, in order to prevent the unevenness of the resin diffusion medium from being transferred to the molded product, it is exemplified that a porous sheet is applied between the preform on the flat plate and the resin diffusion medium. . However, like Patent Document 1, in order to make the porous sheet conform to a complicated shape, it is necessary to process the porous sheet in advance into a product shape in the same manner as the upper mold of the pressure molding method. Alternatively, a thin porous sheet may be used to make it easier to conform to the complex shape, but if the sheet is made thin enough to easily conform to the complex shape, the rigidity will be insufficient (after all, it will be at the same level as the bag material), and the surface It is conceivable that the smoothness does not improve.

特開2003−048223号公報JP 2003-048223 A 特許3986426号公報Japanese Patent No. 3986426 特許4104422号公報Japanese Patent No. 4104422

本発明は、従来技術の問題を解決し、金型とバッグ材を用いた繊維強化プラスチックの製造方法において、金型が湾曲または屈曲形状を有する複雑形状であっても、予め製品形状に形成した上型もしくは押圧板を準備することなく、表面平滑性に優れた複雑形状の繊維強化プラスチックを製造する方法を提供することにある。   The present invention solves the problems of the prior art, and in the manufacturing method of fiber reinforced plastic using a mold and a bag material, even if the mold is a complicated shape having a curved or bent shape, the product shape is formed in advance. An object of the present invention is to provide a method for producing a fiber-reinforced plastic having a complex shape excellent in surface smoothness without preparing an upper mold or a pressing plate.

上記課題を解決するために、本発明に係る繊維強化プラスチックの製造方法は、以下の手段をとる。
(1)以下の(a)〜(d)の工程を含むことを特徴とする繊維強化プラスチックの製造方法。
(a)湾曲または屈曲形状を有する金型の上に、少なくとも強化繊維基材と最終製品に要求される表面粗さと同等以上の平滑性を有する樹脂製シート材を含む成形材を配置する配置工程
(b)前記成形材を金型に押圧して沿わせて賦形および加熱する賦形・加熱工程
(c)強化繊維基材に含浸されたマトリックス樹脂を硬化する硬化工程
(d)樹脂製シート材を繊維強化プラスチック材から除去する除去工程
(2)前記硬化工程(c)において、ドライの強化繊維基材にマトリックス樹脂を注入・含浸させた後、マトリックス樹脂を加熱硬化することを特徴とする(1)に記載の繊維強化プラスチックの製造方法。
(3)前記樹脂製シート材に、複数個の貫通孔が穿孔されていることを特徴とする(1)または(2)のいずれかに記載の繊維強化プラスチックの製造方法。
(4)前記成形材が強化繊維基材、樹脂製シート材、樹脂拡散媒体の順に配置されてなることを特徴とする(2)または(3)のいずれかに記載の繊維強化プラスチックの製造方法。
(5)前記賦形・加熱工程(b)において、成形材をバッグ材で覆い、バッグ材内部を真空吸引することにより、バッグ材で前記成形材を金型に沿わせて賦形し、成形材を加熱することを特徴とする(1)〜(4)のいずれかに記載の繊維強化プラスチックの製造方法。
(6)前記硬化工程(c)において、ドライの強化繊維基材を含む成形材をバッグ材で覆い、バッグ材内部を真空吸引することにより、差圧でマトリックス樹脂を注入することを特徴とする(2)〜(5)のいずれかに記載の繊維強化プラスチックの製造方法。
(7)前記樹脂製シート材を構成する樹脂材料のガラス転移温度(Tg)がT1であり、前記賦形・加熱工程(b)における加熱温度が(T1−20)℃以上であることを特徴とする(1)〜(6)のいずれかに記載の繊維強化プラスチックの製造方法。
(8)前記樹脂製シート材の厚みが0.1mm以上、1mm以下であることを特徴とする(1)〜(7)のいずれかに記載の繊維強化プラスチックの製造方法。
(9)前記強化繊維基材の表面に、熱可塑性樹脂を主成分とする樹脂材料が塗布されていることを特徴とする(1)〜(8)のいずれかに繊維強化プラスチックの製造方法。
In order to solve the above problems, the method for producing a fiber-reinforced plastic according to the present invention takes the following means.
(1) A method for producing a fiber-reinforced plastic comprising the following steps (a) to (d):
(A) An arrangement step of arranging a molding material including a resin sheet material having smoothness equivalent to or higher than the surface roughness required for at least the reinforcing fiber base material and the final product on a curved or bent mold. (B) A shaping / heating step in which the molding material is pressed against the mold and shaped and heated (c) a curing step in which the matrix resin impregnated in the reinforcing fiber base is cured (d) a resin sheet Removal step of removing the material from the fiber reinforced plastic material (2) In the curing step (c), the matrix resin is heat-cured after injecting and impregnating the matrix resin into the dry reinforcing fiber base material. The manufacturing method of the fiber reinforced plastic as described in (1).
(3) The method for producing a fiber-reinforced plastic according to (1) or (2), wherein a plurality of through holes are perforated in the resin sheet material.
(4) The method for producing a fiber-reinforced plastic according to any one of (2) and (3), wherein the molding material is arranged in the order of a reinforced fiber base material, a resin sheet material, and a resin diffusion medium. .
(5) In the shaping / heating step (b), the molding material is covered with a bag material, and the bag material is vacuum-sucked to shape the molding material along the mold with the bag material, and then molded. The method for producing a fiber-reinforced plastic according to any one of (1) to (4), wherein the material is heated.
(6) In the curing step (c), the molding material including the dry reinforcing fiber base material is covered with a bag material, and the inside of the bag material is vacuum sucked to inject the matrix resin with a differential pressure. (2) The manufacturing method of the fiber reinforced plastic in any one of (5).
(7) The glass transition temperature (Tg) of the resin material constituting the resin sheet material is T1, and the heating temperature in the shaping / heating step (b) is (T1-20) ° C. or higher. The manufacturing method of the fiber reinforced plastic in any one of (1)-(6).
(8) The method for producing a fiber-reinforced plastic according to any one of (1) to (7), wherein a thickness of the resin sheet material is 0.1 mm or more and 1 mm or less.
(9) The method for producing a fiber-reinforced plastic according to any one of (1) to (8), wherein a resin material mainly composed of a thermoplastic resin is applied to the surface of the reinforcing fiber base.

最終製品が湾曲または屈曲形状を有する複雑な形状であっても、予め製品形状に形成した上型もしくは押圧板を準備することなく簡易に、表面平滑性に優れた繊維強化プラスチックを製造することが出来る。   Even if the final product is a complicated shape having a curved or bent shape, it is possible to easily produce a fiber reinforced plastic having excellent surface smoothness without preparing an upper mold or a press plate formed in advance in the product shape. I can do it.

従来の繊維強化プラスチックの製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the conventional fiber reinforced plastic. 本発明に係る繊維強化プラスチックの製造方法において、配置工程を示す概略断面図である。In the manufacturing method of the fiber reinforced plastic which concerns on this invention, it is a schematic sectional drawing which shows an arrangement | positioning process. 本発明に係る繊維強化プラスチックの製造方法において、賦形・加熱工程を示す概略断面図である。In the manufacturing method of the fiber reinforced plastic which concerns on this invention, it is a schematic sectional drawing which shows a shaping and a heating process. 本発明に係る繊維強化プラスチックの製造方法において、硬化工程を示す概略断面図である。In the manufacturing method of the fiber reinforced plastic which concerns on this invention, it is a schematic sectional drawing which shows a hardening process. 本発明に係る繊維強化プラスチックの製造方法において、除去工程を示す概略断面図である。In the manufacturing method of the fiber reinforced plastic which concerns on this invention, it is a schematic sectional drawing which shows a removal process. 本発明をVaRTM法に適用した場合における繊維強化プラスチックの製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the fiber reinforced plastic at the time of applying this invention to VaRTM method. 本発明を他のVaRTM法に適用した場合における繊維強化プラスチックの製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the fiber reinforced plastic at the time of applying this invention to another VaRTM method. 本発明に用いる樹脂製シート材を示す概略図である。It is the schematic which shows the resin-made sheet materials used for this invention. 本発明に係る繊維強化プラスチックの製造方法における賦形・加熱工程の実施形態を示す概略断面図であるIt is a schematic sectional drawing which shows embodiment of the shaping and heating process in the manufacturing method of the fiber reinforced plastic which concerns on this invention.

以下、本発明を実施するための形態を、図面を参照しながら説明する。なお、本発明は、図面に記載された具体的な態様に限定されるものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In addition, this invention is not limited to the specific aspect described in drawing.

図2は、本発明に係る繊維強化プラスチックの製造方法の流れを示した断面図である。図3は本発明をVaRTM法に適用した場合の繊維強化プラスチックの製造方法の断面図である。   FIG. 2 is a cross-sectional view showing the flow of the fiber reinforced plastic manufacturing method according to the present invention. FIG. 3 is a cross-sectional view of a method for producing a fiber reinforced plastic when the present invention is applied to the VaRTM method.

本発明の一つの実施形態は、金型1とバッグ材5を用いた繊維強化プラスチックの製造方法において、図2の通り、湾曲または屈曲形状を有する所望の形状をした金型1上に、少なくとも強化繊維基材2と樹脂製シート材4を含む成形材31を配置する(配置工程)。その後、バッグ材5で成形材31を覆って周囲をシーリング6でシールし、バッグ材5内部を真空ポンプ7で真空吸引することにより成形材31を金型1に押し付けて賦形し、成形材31を加熱する(賦形加熱工程)。その後、強化繊維基材に含浸されたマトリックス樹脂を硬化し(硬化工程)、最後に硬化した繊維強化プラスチック材9から樹脂製シート材を除去する(除去工程)。   One embodiment of the present invention is a method for producing a fiber reinforced plastic using a mold 1 and a bag material 5, as shown in FIG. 2, at least on the mold 1 having a desired shape having a curved or bent shape. A molding material 31 including the reinforcing fiber base 2 and the resin sheet material 4 is arranged (arrangement step). Thereafter, the molding material 31 is covered with the bag material 5 and the periphery is sealed with the sealing 6. The inside of the bag material 5 is vacuum-sucked with the vacuum pump 7 to press the molding material 31 against the mold 1 to form the molding material. 31 is heated (shaped heating process). Thereafter, the matrix resin impregnated in the reinforcing fiber base is cured (curing process), and finally the resin sheet material is removed from the cured fiber reinforced plastic material 9 (removing process).

本発明は最終製品が複雑形状の場合に好適であり、金型1は曲面または屈曲形状を有している。本発明に係る曲面または屈曲形状とは、具体的には、少なくとも一部に平面以外の曲面を有する形状、あるいは、互いに交わる少なくとも2つの平面方向に屈曲した形状のことをいう。   The present invention is suitable when the final product has a complicated shape, and the mold 1 has a curved surface or a bent shape. Specifically, the curved surface or the bent shape according to the present invention refers to a shape having a curved surface other than a flat surface at least partially, or a shape bent in at least two plane directions intersecting each other.

以下、各工程順に、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail in the order of each step.

(a)配置工程
図2の通り、円弧状の曲面のコーナー部8を有する凸型形状の金型の上に、少なくとも強化繊維基材と樹脂製シート材を含む成形材を配置する。
(A) Arrangement Step As shown in FIG. 2, a molding material including at least a reinforcing fiber base material and a resin sheet material is arranged on a convex mold having an arcuate curved corner portion 8.

強化繊維基材は、強化繊維に樹脂が予め含浸されているシート状のプリプレグ材であっても良いし、樹脂が含浸されていないドライの織物または編物状の強化繊維基材であっても良い。ドライの強化繊維基材の場合には、当該基材の表面に熱可塑性樹脂を主成分とする樹脂材料が塗布されていることが、賦形加熱工程の後に、強化繊維基材の形状が固定される点で好ましい。   The reinforcing fiber base material may be a sheet-like prepreg material in which a resin is impregnated in advance with a reinforcing fiber, or may be a dry woven or knitted reinforcing fiber base material not impregnated with a resin. . In the case of a dry reinforced fiber base material, the shape of the reinforced fiber base material is fixed after the shaping heating process that a resin material mainly composed of a thermoplastic resin is applied to the surface of the base material. This is preferable.

樹脂製シート材は、材質を樹脂にすることで、賦形時には変形しやすく金型の形状に沿わせることができ、さらに加熱によって軟化する特性を利用して、複雑な金型の形状に沿わせて、その後、冷却すればそのまま形状を固定することが出来る。また、最終製品に要求される表面粗さと同等以上の平滑性を有する樹脂製シート材を用いることにより、シート材の表面が成形品に転写し、所望の表面性状に優れる繊維強化プラスチックを得ることが出来る。本発明における表面粗さとは、JIS0601−1976規格で定義された表面凹凸のサイズのことを言う。また、同等以上の平滑性とは、最終製品と同じか、より平滑であること、すなわち、表面粗さRa、Rmaxの値としては、同じか、より小さい値を示す。   Resin sheet material is made of resin and can easily conform to the shape of the mold during shaping. Then, after cooling, the shape can be fixed as it is. In addition, by using a resin sheet material having a smoothness equal to or greater than the surface roughness required for the final product, the surface of the sheet material is transferred to a molded product to obtain a fiber reinforced plastic excellent in desired surface properties. I can do it. The surface roughness in this invention means the size of the surface asperity defined by JIS0601-1976 standard. The smoothness equal to or higher than the same means that the final product is the same or smoother, that is, the surface roughness Ra and Rmax are the same or smaller.

樹脂製シート材の材質は、熱可塑性樹脂であっても、熱硬化性樹脂であっても良い。具体的には、ポリエステル樹脂、ナイロン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリフェニレンサルファイド(PPS)樹脂などを使用しても良い。当該シート材の厚みは、表面平滑性を維持するために0.1mm以上あることがのぞましく、賦形時に形状に沿いやすくするためには1mm以下であることが好ましい。   The material of the resin sheet material may be a thermoplastic resin or a thermosetting resin. Specifically, polyester resin, nylon resin, polyethylene resin, polypropylene resin, polyphenylene sulfide (PPS) resin, or the like may be used. The thickness of the sheet material is preferably 0.1 mm or more in order to maintain the surface smoothness, and preferably 1 mm or less in order to easily follow the shape during shaping.

除去工程(d)において、容易に樹脂製シート材を剥離するために、樹脂製シート材に液状の離型剤を塗布しておいても良いし、樹脂製シート材と強化繊維基材の間に、ピールプライと呼ばれる剥離用の織布を配置しても良い。離型剤としては、例えばシリコン系の剥離成分が付与された液状の有機溶剤を使用することができ、また、ピールプライとしては例えばナイロン製やポリエステル製のタフタなどを使用することが出来る。   In the removing step (d), in order to easily peel the resin sheet material, a liquid release agent may be applied to the resin sheet material, or between the resin sheet material and the reinforcing fiber substrate. Further, a peeling woven fabric called a peel ply may be arranged. As the release agent, for example, a liquid organic solvent to which a silicon-based peeling component is added can be used, and as the peel ply, for example, nylon or polyester taffeta can be used.

(b)賦型・加熱工程
その後、前記成形材を金型に押圧して沿わせて賦形し、加熱して、所望の形状に成形する。
(B) Molding / heating step Thereafter, the molding material is pressed against the mold to be shaped, heated, and molded into a desired shape.

図6は本発明の繊維強化プラスチックの製造方法における賦形・加熱工程の実施形態の例を示す概略断面図である。金型に沿わせる方法については特に限定しないが、図6(a)に示すとおり加圧ローラー61で成形材31を金型1に押圧しながら、加圧ローラーを金型の上面部65から立ち面部66の方向62に移動させつつ、成形材を金型に沿わせて賦形しても良いし、図6(b)に示す通り成形材31をプレス金型63のプレス荷重64で金型1に押圧して賦形しても良い。プレスを用いる場合は、シワ防止の観点から、コーナー部と平板部分が分割されており、上面部65、コーナー部、立ち面部66の順に押圧されることが好ましい。また、図2(b)に示すように、バッグ材で成形材を覆って、バッグ材内部を真空吸引することにより強化繊維基材を下型に押し付けながら沿わせて賦形し、成形材を加熱することも出来る。前記バッグ材は、金型の形状に沿うことができ、不浸透性のシートであれば特に限定されないが、樹脂製のフィルムまたはゴム状シートなどを用いることができる。前記樹脂製のフィルムとしては、例えば厚みが0.1mm未満のナイロンフィルムや、シリコンゴムシートなどを使用することが出来る。バッグ材を用いて金型に沿わせて賦形する点では、凸型形状をした金型に特に好適である。   FIG. 6 is a schematic cross-sectional view showing an example of an embodiment of a shaping / heating step in the method for producing a fiber-reinforced plastic of the present invention. Although there is no particular limitation on the method of fitting along the mold, as shown in FIG. 6A, the pressure roller is raised from the upper surface portion 65 of the mold while pressing the molding material 31 against the mold 1 with the pressure roller 61. The molding material may be shaped along the mold while moving in the direction 62 of the surface portion 66, or the molding material 31 may be molded with the press load 64 of the press mold 63 as shown in FIG. You may press to 1 and shape. When using a press, it is preferable that the corner portion and the flat plate portion are divided from the viewpoint of preventing wrinkles, and the upper surface portion 65, the corner portion, and the standing surface portion 66 are pressed in this order. Further, as shown in FIG. 2 (b), the molding material is covered with a bag material, and the inside of the bag material is vacuum-sucked so that the reinforcing fiber base material is pressed along the lower mold while being shaped. It can also be heated. The bag material can follow the shape of the mold and is not particularly limited as long as it is an impermeable sheet, but a resin film or a rubber-like sheet can be used. As the resin film, for example, a nylon film having a thickness of less than 0.1 mm, a silicon rubber sheet, or the like can be used. In terms of shaping along the mold using a bag material, it is particularly suitable for a mold having a convex shape.

図1の通り、金型1が凸型である場合には、従来技術の如く、予め形状付与された押圧板3を使用すると、平面部21が先に押さえられてしまうため、コーナー部の強化繊維基材にシワ22が生じることがあり、このようなシワが発生すると部品の強度低下につながるおそれがあった。一方、本発明においては、図3の通り、成形材は金型の上面から下面に向かって順に押さえられるため、強化繊維基材と樹脂製シート材は同時に凸型の金型に沿ってシワ無く賦形される。本発明により、コーナー部のシワを抑えることが出来るため、部品の強度低下の問題を解決することが出来る。   As shown in FIG. 1, when the mold 1 is a convex type, if the pre-shaped pressing plate 3 is used as in the prior art, the flat portion 21 is pressed first, so that the corner portion is strengthened. Wrinkles 22 may occur in the fiber base material, and the occurrence of such wrinkles may lead to a decrease in strength of the component. On the other hand, in the present invention, as shown in FIG. 3, since the molding material is pressed in order from the upper surface to the lower surface of the mold, the reinforcing fiber base material and the resin sheet material are not wrinkled along the convex mold at the same time. Shaped. According to the present invention, wrinkles at corners can be suppressed, so that the problem of reduced strength of parts can be solved.

樹脂製シート材は、例えば図2(b)の通り熱風23などで加熱することにより軟化させて金型の形状に簡単に沿わせることが出来る。加熱のタイミングは、金型の形状の複雑さに対応させて、賦形後に加熱しても良いし、加熱しながら同時に賦形しても良い。また、図6の通り、ローラー61やプレス金型63を用いる場合には、ローラーやプレス金型自体を加熱することにより、賦形と加熱を同時に実施することが出来る。加熱しながら同時に賦形させる場合には、樹脂製シート材を軟化させた状態で簡単に金型の形状に沿わせることが出来る。本工程の後に、樹脂製シート材を冷却し硬くすれば、樹脂製シート材を所望の形状に沿ったまま形状固定することが出来る。   The resin sheet material can be softened by, for example, heating with hot air 23 as shown in FIG. 2B and can easily conform to the shape of the mold. The timing of heating may be heated after shaping according to the complexity of the shape of the mold, or may be shaped simultaneously while heating. Further, as shown in FIG. 6, when the roller 61 or the press die 63 is used, the shaping and the heating can be performed simultaneously by heating the roller or the press die itself. When forming at the same time while heating, it is possible to easily conform to the shape of the mold while the resin sheet material is softened. If the resin sheet material is cooled and hardened after this step, the resin sheet material can be fixed in shape while keeping the desired shape.

前述の通り、本発明の一つの特徴は、樹脂製シート材を用いて加熱により複雑形状に沿わせることである。例えば、金属性のシート材を用いた場合は、材料が硬く伸びにくいため、複雑形状に沿い難い問題がある。さらに、シート材の変形が弾性域ではバッグ材内部の真空度が低くなると形状がシート状に戻ってしまう問題があり、一方、塑性域まで変形させるためには、相当の荷重が必要であり本発明の如く簡易な設備で実現できるものでは無い。本発明は樹脂製シートの軟らかさ(しなやかさ)を利用することにより、シート材の表面性を維持した上で複雑形状に沿わせ、さらに加熱して軟化させることにより完全に金型形状にフィットさせることを可能にしたものである。   As described above, one feature of the present invention is that a resin sheet material is used to conform to a complicated shape by heating. For example, when a metallic sheet material is used, there is a problem that it is difficult to follow a complicated shape because the material is hard and hardly stretched. Furthermore, when the deformation of the sheet material is in the elastic region, there is a problem that the shape returns to the sheet shape when the vacuum degree inside the bag material is lowered, while on the other hand, a considerable load is required to deform to the plastic region. It cannot be realized with simple equipment as in the invention. The present invention makes use of the softness of the resin sheet to maintain the surface properties of the sheet material, conform to a complex shape, and further heat and soften to fully fit the mold shape. It is possible to make it.

ここで、樹脂製シート材を構成する樹脂材料のガラス転移温度(Tg)をT1とした時、賦形・加熱工程(b)における加熱温度は、(T1−20)℃以上であることが好ましく、T1以上であることがさらに好ましい。加熱温度を(T1−20)℃以上のガラス転移温度(Tg)近傍とすることにより、樹脂製シート材は弾性域から外れるため、金型の形状に沿い易く、かつ、冷却すれば所定の形状に固定することが出来る。また、融点を超えなければ、シート状態は維持されるため、シート表面の平滑状態は保持され、繊維強化プラスチックの表面平滑性を保持することが出来る。ガラス転移温度(Tg)は、例えばDSC法、DMA法により測定することが出来る。   Here, when the glass transition temperature (Tg) of the resin material constituting the resin sheet material is T1, the heating temperature in the shaping / heating step (b) is preferably (T1-20) ° C. or higher. More preferably, it is T1 or more. By setting the heating temperature in the vicinity of the glass transition temperature (Tg) of (T1-20) ° C. or higher, the resin sheet is easily removed from the elastic region, so that it easily follows the shape of the mold and has a predetermined shape when cooled. Can be fixed. If the melting point is not exceeded, the sheet state is maintained, so that the smooth state of the sheet surface is maintained, and the surface smoothness of the fiber reinforced plastic can be maintained. The glass transition temperature (Tg) can be measured by, for example, a DSC method or a DMA method.

なお、金型の形状が3次元的に変化するような特に複雑な形状の場合には、樹脂製シート材には適宜切れ目を入れて、シワを防止しても良い。   In the case of a particularly complicated shape in which the shape of the mold changes three-dimensionally, the resin sheet material may be appropriately cut to prevent wrinkles.

(c)硬化工程
強化繊維基材が、予め樹脂が含浸されたプリプレグの場合には、賦形加熱工程の後に加熱加圧が可能なオートクレーブ内で、強化繊維基材に含浸されたマトリックス樹脂を加熱硬化する。
(C) Curing step When the reinforcing fiber substrate is a prepreg impregnated with a resin in advance, a matrix resin impregnated in the reinforcing fiber substrate is applied in an autoclave capable of being heated and pressurized after the shaping heating step. Heat cure.

図4は、本発明を他のVaRTM法に適用した場合における繊維強化プラスチックの製造方法を示す概略断面図である。また、図5は、本発明に用いる樹脂製シート材を示す概略図である。   FIG. 4 is a schematic cross-sectional view showing a method for producing a fiber reinforced plastic when the present invention is applied to another VaRTM method. FIG. 5 is a schematic view showing a resin sheet material used in the present invention.

また、図4の通り、本発明はマトリックス樹脂の加熱硬化の前に、ドライの強化繊維基材にマトリックス樹脂11を注入・含浸させるVaRTM法にも好適である。ドライの強化繊維基材としては、例えば、炭素繊維、ガラス繊維などを強化繊維とした織物や編物などを用いることが出来る。VaRTM法は表面方向に素早く樹脂を拡散させるために樹脂拡散媒体10を用いることが好ましい。樹脂拡散媒体10は、樹脂の流路となる空隙を有するシートであれば特に限定はしないが、メッシュ材や繊維織物などを用いることが出来る。しかし、樹脂拡散媒体と用いると、その模様が成形品の表面に転写し、製品表面の意匠性を低下させる問題があった。その問題を解決するために、成形材が強化繊維基材、樹脂製シート材、樹脂拡散媒体の順に配置されていることが好ましい。   Further, as shown in FIG. 4, the present invention is also suitable for the VaRTM method in which the matrix resin 11 is injected and impregnated into a dry reinforcing fiber base material before the heat curing of the matrix resin. As the dry reinforcing fiber substrate, for example, a woven fabric or a knitted fabric using carbon fibers, glass fibers or the like as reinforcing fibers can be used. In the VaRTM method, it is preferable to use the resin diffusion medium 10 in order to quickly diffuse the resin in the surface direction. The resin diffusion medium 10 is not particularly limited as long as it is a sheet having a void serving as a resin flow path, but a mesh material, a fiber fabric, or the like can be used. However, when used as a resin diffusion medium, there is a problem that the pattern is transferred to the surface of the molded product and the design of the product surface is lowered. In order to solve the problem, it is preferable that the molding material is arranged in the order of the reinforcing fiber base material, the resin sheet material, and the resin diffusion medium.

また、図5の通り、樹脂製シート材には複数個の貫通孔12が穿孔されていることが好ましい。シート材に複数個の貫通孔を穿孔しておくことにより、樹脂拡散媒体に拡散した樹脂が貫通孔を通して、強化繊維基材に浸透させることが出来る。また、貫通孔を例えば3mm以下の小径にすれば、成形品の表面平滑性を維持することが出来る。   Further, as shown in FIG. 5, it is preferable that a plurality of through holes 12 are formed in the resin sheet material. By perforating a plurality of through holes in the sheet material, the resin diffused in the resin diffusion medium can permeate the reinforcing fiber substrate through the through holes. Further, if the through hole has a small diameter of, for example, 3 mm or less, the surface smoothness of the molded product can be maintained.

なお、樹脂の硬化温度は、使用するマトリックス樹脂の種類に応じて適宜設定すれば良いが、シート材を構成する樹脂材料の融点以下で設定することが好ましい。   The resin curing temperature may be set as appropriate according to the type of matrix resin to be used, but is preferably set below the melting point of the resin material constituting the sheet material.

前記賦形・加熱工程の後に、成形材を冷却して、別の金型に移動させてから、強化繊維基材に含浸されたマトリックス樹脂を加熱硬化しても良い。成形材を冷却すれば、樹脂製シート材は硬くなるため、所望の形状に沿ったまま形状固定され、移動することが可能となる。その場合、樹脂製シート材のみ分離させて、持ち運ぶことも可能となる。   After the shaping / heating step, the molding material may be cooled and moved to another mold, and then the matrix resin impregnated in the reinforcing fiber base may be heat-cured. If the molding material is cooled, the resin sheet material becomes hard, so that the shape is fixed and moved along the desired shape. In that case, only the resin sheet material can be separated and carried.

(d)除去工程
最後にマトリックス樹脂が硬化した成形材から樹脂製シートを除去することにより、表面平滑性に優れる繊維強化プラスチックを得ることが出来る。除去した樹脂製シートは再利用しても良い。
(D) Removal step Finally, by removing the resin sheet from the molding material in which the matrix resin is cured, a fiber reinforced plastic having excellent surface smoothness can be obtained. The removed resin sheet may be reused.

得られた繊維強化プラスチックは、複雑な金型形状に沿った所望の形状であり、かつ、樹脂製シート材の平滑な表面が転写した表面平滑性に優れるものである。また、樹脂製シート材が金型形状にしっかりと沿っているため、コーナー部分の断面には強化繊維のしわなどの不具合が無く、強度低下の無い品質が良好な製品を得る事ができる。   The obtained fiber reinforced plastic has a desired shape along a complicated mold shape, and is excellent in surface smoothness transferred from the smooth surface of the resin sheet material. In addition, since the resin sheet material is firmly in line with the mold shape, there is no problem such as wrinkles of reinforcing fibers in the cross section of the corner portion, and a product with good quality without strength reduction can be obtained.

前述の通り、本発明に係る繊維強化プラスチックの製造方法によれば、所望の形状の押圧板を準備することなく、樹脂製シート材を配置し、加熱するだけの簡易な方法で、品位に優れた繊維強化プラスチックを得ることが出来る。   As described above, according to the method for producing a fiber reinforced plastic according to the present invention, without preparing a pressing plate having a desired shape, a resin sheet material is simply arranged and heated, and is excellent in quality. Fiber reinforced plastic can be obtained.

図2に示すとおり、半径5mmの1/4円弧断面を有したスチール製の金型1の上に、製品のサイズに合わせて裁断された強化繊維基材2と樹脂製シート4からなる成形材31を配置した。強化繊維基材2は、東レ株式会社製炭素繊維T800S(PAN系炭素繊維、24,000フィラメント)の一方向織物(目付190g/m)に熱可塑性樹脂を分散付与した一方向性炭素繊維織物(東レ株式会社製、品名CZ8433DP)を24枚積み重ねて製作した。また、樹脂製シート材として、東レ株式会社製ポリエステルフィルム「ルミラー(登録商標)」350S10(表面粗さ25S以下)を用いた。なお、樹脂製シート材には、マトリックス樹脂通過用の、孔径0.5mm/孔ピッチ5mmの貫通孔を穿孔した。 As shown in FIG. 2, a molding material comprising a reinforcing fiber base 2 and a resin sheet 4 which are cut according to the size of a product on a steel mold 1 having a ¼ arc section with a radius of 5 mm. 31 was placed. The reinforcing fiber base 2 is a unidirectional carbon fiber woven fabric obtained by dispersing and imparting a thermoplastic resin to a unidirectional woven fabric (weight per unit area 190 g / m 2 ) of carbon fiber T800S (PAN-based carbon fiber, 24,000 filaments) manufactured by Toray Industries, Inc. (Toray Industries, Inc., product name CZ8433DP) was produced by stacking 24 sheets. In addition, as a resin sheet material, a polyester film “Lumirror (registered trademark)” 350S10 (surface roughness of 25S or less) manufactured by Toray Industries, Inc. was used. The resin sheet material was perforated with through holes having a hole diameter of 0.5 mm and a hole pitch of 5 mm for passing through the matrix resin.

成形材の上に、2mm厚のシリコン製ラバーシートからなるバッグ材5を被せて真空吸引し、成形材を金型1の形状に押さえつけながら沿わせて賦形した。その後、オーブンの中に入れて、熱風23により、80℃で1時間加熱し、室温まで冷却した。冷却後、ラバーシートを除去した結果、強化繊維基材と樹脂製シート材は、金型の形状に追従し賦形されていることを確認した。   A bag material 5 made of a silicon rubber sheet having a thickness of 2 mm was placed on the molding material and vacuum-sucked, and the molding material was shaped while being pressed against the shape of the mold 1. Then, it put in oven and heated with hot air 23 at 80 degreeC for 1 hour, and cooled to room temperature. As a result of removing the rubber sheet after cooling, it was confirmed that the reinforcing fiber base material and the resin sheet material were shaped following the shape of the mold.

次に、図4の通り、樹脂製シート材4の上に、東京ネトロン製TSX−400Pからなる樹脂拡散媒体10を配置し、マトリックス樹脂11と連通させて、RICHMOND社製HS−800からなるバッグ材で覆って、真空ポンプ7により、バッグ材内部を0.1kPaまで減圧した。真空吸引力により、東レ株式会社製エポキシ樹脂TR−A37からなるマトリックス樹脂11を樹脂拡散媒体10で表面方向に拡散させて、強化繊維基材内部に浸透させた。強化繊維基材全体にマトリックス樹脂が浸透した後、金型を120℃に加熱して5時間保持して、マトリックス樹脂を硬化させた。   Next, as shown in FIG. 4, the resin diffusion medium 10 made of Tokyo Netron TSX-400P is placed on the resin sheet material 4 and communicated with the matrix resin 11 to make a bag made of RICHMOND HS-800. The bag was covered with the material, and the inside of the bag material was decompressed to 0.1 kPa by the vacuum pump 7. The matrix resin 11 made of the epoxy resin TR-A37 manufactured by Toray Industries, Inc. was diffused in the surface direction by the resin diffusion medium 10 by the vacuum suction force and permeated inside the reinforcing fiber base. After the matrix resin penetrated the entire reinforcing fiber substrate, the mold was heated to 120 ° C. and held for 5 hours to cure the matrix resin.

その後、図2(d)の通り、樹脂拡散媒体(図示省略)とともに樹脂シート材を除去して、繊維強化プラスチック材9を得た。   Thereafter, as shown in FIG. 2 (d), the resin sheet material was removed together with the resin diffusion medium (not shown) to obtain a fiber reinforced plastic material 9.

繊維強化プラスチックの品質を確認した結果、金型側面・バッグ側面ともに金型に沿った所望の寸法に仕上がっており、かつ、バッグ側面の表面粗さは25S以下と良好な状態であった。また、繊維強化プラスチックを切断して断面観察した結果、内部の強化繊維に顕著なシワが無いことが確認出来た。以上の如く、本発明により、良好な品質の強化繊維プラスチックを得ることが出来た。   As a result of confirming the quality of the fiber reinforced plastic, both the side surface of the mold and the side surface of the bag were finished to the desired dimensions along the mold, and the surface roughness of the bag side surface was in a favorable state of 25S or less. Moreover, as a result of cutting the fiber-reinforced plastic and observing the cross section, it was confirmed that the internal reinforcing fiber was free of significant wrinkles. As described above, according to the present invention, a reinforced fiber plastic having good quality could be obtained.

本発明は、あらゆる強化繊維プラスチックの製造方法に適用することができ、とくに、表面平滑性を要求される複雑な形状の部材の製造に好適であり、例えば、車両、船舶、航空機、建築部材などの産業用途、あるいはスポーツ用途など、種々の分野に用いられる広範囲な繊維強化プラスチックの製造方法に適用が可能である。   INDUSTRIAL APPLICABILITY The present invention can be applied to any method for producing reinforced fiber plastics, and is particularly suitable for producing a member having a complicated shape that requires surface smoothness, for example, a vehicle, a ship, an aircraft, a building member, etc. The present invention can be applied to a wide range of fiber-reinforced plastic manufacturing methods used in various fields such as industrial use or sports use.

1:金型
2:強化繊維基材
3:押圧板
4:樹脂製シート
5:バッグ材
6:シーリング
7:真空ポンプ
8:コーナー部
9:繊維強化プラスチック材
10:樹脂拡散媒体
11:マトリックス樹脂
12:貫通孔
21:平面部
22:シワ
23:熱風
31:成形材
61:加圧ローラー
62:ローラーの移動方向
63:プレス金型
64:プレス荷重
65:上面部
66:立ち面部
1: Mold 2: Reinforced fiber base material 3: Press plate 4: Resin sheet 5: Bag material 6: Sealing 7: Vacuum pump 8: Corner portion 9: Fiber reinforced plastic material 10: Resin diffusion medium 11: Matrix resin 12 : Through hole 21: Flat surface portion 22: Wrinkle 23: Hot air 31: Molding material 61: Pressure roller 62: Moving direction of roller 63: Press mold 64: Press load 65: Upper surface portion 66: Standing surface portion

Claims (9)

以下の(a)〜(d)の工程を含むことを特徴とする繊維強化プラスチックの製造方法。
(a)湾曲または屈曲形状を有する金型の上に、少なくとも強化繊維基材と最終製品に要求される表面粗さと同等以上の平滑性を有する樹脂製シート材を含む成形材を配置する配置工程
(b)前記成形材を金型に押圧して沿わせて賦形および加熱する賦形・加熱工程
(c)強化繊維基材に含浸されたマトリックス樹脂を硬化する硬化工程
(d)樹脂製シート材を繊維強化プラスチック材から除去する除去工程
The manufacturing method of the fiber reinforced plastic characterized by including the process of the following (a)-(d).
(A) An arrangement step of arranging a molding material including a resin sheet material having smoothness equivalent to or higher than the surface roughness required for at least the reinforcing fiber base material and the final product on a curved or bent mold. (B) A shaping / heating step in which the molding material is pressed against the mold and shaped and heated (c) a curing step in which the matrix resin impregnated in the reinforcing fiber base is cured (d) a resin sheet Removal process to remove material from fiber reinforced plastic material
前記硬化工程(c)において、ドライの強化繊維基材にマトリックス樹脂を注入・含浸させた後、マトリックス樹脂を加熱硬化することを特徴とする請求項1に記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to claim 1, wherein, in the curing step (c), after the matrix resin is injected and impregnated into the dry reinforcing fiber base material, the matrix resin is heated and cured. 前記樹脂製シート材に、複数個の貫通孔が穿孔されていることを特徴とする請求項1または2のいずれかに記載の繊維強化プラスチックの製造方法。 The method for producing a fiber reinforced plastic according to claim 1, wherein a plurality of through holes are formed in the resin sheet material. 前記成形材が強化繊維基材、樹脂製シート材、樹脂拡散媒体の順に配置されてなることを特徴とする請求項2または3のいずれかに記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to claim 2, wherein the molding material is arranged in the order of a reinforcing fiber base, a resin sheet material, and a resin diffusion medium. 前記賦形・加熱工程(b)において、成形材をバッグ材で覆い、バッグ材内部を真空吸引することにより、バッグ材で前記成形材を金型に沿わせて賦形し、成形材を加熱することを特徴とする請求項1〜4のいずれかに記載の繊維強化プラスチックの製造方法。 In the shaping / heating step (b), the molding material is covered with a bag material, and the bag material is vacuumed to shape the molding material along the mold with the bag material, and the molding material is heated. The manufacturing method of the fiber reinforced plastic in any one of Claims 1-4 characterized by the above-mentioned. 前記硬化工程(c)において、ドライの強化繊維基材を含む成形材をバッグ材で覆い、バッグ材内部を真空吸引することにより、差圧でマトリックス樹脂を注入することを特徴とする請求項2〜5のいずれかに記載の繊維強化プラスチックの製造方法。 3. In the curing step (c), a molding material containing a dry reinforcing fiber base is covered with a bag material, and the inside of the bag material is vacuum sucked to inject a matrix resin with a differential pressure. The manufacturing method of the fiber reinforced plastic in any one of -5. 前記樹脂製シート材を構成する樹脂材料のガラス転移温度(Tg)がT1であり、前記賦形・加熱工程(b)における加熱温度が(T1−20)℃以上であることを特徴とする請求項1〜6のいずれかに記載の繊維強化プラスチックの製造方法。 The glass transition temperature (Tg) of the resin material constituting the resin sheet material is T1, and the heating temperature in the shaping / heating step (b) is (T1-20) ° C. or more. Item 7. A method for producing a fiber-reinforced plastic according to any one of Items 1 to 6. 前記樹脂製シート材の厚みが0.1mm以上、1mm以下であることを特徴とする請求項1〜7のいずれかに記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to any one of claims 1 to 7, wherein a thickness of the resin sheet material is 0.1 mm or more and 1 mm or less. 前記強化繊維基材の表面に、熱可塑性樹脂を主成分とする樹脂材料が塗布されていることを特徴とする請求項1〜8のいずれかに繊維強化プラスチックの製造方法。 The method for producing a fiber reinforced plastic according to any one of claims 1 to 8, wherein a resin material mainly composed of a thermoplastic resin is applied to a surface of the reinforced fiber base material.
JP2012071316A 2011-03-28 2012-03-27 Manufacturing method of fiber reinforced plastic Expired - Fee Related JP6040547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012071316A JP6040547B2 (en) 2011-03-28 2012-03-27 Manufacturing method of fiber reinforced plastic

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011069599 2011-03-28
JP2011069599 2011-03-28
JP2012071316A JP6040547B2 (en) 2011-03-28 2012-03-27 Manufacturing method of fiber reinforced plastic

Publications (3)

Publication Number Publication Date
JP2012214042A true JP2012214042A (en) 2012-11-08
JP2012214042A5 JP2012214042A5 (en) 2015-05-07
JP6040547B2 JP6040547B2 (en) 2016-12-07

Family

ID=47267319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012071316A Expired - Fee Related JP6040547B2 (en) 2011-03-28 2012-03-27 Manufacturing method of fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP6040547B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397957B1 (en) 2014-02-18 2014-05-27 주식회사 다이나트론 Method for manufacturing a plastic mold using a fiber film
WO2014192601A1 (en) * 2013-05-31 2014-12-04 東レ株式会社 Method and device for manufacturing fiber-reinforced plastic
JP2015104895A (en) * 2013-12-02 2015-06-08 東レ株式会社 Method for manufacturing fiber-reinforced plastic molding
WO2017175809A1 (en) * 2016-04-07 2017-10-12 三菱重工業株式会社 Method for manufacturing composite material
JP2019529194A (en) * 2016-09-20 2019-10-17 ジエンス ヘンルイ カーボン ファイバー テクノロジー カンパニー リミテッド Semi-automatic membrane-based compression molding process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149420A (en) * 1983-12-15 1985-08-06 Asahi Chem Ind Co Ltd Compression molding of oriented molding product
JP2002321238A (en) * 2001-04-26 2002-11-05 Kawasaki Heavy Ind Ltd Method for manufacturing perforated sheet for sound absorbing panel of airplane engine nacelle
JP2003103550A (en) * 2001-09-27 2003-04-09 Toshiba Corp Method for molding skin for honeycomb sandwich panel
JP2007525345A (en) * 2004-02-25 2007-09-06 ザ・ボーイング・カンパニー Apparatus and method for processing composite components using elastomeric backing plates
JP2008006814A (en) * 2006-05-31 2008-01-17 Toray Ind Inc Manufacturing method of preform, preform, and fiber-reinforced plastic girder material
JP2009274248A (en) * 2008-05-13 2009-11-26 Toray Ind Inc Method for manufacturing frp
JP2011161879A (en) * 2010-02-15 2011-08-25 Toray Ind Inc Vacuum-assisted rtm method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149420A (en) * 1983-12-15 1985-08-06 Asahi Chem Ind Co Ltd Compression molding of oriented molding product
JP2002321238A (en) * 2001-04-26 2002-11-05 Kawasaki Heavy Ind Ltd Method for manufacturing perforated sheet for sound absorbing panel of airplane engine nacelle
JP2003103550A (en) * 2001-09-27 2003-04-09 Toshiba Corp Method for molding skin for honeycomb sandwich panel
JP2007525345A (en) * 2004-02-25 2007-09-06 ザ・ボーイング・カンパニー Apparatus and method for processing composite components using elastomeric backing plates
JP2008006814A (en) * 2006-05-31 2008-01-17 Toray Ind Inc Manufacturing method of preform, preform, and fiber-reinforced plastic girder material
JP2009274248A (en) * 2008-05-13 2009-11-26 Toray Ind Inc Method for manufacturing frp
JP2011161879A (en) * 2010-02-15 2011-08-25 Toray Ind Inc Vacuum-assisted rtm method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192601A1 (en) * 2013-05-31 2014-12-04 東レ株式会社 Method and device for manufacturing fiber-reinforced plastic
JPWO2014192601A1 (en) * 2013-05-31 2017-02-23 東レ株式会社 Manufacturing method and manufacturing apparatus for fiber reinforced plastic
US10486375B2 (en) 2013-05-31 2019-11-26 Toray Industries, Inc. Production method and production apparatus for fiber-reinforced plastic
JP2015104895A (en) * 2013-12-02 2015-06-08 東レ株式会社 Method for manufacturing fiber-reinforced plastic molding
KR101397957B1 (en) 2014-02-18 2014-05-27 주식회사 다이나트론 Method for manufacturing a plastic mold using a fiber film
WO2017175809A1 (en) * 2016-04-07 2017-10-12 三菱重工業株式会社 Method for manufacturing composite material
JP2019529194A (en) * 2016-09-20 2019-10-17 ジエンス ヘンルイ カーボン ファイバー テクノロジー カンパニー リミテッド Semi-automatic membrane-based compression molding process

Also Published As

Publication number Publication date
JP6040547B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
US20230365765A1 (en) Articles and Methods for Manufacture of Nanostructure Reinforced Composites
JP5604445B2 (en) Process and apparatus for making composite structures
US8420002B2 (en) Method of RTM molding
JP6040547B2 (en) Manufacturing method of fiber reinforced plastic
JP5668874B2 (en) Preform manufacturing method and fiber reinforced resin molded product manufacturing method
JP5611365B2 (en) Method for producing fiber-reinforced plastic molded body, preform and method for producing the same, and adhesive film
CN104589670B (en) A kind of gas path design method of composite cavity structure air bag shaping
JP6799165B2 (en) Semi-automatic film-based compression molding process
EP3075523B1 (en) Frp molding jig and method for molding frp structure
JP5646089B2 (en) Preform manufacturing method and fiber reinforced plastic molded body manufacturing method
JP5151668B2 (en) Manufacturing method of FRP
US10532522B2 (en) Method and device for molding fiber-reinforced plastic member
TW201307027A (en) Method and device for producing at least two products including fiber-reinforced resin
CN108712951B (en) Method for producing composite material
JP2007118577A (en) Method and apparatus for manufacturing fiber-reinforced resin member
WO2017068812A1 (en) Method for manufacturing fiber-reinforced resin structure, system for manufacturing fiber-reinforced resin structure, and fiber-reinforced resin structure
JP2007008147A (en) Preform, frp molded article, and method for producing the same
KR20140050779A (en) Method for forming fiber reinforced plastic composite
JP2019098631A (en) Fiber-reinforced resin body and method for producing the same
CN110948905A (en) Net size forming method of honeycomb sandwich structure grid
JP2002248620A (en) Base material for molding fiber-reinforced plastic and molding method of fiber-reinforced plastic
JP2012066397A (en) Method for manufacturing fiber-reinforced plastic
JP2005288785A (en) Method for producing preform
EP1775109B1 (en) Composite moulding method and apparatus with a vacuum bag
JP2014162017A (en) Method for manufacturing composite material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R151 Written notification of patent or utility model registration

Ref document number: 6040547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees