JP2005288785A - Method for producing preform - Google Patents

Method for producing preform Download PDF

Info

Publication number
JP2005288785A
JP2005288785A JP2004104698A JP2004104698A JP2005288785A JP 2005288785 A JP2005288785 A JP 2005288785A JP 2004104698 A JP2004104698 A JP 2004104698A JP 2004104698 A JP2004104698 A JP 2004104698A JP 2005288785 A JP2005288785 A JP 2005288785A
Authority
JP
Japan
Prior art keywords
sheet
fiber laminate
mold
surface pressure
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004104698A
Other languages
Japanese (ja)
Inventor
Konosuke Yamamoto
晃之助 山本
Kosuke Yoshimura
康輔 吉村
Yasuo Suga
康雄 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004104698A priority Critical patent/JP2005288785A/en
Publication of JP2005288785A publication Critical patent/JP2005288785A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a preform which eliminates a thermal crack, fiber damage, and R-shaped out-of-plane wrinkles and does not spoil the physical properties or surface quality of a large-sized composite material molding by simple equipment. <P>SOLUTION: The method for forming the preform having a desired shape from a fiber laminate includes a fiber laminate setting process (A) in which a tool or a core material is set on a mold surface, and the fiber laminate made of a reinforcing fiber substrate is arranged on it, a sheet setting process (B) in which the fiber laminate is covered with a sheet, and part of the sheet is adhered to a mold while the sheet is not adhered to a corner part formed by the tool or the core material and the mold, and a surface pressure application process (C) in which surface pressure is applied at least one part of the sheet. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、強化繊維プラスチック(以下、単にFRPという。)製の構造体をResin Transfer Molding法(以下、単にRTM法という。)で製造する際に使用する繊維積層体(以下、単にプリフォームという。)の製造方法に関する。詳しくは、例えば航空機、船舶、自動車部材の構造部材であるFRP製スキンパネルの補強部材となる航空機翼のストリンガーやリブ、船舶の船底補強のスティフナやリブなどの成形に使用するプリフォームの製造方法において、寸法精度向上や表面品位向上等を実現させることのできる製造方法に関する。   The present invention is a fiber laminate (hereinafter simply referred to as a preform) used when a structure made of reinforced fiber plastic (hereinafter simply referred to as FRP) is manufactured by the Resin Transfer Molding method (hereinafter simply referred to as RTM method). )). Specifically, for example, a manufacturing method of a preform used for forming a stringer or a rib of an aircraft wing which is a reinforcing member of an FRP skin panel which is a structural member of an aircraft, a ship, an automobile member, a stiffener or a rib for reinforcing a ship bottom. The present invention relates to a manufacturing method capable of realizing improvement in dimensional accuracy, improvement in surface quality, and the like.

従来、例えば航空機、船舶、建築部材などの構造部材として使用されるFRP製パネル、桁材等や、自動車用外板等の複合材料構造部材の成形方法においては、RTM法が生産性と製造コストの点で優れることから広く採用され、最近では樹脂注入工程において成形すべき繊維積層体をバッグ材で密閉し、減圧吸引した状態でマトリクス樹脂を注入する、いわゆるVacuum-Assisted Resin Transfer Molding(真空RTM成形)法が主流になっている。   Conventionally, in the molding method of composite material structural members such as FRP panels, girders, etc. used as structural members such as aircrafts, ships, and building members, and outer panels for automobiles, the RTM method is productivity and manufacturing cost. In recent years, it is widely adopted because of its superiority, and the fiber laminate to be molded in the resin injection process is sealed with a bag material, and the matrix resin is injected in a vacuum suction state, so-called Vacuum-Assisted Resin Transfer Molding (Vacuum RTM) The molding method has become mainstream.

その際、繊維積層体の強化繊維の隅々にまでマトリクス樹脂を均一に注入するには、複数の強化繊維基材を積層してなる繊維積層体の最終製品形状を考慮して、予め所定の形状に賦形しておく、いわゆるプリフォーム工程が必要である。   At that time, in order to uniformly inject the matrix resin into every corner of the reinforcing fiber of the fiber laminate, in consideration of the final product shape of the fiber laminate formed by laminating a plurality of reinforcing fiber base materials, A so-called preform process is required, which is shaped into a shape.

この工程は、プリフォームの積層・切断・形状固定作業が複雑かつ困難な上、得られたプリフォーム中に強化繊維の偏在が生じやすく、均質なものが製造できず、結果として成形品の外観品位不良、強度不足等の問題を抱えていた。   This process is complicated and difficult to perform lamination, cutting and shape fixing of preforms, and uneven distribution of reinforcing fibers tends to occur in the obtained preforms, making it impossible to produce homogeneous products. As a result, the appearance of molded products He had problems such as poor quality and insufficient strength.

そこで、プリフォームの積層・切断・形状固定作業を簡易化するためタック性など取り扱い性を改善する樹脂を付与した基材が提案された。この基材はプリプレグのように積層時に層間が粘着することがないため変形能が極めて高く、厚物を一括積層後、一括屈曲できプリプレグに対して工数削減の利点がある。該基材を用いてプリフォームを製造する場合、賦形用治具やコア材(心材)に該基材を積層し、繊維積層体を心材に沿わせて加熱し、タック性のある樹脂を軟化させ基材間を接着する工程を経る。この基材は樹脂含浸前の基材であり、加熱固定中にタック性のある樹脂が軟化し、繊維積層体の嵩変化がある。   In order to simplify the process of stacking, cutting, and fixing the shape of a preform, a base material provided with a resin that improves handling properties such as tackiness has been proposed. Since this base material does not stick between layers at the time of lamination as in the case of a prepreg, the deformability is extremely high, and after a thick material is laminated at one time, it can be bent at once and has the advantage of reducing man-hours over the prepreg. When producing a preform using the base material, the base material is laminated on a shaping jig or a core material (core material), the fiber laminate is heated along the core material, and a tacky resin is added. A process of softening and bonding the substrates is performed. This base material is a base material before resin impregnation, and the tacky resin softens during heat fixation, and the bulk of the fiber laminate is changed.

例えば、心材が屈曲形状を有する場合、加熱固定中の嵩変化に伴って屈曲部分に周長差が生じてしまう。そのため周長差を考慮して製造する必要がある。しかし、嵩変化により生じるしわやたるみをなくすプリフォームを提供する技術は従来は存在しなかった。   For example, when the core material has a bent shape, a circumferential length difference occurs in the bent portion with a change in volume during heating and fixing. Therefore, it is necessary to manufacture in consideration of the circumference difference. However, there has been no technology for providing a preform that eliminates wrinkles and sagging caused by bulk changes.

一方、3次元プリフォームでR形状を製作する従来技術として、予め積層した繊維積層体を所定のR形状に屈曲させ、スティッチングにより縫い合わせて固定する方法が提案されている(例えば、特許文献1参照)。しかしながら、この方法はミクロ的に見ればR部分に面外のしわを生じ、また、スティッチングをしたときにスティッチング繊維が通過した周辺の繊維破断や局所的な繊維屈曲が生じ、成型品の強度低下や屈曲部の樹脂リッチ層がサーマルクラックの起点になる等の強度問題を有するものであった。   On the other hand, as a conventional technique for producing an R shape with a three-dimensional preform, a method has been proposed in which a fiber laminate that has been laminated in advance is bent into a predetermined R shape, and stitched and fixed by stitching (for example, Patent Document 1). reference). However, this method produces an out-of-plane wrinkle at the R portion when viewed microscopically, and when the stitching is performed, peripheral fiber breakage or local fiber bending through which the stitching fibers have passed occurs, and the molded product There were strength problems such as a decrease in strength and a resin-rich layer at the bent portion as the starting point of thermal cracks.

また、ガイドピンを有する3次元形状の型に一筆書きでx糸層、y糸層、バイアス層と積層し、各層をz糸で結合し、その後、脱型して所定のプリフォームを得る方法が提案されている(例えば、特許文献2参照)。しかしながら、この方法もz糸が周囲の繊維を局所的に屈曲させ成型品の強度低下を招き、また、長尺ストリンガ等の表面積の大きいものを賦形する場合一筆書きでガイドピンを通して賦形するため工程時間が長くなり、また、設備として糸を配列する機械が必要になりコストが高くなってしまうという問題を有していた。   Also, a method of obtaining a predetermined preform by laminating an x-yarn layer, a y-yarn layer, and a bias layer with a single stroke on a three-dimensional shape mold having a guide pin, bonding each layer with a z-yarn, and then demolding Has been proposed (see, for example, Patent Document 2). However, this method also causes the z-thread to locally bend the surrounding fibers, resulting in a decrease in the strength of the molded product, and when shaping a large surface area such as a long stringer, it is shaped through a guide pin with a single stroke. For this reason, the process time becomes long, and a machine for arranging yarns as equipment is required, which increases the cost.

また、繊維積層体を雌型冶具上に乗せ、強化繊維を雌型の内側周囲に固定し、雌型内にR形状を有する雄型冶具を押し込むことで所定形状のプリフォームを作る方法が提案されている(例えば、特許文献3参照)。しかしながら、この方法も、雄型が所定のプリフォーム形状と合致している場合、雄型を雌型に押し込む際に基材がずれたり、押し圧で繊維積層体厚みが変化し、しわが生じてしまう、また、両面金型を必要とするため、航空機主翼部材などの大型成型品を成形する場合、金型設備のコストが高くなってしまうという問題を有していた。   Also proposed is a method of making a preform with a predetermined shape by placing a fiber laminate on a female jig, fixing reinforcing fibers around the inside of the female mold, and pushing a male jig having an R shape into the female mold. (For example, see Patent Document 3). However, even in this method, when the male mold matches the predetermined preform shape, the base material is displaced when the male mold is pushed into the female mold, and the thickness of the fiber laminate changes due to the pressing pressure, thereby causing wrinkles. In addition, since a double-sided mold is required, when molding a large molded product such as an aircraft main wing member, there is a problem in that the cost of the mold equipment is increased.

さらに、プリプレグ成形において、成形型面状に希望する形状のコア材を設置し、該コア材を覆うように順次FRPプリプレグ及びラバーシート内を真空引きすることによって該コア材に該FRPプリプレグを密着させてコア材に合致する形状のFRP立体成型物を得る方法が提案されている(例えば、特許文献4参照)。しかしながら、この方法も該FRPプリプレグの端部と該ラバーシートの間に、一定高さまたは高さが可変する冶具を配設して真空引きしてFRPを立体成形する方法がある。しかし、一定高さの冶具や高さ可変冶具ではラバーシートがツール面に密着するタイミングをコントロールしなければならないし、形状毎に異なる高さの冶具を準備する必要がある。また、タック性等の取り扱い性を向上する粒子状樹脂樹脂の付着した基材を使用する場合、加熱工程において該基材の積層体のR形状部分で周長差により生じる面外しわを排除するような効果を常に発揮することができないという問題を有していた。
特開平11−269755号公報(請求項1) 特開平9−137336号公報 特開平6−155483号公報(請求項1) 特開平7−60770号公報(請求項1、実施例1)
Furthermore, in the prepreg molding, a core material having a desired shape is placed on the mold surface, and the FRP prepreg and the rubber sheet are sequentially evacuated so as to cover the core material, thereby closely attaching the FRP prepreg to the core material. A method for obtaining an FRP solid molded product having a shape matching the core material has been proposed (see, for example, Patent Document 4). However, this method also includes a method in which a jig having a constant height or a variable height is disposed between the end portion of the FRP prepreg and the rubber sheet, and the FRP is three-dimensionally formed by evacuation. However, when a jig with a certain height or a variable height jig is used, it is necessary to control the timing at which the rubber sheet comes into close contact with the tool surface, and it is necessary to prepare a jig with a different height for each shape. In addition, when using a base material to which particulate resin resin that improves handling properties such as tackiness is used, out-of-plane wrinkles caused by a difference in circumference at the R-shaped portion of the laminate of the base material in the heating step are eliminated. Such an effect cannot always be exhibited.
JP-A-11-269755 (Claim 1) JP-A-9-137336 JP-A-6-155383 (Claim 1) Japanese Patent Laid-Open No. 7-60770 (Claim 1, Example 1)

本発明の課題は、従来技術の上述した問題点であるサーマルクラックや繊維損傷、R形状の面外しわをなくし、簡易的な設備で大型の複合材料成型品の物性や表面品位を損なわないプリフォームを得ることが可能なプリフォームの製造方法を提供するにある。   The object of the present invention is to eliminate thermal cracks, fiber damage, and R-shaped out-of-plane wrinkles, which are the above-mentioned problems of the prior art, and prevent damage to physical properties and surface quality of large composite molded products with simple equipment. An object of the present invention is to provide a preform manufacturing method capable of obtaining a reform.

上記課題を達成するために、本発明は、以下の構成を採用する。すなわち、
(1)繊維積層体から所望の形状のプリフォームを賦形する方法において、少なくとも次の(A)〜(C)の工程を順次経てなることを特徴とするプリフォームの製造方法。
In order to achieve the above object, the present invention adopts the following configuration. That is,
(1) A method for producing a preform, wherein a preform having a desired shape is formed from a fiber laminate, and the preforms are sequentially subjected to at least the following steps (A) to (C).

(A)成形型面上に冶具またはコア材を設置し、その上に強化繊維基材からなる繊維積層体を配置する繊維積層体のセット工程。       (A) A step of setting a fiber laminate in which a jig or a core material is installed on the mold surface, and a fiber laminate made of a reinforcing fiber substrate is arranged thereon.

(B)前記繊維積層体をシートで覆い、前記治具または前記コア材と前記成形型で形成されるコーナー部に該シートを密着させない状態で、該シートの一部を前記成形型に密着させるシートのセット工程。       (B) The fiber laminate is covered with a sheet, and a part of the sheet is brought into close contact with the forming die in a state where the sheet is not brought into close contact with a corner portion formed by the jig or the core material and the forming die. Sheet setting process.

(C)前記シートの少なくとも一部に面圧を加える面圧付加工程。       (C) A surface pressure applying step of applying a surface pressure to at least a part of the sheet.

(2)前記繊維積層体として、粒子状樹脂、繊維状樹脂またはフィルム状樹脂を付着させたものを用いることを特徴とする前記(1)に記載のプリフォームの製造方法。   (2) The method for producing a preform as described in (1) above, wherein as the fiber laminate, a particulate resin, a fibrous resin, or a film-like resin is used.

(3)前記シートとして、伸度が0.002〜10%の範囲内にあるものを用いることを特徴とする前記(1)または(2)に記載のプリフォームの製造方法。   (3) The method for producing a preform according to (1) or (2), wherein the sheet has an elongation in a range of 0.002 to 10%.

(4)前記シートとして、前記繊維積層体に対し、離型性があるものを用いることを特徴とする前記(1)〜(3)のいずれかに記載のプリフォームの製造方法。   (4) The method for producing a preform according to any one of (1) to (3), wherein the sheet has a releasability with respect to the fiber laminate.

(5)前記面圧付加工程において、30kPa〜500kPaの面圧を付与することを特徴とする前記(1)〜(4)のいずれかに記載のプリフォームの製造方法。   (5) In the said surface pressure addition process, the surface pressure of 30 kPa-500 kPa is provided, The manufacturing method of the preform in any one of said (1)-(4) characterized by the above-mentioned.

(6)前記面圧付加工程において、面圧を負荷する方法して、少なくとも次の(a)または(b)法を用いてなる(1)〜(5)のいずれかに記載のプリフォームの製造方法。   (6) The preform according to any one of (1) to (5), wherein at least the following method (a) or (b) is used as a method for applying a surface pressure in the surface pressure applying step: Production method.

(a)成形型面全体をバッグ材で覆って周囲を密閉した後、成形型とバッグ材で形成される閉空間内を減圧雰囲気に吸引する方法。       (A) A method in which the entire mold surface is covered with a bag material and the periphery is sealed, and then the closed space formed by the mold and the bag material is sucked into a reduced-pressure atmosphere.

(b)成形型面上に設置されたシート面の少なくとも一部に液体または気体の入った袋を該袋の支持構造とともに配置し、前記袋内の液体または気体を昇圧させて加圧する方法。       (B) A method in which a bag containing liquid or gas is disposed on at least a part of a sheet surface placed on the mold surface together with the support structure of the bag, and the liquid or gas in the bag is pressurized and pressurized.

(7)前記面圧付加工程の際に、少なくとも繊維積層体を含む全体の温度を50℃〜130℃の範囲内に加熱することを特徴とする前記(1)〜(6)のいずれかに記載のプリフォームの製造方法。   (7) In any of the above (1) to (6), the entire temperature including at least the fiber laminate is heated in a range of 50 ° C. to 130 ° C. in the surface pressure applying step. A method for producing the preform as described.

(8)前記繊維積層体のセット工程において、治具またはコア材を昇降する装置を成形型上に設置するとともに、前記面圧付加工程において、治具またはコア材が、成形型と治具またはコア材で構成されるコーナー部にシートが密着しない範囲で昇降可能なように操作することを特徴とする前記(1)〜(7)のいずれかに記載のプリフォームの製造方法。   (8) In the step of setting the fiber laminate, an apparatus for raising and lowering the jig or the core material is installed on the mold, and in the surface pressure applying process, the jig or the core material is formed with the mold and the jig or The preform manufacturing method according to any one of (1) to (7), wherein the operation is performed so that the sheet can be raised and lowered within a range in which the sheet is not in close contact with the corner portion formed of the core material.

本発明は、上記構成を採用することにより、簡易な設備で繊維積層体を用いてしわやうねり等の少ない表面性状に優れたプリフォームを得ることができる。また、強度低下の要因となる繊維損傷やサーマルクラック等を発生させずにプリフォームを製造することが可能になる。   By adopting the above configuration, the present invention can obtain a preform excellent in surface properties such as wrinkles and undulations using a fiber laminate with simple equipment. Moreover, it becomes possible to manufacture a preform without causing fiber damage, thermal cracks, and the like that cause a decrease in strength.

以下、本発明の製造方法を実施するための最良の形態について、各工程順にその図面を参照しながら説明する。
1.(A)繊維積層体のセット工程
図1は、成形型上の治具またはコア材に強化繊維をセットする工程を説明するための断面図である。図において、1は平面上の成形型、2はその上に固定された治具または発泡体等のコア材である。成形型1及び凸型冶具2としては、後述する面圧付加工程で加える面圧によって塑性変形しないような材質である金属製、合成樹脂製またはGFRP、CFRP製が好ましい。また、成形型1及び凸型冶具2は、繊維積層体3に対して離型性があるまたは離型性を付与されたものが好ましい。コア材2としては、ウレタン樹脂、ポリ塩化ビニル、ポリイミド樹脂、アクリル樹脂、FRP製が好ましいがこれに限らない。
Hereinafter, the best mode for carrying out the production method of the present invention will be described in the order of each step with reference to the drawings.
1. (A) Setting process of fiber laminate FIG. 1 is a cross-sectional view for explaining a process of setting reinforcing fibers on a jig or a core material on a mold. In the figure, 1 is a molding die on a plane, and 2 is a core material such as a jig or foam fixed on the mold. The mold 1 and the convex jig 2 are preferably made of metal, synthetic resin, GFRP, or CFRP, which is a material that is not plastically deformed by the surface pressure applied in the surface pressure applying step described later. In addition, the mold 1 and the convex jig 2 are preferably those having releasability or imparting releasability to the fiber laminate 3. The core material 2 is preferably made of urethane resin, polyvinyl chloride, polyimide resin, acrylic resin, or FRP, but is not limited thereto.

3は、これら治具または発泡体上の所定位置の角部にシワの発生をなくしてセットとするための繊維積層体であり、複数枚の強化繊維4が積層されたものである。   Reference numeral 3 denotes a fiber laminated body for eliminating wrinkles at a corner portion at a predetermined position on the jig or the foam, and a plurality of reinforcing fibers 4 are laminated.

本発明で用いる強化繊維4としては、カーボン繊維、アラミド繊維、ガラス繊維が好ましいが、強化繊維の形態については、成形すべきFRPにより、織物、一方向基材などの用途に応じて様々なものを使用することができ、目付、繊維の繊度、弾性率等の諸特性値についても同様である。また、複数の強化繊維4相互を接合して繊維積層体3として一体化させるために、強化繊維層間にタック性などの取り扱い性を向上する粒子状樹脂、繊維状樹脂またはフィルム状樹脂が付着していることが望ましい。その付着方法としては、スプレー散布による塗布、繊維状樹脂と強化繊維とのからまり合い、静電気等、繊維の縫い合わせ等が挙げられる。
2.(B)シートのセット工程
図2は、上記繊維積層体3の上からシート5を覆うシートのセット工程の断面図である。 次に、図に示すように繊維積層体3の全体をその上からさらにシート5で覆い、シート5の一部、例えばシートのうちの両端部部を成形型に密着させる。シート5で覆う目的は繊維積層体3の角部のシワの発生をなくし、表面を平滑にするためである。このセット工程においては、シート5が前記凸型の冶具またはコア材2と成形型1とで形成されるコーナー部6(図3参照)に密着しないように覆うのが好ましい。その理由は、次の面圧付加工程において、シート5に面圧を付加させたときに成形型方向へシート5が移動できるための空間が必要だからである。よって、シート5の外周部と成形型1との接点は、図5の断面図に示すように凸状治具2の外周部から離れた位置にあるのが好ましい。すなわち、シート5が凸型の冶具またはコア材2と成形型1で形成されるコーナー部6に密着しないようにシート端部を固定するのが好ましい。その具体的方法としては、テープ等の粘着力を用いたシート固定、磁石により挟み込み、機械的に面圧を付与するシート固定、ピン等を刺すシート固定、磁石シートと金型を磁力により固定する等の方法や、これらの組み合わせ方法が挙げられる。
The reinforcing fiber 4 used in the present invention is preferably carbon fiber, aramid fiber, or glass fiber. However, the reinforcing fiber may have various forms depending on the use of the woven fabric, unidirectional substrate, etc. The same applies to various characteristic values such as basis weight, fiber fineness, and elastic modulus. In addition, in order to join a plurality of reinforcing fibers 4 and integrate them as a fiber laminate 3, particulate resin, fibrous resin, or film-like resin that improves handling properties such as tackiness adheres between the reinforcing fiber layers. It is desirable that Examples of the adhesion method include application by spraying, entanglement between the fibrous resin and the reinforcing fiber, and stitching of fibers such as static electricity.
2. (B) Sheet Setting Step FIG. 2 is a cross-sectional view of a sheet setting step for covering the sheet 5 from above the fiber laminate 3. Next, as shown in the figure, the entire fiber laminate 3 is further covered with the sheet 5 from above, and a part of the sheet 5, for example, both end portions of the sheet are brought into close contact with the mold. The purpose of covering with the sheet 5 is to eliminate wrinkles at the corners of the fiber laminate 3 and to smooth the surface. In this setting step, it is preferable to cover the sheet 5 so as not to adhere to the corner portion 6 (see FIG. 3) formed by the convex jig or core material 2 and the mold 1. The reason is that, in the next surface pressure applying step, a space is required for the sheet 5 to move in the mold direction when a surface pressure is applied to the sheet 5. Therefore, the contact point between the outer periphery of the sheet 5 and the mold 1 is preferably located at a position away from the outer periphery of the convex jig 2 as shown in the cross-sectional view of FIG. That is, it is preferable to fix the sheet end so that the sheet 5 does not adhere to the corner 6 formed by the convex jig or core material 2 and the mold 1. Specific methods include sheet fixing using adhesive force such as a tape, pinching with a magnet, sheet fixing for mechanically applying surface pressure, sheet fixing for inserting a pin, etc., and fixing a magnetic sheet and a mold by magnetic force. Etc., and combinations thereof.

本工程で用いるシートとしては、前記粒子状樹脂との離型性や前記繊維積層体とのすべりを有し、かつ、次工程で説明する面圧を付与してもコア材2のコーナー部に密着しないもの、すなわち伸縮性を有しないものが好ましい。伸度としては、0.002〜10%の範囲内にあるものを用いるのが好ましく、その材質としては、フッ素樹脂でコーティングしたガラスクロス、アラミドクロス、SUS等が伸度、引張強さ、曲げ剛性等が好ましい。   The sheet used in this step has releasability from the particulate resin and sliding with the fiber laminate, and is applied to the corner portion of the core material 2 even when the surface pressure described in the next step is applied. What does not adhere | attach, ie, the thing which does not have a stretching property, is preferable. As the elongation, it is preferable to use a material in the range of 0.002 to 10%. As the material, glass cloth, aramid cloth, SUS, etc. coated with fluororesin are used for elongation, tensile strength, bending. Rigidity etc. are preferred.

シートの離型性としては、上記シート表面にコーティング材料としてPTFE、FEP、AFP、ETFE等のフッ素樹脂等がコーティングされているものが好ましいが、プリフォーム製造時のコストや溶融を考慮に入れてパラフィン系の離型材を用いても良い。
3.(C)面圧付加工程
次に、図3に示すように、シート5の上から少なくともその一部に、図の矢印で示す面圧7を繊維積層体方向に加える。この場合の面圧としては、30kPa〜500kPa程度が好ましい。この面圧が30kPa未満であると前記繊維積層体の押さえが不十分であるため成型工程でシワになり易く、一方、500kPaを越えると、前記シートが賦形中に破断し、シワの排除機能を有さなくなる傾向がある。
As the sheet releasability, it is preferable that the surface of the sheet is coated with a fluorine resin such as PTFE, FEP, AFP, ETFE or the like as a coating material. A paraffin release material may be used.
3. (C) Surface pressure addition process Next, as shown in FIG. 3, the surface pressure 7 shown by the arrow of a figure is applied to at least one part from the top of the sheet | seat 5 to a fiber laminated body direction. In this case, the surface pressure is preferably about 30 kPa to 500 kPa. If the surface pressure is less than 30 kPa, the fiber laminate is not sufficiently pressed down, so that it tends to wrinkle in the molding process. There is a tendency not to have.

具体的な面圧付加方法としては、次の(a)または(b)のどの方法を用いても良い。   As a specific surface pressure applying method, any of the following methods (a) or (b) may be used.

(a)成形型面の全体をバッグ材で覆い、周囲を密閉し、成形型とバッグ材で形成される閉空間内を吸引して減圧雰囲気にする方法。   (A) A method in which the entire mold surface is covered with a bag material, the periphery is sealed, and a closed space formed by the mold and the bag material is sucked into a reduced pressure atmosphere.

(b)成形型面上に設置されたシート面の少なくとも一部に液体または気体の入った袋を該袋の支持構造とともに配置し、袋内の液体又は気体を昇圧し加圧する方法。   (B) A method in which a bag containing liquid or gas is disposed on at least a part of the sheet surface placed on the mold surface together with the support structure of the bag, and the liquid or gas in the bag is pressurized and pressurized.

また、これらの方法による加圧の際、少なくとも繊維積層体を含む全体の温度を50℃〜130℃の範囲内に加熱するとよい。その理由は繊維積層体にしわ伸ばしができた状態が維持できるからである。   Moreover, it is good to heat the whole temperature including a fiber laminated body in the range of 50 to 130 degreeC in the case of the pressurization by these methods. The reason for this is that the fiber laminate can be maintained in a state where the fiber laminate can be stretched.

本発明は、以上の3工程を経ることにより、コア材上に配置された繊維積層体にたとえシワが存在していたとしても、面圧付加工程によるシートにコア材方向への面圧が付加されるから、シワがシートにより下方方向に引きずり下ろされるとともに、適度のコア材へのセット力が付与される。
4.加熱工程
繊維積層体3にしわ伸ばしがされたら、その状態を維持するために、例えば図11に示すような加熱室に繊維積層体3を含む全体を入れ、しわ伸ばし状態を熱固定しても良い。すなわち、図11は、成形型全体53を配置し得る空間容積を有する加熱炉内51に、ヒ
ータとファンからなる加熱手段52を設けたものである。その他、オーブン等の雰囲気加熱、冶具または成形型を加熱する接触加熱、繊維積層体を直接加熱する高周波誘導加熱等を採用しても良い。この時点で繊維積層体3は、図1で説明した凸型治具またはコア材2により、シワがない状態に賦形されて、プリフォーム化されたことになる。
5.繊維積層体の脱型工程
繊維積層体3のしわ伸ばしが完了したら、面圧を付与を解除後、図4(a)に示すように成形型1からコア材2とプリフォーム8a(繊維積層体3)を一体として剥がすか、または同図(b)に示すように、凸型冶具2からプリフォーム8bを剥がし、取り出す。
In the present invention, through the above three steps, even if wrinkles are present in the fiber laminate disposed on the core material, the surface pressure in the core material direction is applied to the sheet by the surface pressure addition step. Therefore, the wrinkles are dragged downward by the sheet and an appropriate setting force to the core material is applied.
4). Heating process Once the fiber laminate 3 has been wrinkled and stretched, even if the entire structure including the fiber laminate 3 is placed in a heating chamber as shown in FIG. good. That is, in FIG. 11, heating means 52 including a heater and a fan is provided in a heating furnace 51 having a space volume in which the entire mold 53 can be disposed. In addition, atmosphere heating such as an oven, contact heating for heating a jig or a mold, high-frequency induction heating for directly heating a fiber laminate, or the like may be employed. At this point, the fiber laminate 3 is formed into a preform without being wrinkled by the convex jig or the core material 2 described with reference to FIG.
5). Demolding process of the fiber laminate When the wrinkle stretching of the fiber laminate 3 is completed, after applying the surface pressure, the core material 2 and the preform 8a (fiber laminate) are removed from the mold 1 as shown in FIG. 3) is peeled off as a unit, or the preform 8b is peeled off from the convex jig 2 and taken out as shown in FIG.

以上にて、本発明の製造方法の主要工程は終了したことになるが、その他の工程を適宜加えても良い。   Although the main process of the manufacturing method of the present invention has been completed, other processes may be added as appropriate.

次に、本発明の作用を図5〜8を参照しながら説明する。
まず、凸型冶具2上の繊維積層体3に矢印で示す面圧が付加されると、積層体表面に形成されているシワは、シート裏面により成形型方向の下方に引きずり降ろされる。この際、シート5は離型性が良いため、積層体3の外周面に対して滑りが生じしわ伸ばし作用がより促進される。
Next, the operation of the present invention will be described with reference to FIGS.
First, when a surface pressure indicated by an arrow is applied to the fiber laminate 3 on the convex jig 2, the wrinkles formed on the surface of the laminate are dragged down in the mold direction by the sheet back surface. At this time, since the sheet 5 has good releasability, slippage occurs on the outer peripheral surface of the laminated body 3 and the wrinkle stretching action is further promoted.

この状態を示したのが図6である。図において、μ・Nはシート5と繊維積層体3間の静止摩擦力を示し、シートにかかる下方向の力Fがこの値よりも大きくなるので、シート側面部が上面部分より後に前記繊維積層体に密着し、たとえ積層体の上面部分にしわが形成されてもしわが除去される。また、シート5にかかる力Fが下記に示すσs・Asよりも小さいのでシート5が破断せず、プリフォームを冶具2になじませる効果が発揮される。本発明の製造方法は、そのため、シートにかかる力Fが以下の式を満たしている。   FIG. 6 shows this state. In the figure, μ · N represents the static frictional force between the sheet 5 and the fiber laminate 3, and the downward force F applied to the sheet is larger than this value. Even if wrinkles are formed on the upper surface portion of the laminate, the wrinkles are removed. In addition, since the force F applied to the sheet 5 is smaller than σs · As shown below, the sheet 5 is not broken and the effect of allowing the preform to fit the jig 2 is exhibited. Therefore, in the manufacturing method of the present invention, the force F applied to the sheet satisfies the following formula.

μ・N<F<σs・As
ただし、μ:シートと繊維積層体との静止摩擦係数
N:繊維積層体の垂直効力
F:シートにかかる力
σs:シートの引張り強さ
As:シートの断面積
前記シートの引張り強さσsは、JIS K 7127に記載のフィルム及びシートの引張特性の試験方法を用いて試験を行い、その結果から算出する。また、シートと繊維積層体との静止摩擦係数μの測定方法としては、JIS K 7125に記載のフィルム及びシートの摩擦係数試験方法を用いて試験を行い、その結果から算出する。
μ ・ N <F <σs ・ As
Where μ: Coefficient of static friction between sheet and fiber laminate
N: Vertical effect of fiber laminate
F: Force applied to the sheet
σs: Sheet tensile strength
As: Sectional area of sheet The tensile strength σs of the sheet is calculated from the result of a test performed using the test method for the tensile properties of the film and sheet described in JIS K 7127. Moreover, as a measuring method of the static friction coefficient (mu) of a sheet | seat and a fiber laminated body, it tests using the friction coefficient test method of the film and sheet | seat described in JISK7125, and calculates from the result.

次にシート5の特性としては繊維積層体を凸型の冶具またはコア材2に密着させるために、以下の式を満たしている。これを前述の図5と図5の部分拡大図である図7を示し説明図すると、シート5の曲げモーメントMは本発明では以下の関係にある。   Next, as a characteristic of the sheet 5, the following formula is satisfied in order to bring the fiber laminate into close contact with the convex jig or the core material 2. 5 and FIG. 7 which is a partially enlarged view of FIG. 5, the bending moment M of the sheet 5 has the following relationship in the present invention.

1/ρ>−M/EI
ただし、ρ:曲率半径1.0mm
M:曲げモーメント
E:シートの曲げ剛性
I:シートの断面二次モーメント
次に、シート5の縦断面周長としては、図8の断面図に示すようにシートと平面状の成形型1との接点11までの断面周長が次の式を満たすことが好ましい。L2は最適な範囲内のシート長さを示す一例であり、L1はシート長さが短すぎたために繊維積層体の製品ラインまでを覆えていない場合の断面周長である。これに反し、L3はシート長さが長過ぎためにシートが凸型の冶具またはコア材2と成形型1で形成されるコーナー部6に密着してしまい、繊維積層体のしわを除去する機能を有さない。
1 / ρ> -M / EI
However, ρ: curvature radius 1.0mm
M: Bending moment
E: Bending rigidity of the sheet
I: Second sectional moment of sheet Next, as a longitudinal sectional circumference of the sheet 5, as shown in the sectional view of FIG. 8, the sectional circumferential length to the contact point 11 between the sheet and the flat mold 1 is as follows. It is preferable to satisfy the formula. L2 is an example showing the sheet length within the optimum range, and L1 is a cross-sectional circumference when the sheet length is too short to cover the product line of the fiber laminate. On the other hand, L3 has a sheet length that is too long, so that the sheet comes into close contact with the convex jig or the corner portion 6 formed by the core material 2 and the mold 1 and removes wrinkles from the fiber laminate. Does not have.

L1<L2≦L3
ただし、L1:短すぎる場合のシート断面周長
L3:長すぎる場合のシート断面周長
L2:最適な範囲内にあるシート断面周長
結局、好ましいシート5の縦断面周長としては、シートが図に示す製品ライン12よりも下方位置で屈曲し、その延長線が接点11に到達するのが好ましい。本発明のシート長さにおいてはこのような状態の長さとなっているので、シートによるシワの下方方向へのずりさげ効果が適度に発揮され、繊維積層体表面のしわが除去される。
L1 <L2 ≦ L3
However, L1: sheet cross-sectional circumference when it is too short
L3: Sheet cross-sectional circumference when it is too long
L2: Sheet cross-sectional peripheral length within the optimum range After all, as a preferable longitudinal cross-sectional peripheral length of the sheet 5, the sheet is bent at a position lower than the product line 12 shown in the figure, and the extension line reaches the contact 11 Is preferred. Since the length of the sheet of the present invention is such a length, the sheet is moderately exerted in the downward wrinkle effect of the wrinkles, and wrinkles on the surface of the fiber laminate are removed.

また、繊維積層体に強制的なしわのばし作用を付与するシート以外の方法としては、面圧負荷工程において、凸型治具またはコア材2を昇降できる装置をコーナー部6にシート5が密着しない範囲で昇降させてもよい。昇降装置としては空気または油圧式のシリンダ、ネジ式のジャッキボルト等を用いることができる。   Further, as a method other than a sheet that imparts a forcible wrinkle spreading action to the fiber laminate, the sheet 5 does not adhere to the corner portion 6 with a device that can raise and lower the convex jig or the core material 2 in the surface pressure loading step. The range may be raised or lowered. As the lifting device, an air or hydraulic cylinder, a screw-type jack bolt, or the like can be used.

以上の各作用により、繊維積層体上のシワが強制的に除去される。   By the above actions, wrinkles on the fiber laminate are forcibly removed.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

実施例1
図9は、本発明の第1の実施例に係る縦断面図であり、バギングフィルム28で平面状の成形型22を密閉し、内部を減圧している様子を示している。
Example 1
FIG. 9 is a longitudinal sectional view according to the first embodiment of the present invention, and shows a state where the planar mold 22 is sealed with the bagging film 28 and the inside is decompressed.

まず、図に示すように平面状の成形型22の上にアルミニューム製の凸型冶具23(断面寸法:50mm×80mm、コーナー半径R:5mm)を置いた。次に、凸型冶具2上にタック性などの取り扱い性を向上させるために付与する粒子状樹脂(成形で使用するマトリックス樹脂と相溶する成分でガラス転移温度Tg=68〜72℃)の付着した基材(T800S、目付が190g/m2:東レ株式会社製)を48枚(約10mm)積層した繊維積層体24を置いた。そして、PTFEをコーティングしたガラスクロス26(厚さ0.12mm、引張り強さ縦280・横250N/cm、引裂強さ9N:以下、シートとする。)を繊維積層体24の上に配置し、少なくとも製品ライン面36まで前記シート26が覆うように配置し、真空吸引後も凸型冶具23、平面状の成形型22で構成されるコーナー部35に前記シートが密着しないようにPEテープ27で端線を止めた。   First, as shown in the figure, an aluminum convex jig 23 (cross-sectional dimension: 50 mm × 80 mm, corner radius R: 5 mm) was placed on a flat mold 22. Next, adhesion of particulate resin (a component compatible with the matrix resin used in molding and glass transition temperature Tg = 68 to 72 ° C.) provided to improve the handleability such as tackiness on the convex jig 2 The fiber laminated body 24 which laminated | stacked 48 sheets (about 10 mm) of the base material (T800S, a fabric weight of 190g / m2: Toray Industries, Inc. make) was set | placed. Then, a glass cloth 26 (thickness 0.12 mm, tensile strength length 280 / width 250 N / cm, tear strength 9 N: hereinafter referred to as a sheet) coated with PTFE is disposed on the fiber laminate 24. The sheet 26 is disposed so as to cover at least the product line surface 36, and the PE tape 27 prevents the sheet from coming into close contact with the corner portion 35 formed by the convex jig 23 and the flat mold 22 even after vacuum suction. The end line was stopped.

次に、平面状の成形型22の上にシーラントテープ25(SM5126:リッチモンド製)を貼り、ナイロンチューブ29(N2−4−8×6:ニッタ・ムアー製)、バギングフィルム28(HS−800:リッチモンド製)を図のように配置し、前記ナイロンチューブ29を介してバキュームポンプ30に接続した。そして、バギングフィルム28と平面状の成形型22で構成される空間を減圧し、真空度が750mmHg以上であることを確認し、加熱炉内に入れた。ここで、前記繊維積層体24のかさ密度を測定すると約40%であった。次に、常温20℃から雰囲気温度を2℃/minで80℃まで加熱し、遅れて温度が上昇した前記繊維積層体24を80±5℃で2時間保持した。その後、前記繊維積層体24の温度が45℃になるまで冷却し、前記記載のタック性などの取り扱い性を向上させるために付与する粒子状樹脂の経時変化をなくし、かさ密度を測定すると約55%であった。次に断面のR形状部34に目標かさ密度相当のテンプレートを当てた。透き見ゲージで測定すると、最小測定(0.3mm)範囲以下であり、R形状部34に面外しわを測定できなかった。   Next, a sealant tape 25 (SM5126: manufactured by Richmond) is pasted on the planar mold 22, a nylon tube 29 (N2-4-8 × 6: manufactured by Nitta Moore), and a bagging film 28 (HS-800: (Manufactured by Richmond) was arranged as shown in the figure and connected to the vacuum pump 30 via the nylon tube 29. Then, the space formed by the bagging film 28 and the planar mold 22 was depressurized, and it was confirmed that the degree of vacuum was 750 mmHg or more, and placed in a heating furnace. Here, the bulk density of the fiber laminate 24 was measured to be about 40%. Next, the ambient temperature was raised from room temperature of 20 ° C. to 80 ° C. at 2 ° C./min, and the fiber laminate 24 whose temperature rose with a delay was held at 80 ± 5 ° C. for 2 hours. Thereafter, the fiber laminate 24 is cooled to a temperature of 45 ° C. to eliminate the change with time of the particulate resin applied in order to improve the handling properties such as the tackiness described above, and the bulk density is measured to be about 55. %Met. Next, a template corresponding to the target bulk density was applied to the R-shaped portion 34 of the cross section. When measured with a see-through gauge, it was below the minimum measurement (0.3 mm) range, and no out-of-plane wrinkles could be measured on the R-shaped portion 34.

かさ密度を算出するために必要な板厚は次のように測定した。繊維積層体24を既知の厚さのアルミ板ではさみ、0.1MPaの面圧を付与した状態でマイクロメータを用いてアルミ板間を測定する。その後、測定値から該アルミ板の厚さを減じて繊維積層体の厚さとした。測定回数は各部分5回とし、その平均値をとった。かさ密度は以下の式を用いて算出した。   The plate thickness necessary for calculating the bulk density was measured as follows. The fiber laminate 24 is sandwiched between aluminum plates having a known thickness, and the space between the aluminum plates is measured using a micrometer in a state where a surface pressure of 0.1 MPa is applied. Thereafter, the thickness of the aluminum plate was subtracted from the measured value to obtain the thickness of the fiber laminate. The number of measurements was 5 for each part, and the average value was taken. The bulk density was calculated using the following formula.

Vf = F×m/ρ/t/10
ただし、Vf:かさ密度(%)
F :目付(g/m2)
m :ply数(枚)
ρ :繊維密度(g/cm3)
t :繊維積層体厚さ(mm)
面外しわの測定方法としては、繊維積層体に0.1MPaの面圧を付与し、その状態で繊維積層体のR部分に目標かさ密度のR形状のテンプレートを当てる。その後、テンプレートと前記繊維積層体のすきま(面外のしわやR形状のずれ)を透き見ゲージで測定した。
Vf = F × m / ρ / t / 10
Vf: Bulk density (%)
F: basis weight (g / m2)
m: Number of ply (sheets)
ρ: Fiber density (g / cm3)
t: Fiber laminate thickness (mm)
As a method for measuring out-of-plane wrinkles, a surface pressure of 0.1 MPa is applied to the fiber laminate, and an R-shaped template having a target bulk density is applied to the R portion of the fiber laminate in this state. Thereafter, the clearance between the template and the fiber laminate (out-of-plane wrinkles and R-shaped deviation) was measured with a see-through gauge.

実施例2
図10は本発明の第2の実施例であり、流体を封入した袋を用いて繊維積層体を加圧した場合の断面図である。図10のように平面状の成形型22の上に凸型冶具23(断面:50mm×80mm、コーナーR:5mm)を置いた。次に、凸型冶具23上にタック性などの取り扱い性を向上させるために付与する粒子状樹脂(成形で使用するマトリックス樹脂と相溶する成分でガラス転移温度Tg=68〜72℃)の付着した基材(T800S、目付が190g/m2:東レ株式会社製)を48枚(約10mm)積層した前記繊維積層体24を置いた。次に、PTFEをコーティングしたガラスクロス26(厚さ0.12mm、引張り強さ縦280・横250N/cm、引裂強さ9N:以下、シートとする。)を繊維積層体24の上に配置し、少なくとも製品ライン面36まで前記シート24が当たるように配置し、加圧後も凸型冶具23、平面状の成形型22で構成されるコーナー部35に前記シート26が密着しないようにPEテープ27で端線を止めた。
Example 2
FIG. 10 shows a second embodiment of the present invention, and is a cross-sectional view when a fiber laminate is pressurized using a bag enclosing a fluid. As shown in FIG. 10, a convex jig 23 (cross section: 50 mm × 80 mm, corner R: 5 mm) was placed on a flat mold 22. Next, adhesion of particulate resin (a component compatible with the matrix resin used in molding and glass transition temperature Tg = 68 to 72 ° C.) provided to improve the handleability such as tackiness on the convex jig 23. The fiber laminate 24 in which 48 sheets (about 10 mm) of the base materials (T800S, basis weight 190 g / m 2 : manufactured by Toray Industries, Inc.) were laminated was placed. Next, a glass cloth 26 (thickness 0.12 mm, tensile strength length 280 / width 250 N / cm, tear strength 9 N: hereinafter referred to as a sheet) coated with PTFE is placed on the fiber laminate 24. The PE tape is disposed so that the sheet 24 hits at least the product line surface 36, and the sheet 26 does not adhere to the corner portion 35 constituted by the convex jig 23 and the flat mold 22 even after pressing. The end line was stopped at 27.

次に図のように前記平面状の成形型 とアルミ枠33で閉空間を形成し、閉空間内にシリコンゴム31を配置し、前記シリコンゴム31内に流体(圧空)32を注入した。シリコンゴム31内に前記流体32を注入し、閉空間内に拡張させ繊維積層体24に面圧を110kPaで付与した。その後、加熱炉内に移動させ、2℃/minで常温(20℃)から80℃まで加熱し、遅れて温度が上昇する繊維積層体24を80±5℃で2時間保持した。その後、繊維積層体24の物温が45℃になるまで冷却することで前記タック性などの取り扱い性を向上させるために付与する粒子状樹脂の経時変化をなくし、かさ密度を測定すると約55%であった。   Next, as shown in the figure, a closed space was formed by the flat mold and the aluminum frame 33, and a silicon rubber 31 was placed in the closed space, and a fluid (pressure air) 32 was injected into the silicon rubber 31. The fluid 32 was injected into the silicon rubber 31 and expanded into a closed space, and a surface pressure was applied to the fiber laminate 24 at 110 kPa. Then, it moved in the heating furnace, heated from normal temperature (20 degreeC) to 80 degreeC at 2 degree-C / min, and the fiber laminated body 24 which temperature rose late is hold | maintained at 80 +/- 5 degreeC for 2 hours. Thereafter, the fiber laminate 24 is cooled until the temperature of the fiber laminate 24 reaches 45 ° C., thereby eliminating the change over time of the particulate resin to be imparted in order to improve the handleability such as the tackiness, and measuring the bulk density is about 55%. Met.

次に断面のR形状部に目標かさ密度相当のテンプレートを当てた。透き見ゲージで測定すると、最小測定(0.3mm)範囲以下であり、R形状部34に面外しわを測定できなかった。   Next, a template corresponding to the target bulk density was applied to the R-shaped portion of the cross section. When measured with a see-through gauge, it was below the minimum measurement (0.3 mm) range, and no out-of-plane wrinkles could be measured on the R-shaped portion 34.

本発明は自動車、航空機、船舶、産業用途の型材・補強部材としてのスティフナやスパーのプリフォームに用いられるが、これに限らず断面にR形状を有するプリフォームを作る際に応用することができる。   The present invention is used for stiffeners and spar preforms as molds and reinforcing members for automobiles, aircraft, ships, and industrial applications, but is not limited to this, and can be applied when making preforms having an R shape in cross section. .

本発明のプリフォームの製造方法において、繊維積層体を冶具またはコア材上に配置する工程の一例を示す模式断面図である。In the preform manufacturing method of this invention, it is a schematic cross section which shows an example of the process of arrange | positioning a fiber laminated body on a jig or a core material. 本発明の実施に用いる冶具またはコア材上に配置した繊維積層体上にさらにシートをセットする工程の一例を示す模式断面図である。It is a schematic cross section which shows an example of the process of setting a sheet | seat further on the fiber laminated body arrange | positioned on the jig or core material used for implementation of this invention. 本発明の面圧付加工程の一例を示す模式断面図である。It is a schematic cross section which shows an example of the surface pressure addition process of this invention. 本発明のプリフォーム脱型工程の一例を示す模式断面図である。It is a schematic cross section which shows an example of the preform demolding process of this invention. 面圧付加工程の面圧及びシートの状態の一例を示す模式断面図である。It is a schematic cross section which shows an example of the surface pressure of a surface pressure addition process, and the state of a sheet | seat. 図5の符号10で示す部分のシートにかかる力を示した部分拡大図である。It is the elements on larger scale which showed the force concerning the sheet | seat of the part shown with the code | symbol 10 of FIG. 図5の符号9で示す部分のシートにかかる力を示した部分拡大図である。It is the elements on larger scale which showed the force concerning the sheet | seat of the part shown by the code | symbol 9 of FIG. 本発明の実施に用いるシート長さを示した模式断面図である。It is the schematic cross section which showed the sheet length used for implementation of this invention. 本発明の製造方法を実施する装置の一例を示す模式断面図である。It is a schematic cross section which shows an example of the apparatus which enforces the manufacturing method of this invention. 図9の装置とは異なる態様の製造装置の一例を示す模式断面図である。It is a schematic cross section which shows an example of the manufacturing apparatus of the aspect different from the apparatus of FIG. 本発明の加熱固定工程の一例を示す模式断面図である。It is a schematic cross section which shows an example of the heat fixing process of this invention.

符号の説明Explanation of symbols

1:平面状の成形型
2:凸型冶具またはコア材
3:繊維積層体
4:強化繊維
5:シート
6:コーナー部
7:面圧
8:プリフォーム
9:シートにかかる力部分
10:シートにかかる力部分
11:平面状の成形型とシートとの接点
12:製品ライン
21:バッグ図
22:平面状の成形型
23:凸型冶具
24:繊維積層体
25:シーラント・テープ
26:PTFEコーティングガラスクロス
27:PEテープ
28:バギングフィルム
29:ナイロンチューブ
30:バキュームポンプ
31:シリコンゴム
32:流体
33:アルミ枠
34:R形状部分
35:コーナー部
36:製品ライン
1: Flat mold
2: Convex jig or core material
3: Fiber laminate
4: Reinforcing fiber
5: Sheet
6: Corner
7: Contact pressure
8: Preform
9: The force applied to the seat
10: Force applied to the seat
11: Contact point between planar mold and sheet
12: Product line
21: Bag figure
22: Flat mold
23: Convex jig
24: Fiber laminate
25: Sealant tape
26: PTFE coated glass cloth
27: PE tape
28: Bagging film
29: Nylon tube
30: Vacuum pump
31: Silicone rubber
32: Fluid
33: Aluminum frame
34: R-shaped part
35: Corner
36: Product line

Claims (8)

繊維積層体から所望の形状のプリフォームを賦形する方法において、少なくとも次の(A)〜(C)の工程を順次経てなることを特徴とするプリフォームの製造方法。
(A)成形型面上に冶具またはコア材を設置し、その上に強化繊維基材からなる繊維積層体を配置する繊維積層体のセット工程。
(B)前記繊維積層体をシートで覆い、前記治具または前記コア材と前記成形型で形成されるコーナー部に該シートを密着させない状態で、該シートの一部を前記成形型に密着させるシートのセット工程。
(C)前記シートの少なくとも一部に面圧を加える面圧付加工程。
In the method of shaping a preform having a desired shape from a fiber laminate, a method for producing a preform comprising sequentially performing at least the following steps (A) to (C).
(A) A step of setting a fiber laminate in which a jig or a core material is installed on the mold surface, and a fiber laminate made of a reinforcing fiber substrate is arranged thereon.
(B) The fiber laminate is covered with a sheet, and a part of the sheet is brought into close contact with the forming die in a state where the sheet is not brought into close contact with a corner portion formed by the jig or the core material and the forming die. Sheet setting process.
(C) A surface pressure applying step of applying a surface pressure to at least a part of the sheet.
前記繊維積層体として、粒子状樹脂、繊維状樹脂またはフィルム状樹脂を付着させたものを用いることを特徴とする請求項1に記載のプリフォームの製造方法。 The method for producing a preform according to claim 1, wherein as the fiber laminate, a particulate resin, a fibrous resin, or a film-like resin is used. 前記シートとして、伸度が0.002〜10%の範囲内にあるものを用いることを特徴とする請求項1または2に記載のプリフォームの製造方法。 The method for producing a preform according to claim 1 or 2, wherein the sheet has an elongation in the range of 0.002 to 10%. 前記シートとして、前記繊維積層体に対し、離型性があるものを用いることを特徴とする請求項1〜3のいずれかに記載のプリフォームの製造方法。 The method for producing a preform according to any one of claims 1 to 3, wherein a sheet having releasability is used as the sheet. 前記面圧付加工程において、30kPa〜500kPaの面圧を付与することを特徴とする請求項1〜4のいずれかに記載のプリフォームの製造方法。 The method for producing a preform according to any one of claims 1 to 4, wherein a surface pressure of 30 kPa to 500 kPa is applied in the surface pressure applying step. 前記面圧付加工程において、面圧を負荷する方法として、少なくとも次の(a)または(b)法を用いてなる請求項1〜5のいずれかに記載のプリフォームの製造方法。
(a)成形型面全体をバッグ材で覆って周囲を密閉した後、成形型とバッグ材で形成される閉空間内を減圧雰囲気に吸引する方法。
(b)成形型面上に設置されたシート面の少なくとも一部に液体または気体の入った袋を該袋の支持構造とともに配置し、前記袋内の液体または気体を昇圧させて加圧する方法。
The method for producing a preform according to any one of claims 1 to 5, wherein in the surface pressure applying step, at least the following method (a) or (b) is used as a method for applying a surface pressure.
(A) A method in which the entire mold surface is covered with a bag material and the periphery is sealed, and then the closed space formed by the mold and the bag material is sucked into a reduced-pressure atmosphere.
(B) A method in which a bag containing liquid or gas is disposed on at least a part of a sheet surface placed on the mold surface together with the support structure of the bag, and the liquid or gas in the bag is pressurized and pressurized.
前記面圧付加工程の際に、少なくとも繊維積層体を含む全体の温度を50℃〜130℃の範囲内に加熱することを特徴とする請求項1〜6のいずれかに記載のプリフォームの製造方法。 The preform production according to any one of claims 1 to 6, wherein, in the surface pressure applying step, the entire temperature including at least the fiber laminate is heated within a range of 50C to 130C. Method. 前記繊維積層体のセット工程において、治具またはコア材を昇降する装置を成形型上に設置するとともに、前記面圧付加工程において、治具またはコア材が、成形型と治具またはコア材で構成されるコーナー部にシートが密着しない範囲で昇降可能なように操作することを特徴とする請求項1〜7のいずれかに記載のプリフォームの製造方法。 In the step of setting the fiber laminate, an apparatus for raising and lowering the jig or core material is installed on the mold, and in the surface pressure applying process, the jig or core material is a mold and the jig or core material. The method for manufacturing a preform according to any one of claims 1 to 7, wherein the operation is performed so that the sheet can be lifted and lowered within a range in which the sheet does not adhere to the corner portion.
JP2004104698A 2004-03-31 2004-03-31 Method for producing preform Pending JP2005288785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004104698A JP2005288785A (en) 2004-03-31 2004-03-31 Method for producing preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004104698A JP2005288785A (en) 2004-03-31 2004-03-31 Method for producing preform

Publications (1)

Publication Number Publication Date
JP2005288785A true JP2005288785A (en) 2005-10-20

Family

ID=35322289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004104698A Pending JP2005288785A (en) 2004-03-31 2004-03-31 Method for producing preform

Country Status (1)

Country Link
JP (1) JP2005288785A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253441A (en) * 2006-03-23 2007-10-04 Shin Meiwa Ind Co Ltd Apparatus and method for molding prepreg laminate
JP2007260925A (en) * 2006-03-27 2007-10-11 Toray Ind Inc Fiber reinforced plastic, its manufacturing method and preform
WO2008041556A1 (en) * 2006-09-29 2008-04-10 Toray Industries, Inc. Shaping mold and process for the production of preforms and fiber-reinforced plastics with the mold
JP2008230019A (en) * 2007-03-20 2008-10-02 Mitsubishi Heavy Ind Ltd Preform and its manufacturing method
JP2009166279A (en) * 2008-01-11 2009-07-30 Toray Ind Inc Method of manufacturing fiber reinforcing resin composite material and device thereof
JP2010150685A (en) * 2008-12-24 2010-07-08 Toray Ind Inc Bent-shaped reinforcing fiber base material, laminate using the same, preform, fiber-reinforced resin composite material and methods for producing them
JP2010540294A (en) * 2007-10-04 2010-12-24 エアバス・ユ―ケ―・リミテッド Molding method of molding material
WO2012133534A1 (en) * 2011-03-31 2012-10-04 三菱重工業株式会社 Molding method and molding device for composite material hollow part
JP2021037733A (en) * 2019-09-05 2021-03-11 株式会社エンプラス Fiber-reinforced resin molded product manufacturing method and fiber-reinforced resin molded product
JP2022149247A (en) * 2021-03-25 2022-10-06 三菱重工業株式会社 Fiber-reinforced composite material molding method and fiber-reinforced composite material molding apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253441A (en) * 2006-03-23 2007-10-04 Shin Meiwa Ind Co Ltd Apparatus and method for molding prepreg laminate
JP2007260925A (en) * 2006-03-27 2007-10-11 Toray Ind Inc Fiber reinforced plastic, its manufacturing method and preform
CN101500774B (en) * 2006-09-29 2013-10-30 东丽株式会社 Forming-molding tool and process for producing preforms and fiber reinforced plastics with tool
WO2008041556A1 (en) * 2006-09-29 2008-04-10 Toray Industries, Inc. Shaping mold and process for the production of preforms and fiber-reinforced plastics with the mold
RU2443555C2 (en) * 2006-09-29 2012-02-27 Торэй Индастриз, Инк. Moulding-casting device and method of producing preforms and plastic articles reinforced by fibers by means of said device
JP5045443B2 (en) * 2006-09-29 2012-10-10 東レ株式会社 Forming mold, and method for producing preform and fiber reinforced plastic using the same
JP2008230019A (en) * 2007-03-20 2008-10-02 Mitsubishi Heavy Ind Ltd Preform and its manufacturing method
JP2010540294A (en) * 2007-10-04 2010-12-24 エアバス・ユ―ケ―・リミテッド Molding method of molding material
JP2009166279A (en) * 2008-01-11 2009-07-30 Toray Ind Inc Method of manufacturing fiber reinforcing resin composite material and device thereof
JP2010150685A (en) * 2008-12-24 2010-07-08 Toray Ind Inc Bent-shaped reinforcing fiber base material, laminate using the same, preform, fiber-reinforced resin composite material and methods for producing them
WO2012133534A1 (en) * 2011-03-31 2012-10-04 三菱重工業株式会社 Molding method and molding device for composite material hollow part
JP2012213935A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Molding method and molding device for composite material hollow part
US9403302B2 (en) 2011-03-31 2016-08-02 Mitsubishi Heavy Industries, Ltd. Fabrication method and fabrication device for composite material hollow part
JP2021037733A (en) * 2019-09-05 2021-03-11 株式会社エンプラス Fiber-reinforced resin molded product manufacturing method and fiber-reinforced resin molded product
WO2021044894A1 (en) * 2019-09-05 2021-03-11 株式会社エンプラス Fiber-reinforced resin molded product manufacturing method and fiber-reinforced resin molded product
JP7049616B2 (en) 2019-09-05 2022-04-07 株式会社エンプラス Manufacturing method of fiber reinforced resin molded product
JP2022149247A (en) * 2021-03-25 2022-10-06 三菱重工業株式会社 Fiber-reinforced composite material molding method and fiber-reinforced composite material molding apparatus
JP7279102B2 (en) 2021-03-25 2023-05-22 三菱重工業株式会社 Fiber-reinforced composite material molding method and fiber-reinforced composite material molding apparatus

Similar Documents

Publication Publication Date Title
EP2954994B1 (en) Systems and methods for defining a surface contour of a layered charge of material
JP5045443B2 (en) Forming mold, and method for producing preform and fiber reinforced plastic using the same
CA2898331C (en) Compacting uncured composite members on contoured mandrel surfaces
EP2886311B1 (en) Three-dimensional reuseable curing caul for use in curing integrated composite components and method of making the same
US9254619B2 (en) Method and apparatus for fabricating variable gauge, contoured composite stiffeners
EP2318198B1 (en) Method of assembling and shaping laminate panel and apparatus therefore
JP5151668B2 (en) Manufacturing method of FRP
JP5476916B2 (en) Manufacturing method of fiber reinforced plastic
CN107150451B (en) Dynamic forming tool for composite material parts
JP5251004B2 (en) Preform manufacturing method, preform, and fiber reinforced plastic girder
JP2007118598A (en) Method and apparatus for manufacturing preform
US20160281540A1 (en) Appparatus for manufacturing a flanged composite component and methods of manufacturing the same
JP5646089B2 (en) Preform manufacturing method and fiber reinforced plastic molded body manufacturing method
US20110186209A1 (en) Complex geometries made of composite material and forming process for same
JP2005288785A (en) Method for producing preform
US10479029B2 (en) Composite forming apparatus
EP1838518B1 (en) Process for making swaged lighting holes in planar areas of preimpregnated composite parts
CA3126898A1 (en) Articulated forming caul for composite blank vacuum forming
JP2012214042A (en) Method of manufacturing fiber-reinforced plastic
KR100992805B1 (en) A manufacturing method of composite materials having a curved surface
CN215242964U (en) Vacuum bonding solidification forming device
JP7041164B2 (en) Tools for manufacturing complex components
JP2017177707A (en) Forming method of reinforcement fiber substrate
JPH10278185A (en) Manufacture of sandwich structure
JP2014162017A (en) Method for manufacturing composite material