JP2018168010A - Silicon carbide crystal manufacturing device, and method of manufacturing silicon carbide single crystal using the same - Google Patents

Silicon carbide crystal manufacturing device, and method of manufacturing silicon carbide single crystal using the same Download PDF

Info

Publication number
JP2018168010A
JP2018168010A JP2017065593A JP2017065593A JP2018168010A JP 2018168010 A JP2018168010 A JP 2018168010A JP 2017065593 A JP2017065593 A JP 2017065593A JP 2017065593 A JP2017065593 A JP 2017065593A JP 2018168010 A JP2018168010 A JP 2018168010A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
container body
carbide single
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017065593A
Other languages
Japanese (ja)
Other versions
JP6859800B2 (en
Inventor
秀隆 鷹羽
Hidetaka Takahane
秀隆 鷹羽
陽平 藤川
Yohei Fujikawa
陽平 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Denso Corp filed Critical Showa Denko KK
Priority to JP2017065593A priority Critical patent/JP6859800B2/en
Publication of JP2018168010A publication Critical patent/JP2018168010A/en
Application granted granted Critical
Publication of JP6859800B2 publication Critical patent/JP6859800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To provide an SiC single-crystal manufacturing device that facilitates reuse even if SiC is recrystallized at a bottom part.SOLUTION: A silicon carbide single-crystal manufacturing device comprises: a crucible 1 having a container body 1a and a lid material 1b closing one face as an opening part of the container body 1a; and a heating device 5 which heats a cylindrical outer peripheral wall to heat the crucible 1, the silicon carbide single-crystal manufacturing device being characterized in that the container body 1a is filled with a silicon carbide raw material 4, a silicon carbide single-crystal substrate 2 as a seed crystal is arranged for the lid material 1b, and the crucible 1 is heated by the heating device 5 to sublime the silicon carbide raw material 4 for growth of a silicon carbide single crystal 3 on a surface of the silicon carbide single-crystal substrate 2. The crucible 1 has an underlay member 1c which is arranged on a bottom part of the container body 1a to cover at least a center part of the bottom part, and also configured to be removed from the container body 1a. Even if SiC6 is recrystallized on the lower-part member 1c, it can be recovered together with the lower-part member 1c.SELECTED DRAWING: Figure 1

Description

本発明は、炭化珪素(以下、SiCという)単結晶製造装置およびそれを用いたSiC単結晶の製造方法に関するものである。   The present invention relates to a silicon carbide (hereinafter referred to as SiC) single crystal manufacturing apparatus and a method for manufacturing a SiC single crystal using the same.

従来、SiC単結晶を種結晶上に成長させるSiC単結晶の製造方法として、例えば昇華再結晶法によるSiC単結晶の結晶成長が知られている。昇華再結晶法では、有底筒状の容器本体と蓋部とを有する黒鉛製の坩堝内に昇華用のSiC原料を配置し、加熱装置による加熱によって発生させたSiC原料の昇華ガスを蓋部に配置した種結晶に供給することで、種結晶の表面にSiC単結晶を成長させる。   Conventionally, as an SiC single crystal manufacturing method for growing an SiC single crystal on a seed crystal, for example, crystal growth of an SiC single crystal by a sublimation recrystallization method is known. In the sublimation recrystallization method, a SiC raw material for sublimation is placed in a graphite crucible having a bottomed cylindrical container body and a lid, and the sublimation gas of the SiC raw material generated by heating with a heating device is covered with the lid. The SiC single crystal is grown on the surface of the seed crystal.

このような昇華再結晶法においては、坩堝の外周側に配置した誘導加熱コイルによって坩堝の外周壁を加熱することなどでSiC原料を加熱していることから、坩堝の底部の中央部近辺で比較的温度が低くなり、SiCが再結晶化され易くなる。近年では、坩堝の再利用が望まれているが、底部に再結晶化したSiCを除去することが難しく、無理に除去しようとすると坩堝が割れてしまう。このため、坩堝の再利用が困難となる。   In such a sublimation recrystallization method, since the SiC raw material is heated by heating the outer peripheral wall of the crucible with an induction heating coil arranged on the outer peripheral side of the crucible, a comparison is made near the center of the bottom of the crucible. The target temperature is lowered and SiC is easily recrystallized. In recent years, it has been desired to reuse the crucible, but it is difficult to remove SiC recrystallized at the bottom, and the crucible will break if it is forcibly removed. For this reason, it becomes difficult to reuse the crucible.

このため、そこでSiCの再結晶化を抑制する手段として、特許文献1において、坩堝の底部に、底部からの放熱を抑制する断熱層を備える構造が提案されている。断熱層としては、例えば、複数の孔が形成された多孔質のカーボンまたはカーボンフェルトを用いており、断熱層の熱伝導率が0.06W/m・k以下と低熱伝導率とされている。このような断熱層を坩堝の底部に配置するとことで、坩堝の底部の低温化が抑制されるため、SiCの再結晶化が抑制される。   For this reason, as a means for suppressing recrystallization of SiC, Patent Document 1 proposes a structure including a heat insulating layer for suppressing heat dissipation from the bottom at the bottom of the crucible. As the heat insulating layer, for example, porous carbon or carbon felt in which a plurality of holes are formed is used, and the heat conductivity of the heat insulating layer is set to 0.06 W / m · k or less and low heat conductivity. By disposing such a heat insulating layer at the bottom of the crucible, the temperature reduction of the bottom of the crucible is suppressed, so that recrystallization of SiC is suppressed.

また、坩堝の底部を電気伝導率の高い材料で構成してより加熱されやすくなるようにしたり、坩堝の外周壁を底部よりも下方まで伸ばしてより誘導加熱される部分が広くなるようにする技術も提案されている。   In addition, the bottom part of the crucible is made of a material having high electrical conductivity so that it can be heated more easily, or the outer peripheral wall of the crucible is extended below the bottom part so that the part that is heated by induction becomes wider. Has also been proposed.

特開2010−76990号公報JP 2010-76990 A

しかしながら、SiC単結晶の大口径化に伴って坩堝の大型化が進み、特許文献1のように断熱層を坩堝の底部に配置してもSiCの再結晶化を防ぐことは難しい。また、坩堝の底部を電気伝導率の高い材料で構成する場合や坩堝の外周壁を底部よりも下方まで伸ばす構造についても、特許文献1の構造と同様の問題がある。   However, as the SiC single crystal increases in diameter, the crucible increases in size, and it is difficult to prevent recrystallization of SiC even if the heat insulating layer is disposed at the bottom of the crucible as in Patent Document 1. In addition, when the bottom part of the crucible is made of a material having high electrical conductivity, and the structure in which the outer peripheral wall of the crucible extends below the bottom part, there are problems similar to the structure of Patent Document 1.

本発明は上記点に鑑みて、底部においてSiCが再結晶化したとしても、再利用することが容易になるSiC単結晶製造装置およびそれを用いたSiC単結晶の製造方法を提供することを目的とする。   An object of the present invention is to provide a SiC single crystal manufacturing apparatus that can be easily reused even when SiC is recrystallized at the bottom, and a method of manufacturing a SiC single crystal using the same. And

上記目的を達成するため、請求項1に記載のSiC単結晶製造装置は、一面側が開口させられていると共に、一面と反対側となる他面側が底部とされ、円筒状の外周壁を有すると共に、内部が中空部とされた有底円筒状部材で構成される容器本体(1a)と、容器本体における一面を閉塞する蓋材(1b)と、を有する坩堝(1)と、外周壁を加熱することで坩堝の加熱を行う加熱装置(5)と、を備え、容器本体内に炭化珪素原料(4)を充填すると共に、蓋材に対して種結晶となる炭化珪素単結晶基板(2)を配置し、加熱装置によって坩堝を加熱して炭化珪素原料を昇華させることで炭化珪素単結晶基板の表面に炭化珪素単結晶(3)を成長させる。このような構成において、坩堝に、容器本体における底部の上に配置され、該底部の少なくとも中央部を覆うと共に、容器本体から取り外し可能に構成された下敷部材(1c)を備える。   In order to achieve the above object, the SiC single crystal manufacturing apparatus according to claim 1 has an opening on one side, a bottom on the other side opposite to the one side, and a cylindrical outer peripheral wall. A crucible (1) having a container body (1a) composed of a bottomed cylindrical member having a hollow inside, a lid member (1b) for closing one surface of the container body, and heating the outer peripheral wall And a heating device (5) for heating the crucible, and the silicon carbide raw material (4) is filled in the container body, and the silicon carbide single crystal substrate (2) serving as a seed crystal for the lid material The silicon carbide single crystal (3) is grown on the surface of the silicon carbide single crystal substrate by heating the crucible with a heating device and sublimating the silicon carbide raw material. In such a configuration, the crucible is provided with an underlay member (1c) that is disposed on the bottom of the container body, covers at least the center of the bottom, and is configured to be removable from the container body.

このように、容器本体の底部に下敷部材を配置した構造とされている。このため、再結晶化したSiCを除去する際に下敷部材と共に除去することで、坩堝のうち下敷部材以外の部分を再利用することができる。したがって、坩堝の底部においてSiCが再結晶化したとしても、再利用することが容易になるSiC単結晶製造装置とすることができる。   Thus, it is set as the structure which arrange | positioned the base material to the bottom part of the container main body. For this reason, when removing recrystallized SiC, by removing together with the underlay member, portions other than the underlay member of the crucible can be reused. Therefore, even if SiC is recrystallized at the bottom of the crucible, a SiC single crystal manufacturing apparatus that can be easily reused can be obtained.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係の一例を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows an example of a corresponding relationship with the specific means as described in embodiment mentioned later.

第1実施形態にかかるSiC単結晶製造装置の断面図である。It is sectional drawing of the SiC single crystal manufacturing apparatus concerning 1st Embodiment. 第2実施形態にかかるSiC単結晶製造装置の断面図である。It is sectional drawing of the SiC single crystal manufacturing apparatus concerning 2nd Embodiment. 第3実施形態にかかるSiC単結晶製造装置の断面図である。It is sectional drawing of the SiC single crystal manufacturing apparatus concerning 3rd Embodiment. 第4実施形態にかかるSiC単結晶製造装置の断面図である。It is sectional drawing of the SiC single crystal manufacturing apparatus concerning 4th Embodiment. 第5実施形態にかかるSiC単結晶製造装置の断面図である。It is sectional drawing of the SiC single crystal manufacturing apparatus concerning 5th Embodiment. 第6実施形態にかかるSiC単結晶製造装置の断面図である。It is sectional drawing of the SiC single crystal manufacturing apparatus concerning 6th Embodiment.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.

(第1実施形態)
第1実施形態にかかるSiC単結晶成長装置およびそれを用いたSiC単結晶の製造方法について、図1を参照して説明する。
(First embodiment)
An SiC single crystal growth apparatus according to the first embodiment and a method for producing an SiC single crystal using the same will be described with reference to FIG.

図1に示すSiC単結晶製造装置は、昇華再結晶法によるSiC単結晶成長を実現する装置である。このSiC単結晶製造装置には、容器本体1aと円形状の蓋材1bおよび下敷部材1cによって構成された黒鉛製の坩堝1が備えられている。   The SiC single crystal manufacturing apparatus shown in FIG. 1 is an apparatus that realizes SiC single crystal growth by a sublimation recrystallization method. This SiC single crystal manufacturing apparatus is provided with a graphite crucible 1 constituted by a container body 1a, a circular lid 1b, and an underlay member 1c.

容器本体1aは、一面側が開口させられていると共に、一面と反対側となる他面側が底部とされ、円筒状の外周壁を有すると共に、内部が中空部とされた有底円筒状部材で構成されている。容器本体1aは、黒鉛製とされており、熱伝達率が50〜150W/m・kとなっている。   The container body 1a is composed of a bottomed cylindrical member having an open side on one side, a bottom side on the other side opposite to the one side, a cylindrical outer peripheral wall, and a hollow part on the inside. Has been. The container main body 1a is made of graphite and has a heat transfer coefficient of 50 to 150 W / m · k.

蓋材1bは、容器本体1aにおける開口する一面側を閉塞する部材であり、円盤状とされ、容器本体1aと同じ材質の黒鉛によって構成されることで、容器本体1aと同じ熱伝達率とされている。この蓋材1bの裏面の中央部に、図示しない接着剤等を介して種結晶となるSiC単結晶基板2が接合され、このSiC単結晶基板2に対してSiC単結晶3が成長させられる。なお、蓋材1bを単なる円盤状の部材によって構成してもよいが、SiC単結晶基板2が配置される中央部分を下方に突き出させることで台座を構成していても良い。   The lid member 1b is a member that closes one side of the container body 1a that opens, and is formed into a disk shape. The lid member 1b is made of graphite of the same material as the container body 1a, so that the heat transfer coefficient is the same as that of the container body 1a. ing. A SiC single crystal substrate 2 serving as a seed crystal is bonded to the center of the back surface of the lid member 1b via an adhesive (not shown) or the like, and an SiC single crystal 3 is grown on the SiC single crystal substrate 2. Note that lid 1b may be formed of a simple disk-shaped member, but a pedestal may be formed by projecting a central portion where SiC single crystal substrate 2 is disposed downward.

下敷部材1cは、円盤状部材とされており、容器本体1aの底部に配置され、少なくとも底部の中央部を覆うように配置されている。下敷部材1cの構成材料は、熱伝達率が容器本体1aの熱伝達率と同じもしくはそれより高い材質の黒鉛によって構成されている。
下敷部材1cは、容器本体1aの底部上に置かれているだけであり、容器本体1aに対して接着剤などを介して固定されてはいない状態となっていて、容器本体1aから取り外し可能な構成とされている。
The underlay member 1c is a disc-like member, and is disposed at the bottom of the container body 1a and is disposed so as to cover at least the center of the bottom. The constituent material of the underlay member 1c is made of graphite having a heat transfer coefficient equal to or higher than that of the container body 1a.
The underlay member 1c is only placed on the bottom of the container body 1a, and is not fixed to the container body 1a with an adhesive or the like, and is removable from the container body 1a. It is configured.

このように構成された坩堝1における容器本体1aの中空部内、より詳しくは容器本体1aの底部および下敷部材1cの上にSiC原料4が充填されている。SiC原料4としては、粉末状にしたSiCが用いられている。   The SiC raw material 4 is filled in the hollow part of the container main body 1a in the crucible 1 configured as described above, more specifically, on the bottom part of the container main body 1a and the underlying member 1c. As the SiC raw material 4, SiC in powder form is used.

そして、坩堝1の外周には誘導加熱コイルなどによって構成される加熱装置5が配置されており、加熱装置5による誘導加熱によって主に坩堝1における容器本体1aの外周壁を加熱し、SiC原料4を加熱昇華させられる。なお、図1では、加熱装置5を坩堝1のうちSiC原料4と対応する位置にのみ備えた構成としたが、SiC単結晶3の成長空間と対応する位置にも備えるようにしても良い。このような構成とする場合、加熱装置5の各部は独立して加熱温度を調整できる構成とされ、SiC原料4よりもSiC単結晶3の成長表面の温度が所定温度低くなるように制御可能とされる。   And the heating apparatus 5 comprised by the induction heating coil etc. is arrange | positioned on the outer periphery of the crucible 1, The outer peripheral wall of the container main body 1a in the crucible 1 is mainly heated by the induction heating by the heating apparatus 5, and the SiC raw material 4 Can be sublimated by heating. In FIG. 1, the heating device 5 is provided only at a position corresponding to the SiC raw material 4 in the crucible 1, but may be provided at a position corresponding to the growth space of the SiC single crystal 3. In the case of such a configuration, each part of the heating device 5 is configured to be able to independently adjust the heating temperature, and can be controlled so that the temperature of the growth surface of the SiC single crystal 3 is lower than the SiC raw material 4 by a predetermined temperature. Is done.

ここで、坩堝1を構成する各部の寸法については任意であるが、粉末状のSiC原料4の最大粒径よりも容器本体1aの側壁面から下敷部材1cまでの距離が大きくなるようにしている。具体的には、下敷部材1cの径をD1、容器本体1aの内径をD2、SiC原料4の最大粒径をD3とすると、D1<D2−D3×2の関係が成り立つ寸法関係としている。下敷部材1cの径D1の下限値については、容器本体1aの内径D2の値に応じて決まる値であり、内径D2が大きくなるほど、径D1の下限値も大きくなる。すなわち、下敷部材1cは、少なくともSiC6が再結晶化して析出する領域を覆うように形成されていれば良く、SiC6が再結晶化して析出する領域は、加熱装置5のパワーを一定と想定した場合、容器本体1aの該壁面からの距離によって決まる。このため、下敷部材1cの径D1については、内径D2が大きくなるほど大きくする。   Here, although the dimensions of the respective parts constituting the crucible 1 are arbitrary, the distance from the side wall surface of the container body 1a to the underlay member 1c is larger than the maximum particle size of the powdered SiC raw material 4. . Specifically, assuming that the diameter of the underlaying member 1c is D1, the inner diameter of the container body 1a is D2, and the maximum particle diameter of the SiC raw material 4 is D3, the dimensional relationship satisfies the relationship of D1 <D2-D3 × 2. The lower limit value of the diameter D1 of the underlay member 1c is a value determined according to the value of the inner diameter D2 of the container body 1a. The larger the inner diameter D2, the larger the lower limit value of the diameter D1. That is, the underlaying member 1c only needs to be formed so as to cover at least a region where SiC6 is recrystallized and deposited, and the region where SiC6 is recrystallized and precipitated is assumed to have a constant power of the heating device 5 It is determined by the distance from the wall surface of the container body 1a. For this reason, the diameter D1 of the underlay member 1c is increased as the inner diameter D2 is increased.

一方、下敷部材1cの径D1については、容器本体1aから容易に取り外せるように、容器本体1aの内径D2よりも小さい方が好ましい。しかしながら、径D1と内径D2との差が小さい場合、つまり容器本体1aと下敷部材1cとの間の隙間が狭いと、その間にSiC原料4の残渣が噛みこんでしまい、下敷部材1cを容器本体1aから取り外し難くなる。このため、D1<D2−D3×2の関係を満たすようにするのが好ましい。   On the other hand, the diameter D1 of the underlay member 1c is preferably smaller than the inner diameter D2 of the container main body 1a so that it can be easily removed from the container main body 1a. However, if the difference between the diameter D1 and the inner diameter D2 is small, that is, if the gap between the container main body 1a and the underlay member 1c is narrow, the residue of the SiC raw material 4 is caught between them, and the underlay member 1c is removed from the container main body. It becomes difficult to remove from 1a. For this reason, it is preferable to satisfy the relationship of D1 <D2-D3 × 2.

なお、図示しないが、坩堝1は、石英容器などの真空容器内に収容され、回転装置の上に載置される。そして、真空容器内にAr等の不活性ガスや水素ガス等を導入しながら、回転装置にて坩堝1を回転させ、加熱装置5にて坩堝1を誘導加熱することで、SiC単結晶3の結晶成長が行われるようになっている。   Although not shown, the crucible 1 is accommodated in a vacuum container such as a quartz container and placed on a rotating device. And while introducing inert gas, such as Ar, hydrogen gas, etc. in a vacuum vessel, the crucible 1 is rotated with a rotating device, and the crucible 1 is induction-heated with a heating device 5, whereby the SiC single crystal 3 Crystal growth is performed.

以上のようにして、本実施形態にかかるSiC単結晶製造装置が構成されている。続いて、このように構成されるSiC単結晶製造装置を用いたSiC単結晶3の製造方法について説明する。   As described above, the SiC single crystal manufacturing apparatus according to the present embodiment is configured. Then, the manufacturing method of the SiC single crystal 3 using the SiC single crystal manufacturing apparatus comprised in this way is demonstrated.

まず、容器本体1aの底部に下敷部材1cを配置したのちに、容器本体1aの底部および下敷部材1cの上にSiC原料4を充填する。また、蓋材1bの裏面側に種結晶となるSiC単結晶基板2を貼り付けたのち、蓋材1bを容器本体1aに設置する。そして、図示しない真空容器内に成長雰囲気の不活性ガス等を導入すると共に、必要に応じてドーパント源となるガス、例えば窒素源となる窒素ガスを導入する。この状態で加熱装置5のパワーを制御することにより、SiC原料4の近傍の温度がSiC原料4の昇華温度以上となり、かつ、種結晶となるSiC単結晶基板2の近傍の温度がそれよりも10℃〜200℃程度低温となるようにする加熱工程を行う。また、回転装置によって坩堝1を回転させることで、加熱ムラを抑制して、坩堝1の中心軸に対して均等な温度分布となるようにする。このような条件により、例えば窒素がドープされたSiC単結晶3を成長させる。そして、SiC単結晶3を成長させた後には、坩堝1と共にSiC単結晶3を冷却する工程を行った後、蓋材1bおよびSiC単結晶3の取り外し工程を行ったり、SiC原料4の残渣を除去する工程を行い、坩堝1を再利用可能な状態とする。   First, after placing the underlay member 1c on the bottom of the container body 1a, the SiC raw material 4 is filled on the bottom of the container body 1a and the underlay member 1c. Moreover, after affixing the SiC single crystal substrate 2 used as a seed crystal to the back surface side of the lid | cover material 1b, the lid | cover material 1b is installed in the container main body 1a. Then, an inert gas or the like in a growth atmosphere is introduced into a vacuum container (not shown), and a gas serving as a dopant source, for example, a nitrogen gas serving as a nitrogen source is introduced as necessary. By controlling the power of the heating device 5 in this state, the temperature in the vicinity of the SiC raw material 4 becomes equal to or higher than the sublimation temperature of the SiC raw material 4, and the temperature in the vicinity of the SiC single crystal substrate 2 serving as a seed crystal is higher than that. A heating process is performed so that the temperature is reduced to about 10 ° C to 200 ° C. Further, by rotating the crucible 1 with a rotating device, heating unevenness is suppressed so that the temperature distribution is uniform with respect to the central axis of the crucible 1. Under such conditions, for example, a SiC single crystal 3 doped with nitrogen is grown. And after growing the SiC single crystal 3, after performing the process of cooling the SiC single crystal 3 with the crucible 1, the removal process of the cover material 1b and the SiC single crystal 3 is performed, or the residue of the SiC raw material 4 is removed. The process of removing is performed and the crucible 1 is made into a reusable state.

このとき、SiC単結晶3の成長中、つまり加熱工程中に、加熱装置5からの距離が離れている容器本体1aの底部の中央部近辺において、外周壁側よりも温度が低くなる。これにより、SiC原料4の一部がSiC6が再結晶化する。しかしながら、容器本体1aの底部の上に下敷部材1cを配置していることから、下敷部材1cの上にSiC6を再結晶化させる工程とすることが可能となる。   At this time, during the growth of the SiC single crystal 3, that is, during the heating process, the temperature becomes lower than the outer peripheral wall side in the vicinity of the center of the bottom of the container body 1 a that is far from the heating device 5. Thereby, a part of SiC raw material 4 recrystallizes SiC6. However, since the underlay member 1c is disposed on the bottom of the container main body 1a, a step of recrystallizing SiC6 on the underlay member 1c can be performed.

このように、下敷部材1cの上にSiC6を選択的に再結晶化させることが可能となる。したがって、SiC原料4の残渣を除去する工程の際に同時に、もしくはその後に、下敷部材1cと一緒に再結晶化されたSiC6を除去する工程を行うことで、容易にSiC6を除去することが可能となる。そして、新しい下敷部材1cを容器本体1aの底部に配置すれば、容器本体1aおよび蓋材1bについてはそのまま利用できるため、坩堝1の再利用が可能となる。   In this manner, SiC 6 can be selectively recrystallized on the underlying member 1c. Therefore, it is possible to easily remove SiC6 by performing the step of removing the recrystallized SiC6 together with the underlaying member 1c simultaneously with or after the step of removing the residue of the SiC raw material 4. It becomes. If the new underlay member 1c is arranged at the bottom of the container body 1a, the container body 1a and the lid member 1b can be used as they are, so that the crucible 1 can be reused.

以上説明したように、本実施形態にかかるSiC単結晶製造装置は、容器本体1aの底部に下敷部材1cを配置した構造とされている。このため、再結晶化したSiC6を除去する際に下敷部材1cと共に除去することで、坩堝1のうち下敷部材1c以外の部分を再利用することができる。したがって、坩堝1の底部においてSiCが再結晶化したとしても、再利用することが容易になるSiC単結晶製造装置とすることができる。   As described above, the SiC single crystal manufacturing apparatus according to the present embodiment has a structure in which the underlay member 1c is disposed at the bottom of the container body 1a. For this reason, when removing the recrystallized SiC 6 together with the underlay member 1c, a portion other than the underlay member 1c in the crucible 1 can be reused. Therefore, even if SiC is recrystallized at the bottom of the crucible 1, a SiC single crystal manufacturing apparatus that can be easily reused can be obtained.

(第2実施形態)
第2実施形態について説明する。本実施形態は、第1実施形態に対して容器本体1aの構造を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分について主に説明する。
(Second Embodiment)
A second embodiment will be described. In the present embodiment, the structure of the container main body 1a is changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment. Therefore, differences from the first embodiment will be mainly described.

図2に示すように、本実施形態では、容器本体1aの底部に凹部1dを形成してあり、この凹部1d内に下敷部材1cを嵌め込んでいる。具体的には、凹部1dは、下敷部材1cと対応する形状および寸法で形成されている。このため、凹部1d内に下敷部材1cが嵌め込まれたときに、下敷部材1cの端面と凹部1dの側面とが対向、好ましくは当接した状態となり、容器本体1aの底部のうち凹部1d以外の部分の上面と下敷部材1cの上面とがほぼ面一となる。   As shown in FIG. 2, in this embodiment, the recessed part 1d is formed in the bottom part of the container main body 1a, and the underlaying member 1c is engage | inserted in this recessed part 1d. Specifically, the recess 1d is formed in a shape and size corresponding to the underlay member 1c. For this reason, when the underlay member 1c is fitted in the recess 1d, the end surface of the underlay member 1c and the side surface of the recess 1d are opposed to each other, preferably in contact with each other, and other than the recess 1d in the bottom of the container body 1a. The upper surface of the portion and the upper surface of the underlying member 1c are substantially flush.

このように、下敷部材1cを嵌め込む凹部1dを容器本体1aの底部に形成するようにしても良い。このような構造としても、第1実施形態と同様の効果を得ることができると共に、下敷部材1cの端面にSiC原料4の残渣が付き難くなり、より容器本体1aの底部の中央近辺に選択的にSiC6が再結晶化され易くなるようにできる。   Thus, you may make it form the recessed part 1d which fits the base material 1c in the bottom part of the container main body 1a. Even with such a structure, it is possible to obtain the same effect as in the first embodiment, and it is difficult for the residue of the SiC raw material 4 to adhere to the end face of the underlaying member 1c, and it is more selective near the center of the bottom of the container body 1a. In addition, SiC6 can be easily recrystallized.

(第3実施形態)
第3実施形態について説明する。本実施形態は、第2実施形態に対して容器本体1aの構造を変更したものであり、その他については第2実施形態と同様であるため、第1実施形態と異なる部分について主に説明する。
(Third embodiment)
A third embodiment will be described. In the present embodiment, the structure of the container main body 1a is changed with respect to the second embodiment, and the other parts are the same as those in the second embodiment. Therefore, differences from the first embodiment will be mainly described.

図3に示すように、本実施形態では、容器本体1aの底部に凹部1dが形成してこの凹部1d内に下敷部材1cが嵌め込まれるようにしつつ、容器本体1aの底部のうち凹部1d以外の部分の上面が下敷部材1cの上面よりも高くに位置するようにしている。つまり、凹部1dの深さを下敷部材1cの厚みよりも大きくしている。   As shown in FIG. 3, in the present embodiment, a recess 1d is formed in the bottom of the container body 1a, and the underlay member 1c is fitted into the recess 1d, while the bottom of the container body 1a is other than the recess 1d. The upper surface of the portion is positioned higher than the upper surface of the underlay member 1c. That is, the depth of the concave portion 1d is made larger than the thickness of the underlying member 1c.

このような構造としても、第2実施形態と同様の効果を得ることができると共に、容器本体1aの底部のうち凹部1d以外の部分の上面よりも下敷部材1cの上面の方が高さが
低くなることから、下敷部材1cがより低温化され易くなる。このため、さらに容器本体1aの底部の中央近辺に選択的にSiC6が再結晶化され易くなるようにできる。
Even with such a structure, the same effects as those of the second embodiment can be obtained, and the height of the upper surface of the underlaying member 1c is lower than the upper surface of the bottom portion of the container body 1a other than the concave portion 1d. As a result, it becomes easier for the underlay member 1c to be lowered in temperature. For this reason, SiC6 can be easily recrystallized selectively near the center of the bottom of the container body 1a.

(第4実施形態)
第4実施形態について説明する。本実施形態は、第2、第3実施形態に対して下敷部材1cの構造を変更したものであり、その他については第2、第3実施形態と同様であるため、第2、第3実施形態と異なる部分について主に説明する。なお、ここでは第2実施形態の構成に対して本実施形態の構造を適用する場合を例に挙げて説明するが、第3実施形態の構造に対しても適用できる。
(Fourth embodiment)
A fourth embodiment will be described. In this embodiment, the structure of the underlaying member 1c is changed with respect to the second and third embodiments, and the other parts are the same as those of the second and third embodiments, and therefore the second and third embodiments. The differences will be mainly described. Here, the case where the structure of the present embodiment is applied to the configuration of the second embodiment will be described as an example, but the present embodiment can also be applied to the structure of the third embodiment.

図4に示すように、本実施形態では、下敷部材1cのうちの中央位置、つまり容器本体1aの底部の中央位置と対応する部分に、窪み部1eを形成している。つまり、下敷部材1cの中央位置が容器本体1aの底部のうち凹部1d以外の部分の上面よりも低くなるようにしている。   As shown in FIG. 4, in the present embodiment, a recess 1e is formed at the center position of the underlay member 1c, that is, at the portion corresponding to the center position of the bottom of the container body 1a. That is, the center position of the underlay member 1c is set lower than the upper surface of the bottom portion of the container body 1a other than the recess 1d.

このような構造としても、第2、第3実施形態と同様の効果を得ることができると共に、容器本体1aの底部のうち凹部1d以外の部分の上面よりも窪み部1eの上面の方が高
さが低くなることから、窪み部1eにおいて下敷部材1cがより低温化され易くなる。このため、さらに容器本体1aの底部の中央近辺に選択的にSiC6が再結晶化され易くなるようにできる。
Even with such a structure, the same effect as in the second and third embodiments can be obtained, and the upper surface of the recessed portion 1e is higher than the upper surface of the bottom portion of the container body 1a other than the recessed portion 1d. Therefore, the temperature of the underlaying member 1c is easily lowered in the recessed portion 1e. For this reason, SiC6 can be easily recrystallized selectively near the center of the bottom of the container body 1a.

(第5実施形態)
第5実施形態について説明する。本実施形態は、第1〜第4実施形態に対して下敷部材1cに取り外し機構を備えたものであり、その他については第1〜第4実施形態と同様であるため、第1〜第4実施形態と異なる部分について主に説明する。なお、ここでは第1実施形態の構成に対して本実施形態の構造を適用する場合を例に挙げて説明するが、第2〜第4実施形態の構造に対しても適用できる。
(Fifth embodiment)
A fifth embodiment will be described. The present embodiment is different from the first to fourth embodiments in that the underlaying member 1c is provided with a detaching mechanism, and the other parts are the same as the first to fourth embodiments, and thus the first to fourth embodiments. The part different from the form will be mainly described. Here, the case where the structure of the present embodiment is applied to the configuration of the first embodiment will be described as an example, but the present invention can also be applied to the structures of the second to fourth embodiments.

図5に示すように、本実施形態では、下敷部材1cのうちの中央位置に、蓋材1b側、つまり上方に伸びる棒状部材1fを取り付けてある。棒状部材1fは、下敷部材1cと同じ材料で構成されている。棒状部材1fの高さは、好ましくはSiC原料4の充填高さよりも高く、かつ、SiC単結晶3の成長に影響を与えない高さに設定されている。   As shown in FIG. 5, in this embodiment, a bar-shaped member 1f extending to the lid 1b side, that is, upward is attached to the center position of the underlay member 1c. The bar-shaped member 1f is made of the same material as the underlay member 1c. The height of the rod-shaped member 1 f is preferably set to a height that is higher than the filling height of the SiC raw material 4 and does not affect the growth of the SiC single crystal 3.

このように、下敷部材1cに対して棒状部材1fを取り付けることにより、SiC単結晶3を製造した後に、棒状部材1fを取り外し機構として利用して下敷部材1cを取り外すことが可能となる。これにより、第1〜第4実施形態と同様の効果を得ることができると共に、下敷部材1cの取り外しを容易にすることが可能となる。   Thus, by attaching the rod-like member 1f to the underlay member 1c, it is possible to remove the underlay member 1c using the rod-like member 1f as a removal mechanism after the SiC single crystal 3 is manufactured. Thereby, while being able to acquire the same effect as 1st-4th embodiment, it becomes possible to make removal of the base material 1c easy.

(第6実施形態)
第6実施形態について説明する。本実施形態は、第1〜第5実施形態に対して下敷部材1cの取り外し機構を備えたものであり、その他については第1〜第5実施形態と同様であるため、第1〜第5実施形態と異なる部分について主に説明する。なお、ここでは第1実施形態の構成に対して本実施形態の構造を適用する場合を例に挙げて説明するが、第2〜第5実施形態の構造に対しても適用できる。
(Sixth embodiment)
A sixth embodiment will be described. The present embodiment is provided with a mechanism for removing the underlay member 1c with respect to the first to fifth embodiments, and is otherwise the same as the first to fifth embodiments, so the first to fifth embodiments. The part different from the form will be mainly described. Here, the case where the structure of the present embodiment is applied to the configuration of the first embodiment will be described as an example, but the present invention can also be applied to the structures of the second to fifth embodiments.

図6に示すように、本実施形態では、容器本体1aの底部の中央部に開口部1gを形成してある。このような開口部1gを取り外し機構として利用し、開口部1gを通じて下敷部材1cを押し出すことで、下敷部材1cの取り外しが容易に行えるようにできる。   As shown in FIG. 6, in this embodiment, an opening 1g is formed at the center of the bottom of the container body 1a. By using such an opening 1g as a detaching mechanism and pushing out the underlying member 1c through the opening 1g, the underlying member 1c can be easily removed.

このように、容器本体1aの底部に開口部1gを形成することで、SiC単結晶3を製造した後に、開口部1gを取り外し機構として利用して下敷部材1cを取り外すことが可能となる。これにより、第1〜第5実施形態と同様の効果を得ることができると共に、下敷部材1cの取り外しを容易にすることが可能となる。   Thus, by forming the opening 1g at the bottom of the container body 1a, it is possible to remove the underlay member 1c using the opening 1g as a detaching mechanism after the SiC single crystal 3 is manufactured. Thereby, while being able to acquire the effect similar to 1st-5th embodiment, it becomes possible to make removal of the base material 1c easy.

(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
(Other embodiments)
The present invention is not limited to the embodiment described above, and can be appropriately changed within the scope described in the claims.

例えば、上記各実施形態では、坩堝1の構造の一例を示したが、上記各実施形態で示した構造は坩堝1の主要構造を示したに過ぎず、他の構造とされていても良い。例えば、容器本体1aが複数に分割された構造であったり、蓋材1bにSiC単結晶3の成長方向に伸びるガイド壁が備えられた構造などであっても構わない。また、下敷部材1cの形状についても円盤状に限らず、他の形状、例えば多角形板状などであっても良い。   For example, in each of the above embodiments, an example of the structure of the crucible 1 has been shown. However, the structure shown in each of the above embodiments only shows the main structure of the crucible 1 and may have other structures. For example, the container body 1a may be divided into a plurality of structures, or the lid member 1b may be provided with a guide wall extending in the growth direction of the SiC single crystal 3. Further, the shape of the underlay member 1c is not limited to a disk shape, but may be other shapes such as a polygonal plate shape.

また、第5実施形態で説明した棒状部材1fについては下敷部材1cの中央位置に形成しており、第6実施形態で説明した開口部1gについても容器本体1aの底部の中央位置に形成している。しかしながら、これも一例を示したに過ぎず、他の場所に形成してあっても良い。ただし、加熱時の温度分布の対称性を考慮すると、第5、第6実施形態のような場所に棒状部材1fや開口部1gが形成されていることが好ましい。   Further, the bar-shaped member 1f described in the fifth embodiment is formed at the center position of the underlay member 1c, and the opening 1g described in the sixth embodiment is also formed at the center position of the bottom of the container body 1a. Yes. However, this is only an example, and it may be formed in another place. However, in consideration of the symmetry of the temperature distribution during heating, it is preferable that the bar-shaped member 1f and the opening 1g are formed in a place as in the fifth and sixth embodiments.

また、坩堝1について黒鉛製としているが、他の材料で構成しても良いし、すべてが黒鉛製である必要はない。例えば、部分的に高融点金属などでコーティングされたものであっても良い。   Moreover, although the crucible 1 is made of graphite, it may be made of other materials, and all of them need not be made of graphite. For example, it may be partially coated with a refractory metal.

1 坩堝
1a 容器本体
1b 蓋材
1c 下敷部材
1d 凹部
1e 窪み部
2 SiC単結晶基板
3 SiC単結晶
4 SiC原料
5 加熱装置
DESCRIPTION OF SYMBOLS 1 Crucible 1a Container main body 1b Cover material 1c Underlay member 1d Recess 1e Recess 2 SiC single crystal substrate 3 SiC single crystal 4 SiC raw material 5 Heating device

Claims (9)

一面側が開口させられていると共に、前記一面と反対側となる他面側が底部とされ、円筒状の外周壁を有すると共に、内部が中空部とされた有底円筒状部材で構成される容器本体(1a)と、前記容器本体における前記一面を閉塞する蓋材(1b)と、を有する坩堝(1)と、
前記外周壁を加熱することで前記坩堝の加熱を行う加熱装置(5)と、を備え、
前記容器本体内に炭化珪素原料(4)を充填すると共に、前記蓋材に対して種結晶となる炭化珪素単結晶基板(2)を配置し、前記加熱装置によって前記坩堝を加熱して前記炭化珪素原料を昇華させることで前記炭化珪素単結晶基板の表面に炭化珪素単結晶(3)を成長させる炭化珪素単結晶製造装置であって、
前記坩堝は、前記容器本体における前記底部の上に配置され、該底部の少なくとも中央部を覆うと共に、前記容器本体から取り外し可能に構成された下敷部材(1c)を有している炭化珪素単結晶製造装置。
A container body composed of a bottomed cylindrical member having an opening on one side, a bottom side on the other side opposite to the one side, a cylindrical outer peripheral wall, and a hollow inside. A crucible (1) having (1a) and a lid member (1b) for closing the one surface of the container body;
A heating device (5) for heating the crucible by heating the outer peripheral wall,
The container body is filled with a silicon carbide raw material (4), and a silicon carbide single crystal substrate (2) serving as a seed crystal is disposed with respect to the lid member, and the crucible is heated by the heating device to perform the carbonization. A silicon carbide single crystal manufacturing apparatus for growing a silicon carbide single crystal (3) on a surface of the silicon carbide single crystal substrate by sublimating a silicon raw material,
The crucible is disposed on the bottom of the container body, covers at least the center of the bottom, and has an underlay member (1c) configured to be removable from the container body. manufacturing device.
前記下敷部材は円盤状で構成されており、
前記炭化珪素原料は粉末状にした炭化珪素であって、
前記下敷部材の径をD1、前記容器本体の内径をD2、前記炭化珪素原料の粒径をD3とすると、D1<D2−D3×2が成り立つ寸法関係とされている請求項1に記載の炭化珪素単結晶製造装置。
The underlay member is configured in a disc shape,
The silicon carbide raw material is powdered silicon carbide,
2. The carbonization according to claim 1, wherein D1 <D2−D3 × 2 is established, where D1 is a diameter of the underlay member, D2 is an inner diameter of the container body, and D3 is a particle diameter of the silicon carbide raw material. Silicon single crystal manufacturing equipment.
前記容器本体における前記底部には凹部(1d)が形成されており、該凹部内に前記下敷部材が嵌め込まれていて、前記下敷部材の上面が前記容器本体における前記底部のうち前記凹部以外の部分の上面の高さと同じもしくは当該高さよりも低くされている請求項1または2に記載の炭化珪素単結晶製造装置。   A concave portion (1d) is formed in the bottom portion of the container main body, the underlay member is fitted in the concave portion, and an upper surface of the underlay member is a portion of the bottom portion of the container main body other than the concave portion. The silicon carbide single crystal manufacturing apparatus according to claim 1 or 2, wherein the height is equal to or lower than a height of an upper surface of the silicon carbide. 前記下敷部材には、該下敷部材の中央位置に窪み部(1e)が形成されており、該窪み部において、前記下敷部材の上面が前記容器本体における前記底部のうち前記凹部以外の部分の上面の高さよりも低くされている請求項3に記載の炭化珪素単結晶製造装置。   The underlay member is formed with a recess (1e) at the center position of the underlay member, wherein the upper surface of the underlay member is the upper surface of the bottom portion of the container body other than the recess. The silicon carbide single crystal manufacturing apparatus according to claim 3, wherein the apparatus is lower than the height of the silicon carbide single crystal. 前記下敷部材には、該下敷部材から上方に伸ばされた棒状部材(1f)が備えられている請求項1ないし4のいずれか1つに記載の炭化珪素単結晶製造装置。   The silicon carbide single crystal manufacturing apparatus according to any one of claims 1 to 4, wherein the underlay member is provided with a rod-like member (1f) extending upward from the underlay member. 前記容器本体における前記底部のうち前記下敷部材が配置される部分の一部に開口部(1g)が形成されている請求項1ないし5のいずれか1つに記載の炭化珪素単結晶製造装置。   The silicon carbide single crystal manufacturing apparatus according to any one of claims 1 to 5, wherein an opening (1g) is formed in a part of the bottom portion of the container body where the underlay member is disposed. 一面側が開口させられていると共に、前記一面と反対側となる他面側が底部とされ、円筒状の外周壁を有すると共に、内部が中空部とされた有底円筒状部材で構成される容器本体(1a)と、前記容器本体における前記一面を閉塞する蓋材(1b)と、を有する坩堝(1)と、
前記外周壁を加熱することで前記坩堝の加熱を行う加熱装置(5)と、を備えた炭化珪素単結晶製造装置を用いて、
前記容器本体内に炭化珪素原料(4)を充填すると共に、前記蓋材に対して種結晶となる炭化珪素単結晶基板(2)を配置し、前記加熱装置によって前記坩堝を加熱して前記炭化珪素原料を昇華させることで前記炭化珪素単結晶基板の表面に炭化珪素単結晶(3)を成長させる炭化珪素単結晶の製造方法であって、
前記容器本体における前記底部の上に、該底部の少なくとも中央部を覆うと共に、前記容器本体から取り外し可能に構成された下敷部材(1c)を配置することと、
前記下敷部材を配置したのちに、前記容器本体における前記底部および前記下敷部材の上に前記炭化珪素原料を充填することと、
前記加熱装置にて前記坩堝の加熱を行うことで前記炭化珪素原料を昇華させ、前記炭化珪素単結晶基板の表面に前記炭化珪素単結晶を成長させることと、
前記炭化珪素単結晶の成長後に、前記炭化珪素単結晶および前記蓋材を前記容器本体から取り外し、さらに、前記炭化珪素原料の残渣を除去すると共に、前記炭化珪素単結晶の成長時に前記下敷部材の上に再結晶化した炭化珪素(6)と一緒に前記下敷部材を前記容器本体から除去することと、を含む炭化珪素単結晶の製造方法。
A container body composed of a bottomed cylindrical member having an opening on one side, a bottom side on the other side opposite to the one side, a cylindrical outer peripheral wall, and a hollow inside. A crucible (1) having (1a) and a lid member (1b) for closing the one surface of the container body;
Using a silicon carbide single crystal manufacturing apparatus provided with a heating device (5) for heating the crucible by heating the outer peripheral wall,
The container body is filled with a silicon carbide raw material (4), and a silicon carbide single crystal substrate (2) serving as a seed crystal is disposed with respect to the lid member, and the crucible is heated by the heating device to perform the carbonization. A method for producing a silicon carbide single crystal in which a silicon carbide single crystal (3) is grown on a surface of the silicon carbide single crystal substrate by sublimating a silicon raw material,
Disposing an underlay member (1c) that covers at least a central portion of the bottom portion and is configured to be removable from the container body, on the bottom portion of the container body;
After placing the underlay member, filling the silicon carbide raw material on the bottom and the underlay member in the container body;
Sublimating the silicon carbide raw material by heating the crucible with the heating device, and growing the silicon carbide single crystal on the surface of the silicon carbide single crystal substrate;
After the growth of the silicon carbide single crystal, the silicon carbide single crystal and the lid member are removed from the container body, and the silicon carbide raw material residue is removed, and the underlay member is removed during the growth of the silicon carbide single crystal. Removing the underlay member from the container body together with silicon carbide (6) recrystallized above, to produce a silicon carbide single crystal.
前記炭化珪素単結晶を成長させることにおいては、前記容器本体における前記底部の中央部において、前記下敷部材の上に前記炭化珪素を選択的に再結晶化させる請求項7に記載の炭化珪素単結晶の製造方法。   8. The silicon carbide single crystal according to claim 7, wherein the silicon carbide single crystal is selectively recrystallized on the underlay member in a center portion of the bottom portion of the container body in growing the silicon carbide single crystal. Manufacturing method. 前記下敷部材を前記容器本体から除去することにおいては、前記炭化珪素原料の残渣の除去を同時に行う請求項7または8に記載の炭化珪素単結晶の製造方法。   The method for producing a silicon carbide single crystal according to claim 7 or 8, wherein in removing the underlay member from the container body, the residue of the silicon carbide raw material is simultaneously removed.
JP2017065593A 2017-03-29 2017-03-29 Silicon carbide single crystal manufacturing equipment and method for manufacturing silicon carbide single crystal using it Active JP6859800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017065593A JP6859800B2 (en) 2017-03-29 2017-03-29 Silicon carbide single crystal manufacturing equipment and method for manufacturing silicon carbide single crystal using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017065593A JP6859800B2 (en) 2017-03-29 2017-03-29 Silicon carbide single crystal manufacturing equipment and method for manufacturing silicon carbide single crystal using it

Publications (2)

Publication Number Publication Date
JP2018168010A true JP2018168010A (en) 2018-11-01
JP6859800B2 JP6859800B2 (en) 2021-04-14

Family

ID=64019059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065593A Active JP6859800B2 (en) 2017-03-29 2017-03-29 Silicon carbide single crystal manufacturing equipment and method for manufacturing silicon carbide single crystal using it

Country Status (1)

Country Link
JP (1) JP6859800B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061985A (en) * 2021-03-22 2021-07-02 哈尔滨化兴软控科技有限公司 Method for improving crystal quality by adjusting carbon-silicon ratio distribution
CN113622016A (en) * 2021-08-17 2021-11-09 福建北电新材料科技有限公司 Silicon carbide crystal growth apparatus and crystal growth method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010076990A (en) * 2008-09-26 2010-04-08 Bridgestone Corp Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
JP2012171832A (en) * 2011-02-21 2012-09-10 Bridgestone Corp Apparatus for manufacturing silicon carbide single crystal and method of manufacturing silicon carbide single crystal
JP2016034880A (en) * 2014-08-01 2016-03-17 住友電気工業株式会社 Production method of monocrystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010076990A (en) * 2008-09-26 2010-04-08 Bridgestone Corp Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
JP2012171832A (en) * 2011-02-21 2012-09-10 Bridgestone Corp Apparatus for manufacturing silicon carbide single crystal and method of manufacturing silicon carbide single crystal
JP2016034880A (en) * 2014-08-01 2016-03-17 住友電気工業株式会社 Production method of monocrystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061985A (en) * 2021-03-22 2021-07-02 哈尔滨化兴软控科技有限公司 Method for improving crystal quality by adjusting carbon-silicon ratio distribution
CN113061985B (en) * 2021-03-22 2022-06-28 哈尔滨化兴软控科技有限公司 Method for improving crystal quality by adjusting carbon-silicon ratio distribution
CN113622016A (en) * 2021-08-17 2021-11-09 福建北电新材料科技有限公司 Silicon carbide crystal growth apparatus and crystal growth method

Also Published As

Publication number Publication date
JP6859800B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP5146418B2 (en) Crucible for producing silicon carbide single crystal and method for producing silicon carbide single crystal
JP4569957B2 (en) Crucible for producing polycrystalline semiconductor and method for producing polycrystalline semiconductor
JP5392169B2 (en) Method for producing silicon carbide single crystal
JP5304600B2 (en) SiC single crystal manufacturing apparatus and manufacturing method
JP6111873B2 (en) Method for producing silicon carbide single crystal ingot
JP6338439B2 (en) Method for producing silicon carbide single crystal ingot
JP5482643B2 (en) Silicon carbide single crystal ingot manufacturing equipment
KR20200010711A (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
JP7346995B2 (en) Method for manufacturing SiC single crystal ingot
JP6859800B2 (en) Silicon carbide single crystal manufacturing equipment and method for manufacturing silicon carbide single crystal using it
JP6681687B2 (en) Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot
JP5602093B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP6015397B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
JP5333315B2 (en) Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
KR20160033853A (en) Apparatus and method for growing large diameter single crystal
KR20130083653A (en) Growing apparatus for single crystal
KR20130022596A (en) Apparatus for fabricating ingot and method for providing material
JP2013075793A (en) Apparatus and method for producing single crystal
JP6501494B2 (en) Method and apparatus for manufacturing silicon carbide single crystal ingot
JP7306217B2 (en) Crucible and SiC single crystal growth apparatus
KR20120138112A (en) Apparatus for fabricating ingot
CN219752494U (en) Crucible structure and crystal growth apparatus
JP2012206876A (en) APPARATUS FOR GROWING SiC
JP2010248028A (en) Apparatus for manufacturing silicon carbide single crystal
JPH1160391A (en) Production of silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210309

R150 Certificate of patent or registration of utility model

Ref document number: 6859800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250