JP2018162959A - Exhaust heat recovery boiler - Google Patents

Exhaust heat recovery boiler Download PDF

Info

Publication number
JP2018162959A
JP2018162959A JP2017061938A JP2017061938A JP2018162959A JP 2018162959 A JP2018162959 A JP 2018162959A JP 2017061938 A JP2017061938 A JP 2017061938A JP 2017061938 A JP2017061938 A JP 2017061938A JP 2018162959 A JP2018162959 A JP 2018162959A
Authority
JP
Japan
Prior art keywords
internal structure
seal
casing
heat recovery
recovery boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017061938A
Other languages
Japanese (ja)
Other versions
JP6978847B2 (en
Inventor
康大 川手
Yasuhiro Kawate
康大 川手
潔 本山
Kiyoshi Motoyama
潔 本山
桐山 達夫
Tatsuo Kiriyama
達夫 桐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2017061938A priority Critical patent/JP6978847B2/en
Publication of JP2018162959A publication Critical patent/JP2018162959A/en
Application granted granted Critical
Publication of JP6978847B2 publication Critical patent/JP6978847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To resume function of a seal plate after recovery from thermal warpage of the inner structure by which the seal plate formed of an elastic material to block short pass between a casing inner wall and the inner structure loses its function.SOLUTION: There is provided a seal mechanism 30 making a seal plate 32 formed of an elastic material cantilevered by a baffle member 31 in substantially parallel with the inner wall surface of a casing 3 come into contact with a seal surface 33 on which a free end of the convex side is formed on a peripheral edge part of the inner structure being curved in a direction to be separated from the corresponding inner wall surface, in which the seal mechanism arranged on a predetermined peripheral edge part of the inner structure includes a curvature maintaining member 34 for holding the seal plate at or above a predetermined curvature.SELECTED DRAWING: Figure 3

Description

本発明は、ガスタービン等の排ガスの熱を回収して蒸気を発生する排熱回収ボイラに関する。   The present invention relates to an exhaust heat recovery boiler that recovers heat of exhaust gas such as a gas turbine to generate steam.

排熱回収ボイラの煙道を構成するケーシング内には、排熱を回収する過熱器、再熱器、蒸発器及び節炭器などの熱交換器を構成する伝熱管構造物が収容される。また、排ガス中の窒素酸化物等の有害物質を除去する脱硝触媒を組付けた構造物が収容される。これらの伝熱管構造物及び脱硝触媒構造物を、本明細書においては内部構造物と総称する。   A casing constituting the flue of the exhaust heat recovery boiler accommodates a heat transfer tube structure that constitutes a heat exchanger such as a superheater, a reheater, an evaporator, and a economizer that recovers exhaust heat. Further, a structure in which a denitration catalyst for removing harmful substances such as nitrogen oxides in exhaust gas is assembled is accommodated. These heat transfer tube structures and denitration catalyst structures are collectively referred to as internal structures in this specification.

これらの内部構造物は、ケーシング内に設置して排ガスが流通される。また、ケーシングと内部構造物の熱伸び差を考慮して、内部構造物の外周壁とケーシング内壁との間に隙間が形成される。しかし、その隙間を通って排ガスが内部構造物を流通しないショートパスがあると、熱回収率が低下したり、有害物の除去率が低下するという不都合がある。そこで、その隙間を遮断するシール機構(シールシステム)が設けられている(例えば、特許文献1,2)。   These internal structures are installed in a casing to circulate exhaust gas. Further, in consideration of the difference in thermal expansion between the casing and the internal structure, a gap is formed between the outer peripheral wall of the internal structure and the casing inner wall. However, if there is a short path through which the exhaust gas does not circulate through the internal structure, there is a disadvantage that the heat recovery rate is reduced or the harmful substance removal rate is reduced. Therefore, a seal mechanism (seal system) that blocks the gap is provided (for example, Patent Documents 1 and 2).

特許文献1の熱回収ボイラは、排ガスが下部から上部に向けて流通される、いわゆる縦型のダクト(煙道)内に、排ガス流に沿って複数の内部構造物である伝熱管群を順次配置して構成されている。各内部構造物は、ダクト内壁面と対向する両側面に平板状のバッフルを配置し、ダクト内壁面とバッフルとの隙間を通る排ガスの上昇流のショートパスを遮断するシール機構が設けられている。特に、シール機構は、バッフルに支持させてダクト内壁面に向けて略水平に張り出され、排ガス流に直交する方向に延在されたショートパス防止板と、このショートパス防止板の先端部に片持ち支持された弾性材からなるシール板とを備えて構成されている。シール板は、固定端に対して円弧状に湾曲させ、自由端側をダクト内壁面に向けて伸長してダクト内壁面に摺接させて設けられる。これにより、排熱回収ボイラの構造物の熱伸びによる異常応力の発生させないで、ダクトとバッフル間の排ガスのショートパスを防止することができる。なお、縦型のダクト内の排ガス流の向きが下向きの場合も、同様のシール機構を設けることが可能である。   The heat recovery boiler of Patent Document 1 sequentially arranges heat transfer tube groups that are a plurality of internal structures along a flow of exhaust gas in a so-called vertical duct (flue) in which exhaust gas is circulated from the lower part to the upper part. It is arranged and configured. Each internal structure has a flat baffle on both sides facing the inner wall surface of the duct, and a sealing mechanism is provided to block the short path of the upward flow of exhaust gas that passes through the gap between the inner wall surface of the duct and the baffle. . In particular, the seal mechanism is supported by a baffle and extends substantially horizontally toward the inner wall surface of the duct and extends in a direction perpendicular to the exhaust gas flow, and a tip of the short path prevention plate. And a sealing plate made of an elastic material supported in a cantilever manner. The seal plate is provided in such a manner that the seal plate is curved in an arc shape with respect to the fixed end, the free end side extends toward the inner wall surface of the duct, and is brought into sliding contact with the inner wall surface of the duct. Thereby, the short path | pass of the waste gas between a duct and a baffle can be prevented, without generating the abnormal stress by the thermal expansion of the structure of a waste heat recovery boiler. A similar sealing mechanism can be provided even when the direction of the exhaust gas flow in the vertical duct is downward.

一方、特許文献2には、排ガスが横方向に流通される横型のダクト(煙道)の熱回収ボイラが開示されている。横型の熱回収ボイラの場合は、特許文献3に具体的に記載されているように、排ガス流に沿って複数の伝熱管構造物を順次配置する構造である。特許文献2、3では、内部構造物として、伝熱管構造物の他に脱硝触媒構造物を収容している。この場合も、煙道を形成する横型のケーシング内壁と内部構造物の外周壁との間に隙間が形成される。そこで、特許文献2には、内部構造物の排ガスの上流側の周縁部に、ケーシング内壁面と内部構造物の外周との隙間を通る排ガスのショートパスを遮断するシール機構を設けている。   On the other hand, Patent Document 2 discloses a heat recovery boiler for a horizontal duct (flue) through which exhaust gas is circulated in the lateral direction. In the case of a horizontal heat recovery boiler, as specifically described in Patent Document 3, a plurality of heat transfer tube structures are sequentially arranged along the exhaust gas flow. In Patent Documents 2 and 3, a denitration catalyst structure is housed as an internal structure in addition to the heat transfer tube structure. Also in this case, a gap is formed between the inner wall of the horizontal casing that forms the flue and the outer peripheral wall of the internal structure. Therefore, Patent Document 2 is provided with a seal mechanism for blocking a short path of the exhaust gas passing through the gap between the inner wall surface of the casing and the outer periphery of the internal structure at the peripheral edge of the internal structure upstream of the exhaust gas.

特許文献2のシール機構は、ケーシングの内壁にショートパスを遮るバッフル部材を設け、バッフル部材に弾性材からなるシール板を片持ち支持させ、シール板を円弧状に湾曲させ、湾曲させた凸面を排ガスの下流側に向けて、自由端側の板面を内部構造物の排ガスの上流側の周縁部に形成されたシール面に接触させて構成されている。このようなシール機構によれば、特許文献1と同様に、ケーシングと内部構造物の熱伸び差が生じても、弾性材からなるシール板が熱伸び差を吸収し、シール板の自由端とシール面との接触位置が摺動するので、排ガスのショートパスを遮断することができる。   In the sealing mechanism of Patent Document 2, a baffle member that blocks a short path is provided on the inner wall of the casing, the seal plate made of an elastic material is cantilevered on the baffle member, the seal plate is curved in an arc shape, and the curved convex surface is formed. The plate surface on the free end side is configured to contact the seal surface formed on the peripheral edge of the internal structure upstream of the exhaust gas toward the downstream side of the exhaust gas. According to such a sealing mechanism, similarly to Patent Document 1, even if a difference in thermal expansion between the casing and the internal structure occurs, the seal plate made of an elastic material absorbs the difference in thermal expansion, and the free end of the seal plate Since the contact position with the seal surface slides, the short path of exhaust gas can be blocked.

特許5374349号Japanese Patent No. 5374349 特許5581494号Japanese Patent No. 5581494 特開2008-082626JP2008-082626

しかしながら、技術開発に伴って、コンバインドサイクルのガスタービンの排ガスの温度が高温化される傾向にある。また、排熱回収ボイラ内の排ガス流速も高速化(動圧増大)される傾向にある。排ガス温度が高くなると、例えば、起動時における温度変化や、負荷変化によって内部構造物の排ガスの上流側と下流側の温度差が一時的に大きくなることがある。これにより、内部構造物の上流側と下流側の温度差による一時的な熱伸び差が発生すると、この熱伸び差によって内部構造物が全体的に反る、熱反りが発生するおそれがある。従来のシール機構は、内部構造物の熱反りには、対応できないおそれがある。   However, with the technological development, the temperature of the exhaust gas from the gas turbine in the combined cycle tends to increase. Further, the exhaust gas flow rate in the exhaust heat recovery boiler also tends to be increased (dynamic pressure increase). When the exhaust gas temperature becomes high, for example, the temperature difference between the upstream side and the downstream side of the exhaust gas of the internal structure may temporarily increase due to a temperature change at startup or a load change. Thereby, when a temporary thermal expansion difference due to the temperature difference between the upstream side and the downstream side of the internal structure occurs, the internal structure may be warped as a whole due to this thermal expansion difference, which may cause a thermal warp. The conventional seal mechanism may not be able to cope with the thermal warp of the internal structure.

例えば、横型の熱回収ボイラの場合、内部構造物である脱硝触媒構造物は、一般に、フレーム部材に複数の触媒層を3次元状に配置して直方体状に組み付けられる。このような脱硝触媒構造物は、横型のケーシングの底部側に設けたベース部材に支持する自立型の支持構造が採用されることがある。自立型の脱硝触媒構造物の上端は自由端であるから、上流側のフレーム部材と下流側のフレーム部材の温度差が大きいと、下部の支持点から離れた上部側が下流側に大きく反り返ることになる。特に、脱硝触媒構造物の上流側と下流側の排ガスの温度差が大きくなると、排ガスの反りが極めて大きくなる。また、排ガス流の高速化により、脱硝触媒構造物に作用する動圧が増大して反りを助長するおそれがある。   For example, in the case of a horizontal heat recovery boiler, a denitration catalyst structure that is an internal structure is generally assembled in a rectangular parallelepiped shape by arranging a plurality of catalyst layers on a frame member in a three-dimensional manner. Such a denitration catalyst structure may employ a self-supporting support structure that is supported by a base member provided on the bottom side of a horizontal casing. Since the upper end of the self-supporting denitration catalyst structure is a free end, if the temperature difference between the upstream frame member and the downstream frame member is large, the upper side away from the lower support point will greatly warp downstream. Become. In particular, when the temperature difference between the upstream side and the downstream side of the denitration catalyst structure becomes large, the warp of the exhaust gas becomes extremely large. Moreover, there is a risk of increasing the dynamic pressure acting on the denitration catalyst structure due to the increase in the speed of the exhaust gas flow and promoting warpage.

このように、自立型の脱硝触媒構造物の熱反りが極めて大きくなると、ケーシング側に支持されたバッフル部材に対して、脱硝触媒構造物の上部の周縁部に形成されたシール面との距離が大きく離れ、弾性を有するシール板の円弧状の湾曲が伸び切ってしまうことがある。シール板の自由端がシール面から離れると、排ガスのショートパスの遮断機能が失われる。なお、シール板が伸び切らないまでも、シール板の弾性力でシール面から跳ね上がって、シール面から離れてしまうことが考えられる。シール板がそのような状態になると、排ガスの温度変化が収まって、脱硝触媒構造物の熱反りが減少しても、一旦伸び切ったシール板は初期状態(湾曲)に戻らない。そのため、シール機構の機能が回復しないので、プラントを停止して修理する必要がある。   Thus, when the thermal warpage of the self-supporting denitration catalyst structure becomes extremely large, the distance between the baffle member supported on the casing side and the seal surface formed at the upper peripheral edge of the denitration catalyst structure is increased. The arcuate curve of the sealing plate having elasticity may be extended far away. When the free end of the seal plate is separated from the seal surface, the function of blocking the exhaust gas short path is lost. Even if the seal plate does not fully extend, it is conceivable that the elastic force of the seal plate will cause it to jump from the seal surface and leave the seal surface. When the seal plate is in such a state, even if the temperature change of the exhaust gas is settled and the thermal warping of the denitration catalyst structure is reduced, the once extended seal plate does not return to the initial state (curved). Therefore, since the function of the seal mechanism is not restored, it is necessary to stop and repair the plant.

上述のような問題は、自立型の内部構造物に限られるものではなく、横型ケーシングの上部構造部材から吊下げられた脱硝触媒構造物の場合にも起こり得る。つまり、吊下げ型の内部構造物の場合、フレーム部材の上流側と下流側の温度差が大きくなり、直方体状のフレーム部材の下端側の自由端が下流側に反り返ることになる。この反り量は、自重が作用するので自立型に比べれば小さいが、同様の問題が起こり得る。   The above-described problem is not limited to a self-supporting internal structure, but can also occur in the case of a denitration catalyst structure suspended from an upper structural member of a horizontal casing. That is, in the case of a suspended internal structure, the temperature difference between the upstream side and the downstream side of the frame member becomes large, and the free end on the lower end side of the rectangular parallelepiped frame member warps downstream. This amount of warpage is smaller than the self-supporting type because of its own weight, but the same problem can occur.

本発明が解決しようとする課題は、ケーシング内壁と内部構造物との間のショートパスを遮断する弾性材からなるシール板が内部構造物の熱反りにより機能を失っても、熱反りが回復したときに機能を回復可能な排熱回収ボイラを提供することにある。   The problem to be solved by the present invention is that even when the sealing plate made of an elastic material that blocks a short path between the casing inner wall and the internal structure loses its function due to the thermal warp of the internal structure, the thermal warpage is recovered. It is to provide an exhaust heat recovery boiler that can sometimes recover its function.

上記の課題を解決するため、本発明の排熱回収ボイラは、横型の煙道を形成するケーシングと、前記ケーシング内に収容され、排ガスが流通される内部構造物と、前記ケーシングの内壁と前記内部構造物との間に形成される隙間を流れる前記排ガスのショートパスを遮断するシール機構とを備え、前記シール機構は、前記排ガスの上流側の前記内部構造物の周縁部に対応させて、該周縁部の延在方向に沿って前記ケーシングの内壁に支持されたバッフル部材と、前記ケーシングの内壁面に略平行に前記バッフル部材に片持ち支持された弾性材からなるシール板とを有し、前記シール板を対応する前記内壁面から離れる方向に湾曲して凸面側の自由端を前記周縁部に形成されたシール面に接触させてなり、前記内部構造物の設定された位置の周縁部に設けられる前記シール機構には、前記シール板を設定曲率以上の湾曲に保持する曲率保持部材を備えてなることを特徴とする。   In order to solve the above problems, an exhaust heat recovery boiler according to the present invention includes a casing that forms a horizontal flue, an internal structure that is accommodated in the casing and through which exhaust gas flows, an inner wall of the casing, and the A seal mechanism that blocks a short path of the exhaust gas flowing through a gap formed between the internal structure and the seal mechanism, corresponding to a peripheral edge of the internal structure on the upstream side of the exhaust gas, A baffle member supported by the inner wall of the casing along the extending direction of the peripheral edge, and a seal plate made of an elastic material cantilevered by the baffle member substantially parallel to the inner wall surface of the casing. The seal plate is bent in a direction away from the corresponding inner wall surface, and the free end on the convex surface side is brought into contact with the seal surface formed on the peripheral edge portion, and the periphery of the set position of the internal structure is formed. The said sealing mechanism provided in parts, and characterized in that it comprises a curvature holding member for holding the sealing plate to the curvature of the above set curvature.

本発明のシール機構(ショートパス防止機構)によれば、次に述べる作用により、課題を解決することができる。上述したように、従来は、内部構造物の上流側と下流側の温度差が大きくなると、内部構造物の熱反りによって、シール機構が復帰できない場合がある。しかし、本発明によれば、内部構造物の熱反りによってシール面がバッフル部材から大きく離れても、シール板の円弧状の湾曲がバッフル部材に支持された曲率保持部材によって、設定曲率以上に保持される。その結果、排熱回収ボイラを流通する排ガスの温度変化が収まって内部構造物の熱反りが小さくなる過程で、シール板の自由端の板面がシール面に接触し、内部構造物の反りの復帰力でシール板が再び円弧状に湾曲される。これにより、内部構造物の反りが復帰したときにシール機構が回復して、シール機構の機能が回復する。   According to the sealing mechanism (short path prevention mechanism) of the present invention, the problem can be solved by the following action. As described above, conventionally, when the temperature difference between the upstream side and the downstream side of the internal structure becomes large, the sealing mechanism may not be restored due to the thermal warping of the internal structure. However, according to the present invention, even if the sealing surface is greatly separated from the baffle member due to the thermal warping of the internal structure, the arc-shaped curve of the seal plate is held above the set curvature by the curvature holding member supported by the baffle member. Is done. As a result, in the process where the temperature change of the exhaust gas flowing through the exhaust heat recovery boiler is settled and the thermal warpage of the internal structure is reduced, the plate surface at the free end of the seal plate contacts the seal surface, and the warpage of the internal structure The seal plate is again bent into an arc shape by the restoring force. Thereby, when the warping of the internal structure is restored, the seal mechanism is restored, and the function of the seal mechanism is restored.

つまり、本発明によれば、運転中の排熱回収ボイラにおいて、過剰な応力を発生することなく内部構造物の熱膨張に追従して、内部構造物の上流側と下流側との間に発生するガス温度差により内部構造物が下流側に反り返っても、排熱回収ボイラの排ガス温度が定常状態になれば、シール機構の機能を回復させることができる。   In other words, according to the present invention, in the exhaust heat recovery boiler during operation, it is generated between the upstream side and the downstream side of the internal structure following the thermal expansion of the internal structure without generating excessive stress. Even if the internal structure warps downstream due to the difference in gas temperature, the function of the sealing mechanism can be recovered if the exhaust gas temperature of the exhaust heat recovery boiler reaches a steady state.

この場合において、予め設定された位置の周縁部とは、内部構造物の排ガスの上流側と下流側の熱伸び差によって内部構造物が熱反りし、バッフル部材と内部構造物のシール面との距離が設定値以上に達するような内部構造物の周縁部であればよい。   In this case, the peripheral edge of the preset position is the thermal distortion of the internal structure due to the difference in thermal expansion between the upstream side and the downstream side of the exhaust gas of the internal structure, and the baffle member and the sealing surface of the internal structure What is necessary is just the peripheral part of an internal structure that distance reaches more than a setting value.

したがって、ケーシングの底部構造物に支持されて自立してケーシングに収容され自立型の内部構造物の場合は、予め設定された位置の周縁部は、少なくともケーシングの天井壁と対向する内部構造物の上部周縁部である。また、上部周縁部につながる側部の周縁部を含めてもよいが、側部の周縁部は従来型のシール機構でもよい。一方、吊下げ型の内部構造物の場合は、少なくともケーシングの底部壁と対向する内部構造物の下部周縁部である。また、下部周縁部につながる内部構造物の側部の周縁部を含めてもよいが、側部の周縁部は従来型のシール機構でもよい。   Therefore, in the case of a self-supporting internal structure that is supported by the bottom structure of the casing and is self-supported, the peripheral edge of the preset position is at least of the internal structure facing the ceiling wall of the casing. Upper peripheral edge. Moreover, although the peripheral part of the side part connected to an upper peripheral part may be included, the peripheral part of a side part may be a conventional seal mechanism. On the other hand, in the case of a suspended internal structure, it is at least the lower peripheral edge of the internal structure facing the bottom wall of the casing. Moreover, although the peripheral part of the side part of the internal structure connected to a lower peripheral part may be included, the peripheral part of a side part may be a conventional seal mechanism.

また、曲率保持部材は、内部構造物の周縁部に沿って連続して又は間隔を空けて設けてもよい。さらに、曲率保持部材は、シール板の凸面に接する湾曲部を有し、該湾曲部は設定曲率以上の曲面に形成してもよい。   Moreover, you may provide a curvature holding member continuously or at intervals along the peripheral part of an internal structure. Further, the curvature holding member may have a curved portion in contact with the convex surface of the seal plate, and the curved portion may be formed on a curved surface having a set curvature or more.

シール板は、固定端から自由端までの長さが異なる複数のプレートを積層して形成してもよい。   The seal plate may be formed by laminating a plurality of plates having different lengths from the fixed end to the free end.

シール板の固定端は、ケーシングの内壁に平行にバッフル部材に固定することが好ましい。この場合、シール板を固定するケーシングの内壁に平行な面をバッフル部材に形成してもよく、シール板を固定するケーシングの内壁に平行な面を有する部材をバッフル部材に固定して設けてもよい。   The fixed end of the seal plate is preferably fixed to the baffle member parallel to the inner wall of the casing. In this case, a surface parallel to the inner wall of the casing for fixing the seal plate may be formed on the baffle member, or a member having a surface parallel to the inner wall of the casing for fixing the seal plate may be fixed to the baffle member. Good.

曲率保持部材は、バッフル部材と一体に形成してもよく、別部材により形成してバッフル部材に固定してもよい。また、バッフル部材は、断面がL字状に形成され、L字の一端をケーシングの内壁に支持され、他端を内面に略平行にして内部構造体の周縁に向けて設けられ、曲率保持部材は、バッフル部材の内面に略平行に向けた他端の先端部を内面から離れる方向に、設定曲率に応じて折り曲げて一体に形成されてなる曲率保持部であってもよい。   The curvature holding member may be formed integrally with the baffle member, or may be formed by a separate member and fixed to the baffle member. The baffle member has an L-shaped cross section, and is provided with one end of the L shape supported on the inner wall of the casing and the other end substantially parallel to the inner surface toward the periphery of the internal structure, and a curvature holding member. May be a curvature holding portion that is integrally formed by bending the tip of the other end facing substantially parallel to the inner surface of the baffle member in a direction away from the inner surface according to the set curvature.

シール板は、第1の平板部材を介してバッフル部材に固定され、シール面は、内部構造物の周縁部に固定された第2の平板部材の表面に形成してもよい。この場合、第1の平板部材と第2の平板部材は、内部構造物の周縁部の延在方向に沿って複数に分割して形成され、シール板は、第1の平板部材と第2の平板部材の分割に合わせて複数に分割して形成する。   The seal plate may be fixed to the baffle member via the first flat plate member, and the seal surface may be formed on the surface of the second flat plate member fixed to the peripheral edge portion of the internal structure. In this case, the first flat plate member and the second flat plate member are formed by being divided into a plurality along the extending direction of the peripheral portion of the internal structure, and the seal plate is formed by the first flat plate member and the second flat plate member. It is divided into a plurality of parts in accordance with the division of the flat plate member.

本発明によれば、ケーシング内壁と内部構造物との間のショートパスを遮断する弾性材からなるシール板が内部構造物の熱反りにより機能を失っても、熱反りが回復したときに機能を回復可能な排熱回収ボイラを提供することができる。   According to the present invention, even when the sealing plate made of an elastic material that blocks a short path between the casing inner wall and the internal structure loses its function due to the thermal warp of the internal structure, the function is achieved when the thermal warpage is recovered. A recoverable exhaust heat recovery boiler can be provided.

本発明の横型の排熱回収ボイラの一実施形態の一部を破断して示す外観斜視図である。1 is an external perspective view showing a part of an embodiment of a horizontal exhaust heat recovery boiler according to the present invention in a broken state. 本発明の排熱回収ボイラの一実施形態の要部断面を示す模式図である。It is a schematic diagram which shows the principal part cross section of one Embodiment of the waste heat recovery boiler of this invention. 本発明の排熱回収ボイラの一実施形態のシール機構を示す断面図である。It is sectional drawing which shows the sealing mechanism of one Embodiment of the waste heat recovery boiler of this invention. 本発明のシール機構の効果を説明する従来のシール機構の断面図である。It is sectional drawing of the conventional sealing mechanism explaining the effect of the sealing mechanism of this invention. 本発明の排熱回収ボイラの他の実施形態のシール機構を示す斜視図である。It is a perspective view which shows the sealing mechanism of other embodiment of the waste heat recovery boiler of this invention.

図1に示すように、本発明が適用される一実施形態の横型の排熱回収ボイラ1は、横型の煙道を形成するケーシング3内に、伝熱管群からなる複数の伝熱管構造物5が排ガス2の流れ方向に沿って収容されている。これらの伝熱管構造物5には、ガスタ−ビンで仕事をした後の排ガス2が流通され、排ガスの持つエネルギーを回収して蒸気を発生させる。発生した蒸気は、汽水分離ドラム6を介して外部の蒸気タービンに供給して発電するコンバインドサイクル発電プラントに使用される。また、複数の伝熱管構造物5の間の適度な排ガス温度領域に位置させて、脱硝触媒構造物20が収容されている。なお、ケーシング3は、鋼板からなる左右側壁面と上下壁面と、これらを補強する補強部材10などを備えて構成されている。なお、本実施形態の伝熱管構造物5は、吊り下げ型の内部構造物であるが、自立型の伝熱管構造物の場合があり、本発明を適用する対象となる場合がある。   As shown in FIG. 1, a horizontal exhaust heat recovery boiler 1 according to an embodiment to which the present invention is applied includes a plurality of heat transfer tube structures 5 including a heat transfer tube group in a casing 3 that forms a horizontal flue. Is accommodated along the flow direction of the exhaust gas 2. In these heat transfer tube structures 5, the exhaust gas 2 after working in the gas turbine is circulated, and the energy of the exhaust gas is recovered to generate steam. The generated steam is used in a combined cycle power plant that supplies power to an external steam turbine via the brackish water separation drum 6 to generate electric power. Further, the denitration catalyst structure 20 is accommodated in an appropriate exhaust gas temperature region between the plurality of heat transfer tube structures 5. The casing 3 includes left and right side wall surfaces and upper and lower wall surfaces made of steel plates, a reinforcing member 10 that reinforces these, and the like. In addition, although the heat transfer tube structure 5 of this embodiment is a suspended internal structure, it may be a self-supporting heat transfer tube structure and may be a target to which the present invention is applied.

本実施形態の脱硝触媒構造物20には、図2に示す断面図ように、ガスタービンから排出される高温の排ガス2が、矢印に示されるように、排熱回収ボイラ1のケーシング3で構成される煙道を上流から下流へ流通される。煙道内には、窒素酸化物等の有害物質を除去する脱硝触媒構造物20が収容されている。ケーシング3の天井壁3aの内面には断熱材3bが設けられ、底部壁3cには断熱材3dが設けられている。なお、図に表れていないが、ケーシング3の左右両側壁も同様の形成されている。また、図示していないが、脱硝触媒構造物20は、フレーム部材に複数の触媒層を3次元状に組み付けて直方体状に形成されている。直方体状の脱硝触媒構造物20は、下部を横型のケーシング3の底部側に設けたベース部材21に支持され、上部はケーシング3の天井壁3aから隙間4を離して、支持されない自立型構造となっている。本実施形態の脱硝触媒構造物20に係るシール機構が本発明の課題に顕著に対応する。   In the denitration catalyst structure 20 of the present embodiment, as shown in the cross-sectional view of FIG. 2, the high-temperature exhaust gas 2 discharged from the gas turbine is configured by the casing 3 of the exhaust heat recovery boiler 1 as indicated by an arrow. Circulated from upstream to downstream through the flue. A denitration catalyst structure 20 that removes harmful substances such as nitrogen oxides is housed in the flue. A heat insulating material 3b is provided on the inner surface of the ceiling wall 3a of the casing 3, and a heat insulating material 3d is provided on the bottom wall 3c. Although not shown in the figure, the left and right side walls of the casing 3 are similarly formed. Although not shown, the denitration catalyst structure 20 is formed in a rectangular parallelepiped shape by assembling a plurality of catalyst layers on a frame member in a three-dimensional manner. The rectangular parallelepiped denitration catalyst structure 20 is supported by a base member 21 having a lower portion provided on the bottom side of the horizontal casing 3, and the upper portion is separated from the ceiling wall 3 a of the casing 3 by a gap 4 and is not supported. It has become. The sealing mechanism according to the denitration catalyst structure 20 of the present embodiment significantly corresponds to the problem of the present invention.

次に、本発明の特徴部であるシール機構の詳細について説明する。本実施形態のシール機構30は、図2に示すように、脱硝触媒構造物20の排ガスの上流側の上部の周縁部に対向させて、ケーシング3の天井壁3aと脱硝触媒構造物20との間に形成される隙間4を流れる排ガスのショートパスを遮断するように設けられている。なお、図示していないが、脱硝触媒構造物20の上流側の上部以外の周縁部にもシール機構が対向させて設けられている。しかし、本実施形態では、それらのシール機構は、基本的に従来構造のシール機構で対応可能であるとする。すなわち、本発明のシール機構30は、内部構造物である脱硝触媒構造物20の予め設定された位置の周縁部に設ければよい。   Next, the details of the sealing mechanism which is a feature of the present invention will be described. As shown in FIG. 2, the seal mechanism 30 of the present embodiment is arranged so that the ceiling wall 3 a of the casing 3 and the denitration catalyst structure 20 are opposed to the upper peripheral portion on the upstream side of the exhaust gas of the denitration catalyst structure 20. It is provided so as to block the short path of the exhaust gas flowing through the gap 4 formed therebetween. Although not shown, a seal mechanism is also provided opposite to the peripheral portion other than the upper portion on the upstream side of the denitration catalyst structure 20. However, in the present embodiment, it is assumed that those sealing mechanisms can basically be handled by a conventional sealing mechanism. That is, the sealing mechanism 30 of the present invention may be provided at the peripheral edge of a preset position of the denitration catalyst structure 20 that is an internal structure.

図3に、シール機構30を排ガス2の流れに直交する方向から見た部分断面図を示す。同図(a)に示すように、シール機構30は、脱硝触媒構造物20の上部の周縁部から所定の距離を離して設けられ、ケーシング3の天井壁3aに支持して設けられたバッフル部材31と、バッフル部材31に片持ち支持された弾性材からなるシール板32と、脱硝触媒構造物20の上端部の周縁部に形成されたシール面33とを備えて構成されている。シール板32は、弾性の高い材料を使用して形成され、例えば、ステンレス鋼等の薄板を重ねた板ばね構造を用いて形成されている。しかし、これに限られるものではない。   FIG. 3 shows a partial cross-sectional view of the seal mechanism 30 as viewed from a direction orthogonal to the flow of the exhaust gas 2. As shown in FIG. 2A, the seal mechanism 30 is provided at a predetermined distance from the upper peripheral edge of the denitration catalyst structure 20 and is supported by the ceiling wall 3 a of the casing 3. 31, a seal plate 32 made of an elastic material cantilevered by the baffle member 31, and a seal surface 33 formed on the peripheral edge of the upper end of the denitration catalyst structure 20. The seal plate 32 is formed using a highly elastic material, and is formed using, for example, a leaf spring structure in which thin plates such as stainless steel are stacked. However, it is not limited to this.

シール板32は、バッフル部材31に片持ち支持された固定端と、固定されていない自由端とを有する。シール板32は天井壁3aに略平行にバッフル部材31に支持され、天井壁3aから離れる方向に延在させて設けられている。特に、固定端と自由端の間を湾曲させて、その凸面を排ガスの下流側に向け、自由端側の板面をシール面33に接触させて形成されている。また、本実施形態のシール板32は、バッフル部材31に支持させて、湾曲を設定曲率以上に保持する曲率保持部材34が備えられている。   The seal plate 32 has a fixed end that is cantilevered by the baffle member 31 and a free end that is not fixed. The seal plate 32 is supported by the baffle member 31 substantially parallel to the ceiling wall 3a, and is provided to extend in a direction away from the ceiling wall 3a. In particular, it is formed by bending between the fixed end and the free end, with its convex surface facing the downstream side of the exhaust gas, and the plate surface on the free end side in contact with the seal surface 33. Further, the seal plate 32 of the present embodiment is provided with a curvature holding member 34 that is supported by the baffle member 31 and holds the curvature at or above the set curvature.

なお、シール板32の固定端は、L字型の鋼材からなるバッフル部材31の天井壁3aの内面に平行な面に、例えばボルト・ナット35で固定されている。しかし、バッフル部材31はL字型の鋼材に限られるものではなく、天井壁3aの内面に平行な面を有する形状であればよく、要はシール板32を天井壁3aの内面に平行に固定できればよい。すなわち、シール板32は、ケーシング3の内壁に平行にバッフル部材31に固定して片持ち支持することが好ましい。この場合、シール板32を固定するケーシング3の内壁に平行な面をバッフル部材31に形成してもよく、シール板32を固定するケーシング3の内壁に平行な面を有する部材をバッフル部材31に固定して設けてもよい。   The fixed end of the seal plate 32 is fixed to a surface parallel to the inner surface of the ceiling wall 3a of the baffle member 31 made of L-shaped steel material, for example, with bolts and nuts 35. However, the baffle member 31 is not limited to the L-shaped steel material, and may have a shape having a surface parallel to the inner surface of the ceiling wall 3a. In short, the seal plate 32 is fixed in parallel to the inner surface of the ceiling wall 3a. I can do it. That is, the seal plate 32 is preferably cantilevered by being fixed to the baffle member 31 in parallel with the inner wall of the casing 3. In this case, a surface parallel to the inner wall of the casing 3 for fixing the seal plate 32 may be formed on the baffle member 31, and a member having a surface parallel to the inner wall of the casing 3 for fixing the seal plate 32 is formed on the baffle member 31. It may be fixed.

本実施形態の曲率保持部材34は、バッフル部材31に固定され、シール面33側に延びる基部34aと、基部34aの先端からシール板32の湾曲部に向かって垂下された抑え部34bを備えて形成される。抑え部34bの先端位置は、シール板32の湾曲を設定曲率以上に保持するように設定される。つまり、図2(b)に示すように、脱硝触媒構造物20の上流側と下流側の熱伸び差により反りが発生し、シール板32の自由端がシール面33から離れても、設定曲率以上に保持する位置に抑え部34bの先端が設けられている。   The curvature holding member 34 of the present embodiment includes a base portion 34 a that is fixed to the baffle member 31 and extends toward the seal surface 33, and a holding portion 34 b that is suspended from the tip of the base portion 34 a toward the curved portion of the seal plate 32. It is formed. The tip position of the restraining portion 34b is set so as to keep the curvature of the seal plate 32 at or above the set curvature. That is, as shown in FIG. 2B, even if the warp occurs due to the difference in thermal expansion between the upstream side and the downstream side of the denitration catalyst structure 20, and the free end of the seal plate 32 is separated from the seal surface 33, the set curvature is obtained. The tip of the restraining portion 34b is provided at the position to be held as described above.

このように構成されることから、本実施形態のショートパス防止機構であるシール機構30によれば、脱硝触媒構造物20の熱反りによってシール面33がバッフル部材31から大きく離れても、シール板32の湾曲が曲率保持部材34の抑え部34bの先端によって、シール板32の弾性力が抑えられるから、設定曲率以上に保持される。その結果、排熱回収ボイラを流通する排ガスの温度変化が収まって、脱硝触媒構造物20の熱反りが小さくなる過程で、シール板32の自由端の板面がシール面33に接触し、脱硝触媒構造物20の反りの復帰力でシール板32が再び湾曲される。これにより、図3(c)に示すように、脱硝触媒構造物20の反りが復帰したときにシール機構が回復して、シール機構の機能が回復する。   With this configuration, according to the sealing mechanism 30 that is the short path prevention mechanism of the present embodiment, even if the sealing surface 33 is largely separated from the baffle member 31 due to thermal warping of the denitration catalyst structure 20, the sealing plate Since the elastic force of the sealing plate 32 is suppressed by the distal end of the suppressing portion 34b of the curvature holding member 34, the curvature of 32 is maintained at a set curvature or more. As a result, in the process in which the temperature change of the exhaust gas flowing through the exhaust heat recovery boiler is settled and the thermal warping of the denitration catalyst structure 20 is reduced, the plate surface at the free end of the seal plate 32 comes into contact with the seal surface 33, The seal plate 32 is bent again by the return force of the warp of the catalyst structure 20. As a result, as shown in FIG. 3C, when the warpage of the denitration catalyst structure 20 is restored, the seal mechanism is restored, and the function of the seal mechanism is restored.

ここで、曲率保持部材34を設けていない従来のシール機構を図4に示し、本実施形態の効果を説明する。図4が図3と異なる点は、曲率保持部材34を設けていない点だけである。したがって、図3と同一の部品には、同一の符号を付して説明を省略する。図4(a)の定常状態から、図4(b)のように、脱硝触媒構造物20の熱反りが極めて大きくなると、バッフル部材31に対して、脱硝触媒構造物20の上部の周縁部に形成されたシール面33との距離が大きく離れる。その結果、図4(c)に示すように、弾性を有するシール板32の自由端がシール面33から離れて湾曲が伸び切ってしまうことから、排ガスのショートパスの遮断機能が失われる。なお、シール板32の弾性力で自由端がシール面33から跳ね上がって、シール面から離れてしまうことも考えられる。一旦、この状態になると、排ガスの温度変化が収まって、脱硝触媒構造物20の反りが減少しても、伸び切ったシール板32は初期状態(湾曲)に戻らない。そのため、従来のシール機構の機能は回復しないので、プラントを停止して修理する他ない。   Here, a conventional sealing mechanism in which the curvature holding member 34 is not provided is shown in FIG. 4, and the effect of this embodiment will be described. FIG. 4 is different from FIG. 3 only in that the curvature holding member 34 is not provided. Therefore, the same parts as those in FIG. When the thermal warping of the denitration catalyst structure 20 becomes extremely large from the steady state of FIG. 4A as shown in FIG. 4B, the baffle member 31 is moved to the peripheral portion at the top of the denitration catalyst structure 20. The distance from the formed sealing surface 33 is greatly separated. As a result, as shown in FIG. 4C, the free end of the elastic seal plate 32 is separated from the seal surface 33 and the curve is extended, so that the function of blocking the exhaust gas short path is lost. It is also conceivable that the free end jumps up from the seal surface 33 due to the elastic force of the seal plate 32 and is separated from the seal surface. Once in this state, even if the temperature change of the exhaust gas is settled and the warp of the denitration catalyst structure 20 is reduced, the extended seal plate 32 does not return to the initial state (curved). Therefore, since the function of the conventional seal mechanism is not restored, the plant must be stopped and repaired.

以上説明したように、本実施形態によれば、運転中の排熱回収ボイラにおいて、過剰な応力を発生することなく内部構造物である脱硝触媒構造物20の熱膨張に追従して、内部構造物の上流側と下流側との間に発生するガス温度差により内部構造物が下流側に反り返っても、排熱回収ボイラの排ガス温度が定常状態に至れば、シール機構の機能を回復させることができる。   As described above, according to the present embodiment, in the exhaust heat recovery boiler during operation, the internal structure follows the thermal expansion of the denitration catalyst structure 20 that is the internal structure without generating excessive stress. If the exhaust gas temperature of the exhaust heat recovery boiler reaches a steady state even if the internal structure is warped downstream due to the gas temperature difference generated between the upstream side and the downstream side of the product, the function of the sealing mechanism can be restored. Can do.

ここで、上記実施形態において、予め設定された位置の周縁部とは、脱硝触媒構造物20の排ガスの上流側と下流側の熱伸び差によって脱硝触媒構造物20が熱反りし、バッフル部材31とシール面33との距離が設定値以上に達するおそれがある周縁部である。したがって、自立型の内部構造物の場合の設定される周縁部は、少なくともケーシングの天井壁と対向する内部構造物の上部周縁部である。一方、吊下げ型の内部構造物の場合は、少なくともケーシングの底部壁と対向する内部構造物の下部周縁部を検討対象とする。   Here, in the above-mentioned embodiment, the denitration catalyst structure 20 is thermally warped due to the difference in thermal expansion between the upstream side and the downstream side of the exhaust gas of the denitration catalyst structure 20 from the peripheral portion of the preset position, and the baffle member 31. This is a peripheral portion where the distance between the seal surface 33 and the seal surface 33 may reach a set value or more. Therefore, the peripheral edge set in the case of a self-supporting internal structure is at least the upper peripheral edge of the internal structure facing the ceiling wall of the casing. On the other hand, in the case of a suspended internal structure, at least the lower peripheral edge of the internal structure facing the bottom wall of the casing is considered.

曲率保持部材34は、上記実施形態に限られるものではなく、内部構造物である脱硝触媒構造物20の周縁部に沿って連続して、又は間隔を空けて設けてもよい。さらに、曲率保持部材34は、シール板32の凸面に接する湾曲部を有し、該湾曲部は設定曲率以上の曲面に形成してもよい。また、シール板32は、固定端から自由端までの長さが異なる複数の薄板の弾性板を積層して形成してもよい。   The curvature holding member 34 is not limited to the above embodiment, and may be provided continuously or at intervals along the peripheral edge of the denitration catalyst structure 20 that is an internal structure. Furthermore, the curvature holding member 34 may have a curved portion in contact with the convex surface of the seal plate 32, and the curved portion may be formed on a curved surface having a set curvature or more. The seal plate 32 may be formed by stacking a plurality of thin elastic plates having different lengths from the fixed end to the free end.

また、シール板は、第1の平板部材を介してバッフル部材に固定され、シール面は、内部構造物の周縁部に固定された第2の平板部材の表面に形成してもよい。この場合、第1の平板部材と第2の平板部材は、内部構造物の周縁部の延在方向に沿って複数に分割して形成され、シール板は、第1の平板部材と第2の平板部材の分割に合わせて複数に分割して形成する。   Further, the seal plate may be fixed to the baffle member via the first flat plate member, and the seal surface may be formed on the surface of the second flat plate member fixed to the peripheral edge portion of the internal structure. In this case, the first flat plate member and the second flat plate member are formed by being divided into a plurality along the extending direction of the peripheral portion of the internal structure, and the seal plate is formed by the first flat plate member and the second flat plate member. It is divided into a plurality of parts in accordance with the division of the flat plate member.

図5に、本発明の他の実施形態のシール機構40の構成を斜視図により示す。本実施形態は、バッフル部材31と一体に、曲率保持部44を形成した例である。図示のように、シール機構40は、脱硝触媒構造物20の上部の周縁部から所定の距離を離して設けられる。バッフル部材41、断面がL字状の鋼材から形成され、L字の一端を図示していないケーシングの天井壁に支持させて、他端を脱硝触媒構造物20側に向けて設けられる。弾性材からなるシール板42は、バッフル部材41のケーシングの天井壁に平行な支持部41aと押え板46により挟持して、片持ち支持されている。また、シール板42は、天井壁から離れる方向に湾曲して凸面側の自由端を、脱硝触媒構造物20の上部の周縁部に形成されたシール面43に接触させて設けられている。シール板42は、弾性の高い材料を使用して形成されている。   FIG. 5 is a perspective view showing a configuration of a seal mechanism 40 according to another embodiment of the present invention. The present embodiment is an example in which the curvature holding portion 44 is formed integrally with the baffle member 31. As shown in the figure, the seal mechanism 40 is provided at a predetermined distance from the upper peripheral edge of the denitration catalyst structure 20. The baffle member 41 is formed of a steel material having an L-shaped cross section, and is provided with one end of the L shape supported on a ceiling wall of a casing (not shown) and the other end directed toward the denitration catalyst structure 20 side. The seal plate 42 made of an elastic material is sandwiched by a support portion 41 a parallel to the ceiling wall of the casing of the baffle member 41 and a press plate 46 and is cantilevered. Further, the seal plate 42 is provided in such a manner that the free end on the convex side is curved in a direction away from the ceiling wall and is in contact with the seal surface 43 formed on the peripheral edge of the upper portion of the denitration catalyst structure 20. The seal plate 42 is formed using a highly elastic material.

本実施形態の曲率保持部44は、バッフル部材41の支持部41aの先端部を天井壁3aから離れる方向に折り曲げてバッフル部材41と一体に形成されている。曲率保持部44の折り曲げ角度は、予め設定されたシール板42の湾曲を設定曲率以上に保持する角度になっている。また、曲率保持部44は、折り曲げ角度を保持するように、バッフル部材41に固定されたリブ45により補強されている。曲率保持部44は、シール板42を自由端よりも固定端に近い部位で曲げを付与するように形成されている。   The curvature holding portion 44 of the present embodiment is formed integrally with the baffle member 41 by bending the tip portion of the support portion 41a of the baffle member 41 in a direction away from the ceiling wall 3a. The bending angle of the curvature holding unit 44 is an angle that holds a predetermined curvature of the seal plate 42 at or above the set curvature. The curvature holding portion 44 is reinforced by ribs 45 fixed to the baffle member 41 so as to hold the bending angle. The curvature holding portion 44 is formed to bend the seal plate 42 at a portion closer to the fixed end than to the free end.

これにより、脱硝触媒構造物20の熱反りが大きくなって、シール板42の自由端側がシール面43から離れた後も、曲率保持部44によりシール板42の湾曲形状が離れたときの状態に維持される。これにより、脱硝触媒構造物20の熱反りが解消されて、脱硝触媒構造物20が元の位置に復帰したとき、シール板42の自由端側が、再び、脱硝触媒構造物20のシール面と接し、脱硝触媒構造物20の復帰力で元の湾曲状態に回復する。これにより、シール機構40の機能を回復することができる。   As a result, the thermal warping of the denitration catalyst structure 20 increases, and even after the free end side of the seal plate 42 is separated from the seal surface 43, the curved shape of the seal plate 42 is separated by the curvature holding portion 44. Maintained. Thereby, when the thermal warpage of the denitration catalyst structure 20 is eliminated and the denitration catalyst structure 20 returns to the original position, the free end side of the seal plate 42 comes into contact with the seal surface of the denitration catalyst structure 20 again. Then, it is restored to the original curved state by the restoring force of the denitration catalyst structure 20. Thereby, the function of the seal mechanism 40 can be recovered.

以上述べたように、本発明は、内部構造物の熱反りが大きくなって、シール板の自由端側がシール面から離れた後も、曲率保持部材によりシール板の湾曲形状が離れたときの状態に維持されるから、内部構造物が元の位置に復帰したとき、内部構造物の復帰力でシール板が元の湾曲状態に回復し、シール機構の機能を回復することができる。   As described above, the present invention is a state when the curved shape of the seal plate is separated by the curvature holding member even after the thermal warpage of the internal structure is increased and the free end side of the seal plate is separated from the seal surface. Therefore, when the internal structure returns to the original position, the seal plate recovers to the original curved state by the return force of the internal structure, and the function of the seal mechanism can be recovered.

上述したように、本発明は、内部構造物の熱反りが大きくなって、シール機構を構成するシール板の自由端側がシール面から離れた後も、曲率保持部材によりシール板の湾曲形状が離れたときの状態に維持することを本旨とした。これに代えて、シール板の長さを十分に長くすることにより、内部構造物の熱反りが大きくなっても、シール板の自由端側がシール面から離れないようにすれば、本発明の課題は生じない。   As described above, according to the present invention, the curved shape of the seal plate is separated by the curvature holding member even after the thermal warpage of the internal structure is increased and the free end side of the seal plate constituting the seal mechanism is separated from the seal surface. The main purpose was to maintain the condition at the time. Instead of this, if the length of the seal plate is made sufficiently long so that the free end side of the seal plate is not separated from the seal surface even if the thermal warpage of the internal structure increases, the problem of the present invention Does not occur.

しかし、弾性材からなるシール板を長くするのは、弾性材が高価であることから、経済性の点で問題がある。また、シール板を長くすると、これに合わせてシール面の長さを長くすることになり、内部構造物の排ガスを流通させる領域を侵食してシール面を形成することは好ましくない。   However, lengthening the sealing plate made of an elastic material is problematic in terms of economy because the elastic material is expensive. Further, when the seal plate is lengthened, the length of the seal surface is lengthened accordingly, and it is not preferable to form the seal surface by eroding the region of the internal structure through which the exhaust gas flows.

以上、本発明を一実施形態に基づいて説明したが、本発明はこれらに限定されるものではなく、本発明の主旨の範囲で変形又は変更された形態で実施することが可能であることは、当業者にあっては明白なことであり、そのような変形又は変更された形態が本願の特許請求の範囲に属する。   As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to these, It is possible to implement in the form deform | transformed or changed in the range of the main point of this invention. It will be obvious to those skilled in the art, and such variations or modifications are within the scope of the claims of the present application.

1 排熱回収ボイラ
2 排ガス
3 ケーシング
3a 天井壁
3b 断熱材
5 伝熱管構造物
20 脱硝触媒構造物
30 シール機構
31 バッフル部材
32 シール板
33 シール面
34 曲率保持部材
DESCRIPTION OF SYMBOLS 1 Waste heat recovery boiler 2 Exhaust gas 3 Casing 3a Ceiling wall 3b Heat insulating material 5 Heat-transfer tube structure 20 Denitration catalyst structure 30 Seal mechanism 31 Baffle member 32 Seal plate 33 Seal surface 34 Curvature holding member

Claims (10)

横型の煙道を形成するケーシングと、前記ケーシング内に収容され、排ガスが流通される内部構造物と、前記ケーシングの内壁と前記内部構造物との間に形成される隙間を流れる前記排ガスのショートパスを遮断するシール機構とを備え、
前記シール機構は、前記排ガスの上流側の前記内部構造物の周縁部に対応させて、該周縁部の延在方向に沿って前記ケーシングの内壁に支持されたバッフル部材と、前記ケーシングの内壁面に略平行に前記バッフル部材に片持ち支持された弾性材からなるシール板とを有し、前記シール板を対応する前記内壁面から離れる方向に湾曲して凸面側の自由端を前記周縁部に形成されたシール面に接触させてなり、
前記内部構造物の設定された位置の周縁部に設けられる前記シール機構には、前記シール板を設定曲率以上の湾曲に保持する曲率保持部材を備えてなることを特徴とする排熱回収ボイラ。
A casing that forms a horizontal flue, an internal structure that is accommodated in the casing and through which exhaust gas flows, and a short circuit of the exhaust gas that flows through a gap formed between the inner wall of the casing and the internal structure A seal mechanism for blocking the path,
The seal mechanism includes a baffle member supported on an inner wall of the casing along an extending direction of the peripheral portion, corresponding to a peripheral portion of the internal structure upstream of the exhaust gas, and an inner wall surface of the casing A seal plate made of an elastic material that is cantilevered by the baffle member, and curved in a direction away from the corresponding inner wall surface with the free end on the convex surface side at the peripheral portion. In contact with the formed sealing surface,
The exhaust heat recovery boiler according to claim 1, wherein the seal mechanism provided at a peripheral portion at a set position of the internal structure includes a curvature holding member that holds the seal plate in a curvature that is equal to or greater than a set curvature.
前記内部構造物の設定された位置の周縁部は、前記内部構造物の前記排ガスの上流側と下流側の熱伸び差によって前記内部構造物が反り、前記バッフル部材と前記内部構造物のシール面との距離が設定値以上に達する周縁部であることを特徴とする請求項1に記載の排熱回収ボイラ。   The peripheral portion of the set position of the internal structure is warped by the difference in thermal expansion between the upstream side and the downstream side of the exhaust gas of the internal structure, and the baffle member and the sealing surface of the internal structure The exhaust heat recovery boiler according to claim 1, wherein the exhaust heat recovery boiler is a peripheral portion that reaches a set value or more. 前記内部構造物は、前記ケーシングの底部構造物に支持されて自立して前記ケーシングに収容され、
前記内部構造物の設定された位置の周縁部は、少なくとも前記ケーシングの天井壁と対向する前記内部構造物の上部周縁部であることを特徴とする請求項1又は2に記載の排熱回収ボイラ。
The internal structure is supported by the bottom structure of the casing and is self-supported and accommodated in the casing;
3. The exhaust heat recovery boiler according to claim 1, wherein a peripheral portion of the set position of the internal structure is at least an upper peripheral portion of the internal structure facing the ceiling wall of the casing. .
前記曲率保持部材は、前記内部構造物の周縁部に沿って連続して又は間隔を空けて設けられていることを特徴とする請求項1に記載の排熱回収ボイラ。   2. The exhaust heat recovery boiler according to claim 1, wherein the curvature holding member is provided continuously or at an interval along a peripheral edge of the internal structure. 前記曲率保持部材は、前記シール板の前記凸面に接する湾曲部を有し、該湾曲部は前記設定曲率以上の曲面に形成されていることを特徴とする請求項1に記載の排熱回収ボイラ。   2. The exhaust heat recovery boiler according to claim 1, wherein the curvature holding member has a curved portion in contact with the convex surface of the seal plate, and the curved portion is formed in a curved surface that is equal to or greater than the set curvature. . 前記シール板は、前記固定端から前記自由端までの長さが異なる複数のプレートを積層して形成されていることを特徴とする請求項1に記載の排熱回収ボイラ。   The exhaust heat recovery boiler according to claim 1, wherein the seal plate is formed by stacking a plurality of plates having different lengths from the fixed end to the free end. 前記曲率保持部材は、前記バッフル部材と一体に形成されていることを特徴とする請求項1に記載の排熱回収ボイラ。   The exhaust heat recovery boiler according to claim 1, wherein the curvature holding member is formed integrally with the baffle member. 前記バッフル部材は、断面がL字状に形成され、L字の一端を前記ケーシングの内壁に支持され、他端を前記内面に略平行にして前記内部構造体の周縁に向けて設けられ、
前記曲率保持部材は、前記バッフル部材の前記内面に略平行に向けた他端の先端部を前記内面から離れる方向に、前記設定曲率に応じて折り曲げて一体に形成されてなる曲率保持部であることを特徴とする請求項1に記載の排熱回収ボイラ。
The baffle member has an L-shaped cross-section, one end of the L-shape is supported by the inner wall of the casing, and the other end is provided substantially parallel to the inner surface toward the periphery of the internal structure.
The curvature holding member is a curvature holding portion that is integrally formed by bending a distal end portion of the other end of the baffle member that is substantially parallel to the inner surface in a direction away from the inner surface according to the set curvature. The exhaust heat recovery boiler according to claim 1.
前記シール板は、第1の平板部材を介して前記バッフル部材に固定され、
前記シール面は、前記内部構造物の周縁部に固定された第2の平板部材の表面に形成されていることを特徴とする請求項1に記載の排熱回収ボイラ。
The seal plate is fixed to the baffle member via a first flat plate member,
The exhaust heat recovery boiler according to claim 1, wherein the seal surface is formed on a surface of a second flat plate member fixed to a peripheral edge portion of the internal structure.
前記第1の平板部材と前記第2の平板部材は、前記内部構造物の周縁部の延在方向に沿って複数に分割して形成され、
前記シール板は、前記第1の平板部材と前記第2の平板部材の分割に合わせて複数に分割されていることを特徴とする請求項9に記載の排熱回収ボイラ。
The first flat plate member and the second flat plate member are formed by being divided into a plurality along the extending direction of the peripheral edge of the internal structure,
The exhaust heat recovery boiler according to claim 9, wherein the seal plate is divided into a plurality according to the division of the first flat plate member and the second flat plate member.
JP2017061938A 2017-03-27 2017-03-27 Exhaust heat recovery boiler Active JP6978847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017061938A JP6978847B2 (en) 2017-03-27 2017-03-27 Exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017061938A JP6978847B2 (en) 2017-03-27 2017-03-27 Exhaust heat recovery boiler

Publications (2)

Publication Number Publication Date
JP2018162959A true JP2018162959A (en) 2018-10-18
JP6978847B2 JP6978847B2 (en) 2021-12-08

Family

ID=63859997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017061938A Active JP6978847B2 (en) 2017-03-27 2017-03-27 Exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JP6978847B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113623672A (en) * 2021-06-24 2021-11-09 有能集团江苏威同电气设备有限公司 Built-in smoke and air isolation system of plug board isolation door

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163304A (en) * 2010-02-15 2011-08-25 Babcock Hitachi Kk Duct seal structure and method for forming the same seal structure
JP2017072342A (en) * 2015-10-09 2017-04-13 三菱日立パワーシステムズ株式会社 Exhaust heat recovery boiler and gas seal method for exhaust heat recovery boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163304A (en) * 2010-02-15 2011-08-25 Babcock Hitachi Kk Duct seal structure and method for forming the same seal structure
JP2017072342A (en) * 2015-10-09 2017-04-13 三菱日立パワーシステムズ株式会社 Exhaust heat recovery boiler and gas seal method for exhaust heat recovery boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113623672A (en) * 2021-06-24 2021-11-09 有能集团江苏威同电气设备有限公司 Built-in smoke and air isolation system of plug board isolation door

Also Published As

Publication number Publication date
JP6978847B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
GB2424471A (en) Rotary heat exchanger with a sector plate featuring suction ducts
JP2018162959A (en) Exhaust heat recovery boiler
JP6599200B2 (en) Exhaust heat recovery boiler and gas seal method for exhaust heat recovery boiler
CN110081409B (en) Sealing device, waste heat recovery boiler provided with sealing device, and sealing method for waste heat recovery boiler
US4114684A (en) Tube support system for heat exchanger
JP6177523B2 (en) Waste heat boiler and heat exchanger with dust removal device
JP6896382B2 (en) Boiler gas flow adjustment method, boiler and power generation system
KR20100066496A (en) Steam generator
JP5996597B2 (en) Rotating regenerative air preheater
JP6142518B2 (en) Support structure of exhaust heat recovery boiler
JP5514690B2 (en) Waste heat recovery device
JP5209952B2 (en) High dust exhaust gas heat recovery treatment equipment
WO2023149140A1 (en) Seal structure, exhaust heat recovery boiler, and seal method for exhaust gas
JP2011122808A (en) Exhaust heat recovery boiler
JP7090492B2 (en) Exhaust heat recovery boiler
KR200329824Y1 (en) center baffle of heat recovery steam generator
JPH0443682Y2 (en)
JP6121208B2 (en) Combustion device
KR20100021937A (en) Economizer
JP7220992B2 (en) Heat transfer tube support structure and heat transfer tube support method
JP2006317023A (en) Pipe alignment device
KR820001474B1 (en) Tube support system for heat exchanger
JP2000304203A (en) Waste heat recovery boiler
JP6108107B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
WO2018092355A1 (en) Vibration damping structure for heat transfer tube group

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20191010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211112

R150 Certificate of patent or registration of utility model

Ref document number: 6978847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150