JP2018161957A - Energy saving device using air bubbles and vessel provided with the same device - Google Patents

Energy saving device using air bubbles and vessel provided with the same device Download PDF

Info

Publication number
JP2018161957A
JP2018161957A JP2017059928A JP2017059928A JP2018161957A JP 2018161957 A JP2018161957 A JP 2018161957A JP 2017059928 A JP2017059928 A JP 2017059928A JP 2017059928 A JP2017059928 A JP 2017059928A JP 2018161957 A JP2018161957 A JP 2018161957A
Authority
JP
Japan
Prior art keywords
water
ship
pipe
discharge
chamber tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017059928A
Other languages
Japanese (ja)
Other versions
JP6928469B2 (en
Inventor
亮平 倉内
Ryohei Kurauchi
亮平 倉内
竜一 谷村
Ryuichi Tanimura
竜一 谷村
正蔵 渡邊
Shozo Watanabe
正蔵 渡邊
弘志 長井
Hiroshi Nagai
弘志 長井
松田 雄二
Yuji Matsuda
雄二 松田
壽博 筒井
Toshihiro Tsutsui
壽博 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niihama Marina Service Co Ltd
Nitto Seiko Co Ltd
Original Assignee
Niihama Marina Service Co Ltd
Nitto Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niihama Marina Service Co Ltd, Nitto Seiko Co Ltd filed Critical Niihama Marina Service Co Ltd
Priority to JP2017059928A priority Critical patent/JP6928469B2/en
Publication of JP2018161957A publication Critical patent/JP2018161957A/en
Application granted granted Critical
Publication of JP6928469B2 publication Critical patent/JP6928469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an energy saving device reducing friction resistance in vessel navigation by air bubbles by generating the air bubbles by making use of dynamic pressure of sea water or fresh water.SOLUTION: An energy saving device 4 related to this invention is characterized by having: a water intake piping 6 for opening a water intake opening 5a on a stern side; an ejector 13 for generating fine bubbles mixed body by mixing fine bubbles with water taken in through this water intake piping 6; and a discharge piping 9 for opening a discharge opening 8a in a sternway direction for discharging the fine bubbles mixed body generated by the ejector 13 be capable of being externally attached to a vessel body 1A. Due to this composition, an energy saving device in a unit structure is capable of being provided: capable of being attached to the vessel without remodelling the vessel body 1A; as well having the fine bubbles with the friction resistance reducing effect in vessel navigation be effectively discharged.SELECTED DRAWING: Figure 1

Description

本発明は、船舶の航行により取り込まれる海水または真水にその動圧を利用して気泡を混合し、当該気泡により船舶航行時の摩擦抵抗を低減させる気泡を用いた省エネルギー化装置および同装置を備えた船舶に関するものである。   The present invention includes an energy-saving device and an apparatus using bubbles that mix bubbles with seawater or fresh water taken in by navigation of the ship using dynamic pressure and reduce frictional resistance during vessel navigation using the bubbles. Related to the ship.

従来、喫水線下における船舷・船底の接水面と海水との間に発生する摩擦抵抗を低減させて船舶の省エネルギー化を図る手段として、船舷・船底を微小気泡( マイクロパプル) で覆うことが有効であると知られている。この省エネルギー化手段の一例として、特許第4503688号公報に記載の船舶における摩擦抵抗低減装置(以下、摩擦低減装置という)がある。この摩擦低減装置54は、図15に示すように船舶51の喫水線下にある船首に設けた海水の取水口55aとこの取水口55aより後方かつ喫水線下の船底に設けた海水・微小気泡の噴出口58aとを結ぶ送水管56に、軸線が喫水線より上になる迂回送水管56aを設けて、この迂回送水管56aにエジェクタ63を設けた構成となっている。また、前記エジェクタ63は、図16に示すように船舶51の航行によって取水口55aから自然に流入する海水を迂回送水管56aに送り込み、大気圧下で海水に空気を混合して微小気泡を発生させる構成を備えている。これにより、摩擦低減装置54は船底に設けた噴出口58aから海水および微小気泡を噴出して微小気泡により船舷または船底を広く覆って、摩擦抵抗低減効果を発揮し、船舶51の省エネルギー化を図ることができる。   Conventionally, it has been effective to cover the ship / bottom with microbubbles to reduce the frictional resistance generated between the water contact surface of the ship / bottom and the seawater under the waterline and to save energy for the ship. It is known that there is. As an example of this energy saving means, there is a frictional resistance reducing device (hereinafter referred to as a friction reducing device) in a ship described in Japanese Patent No. 4503688. As shown in FIG. 15, the friction reducing device 54 includes a seawater intake 55a provided at the bow under the waterline of the ship 51 and a jet of seawater / microbubbles provided behind the water intake 55a and at the bottom of the ship below the waterline. A bypass water supply pipe 56a whose axis is above the draft line is provided in the water supply pipe 56 connecting the outlet 58a, and an ejector 63 is provided in the bypass water supply pipe 56a. Further, as shown in FIG. 16, the ejector 63 sends seawater that naturally flows from the intake port 55a to the detour water pipe 56a by the navigation of the ship 51, and mixes air with seawater under atmospheric pressure to generate microbubbles. It has a configuration to make it. As a result, the friction reducing device 54 ejects seawater and microbubbles from the jet port 58a provided on the bottom of the ship, covers the shipboard or the bottom of the ship with the microbubbles, exhibits a frictional resistance reduction effect, and saves the energy of the ship 51. be able to.

また、前記摩擦低減装置54では、船舶51が停止状態にあると前記海水の流入が期待できないことから、船舶51が前進し始める停止状態から海水の流入を促すために、取水口55aと迂回送水管56aとを結ぶ前部送水管56bに吸水ポンプ(図示せず)が配置されている。この吸水ポンプにあっては、船舶が一定の速度に達して取水口55aから自然な海水の永続的な流入が確保されるまで駆動され、当該流入が確保された段階で停止またはそのまま駆動し続けるように構成されている。   Further, in the friction reduction device 54, since the inflow of the seawater cannot be expected when the ship 51 is in a stopped state, the water intake 55a and the detour are sent in order to encourage the inflow of seawater from the stopped state in which the ship 51 starts moving forward. A water absorption pump (not shown) is disposed in the front water supply pipe 56b that connects the water pipe 56a. In this water absorption pump, it is driven until the ship reaches a certain speed and a permanent inflow of natural seawater from the intake port 55a is secured, and when the inflow is secured, it is stopped or continued to be driven as it is. It is configured as follows.

特許第4503688号公報Japanese Patent No. 4503688

前述の摩擦低減装置54によれば、船舶が前進し始める停止状態はもちろんながら通常航行時においても、船舷・船底の接水面と海水との間に発生する摩擦抵抗が微小気泡により低減され、所定の摩擦抵抗低減効果が得られ、当該摩擦低減装置54を備える船舶にあっては、省エネルギー化を図ることが可能となっている。   According to the friction reducing device 54 described above, the frictional resistance generated between the water contact surface of the ship / bottom and seawater is reduced by the microbubbles even during normal navigation as well as in the stopped state where the ship starts to advance. The frictional resistance reduction effect is obtained, and in a ship equipped with the friction reduction device 54, it is possible to save energy.

しかしながら、当該摩擦低減装置54を船舶51に取付けるとなると、船首に海水の取水口55aを設け、取水口55aより後方かつ喫水線下の船底に海水・微小気泡の噴出口58aを設ける一方、その間を接続する迂回送水管56aおよびエジェクタ63等を船体内に設けなければならない。そのため、船舶を大幅に改造しなければならず、省エネルギー化に要する費用が過大となってしまうという問題が生じている。   However, when the friction reduction device 54 is attached to the ship 51, a seawater intake 55a is provided at the bow, and a seawater / microbubbles outlet 58a is provided at the bottom of the ship at the rear of the water intake 55a and below the draft line. The detour water pipe 56a and the ejector 63 to be connected must be provided in the hull. Therefore, there is a problem that the ship must be remodeled drastically and the cost required for energy saving becomes excessive.

また、当該摩擦低減装置54では船舶51が前進し始める停止状態から海水の流入を促すために吸水ポンプを配置していることから、船舶51の航行により取水される海水の動圧が所定の動圧になると、吸水ポンプをそのまま継続して駆動するか、停止させるかの選択がされている。これにより、吸水ポンプによって取水される海水を利用して微小気泡を生成したリ、船舶51の航行にともなって取水される海水を利用して、微小気泡を生成したりしている。そのため、吸水ポンプを継続利用する場合には吸水ポンプを駆動するための燃料の消費が増大してしまって、この燃料消費増が省エネルギー化を減じてしまうという問題が生じている。また、吸水ポンプを停止させて船舶の航行にともなって取り込まれる海水を利用する場合には、海水に混合される微小気泡の量も海水の動圧により決まるので、その量を多くすることができず、微小気泡による摩擦抵抗低減効果を十分高めることができない。そのために、やはり省エネルギー化の実効が図れないという問題が生じている。   Further, in the friction reducing device 54, since the water absorption pump is arranged to promote the inflow of seawater from the stop state where the ship 51 starts to advance, the dynamic pressure of the seawater taken by the navigation of the ship 51 is set to a predetermined level. When the pressure is reached, it is selected whether the water absorption pump is continuously driven or stopped. Thereby, the microbubbles are generated using the seawater taken by the water suction pump, and the seawater taken along with the navigation of the ship 51 is used. For this reason, when the water absorption pump is continuously used, the consumption of fuel for driving the water absorption pump increases, and there is a problem that this increase in fuel consumption reduces energy saving. In addition, when using the seawater that is taken in with the navigation of the ship with the water absorption pump stopped, the amount of microbubbles mixed with the seawater is also determined by the dynamic pressure of the seawater, so the amount can be increased. Therefore, the effect of reducing the frictional resistance due to the microbubbles cannot be sufficiently increased. For this reason, there is still a problem that energy saving cannot be effectively achieved.

本発明に係る省エネルギー化装置は、上記問題を解決するために発明されたもので、船尾側において取水口を前進方向に開口させるための取水配管と、この取水配管を通じて取水される水に微小気泡を混合して微小気泡混合体を生成する混合気体生成部と、前記混合気体生成部により生成される微小気泡混合体を吐出する吐出口を前記取水口よりも船首側の船底において後進方向に開口させるための吐出配管とを船舶本体に外付け可能としたことを特徴としている。なお、「船底」には「船舷」も含まれる。この構成により、船舶本体に改造を加えることなく船舶に取付け可能で、かつ船舶航行時に摩擦抵抗低減効果をもたらす微小気泡が効果的に吐出されるユニット構造の省エネルギー化装置を提供することができる。   An energy-saving device according to the present invention was invented to solve the above-described problem. A water intake pipe for opening a water intake port in the forward direction on the stern side, and microbubbles in water taken through the water intake pipe. And a discharge port for discharging the fine bubble mixture generated by the mixed gas generation unit is opened in the backward direction at the bottom of the bow from the intake port. It is characterized in that the discharge pipe for making it possible to attach to the ship main body. Note that “ship” includes “ship”. With this configuration, it is possible to provide an energy-saving device having a unit structure that can be attached to a ship without modifying the ship body and that effectively discharges microbubbles that provide a frictional resistance reduction effect during ship navigation.

この場合、前述の構成に加えて、船尾に外付け可能なチャンバタンクを有し、このチャンバタンクに取水配管の一端と混合気体生成部と吐出配管の一端とこの吐出配管に微小気泡混合体を送る吐出ポンプとを内設して、このチャンバタンク内に混合気体生成部により生成される微小気泡混合体を一時的に貯留可能とすることが望ましい。この構成により、船舶航行時の摩擦抵抗を低減できる微小気泡混合体が生成される省エネルギー化装置を船舶に取付けるに際して、チャンバタンクを船尾に取付けるとともに、吐出配管を船底に取付けるだけでよく、船舶に特別な改造を加えることなく、簡単かつ安価に行うことができる。また、前記チャンバタンクは微小気泡混合体を貯留できるので、予め貯留しておくことで微小気泡混合体の安定した供給が可能になるとともに、これを循環させるように吸水ポンプを配置すれば、当該混合体に混合される微小気泡の量を循環サイクルのなかで増大させて気泡による船舶航行時の摩擦抵抗低減効果を増大させることが可能な省エネルギー化装置を提供することができる。   In this case, in addition to the above-described configuration, the chamber tank has a chamber tank that can be attached to the stern. One end of the intake pipe, one end of the mixed gas generation unit, one end of the discharge pipe, and a microbubble mixture in the discharge pipe are provided in the chamber tank. It is desirable that a discharge pump to be sent is provided so that the microbubble mixture generated by the mixed gas generation unit can be temporarily stored in the chamber tank. With this configuration, when installing an energy-saving device that generates a microbubble mixture that can reduce frictional resistance during vessel navigation, it is only necessary to attach the chamber tank to the stern and the discharge pipe to the vessel bottom. This can be done easily and inexpensively without any special modification. In addition, since the chamber tank can store the microbubble mixture, it is possible to stably supply the microbubble mixture by storing in advance, and if a water absorption pump is arranged to circulate the mixture, the chamber tank It is possible to provide an energy saving device capable of increasing the amount of micro bubbles mixed in the mixture in the circulation cycle and increasing the frictional resistance reduction effect during vessel navigation by the bubbles.

本発明に係る省エネルギー化装置の吐出配管は、船底との接着時に十分な接着面積を確保し、船舶航行時に水圧が接着平面に加わるようにするとともに船舶の安定を図るために、接着平面と突条とを有する横断面略三角形状の水平配管を持つことが望ましい。   The discharge pipe of the energy-saving device according to the present invention ensures a sufficient adhesion area when adhering to the ship bottom, so that the water pressure is applied to the adhesion plane when navigating the ship and the ship is stable. It is desirable to have a horizontal pipe having a cross section and a substantially triangular cross section.

本発明に係る船舶は、前述の省エネルギー化装置の何れかを船舶本体に取付けることによって簡易に所期の効果が奏されるものとなる。   The ship which concerns on this invention will show | play an effect simply by attaching either of the above-mentioned energy-saving apparatuses to a ship main body.

本発明に係るもう一つの気泡を用いた省エネルギー化装置は、取水口を有する取水配管と、この取水配管に取付けられる主開閉弁と、取水配管に取付けられて水に微小気泡を混合して微小気泡混合体を生成する混合気体生成部と、混合気体生成部により生成される微小気泡混合体を吐出する吐出口を有する吐出配管と、取水配管の一端、混合気体生成部、吐出配管の一端およびこの吐出配管に微小気泡混合体を送る吐出ポンプ並びに満水を検知する満水検知センサが内部に配置されて混合気体生成部により生成される微小気泡混合体を一時的に貯留可能なチャンバタンクと、このチャンバタンク内に配置されて取水口からの水、チャンバタンク内の微小気泡混合体の何れかを取り込む吸水ポンプとを備え、前記取水配管はこの吸水ポンプ停止時に取水口からの水を混合気体生成部に取り込む動圧配管を有するとともに、満水検知センサの満水検出により動圧配管を閉状態に保持してチャンバタンク内の微小気泡混合体を取水配管に送るように吸水ポンプを駆動する制御部を有することを特徴としている。この構成により、チャンバタンクを船尾または船内の何れに取付けてもよく、チャンバタンク内が満水になると、吸水ポンプを駆動して微小気泡混合体を循環させたり、吸水ポンプを停止して取水口から水を取り込んだりして、微小気泡の量を増大させ、あるいは船舶航行時の吸水ポンプの駆動を限定することができ、総じて燃料の消費を軽減でき、走行速度の向上にも寄与する省エネルギー化装置を提供することができる。   Another energy saving apparatus using air bubbles according to the present invention includes a water intake pipe having a water intake, a main on-off valve attached to the water intake pipe, and a micro air bubble which is attached to the water intake pipe and mixes micro air bubbles with water. A mixed gas generating unit for generating a bubble mixture, a discharge pipe having a discharge port for discharging a micro-bubble mixture generated by the mixed gas generating unit, one end of a water intake pipe, a mixed gas generating unit, one end of a discharge pipe, and A discharge pump that sends the microbubble mixture to the discharge pipe, a full water detection sensor that detects full water, and a chamber tank that can temporarily store the microbubble mixture generated by the mixed gas generation unit, A water absorption pump that is arranged in the chamber tank and takes in either water from the water intake port or a microbubble mixture in the chamber tank, and the water intake pipe stops the water absorption pump. In addition to having a dynamic pressure pipe that takes water from the water intake into the mixed gas generation section, the dynamic pressure pipe is held closed by the full water detection of the full water detection sensor, and the microbubble mixture in the chamber tank is sent to the water pipe Thus, it has a control part which drives a water absorption pump. With this configuration, the chamber tank may be attached to either the stern or inside the ship. When the chamber tank is full, the water suction pump is driven to circulate the microbubble mixture, or the water suction pump is stopped and the water intake pump is stopped. Energy saving device that can take in water, increase the amount of microbubbles, or limit the drive of the water absorption pump when navigating the ship, reduce fuel consumption as a whole, and contribute to improvement of traveling speed Can be provided.

本発明に係るもう一つの船舶は、前述の省エネルギー化装置を船舶本体に取付けることによって、取付位置の如何によらず、燃料消費を有効に軽減することができる。   Another ship according to the present invention can effectively reduce fuel consumption regardless of the attachment position by attaching the above-described energy saving device to the ship body.

さらに、本発明に係る他の船舶は、前述のもう一つの船舶の構成に加え、前記取水配管は船尾側に取水口を、取水口と吸水ポンプとの間に主開閉弁を有し、前記吐出口を取水口より前進側に位置させ、さらに前記チャンバタンクを船尾側に外付けしていることを特徴としている。この構成により、トータルの燃料消費をさらに低減でき、走行速度の向上にも寄与する船舶を提供することができる。   Furthermore, the other ship according to the present invention, in addition to the configuration of the other ship described above, the intake pipe has a water intake on the stern side, a main on-off valve between the water intake and the water intake pump, The discharge port is positioned on the forward side from the water port, and the chamber tank is externally attached to the stern side. With this configuration, it is possible to provide a ship that can further reduce the total fuel consumption and contribute to an improvement in traveling speed.

以上説明した本発明によれば、船舶の航行により取水される海水または真水にその動圧を利用して気泡を混合して、当該気泡により船舶航行時の摩擦抵抗を有効に低減でき、その結果、船舶の燃費や走行性能を向上させることができ、既存の船舶本体等にも簡単に後付け可能な、気泡を用いた新規有用な省エネルギー化装置および船舶を提供することができる。   According to the present invention described above, bubbles are mixed with seawater or fresh water taken by navigation of a ship using its dynamic pressure, and the frictional resistance at the time of vessel navigation can be effectively reduced by the bubbles. Further, it is possible to provide a new and useful energy-saving device using air bubbles and a ship that can improve the fuel efficiency and running performance of the ship and can be easily retrofitted to an existing ship body or the like.

本発明に係る省エネルギー化装置の内部構造を説明する概略説明図。Schematic explanatory drawing explaining the internal structure of the energy saving apparatus which concerns on this invention. 本発明に係る船舶の正面図。The front view of the ship which concerns on this invention. 本発明に係る船舶の底面図。The bottom view of the ship concerning the present invention. 本発明に係る船舶の拡大側面図。The expanded side view of the ship which concerns on this invention. 本発明に係る省エネルギー化装置の要部拡大平面図。The principal part enlarged plan view of the energy saving apparatus which concerns on this invention. 本発明に係るエジェクタの構造を説明する断面図。Sectional drawing explaining the structure of the ejector which concerns on this invention. 図3の一部を省略したA−A線拡大断面図。The AA line expanded sectional view which abbreviate | omitted a part of FIG. 図3のB−B線拡大断面図。The BB expanded sectional view of FIG. 本発明に係る省エネルギー化装置の配管図。The piping diagram of the energy saving apparatus which concerns on this invention. 本発明に係る省エネルギー化装置の制御部の動作状態を説明するタイムチャート。The time chart explaining the operation state of the control part of the energy saving apparatus which concerns on this invention. 本発明に係る省エネルギー化装置の配管内における吸水ポンプ駆動時の海水および空気の流れを説明する流路図。The flow-path figure explaining the flow of the seawater and the air at the time of the water absorption pump drive in the piping of the energy saving apparatus which concerns on this invention. 本発明に係る省エネルギー化装置の配管内における吸水ポンプ停止時の海水および空気の流れを説明する流路図。The flow-path figure explaining the flow of the seawater and the air at the time of the water absorption pump stop in the piping of the energy saving apparatus which concerns on this invention. 本発明に係る省エネルギー化装置の配管内における吸水ポンプ停止時で、吐出ポンプ駆動時の海水および空気の流れを説明する流路図。The flow-path figure explaining the flow of the seawater and the air at the time of drive of a discharge pump at the time of the water absorption pump stop in piping of the energy saving apparatus which concerns on this invention. 本発明に係る省エネルギー化装置の配管内における吸水ポンプおよび吐出ポンプ駆動時の海水および空気の流れを説明する流路図。The flow-path figure explaining the flow of the seawater and the air at the time of the water absorption pump and discharge pump drive in the piping of the energy saving apparatus which concerns on this invention. 従来の摩擦抵抗低減装置を備える船舶の要部説明図。Explanatory drawing of the principal part of a ship provided with the conventional frictional resistance reduction apparatus. 図15のC部拡大説明図。The C section expansion explanatory drawing of FIG.

以下、本発明の実施形態に係る気泡を利用した省エネルギー化装置(以下、省エネ化装置という)および当該省エネ化装置を備える船舶(以下、本船舶という)を図面に基づき説明する。図2ないし図4に示すように、1は本船舶であり、船首で鋭角に連なる右舷1aおよび左舷1bを備える船舷、これら両舷1a,1bを船尾でほぼ直立して繋ぐ船尾肋板1c、前記両舷1a,1bおよび船尾肋板1cを繋ぐ船底1d、並びに前記両舷1a,1bおよび船尾肋板1cの上面を覆う上甲板1eからなる船舶本体1Aを有している。また、本船舶1は前記両舷1a,1b、船底1dおよび船尾肋板1c並びに上甲板1eにより囲まれる空間を区切る隔壁(図示せず)を有し、これら隔壁により区切られる隔室を持つ船首部1A1、中間部1A2および船尾部1A3でなる構造を有している。前記船首部1A1の上甲板1eには、係船装置(図示せず)が配置されており、また中間部1A2の隔室には船底1dから船尾部1A3の後方に延びるスクリュウシャフト2に回転を与えるエンジン(図示せず)の機関室部(図示せず)および後記舵を操作する操舵部(図示せず)が配置されている。前記スクリュウシャフト2の先端にはスクリュウ2aが取付けられており、エンジンの駆動により正転、または逆転して本船舶1を前進または後進させる推進力が得られるように構成されている。前記船尾部1A3には、船尾肋板1cの後方に延びる舵1fが取付けられており、操舵部での操作により角度を変えることができるように構成されている。   Hereinafter, an energy-saving device (hereinafter referred to as an energy-saving device) using air bubbles according to an embodiment of the present invention and a ship including the energy-saving device (hereinafter referred to as the present ship) will be described with reference to the drawings. As shown in FIGS. 2 to 4, reference numeral 1 denotes a main ship, a stern having a starboard 1 a and a port 1 b that are connected at an acute angle at the bow, and a stern board 1 c that connects these two halves 1 a and 1 b almost upright at the stern. It has a ship body 1A composed of a ship bottom 1d that connects the two anchors 1a, 1b and the stern anchor board 1c, and an upper deck 1e that covers the upper surfaces of the both anchors 1a, 1b and the stern anchor board 1c. Further, the ship 1 has a partition wall (not shown) that delimits a space surrounded by the both sides 1a and 1b, the bottom 1d, the stern board 1c, and the upper deck 1e, and has a bow having a compartment partitioned by these partition walls. It has a structure including a portion 1A1, an intermediate portion 1A2, and a stern portion 1A3. A mooring device (not shown) is disposed on the upper deck 1e of the bow 1A1, and a rotation is given to the screw shaft 2 extending from the bottom 1d to the rear of the stern 1A3 in the compartment of the intermediate portion 1A2. An engine room portion (not shown) of an engine (not shown) and a steering portion (not shown) for operating the rudder are arranged. A screw 2a is attached to the tip of the screw shaft 2, and is configured so as to obtain a propulsive force for moving the marine vessel 1 forward or backward by rotating forward or backward by driving the engine. The stern portion 1A3 is provided with a rudder 1f that extends to the rear of the stern saddle plate 1c so that the angle can be changed by an operation at the steering portion.

前記本船舶1の船尾部1A3には、省エネ化装置4が取付けられている(図2ないし図4参照)。この省エネ化装置4は、図1に示すように船尾側にあって海中または水中に位置しかつ海水または真水(以下、海水という)を取水する取水口5aを前進方向に開口させるための取水配管6と、この取水配管6を通じて取水される海水に空気を混合して微小気泡混合体を生成する混合気体生成部の一例のエジェクタ13と、前記取水口5aより前進側にあってエジェクタ13により生成される微小気泡混合体を吐出する吐出口8aを前記取水口5aよりも船首側の船底1dにおいて後進方向に開口させるための吐出配管9とを備え、これらは船舶本体1Aに外付け可能となっている(図中、後記チャンバタンク10を介して外付けされている)。この構成により、省エネ化装置4は、本船舶1に取付けられるに際しては、前記取水配管6と、吐出配管9を船舶本体1Aに外付けするだけでよく、船舶本体1Aに特別な改造を加える必要がないばかりか、船舶航行時の摩擦抵抗低減効果をもたらす微小気泡が効果的に吐出されるユニット構造が得られる。   An energy saving device 4 is attached to the stern portion 1A3 of the main ship 1 (see FIGS. 2 to 4). As shown in FIG. 1, this energy saving device 4 is located on the stern side, is located in the sea or underwater, and takes water intake pipes 5 a for opening seawater or fresh water (hereinafter referred to as seawater) in the forward direction. 6, an ejector 13 as an example of a mixed gas generation unit that mixes air with seawater taken through the intake pipe 6 to generate a microbubble mixture, and is generated by the ejector 13 on the forward side from the intake 5 a. And a discharge pipe 9 for opening the discharge port 8a for discharging the fine bubble mixture in the backward direction at the ship bottom 1d on the bow side of the water intake port 5a, and these can be externally attached to the ship body 1A. (In the figure, it is externally attached via a chamber tank 10 described later). With this configuration, when the energy saving device 4 is attached to the ship 1, it is only necessary to externally attach the intake pipe 6 and the discharge pipe 9 to the ship body 1A, and it is necessary to make a special modification to the ship body 1A. In addition, there is obtained a unit structure in which fine bubbles that effectively reduce the frictional resistance when navigating a ship are discharged.

この外付け構造の省エネ化装置4の一例として、ボルトなどの締結具(図示せず)によりシール部(図示せず)を介して本船舶1の船尾肋板1cに取付けられるチャンバタンク10を有する省エネ化装置4について説明する(図1および図5参照)。このチャンバタンク10は、その底部には前記取水口5aを持つ取水部5を有し、この取水部5には前記取水配管6の一端がフィルタ5bを介して連結されている。   As an example of the energy saving device 4 with this external structure, it has a chamber tank 10 that is attached to the stern board 1c of the ship 1 through a seal part (not shown) by a fastener (not shown) such as a bolt. The energy saving device 4 will be described (see FIGS. 1 and 5). The chamber tank 10 has a water intake portion 5 having the water intake port 5a at the bottom, and one end of the water intake pipe 6 is connected to the water intake portion 5 via a filter 5b.

前記取水配管6は、チャンバタンク10内でその底部および側部に沿って上部に持ち上げられ、その一端がチャンバタンク10内の上方位置にとどまるように内設されている。この取水配管6の一端には主開閉弁11を介して吸水ポンプ12およびエジェクタ13が接続されており、これら吸水ポンプ12およびエジェクタ13はチャンバタンク10に内設されている。前記吸水ポンプ12は、取水口5aから取水される海水をエジェクタ13に送る作用をなし、その吐出量は当該吸水ポンプ12の燃料消費と本船舶1の航行開始時にチャンバタンク10に微小気泡混合体を貯留するに要する時間とを考慮して決定される。   The intake pipe 6 is lifted upward along the bottom and sides in the chamber tank 10, and one end of the intake pipe 6 is installed so as to remain at an upper position in the chamber tank 10. A water absorption pump 12 and an ejector 13 are connected to one end of the water intake pipe 6 via a main on-off valve 11, and the water absorption pump 12 and the ejector 13 are installed in the chamber tank 10. The water suction pump 12 serves to send the seawater taken from the water intake 5a to the ejector 13, and its discharge amount is a microbubble mixture in the chamber tank 10 at the time of fuel consumption of the water suction pump 12 and the start of navigation of the ship 1. It is determined in consideration of the time required to store the water.

また、前記主開閉弁11と吸水ポンプ12との間には、第1ストレーナ14aと第1逆止弁14bと第1開閉弁14cとを備える循環配管14が接続されている。前記ストレーナ14aは、後記吐出水位近くに配置されており、後記満水検出後吸水ポンプ12の駆動時にチャンバタンク10内の微小気泡混合体を確実に回収してエジェクタ13に送ることができるように構成されている。これにより、吸水ポンプ12はその駆動によりチャンバタンク10外の海水、チャンバタンク10内の微小気泡混合体の何れかをエジェクタ13に送ることができる。   A circulation pipe 14 including a first strainer 14a, a first check valve 14b, and a first on-off valve 14c is connected between the main on-off valve 11 and the water absorption pump 12. The strainer 14a is arranged near the discharge water level, which will be described later, and is configured so that the microbubble mixture in the chamber tank 10 can be reliably collected and sent to the ejector 13 when the water absorption pump 12 is driven after the detection of full water, which will be described later. Has been. Thereby, the water absorption pump 12 can send either the seawater outside the chamber tank 10 or the microbubble mixture in the chamber tank 10 to the ejector 13 by driving.

さらに、前記主開閉弁11とエジェクタ13との間には、第1三方弁6aおよび第2三方弁6bを介して吸水ポンプ12と並列に動圧配管15が配置されている。この構成により、吸水ポンプ12の停止時に本船舶1の航行にともなって取水口5aから取水される海水の動圧が所定値に達すると前記第1・第2三方弁6a,6bが切り替わって当該海水をエジェクタ13に送ることができる。   Further, a dynamic pressure pipe 15 is disposed between the main on-off valve 11 and the ejector 13 in parallel with the water suction pump 12 via the first three-way valve 6a and the second three-way valve 6b. With this configuration, when the dynamic pressure of seawater taken from the water intake 5a reaches the predetermined value as the vessel 1 sails when the water suction pump 12 is stopped, the first and second three-way valves 6a and 6b are switched to Seawater can be sent to the ejector 13.

前記エジェクタ13は、図6に示すように吸水ポンプ12または動圧配管15から送られる海水が流入する流入口13a1を持つ上流側エジェクタ本体13a、微小気泡混合体を生成するデフューザ13bが取付けられた下流側エジェクタ本体13cおよび噴射ノズル13dからなっている。前記噴射ノズル13dは、上・下流側エジェクタ本体13a、13cに挟持されるフランジ部13d1と、上流側エジェクタ本体13aに嵌合する筒部13d2と、外周が先細りに形成された先端部13d3とからなっている。この噴射ノズル13dには筒部13d2から先端部13d3に延びる流通穴13d4が穿設されており、この流通穴13d4は上流側で前記流入口13a1と連通する十分な断面積を有し、先端部13d3内ではその断面積が徐々に小さくなるように形成されている。これにより、前記上流側エジェクタ本体13aの流入口13a1から流れ込む海水が先端部13d3から高速噴射される構成が得られる。   As shown in FIG. 6, the ejector 13 is provided with an upstream ejector body 13a having an inlet 13a1 into which seawater sent from the water suction pump 12 or the dynamic pressure pipe 15 flows, and a diffuser 13b for generating a microbubble mixture. It consists of a downstream ejector body 13c and an injection nozzle 13d. The injection nozzle 13d includes a flange portion 13d1 sandwiched between the upper and downstream ejector bodies 13a and 13c, a cylindrical portion 13d2 fitted to the upstream ejector body 13a, and a tip portion 13d3 having a tapered outer periphery. It has become. The injection nozzle 13d is provided with a flow hole 13d4 extending from the cylindrical part 13d2 to the tip part 13d3. The flow hole 13d4 has a sufficient cross-sectional area communicating with the inlet 13a1 on the upstream side. 13d3 is formed so that its cross-sectional area gradually decreases. Thereby, the structure by which the seawater which flows in from the inflow port 13a1 of the said upstream ejector main body 13a is injected at high speed from the front-end | tip part 13d3 is obtained.

前記下流側エジェクタ本体13cには、空気室13c1とこれに交差する方向に延びて連通する空気通過穴13c2とが穿設されており、空気室13c1には前記デフューザ13bの一部が突出ている。また、前記空気通過穴13c2にはチャンバタンク10外に突出する吸気口13d6(図5参照)を有する空気取込配管13d5(図1参照)が接続され、大気圧下の空気が取込可能に構成されている。   The downstream ejector body 13c is formed with an air chamber 13c1 and an air passage hole 13c2 that extends and communicates with the air chamber 13c1, and a part of the diffuser 13b protrudes from the air chamber 13c1. . In addition, an air intake pipe 13d5 (see FIG. 1) having an intake port 13d6 (see FIG. 5) protruding outside the chamber tank 10 is connected to the air passage hole 13c2, so that air under atmospheric pressure can be taken in. It is configured.

前記デフューザ13bは、上流側が面取りされかつ全長にわたって延びるテーパ様穴13b1を有し、このテーパ様穴13b1の断面積が下流に向かうに従って徐々に大きくなっており、テーパ様穴13b1を通過する海水の速度が低下するとともに高圧となるように構成されている。前記デフューザ13bの上流側には、前記噴射ノズル13dの先端部13d3の一部がテーパ様穴13b1の内壁から所定の間隙をおいて挿入されており、空気室13c1とテーパ様穴13b1とが連通する構成が得られている。この構成により、噴射ノズル13dの先端部13d3から高速噴射される際に、先端部13d3の周囲に大きな負圧が発生し、デフューザ13bと噴射ノズル13dとの間隙を経由して前記吸気口から大気圧下の空気を吸い込み、高速噴射される海水に空気を混合させる。また、この空気が混合する海水はデフューザ13bのテーパ様穴13b1内を通過する際に高圧下に晒されることから、海水に混合する空気が微小気泡となって微小気泡混合体が生成される。   The diffuser 13b has a taper-like hole 13b1 chamfered on the upstream side and extending over the entire length. The cross-sectional area of the taper-like hole 13b1 gradually increases toward the downstream, and the seawater passing through the taper-like hole 13b1 The speed is reduced and the pressure is increased. A part of the tip 13d3 of the injection nozzle 13d is inserted with a predetermined gap from the inner wall of the tapered hole 13b1 on the upstream side of the diffuser 13b, and the air chamber 13c1 and the tapered hole 13b1 communicate with each other. The configuration to be obtained is obtained. With this configuration, when high-speed injection is performed from the tip portion 13d3 of the injection nozzle 13d, a large negative pressure is generated around the tip portion 13d3, and a large amount is generated from the intake port via the gap between the diffuser 13b and the injection nozzle 13d. Inhales air under atmospheric pressure and mixes it with seawater jetted at high speed. Further, since the seawater mixed with the air is exposed to high pressure when passing through the tapered hole 13b1 of the diffuser 13b, the air mixed with the seawater becomes microbubbles to generate a microbubble mixture.

前記チャンバタンク10内には、図9に示すように低水位検知センサ16と中水位検知センサ17と満水検知センサ18とが取付けられており、低水位検知センサ16はチャンバタンク10内の水位が微小気泡混合海水を吐出できる最低限の水位(以下、吐出水位という)を検出するように構成されている。また、前記中水位検知センサ17は満水検知センサ18が満水検出後にチャンバタンク10内の水位が中水位以下になるタイミングを検出するように構成されている。さらに、前記満水検知センサ18はチャンバタンク10内の水位の満水を検出するように構成されている。   As shown in FIG. 9, a low water level detection sensor 16, a middle water level detection sensor 17, and a full water detection sensor 18 are attached in the chamber tank 10, and the low water level detection sensor 16 has a water level in the chamber tank 10. It is configured to detect a minimum water level (hereinafter referred to as a discharge water level) that can discharge the microbubble mixed seawater. The middle water level detection sensor 17 is configured to detect the timing when the water level in the chamber tank 10 becomes equal to or lower than the middle water level after the full water detection sensor 18 detects the full water level. Further, the full water detection sensor 18 is configured to detect the full water level in the chamber tank 10.

前記チャンバタンク10は、図1、図2および図9に示すようにその底部から一端がチャンバタンク10に内設されかつ下方に突出る4本の垂直配管19とこの垂直配管19それぞれに連なる水平配管20とからなる吐出配管9を有している。前記垂直配管19には第2開閉弁21が接続されており、この第2開閉弁21の開閉によりチャンバタンク10内の微小気泡混合体の排出が制御されるように構成されている。また、前記垂直配管19は本船舶1の船尾肋板1cに固定可能に構成されており、その長さを船尾肋板1cの高さに応じて選択できるように構成されている。さらに、前記垂直配管19には第2ストレーナ22および第2逆止弁23を介してチャンバタンク10に内設された吐出ポンプ24が接続されており、この吐出ポンプ24により微小気泡混合体が垂直配管19に排出される。この吐出ポンプ24は、その吐出量が本船舶1の通常航行時に取水口5aから自然に流入する海水の量よりも少なくなるように選択される。   As shown in FIGS. 1, 2 and 9, the chamber tank 10 is provided with four vertical pipes 19 having one end provided in the chamber tank 10 and projecting downward from the bottom, and horizontal lines connected to the vertical pipes 19 respectively. A discharge pipe 9 including a pipe 20 is provided. A second opening / closing valve 21 is connected to the vertical pipe 19, and the discharge of the microbubble mixture in the chamber tank 10 is controlled by opening / closing the second opening / closing valve 21. Moreover, the said vertical piping 19 is comprised so that fixing to the stern board 1c of this ship 1 is comprised, and it is comprised so that the length can be selected according to the height of the stern board 1c. Further, a discharge pump 24 provided in the chamber tank 10 is connected to the vertical pipe 19 via a second strainer 22 and a second check valve 23, and the fine bubble mixture is vertically transferred by the discharge pump 24. It is discharged to the pipe 19. The discharge pump 24 is selected so that its discharge amount is smaller than the amount of seawater that naturally flows from the water intake port 5a during normal navigation of the vessel 1.

前記垂直配管19には、それぞれ船底位置で船底1dに固定されて船底1dの中央付近まで伸びる水平配管20が連結されている。この水平配管20は、本船舶1の全長に応じて選択され、航行時の摩擦抵抗を最大限低減できる位置に微小気泡混合体を突出させることができる。また、これら水平配管20のうち中央側の2本は他の2本よりも前進方向にわずかに突出ており、本船舶1の航行時に吐出ノズル8により発生する波を押し分けることができるように構成されている。   Connected to the vertical pipes 19 are horizontal pipes 20 that are fixed to the ship bottom 1d at the ship bottom position and extend to the vicinity of the center of the ship bottom 1d. The horizontal pipe 20 is selected according to the total length of the ship 1 and can project the microbubble mixture at a position where the frictional resistance during navigation can be reduced to the maximum. Further, two of these horizontal pipes 20 on the center side slightly protrude in the forward direction from the other two so that the waves generated by the discharge nozzle 8 can be pushed apart when the ship 1 navigates. It is configured.

前記水平配管20は、図7および図8に示すように接着平面20aと突条20bとを有する横断面略三角形状をなしており、接着平面20aは例えばシリコン樹脂系接着剤により本船舶1の船底1dまたは船舷1a,1bとの十分な接着力が得られるに必要な接着面積を有している(図4参照)。また、前記突条20bは本船舶1の航行時の摩擦抵抗の軽減、本船舶1の安定、さらに水圧が接着平面20aに加わって剥がれ難くするに最適な構造となっている。   As shown in FIGS. 7 and 8, the horizontal pipe 20 has a substantially triangular cross section having a bonding plane 20a and a ridge 20b. The bonding plane 20a is made of, for example, a silicon resin adhesive. It has an adhesion area necessary for obtaining a sufficient adhesion force to the ship bottom 1d or the boats 1a and 1b (see FIG. 4). Further, the protrusion 20b has an optimum structure for reducing frictional resistance during navigation of the ship 1, stabilizing the ship 1, and further preventing water from being peeled off by applying water pressure to the bonding plane 20a.

前記水平配管20の先端には、図7および図8に示すように吐出ノズル8が取付けられており、この吐出ノズル8は前記水平配管20の横断面よりも大きくしかも水平配管20との接続側で面積が最大となって当該接続側から離れるにしたがって小さくなる横断面三角形状をなしている(図4および図7参照)。また、この吐出ノズル8には前記水平配管20に連なる直進通孔20cとこれに連なり後進方向に戻る折返し通孔20dとが形成されており、この折返し通孔20dの端部が吐出口8aとなって後進方向に向かって開口する構造となっている(図7参照)。これにより、微小気泡混合体を吐出する吐出口8aを後進方向に開口させるための吐出配管9が得られる。   As shown in FIGS. 7 and 8, a discharge nozzle 8 is attached to the tip of the horizontal pipe 20, and this discharge nozzle 8 is larger than the horizontal section of the horizontal pipe 20 and is connected to the horizontal pipe 20. Thus, the cross section is triangular with a maximum area and decreasing with distance from the connection side (see FIGS. 4 and 7). Further, the discharge nozzle 8 is formed with a rectilinear through hole 20c connected to the horizontal pipe 20, and a return through hole 20d connected to the horizontal pipe 20 and returning in the reverse direction. The end of the return through hole 20d is connected to the discharge port 8a. Thus, the structure opens toward the reverse direction (see FIG. 7). Thereby, the discharge pipe 9 for opening the discharge port 8a for discharging the microbubble mixture in the backward direction is obtained.

前記主開閉弁11、第1・第2開閉弁14c,21、吸水・吐出ポンプ12,24並びに各水位検知センサ16,17.18は、チャンバタンク10内に配置される防水構造の制御部25に接続されている(図2参照)。この制御部25は、図10に示すタイムチャートに従って前述の主開閉弁11などを駆動するように構成されている。すなわち、この制御部25は、電源が入ると、   The main on-off valve 11, the first and second on-off valves 14 c and 21, the water absorption / discharge pumps 12 and 24, and the water level detection sensors 16 and 17. 18 are each provided with a waterproof control unit 25 disposed in the chamber tank 10. (See FIG. 2). The control unit 25 is configured to drive the main on-off valve 11 and the like described above according to the time chart shown in FIG. That is, when the power is turned on, the control unit 25

1)主開閉弁11は開放状態に、第1開閉弁14cおよび第2開閉弁21は閉止状態に保持された状態で、吸水ポンプ12を駆動する(この時、第1・第2三方弁6a、6bは吸水ポンプ12側を開放状態。図11参照)。   1) The water on / off pump 12 is driven with the main on-off valve 11 in the open state and the first on-off valve 14c and the second on-off valve 21 in the closed state (at this time, the first and second three-way valves 6a). 6b is a state in which the water absorption pump 12 side is opened (see FIG. 11).

2)取水配管6内の海水の動圧が所定動圧に達すると、吸水ポンプ12が停止する(この時、第1・第2三方弁6a、6bは動圧配管15側を開放状態に切り替わる。図12参照)。   2) When the dynamic pressure of the seawater in the intake pipe 6 reaches a predetermined dynamic pressure, the water absorption pump 12 stops (at this time, the first and second three-way valves 6a and 6b switch the dynamic pressure pipe 15 side to an open state. (See FIG. 12).

3)チャンバタンク10内の水位が上昇してチャンバタンク10内の水位が吐出水位になって低水位検知センサ16が作動すると、第2開閉弁21を開放し、吐出ポンプ24を駆動する(図13参照)。   3) When the water level in the chamber tank 10 rises, the water level in the chamber tank 10 becomes the discharge water level, and the low water level detection sensor 16 is activated, the second on-off valve 21 is opened and the discharge pump 24 is driven (see FIG. 13).

4)チャンバタンク10内の水位が上昇するのを待ち、これが中水位を超えて満水となって、満水検知センサ18が作動すると、主開閉弁11を閉止状態に切り替えるとともに、循環配管14の第1開閉弁14cを開放状態に切り替えて、さらに吸水ポンプ12を駆動する(この時、第1・第2三方弁6a、6bは吸水ポンプ12側を開放状態に切り替わる。図14参照)。   4) Wait for the water level in the chamber tank 10 to rise, and when this exceeds the middle water level and becomes full and the full water detection sensor 18 is activated, the main on-off valve 11 is switched to the closed state and the circulation pipe 14 The 1 on-off valve 14c is switched to the open state, and the water absorption pump 12 is further driven (at this time, the first and second three-way valves 6a and 6b are switched to the open state on the water absorption pump 12 side, see FIG. 14).

5)チャンバタンク10内の水位が中水位まで下がって、これを中水位検知センサ17が検出すると、吸水ポンプ12を停止させるとともに、主開閉弁11を開放状態に、また第1開閉弁14cを閉止状態に切り替える(この時、第1・第2三方弁6a、6bは動圧配管15側を開放状態に切り替わる。図12参照)。   5) When the water level in the chamber tank 10 falls to the middle water level and this is detected by the middle water level detection sensor 17, the water suction pump 12 is stopped, the main on-off valve 11 is opened, and the first on-off valve 14c is turned on. Switching to the closed state (At this time, the first and second three-way valves 6a and 6b switch the dynamic pressure piping 15 side to the open state. See FIG. 12).

6)電源がオフでない時、4)に戻る。   6) When the power is not off, return to 4).

7)電源がオフの時、主開閉弁11を開状態に保持するとともに、吸水ポンプ12、吐出ポンプ24を停止し、さらに第2開閉弁21を閉止状態に保持する。
という上記構成を備えている。
7) When the power is off, the main on-off valve 11 is kept open, the water suction pump 12 and the discharge pump 24 are stopped, and the second on-off valve 21 is kept closed.
The above configuration is provided.

上記本船舶に取付けられる省エネ化装置にあっては、チャンバタンク10がボルトにより本船舶1の船尾部1A3の船尾肋板1cに固定され、続いて吐出配管9を構成する4本の垂直配管19が船尾肋板1cの高さに併せて選択され、これが船尾肋板1cに固定される。さらに、この垂直配管19には船底1dにシリにコン樹脂接着剤で貼付された水平配管20が連接されれば、省エネ化装置4は喫水線下の本船舶1の船舶本体1Aに微小気泡混合体を吐出することができる。これにより、本船舶1の船舶本体1Aに特別な改造を加える必要がなくて、しかも本船舶の航行時の摩擦抵抗低減効果をもたらす微小気泡が効果的に吐出されるユニット構造の省エネルギー化装置4を提供することができる。   In the energy-saving device attached to the ship, the chamber tank 10 is fixed to the stern board 1c of the stern part 1A3 of the ship 1 with bolts, and then the four vertical pipes 19 constituting the discharge pipe 9 are used. Is selected according to the height of the stern siding board 1c, and this is fixed to the stern siding board 1c. Further, if a horizontal pipe 20 affixed to the bottom 1d of the ship with a con resin adhesive is connected to the vertical pipe 19, the energy-saving device 4 is connected to the ship main body 1A of the ship 1 under the water line. Can be discharged. Thereby, it is not necessary to make a special modification to the ship body 1A of the ship 1, and the energy-saving device 4 has a unit structure that effectively discharges microbubbles that can reduce the frictional resistance during navigation of the ship. Can be provided.

また、前述の本船舶1にあっては、航行開始時に制御部25の電源が入ると、図10および図11に示すように主開閉弁11は開放状態に、第1開閉弁14cおよび第2開閉弁21は閉止状態に保持された状態で、吐出ポンプ24が停止された状態で、吸水ポンプ12が駆動される。これにより、チャンバタンク10外の海水が取水口5aから取水され、取水配管6を通ってエジェクタ13に送られる。この海水がエジェクタ3の噴射ノズル13dを通過する際に、噴射ノズル13dから高速噴射されることとなって、噴射ノズル13dの先端部13d3の周囲に大きな負圧が生じる(図6参照)。そのため、大気圧下の空気がチャンバタンク10外に突出する吸気口13d6を備える空気取込配管13d5を介して噴射ノズル13dの先端部13d3とデフューザ13bとの間隙から吸い込まれる。この時、この空気が噴射ノズル13dの先端部13d3から高速噴射される海水と混合し、この海水がデフューザ13bのテーパ様穴13b1を通過する際に、テーパ様穴13b1の作用により減速されてその圧力が上昇(すなわち、速度エネルギーが圧力エネルギーに変換される)する。この海水の圧力上昇により、海水に含まれる空気が微小気泡となり、海水に微小気泡が混合する微小気泡混合体が生成される。この微小気泡混合体がデフューザ13bからチャンバタンク10内に噴射され、チャンバタンク10内に一時的に貯留される。   Further, in the ship 1 described above, when the power of the control unit 25 is turned on at the start of navigation, as shown in FIGS. 10 and 11, the main on-off valve 11 is opened, and the first on-off valve 14c and the second on-off valve 14 are connected. The water absorption pump 12 is driven in a state where the on-off valve 21 is held in a closed state and the discharge pump 24 is stopped. As a result, seawater outside the chamber tank 10 is taken from the water intake 5 a and sent to the ejector 13 through the water intake pipe 6. When the seawater passes through the injection nozzle 13d of the ejector 3, it is injected at high speed from the injection nozzle 13d, and a large negative pressure is generated around the tip portion 13d3 of the injection nozzle 13d (see FIG. 6). Therefore, air under atmospheric pressure is sucked from the gap between the tip end portion 13d3 of the injection nozzle 13d and the diffuser 13b via the air intake pipe 13d5 having the intake port 13d6 protruding out of the chamber tank 10. At this time, this air is mixed with seawater jetted at high speed from the tip 13d3 of the injection nozzle 13d, and when this seawater passes through the taper-like hole 13b1 of the diffuser 13b, it is decelerated by the action of the taper-like hole 13b1. The pressure increases (i.e., velocity energy is converted to pressure energy). Due to the pressure increase of the seawater, the air contained in the seawater becomes microbubbles, and a microbubble mixture in which the microbubbles are mixed with the seawater is generated. This microbubble mixture is injected from the diffuser 13 b into the chamber tank 10 and temporarily stored in the chamber tank 10.

その後、本船舶1の速度が所定速度になって、前記取水口5aから取水される海水の動圧が高くなると、図12に示すように第1・第2三方弁6a,6bが動圧配管15側を開状態にするように切り替わるとともに、吸水ポンプ12が停止する。これにより、取水口5aから自然流入する海水が動圧配管15を通ってエジェクタ13に送られ、吸水ポンプ12の駆動時と同様にエジェクタ13により微小気泡混合体が生成されてチャンバタンク10内に一時的に貯留される。   Thereafter, when the speed of the ship 1 reaches a predetermined speed and the dynamic pressure of seawater taken from the intake port 5a increases, the first and second three-way valves 6a and 6b are connected to the dynamic pressure piping as shown in FIG. While switching so that 15 side may be in an open state, the water absorption pump 12 stops. As a result, the seawater that naturally flows in from the intake port 5 a is sent to the ejector 13 through the dynamic pressure pipe 15, and a microbubble mixture is generated by the ejector 13 in the same manner as when the water suction pump 12 is driven, and is entered into the chamber tank 10. Stored temporarily.

図13に示すように、前記チャンバタンク10内の水位が上昇して吐出水位に達し、これが低水位検知センサ16により検出されると、第2開閉弁21が開放状態に切り替えられるとともに、吐出ポンプ24が駆動される。これにより、微小気泡混合体が垂直配管19に送られ、水平配管20内を通って吐出ノズル8の吐出口8aから本船舶1の後進方向に向かって船舶本体1Aの接水面を覆うように吐出される。この時の微小気泡によって、本船舶1は海中航行する時にはその摩擦抵抗を低減することができる。   As shown in FIG. 13, when the water level in the chamber tank 10 rises to reach the discharge water level and is detected by the low water level detection sensor 16, the second on-off valve 21 is switched to the open state and the discharge pump 24 is driven. As a result, the microbubble mixture is sent to the vertical pipe 19 and discharged through the horizontal pipe 20 from the discharge port 8a of the discharge nozzle 8 so as to cover the water contact surface of the ship body 1A in the backward direction of the ship 1. Is done. The microbubbles at this time can reduce the frictional resistance of the ship 1 when navigating in the sea.

前記取水口5aから取水される海水によって、微小混合体を生成する間に、チャンバタンク10内の水位が上昇して中水位を超える。この時、中水位検知センサ17が中水位を検出するが、この時には中水位検知センサ17から検出信号は出力されない。   The water level in the chamber tank 10 rises and exceeds the middle water level while the fine mixture is generated by the seawater taken from the water intake 5a. At this time, the middle water level detection sensor 17 detects the middle water level. At this time, no detection signal is output from the middle water level detection sensor 17.

図14に示すように、前記チャンバタンク10内の水位がさらに上昇して満水になると、これを満水検知センサ18が検出し、主開閉弁11が閉止状態に切り替えられる。同時に、第2開閉弁21が開状態に切り替えられるとともに、吸水ポンプ12が駆動され、循環配管14を通って微小気泡混合体がエジェクタ13に回収され、微小気泡混合体が再生成される。これにより、当該混合体に混入する微小気泡の量が増大し、本船舶1の航行時の摩擦抵抗低減効果を増大させることができる。   As shown in FIG. 14, when the water level in the chamber tank 10 further rises and becomes full, this is detected by the full detection sensor 18 and the main on-off valve 11 is switched to the closed state. At the same time, the second on-off valve 21 is switched to the open state, the water absorption pump 12 is driven, the microbubble mixture is recovered by the ejector 13 through the circulation pipe 14, and the microbubble mixture is regenerated. Thereby, the quantity of the microbubble mixed in the said mixture increases, and the frictional resistance reduction effect at the time of navigation of this ship 1 can be increased.

この間、主開閉弁11が閉止状態に保持されるので、チャンバタンク10内の微小気泡混合体は漸減し、チャンバタンク10内の水位が中水位以下になると、これが中水位検知センサ17により検出され、主開閉弁11が開状態に切り替えられるとともに、第1開閉弁14cが閉止状態に切り替えられ、さらに吸水ポンプ12が停止する。これにより、取水口5aから自然流入して取水される海水が動圧配管15を通ってエジェクタ13に送られ、微小気泡混合体が生成されて、チャンバタンク10に一時貯留される。これにより、取水口5aから所定動圧の海水が得られる時には、吸水ポンプ12の駆動を制限しながら、微小気泡混合体を生成し、これを吐出口8aから排出することができる。   During this time, since the main on-off valve 11 is kept closed, the microbubble mixture in the chamber tank 10 gradually decreases, and when the water level in the chamber tank 10 falls below the middle water level, this is detected by the middle water level detection sensor 17. The main on-off valve 11 is switched to the open state, the first on-off valve 14c is switched to the closed state, and the water absorption pump 12 is stopped. As a result, seawater that naturally flows in from the water intake 5 a is sent to the ejector 13 through the dynamic pressure pipe 15, and a microbubble mixture is generated and temporarily stored in the chamber tank 10. Thereby, when seawater with a predetermined dynamic pressure is obtained from the water intake port 5a, the microbubble mixture can be generated and discharged from the discharge port 8a while restricting the drive of the water suction pump 12.

前記水平配管20の先端の吐出口8aから排出される微小気泡は、本船舶1の喫水線下の中央部付近から本船舶1の後進方向に吐出されるため、この微小気泡混合体は本船舶1の航行にともなって、本船舶1の中央から後方の船舶本体1Aを覆うことができるので、船舶航行時には本船舶1の接水面の摩擦抵抗は低減され、本船舶1の省エネルギー化を進めることができる。   Since the microbubbles discharged from the discharge port 8a at the tip of the horizontal pipe 20 are discharged in the backward direction of the main ship 1 from the vicinity of the center below the water line of the main ship 1, the microbubble mixture is the main ship 1. Since the ship main body 1A can be covered from the center of the ship 1 with the navigation of the ship, the frictional resistance of the water contact surface of the ship 1 is reduced during the ship navigation, and the energy saving of the ship 1 can be promoted. it can.

なお、省エネ化装置4はチャンバタンク10を有するものに限定されるものではなく、チャンバタンク10を使用せずに、船尾側の海水を取水する取水配管6にエジェクタ13および吐出配管9を直接本船舶1の船舶本体1Aに取付けることもできる。   The energy saving device 4 is not limited to the one having the chamber tank 10, and the ejector 13 and the discharge pipe 9 are directly connected to the intake pipe 6 for taking in sea water on the stern side without using the chamber tank 10. It can also be attached to the ship body 1A of the ship 1.

以上のとおり、本発明の気泡を用いた省エネルギー化装置4は、船尾側において取水口5aを前進方向に開口させるための取水配管6と、この取水配管6を通じて取水される水に微小気泡を混合して微小気泡混合体を生成するエジェクタ13と、前記エジェクタ13により生成される微小気泡混合体を吐出する吐出口8aを前記取水口5aよりも船首側の船底1dにおいて後進方向に開口させるための吐出配管9とを船舶本体1Aに外付け可能としたことを特徴としている。この構成により、船舶本体1Aに改造を加えることなく本船舶1に取付け可能で、かつ船舶航行時に摩擦抵抗低減効果をもたらす微小気泡が効果的に吐出されるユニット構造の省エネルギー化装置4を提供することができる。   As described above, the energy-saving device 4 using air bubbles according to the present invention mixes microbubbles into the water intake pipe 6 for opening the water intake 5a in the forward direction on the stern side and the water taken through the water intake pipe 6. Thus, the ejector 13 for generating the microbubble mixture and the discharge port 8a for discharging the microbubble mixture generated by the ejector 13 are opened in the backward direction on the ship bottom 1d on the bow side of the intake port 5a. The discharge pipe 9 can be externally attached to the ship main body 1A. With this configuration, there is provided an energy-saving device 4 having a unit structure that can be attached to the ship 1 without modifying the ship body 1A and that effectively discharges microbubbles that reduce the frictional resistance during ship navigation. be able to.

この場合、前述の構成に加えて、船尾に外付け可能なチャンバタンク10を有し、このチャンバタンク10に取水配管6の一端とエジェクタ13と吐出配管9の一端とこの吐出配管9に微小気泡混合体を送る吐出ポンプ24とを内設して、このチャンバタンク10内にエジェクタ13により生成される微小気泡混合体を一時的に貯留可能とする構成を採用している。   In this case, in addition to the above-described configuration, the chamber tank 10 has a chamber tank 10 that can be externally attached to the stern. One end of the intake pipe 6, one end of the ejector 13, the discharge pipe 9, and a minute bubble are formed in the discharge pipe 9. A configuration is adopted in which a discharge pump 24 for feeding the mixture is provided so that the microbubble mixture generated by the ejector 13 can be temporarily stored in the chamber tank 10.

この構成により、本船舶1の航行時の摩擦抵抗を低減できる微小気泡混合体が生成される省エネルギー化装置4を本船舶1に取付けるに際して、チャンバタンク10を船尾に取付けるとともに、吐出配管9を船底1dに取付けるだけでよく、本船舶1に特別な改造を加えることなく、簡単かつ安価に行うことができる。また、前記チャンバタンク10は微小気泡混合体を貯留できるので、予め貯留しておくことで微小気泡混合対の安定した供給が可能になるとともに、これを循環させるように吸水ポンプ12を配置すれば、当該混合体に混合される微小気泡の量を循環サイクルのなかで増大させて気泡による本船舶1の航行時の摩擦抵抗低減効果を増大させることが可能な省エネルギー化装置4を提供することができる。   With this configuration, when the energy saving device 4 that generates a microbubble mixture capable of reducing the frictional resistance during navigation of the vessel 1 is attached to the vessel 1, the chamber tank 10 is attached to the stern and the discharge pipe 9 is connected to the bottom of the vessel. It is only necessary to attach to 1d, and it can be carried out easily and inexpensively without any special modification to the ship 1. In addition, since the chamber tank 10 can store the microbubble mixture, it is possible to stably supply the pair of microbubbles by storing in advance, and if the water absorption pump 12 is arranged to circulate the mixture. It is possible to provide an energy saving device 4 capable of increasing the amount of micro bubbles mixed with the mixture in the circulation cycle and increasing the frictional resistance reduction effect during navigation of the ship 1 by the bubbles. it can.

また、本実施形態に係る省エネルギー化装置4の吐出配管9は、接着平面20aと突条20bとを有する横断面略三角形状の水平配管20を持つ構成を採用している。この構成により、船底1dまたは船舷1a,1bとの接着時に十分な接着面積を確保し、本船舶1の航行時に水圧が接着平面20aに加わるようにするとともに本船舶1の安定を図ることができる。   Further, the discharge pipe 9 of the energy saving apparatus 4 according to the present embodiment employs a configuration having a horizontal pipe 20 having a substantially triangular cross section having an adhesion plane 20a and a protrusion 20b. With this configuration, it is possible to secure a sufficient adhesion area when adhering to the ship bottom 1d or the boats 1a and 1b, so that the water pressure is applied to the adhesion plane 20a during the navigation of the vessel 1, and the vessel 1 can be stabilized. .

また、本実施形態に係る船舶は、前述の省エネルギー化装置4の何れかを船舶本体1Aに取付けてなる構成であってもよいが、本実施形態では全てを船舶本体1Aに取り付ける構成を採用している。このため、簡易かつ極めて効果的に所期の効果が奏されるものとなる。   Moreover, the ship which concerns on this embodiment may be the structure which attaches either the above-mentioned energy-saving apparatus 4 to the ship main body 1A, However, In this embodiment, the structure which attaches all to the ship main body 1A is employ | adopted. ing. For this reason, the desired effect is achieved simply and extremely effectively.

また、本実施形態に係るもう一つの気泡を用いた省エネルギー化装置4は、取水口5aを有する取水配管6と、この取水配管6に取付けられる主開閉弁11と、取水配管6に取付けられて水に微小気泡を混合して微小気泡混合体を生成するエジェクタ13と、エジェクタ13により生成される微小気泡混合体を吐出する吐出口8aを有する吐出配管9と、取水配管6の一端、エジェクタ13、吐出配管9の一端およびこの吐出配管9に微小気泡混合体を送る吐出ポンプ24並びに満水を検知する満水検知センサ18が内部に配置されてエジェクタ13により生成される微小気泡混合体を一時的に貯留可能なチャンバタンク10と、このチャンバタンク10内に配置されて取水口5aからの水、チャンバタンク10内の微小気泡混合体の何れかを取り込む吸水ポンプ12とを備え、前記取水配管6はこの吸水ポンプ12の停止時に取水口5aからの水をエジェクタ13に取り込む動圧配管15を有するとともに、満水検知センサ18の満水検出により動圧配管15を閉状態に保持してチャンバタンク10内の微小気泡混合体を取水配管6に送るように吸水ポンプ12を駆動する制御部25を有することを特徴としている。   The energy saving device 4 using another bubble according to the present embodiment is attached to the intake pipe 6 having the intake port 5 a, the main on-off valve 11 attached to the intake pipe 6, and the intake pipe 6. An ejector 13 for generating a microbubble mixture by mixing microbubbles with water, a discharge pipe 9 having a discharge port 8a for discharging the microbubble mixture generated by the ejector 13, one end of the water intake pipe 6, and the ejector 13 One end of the discharge pipe 9, a discharge pump 24 that sends the fine bubble mixture to the discharge pipe 9, and a full water detection sensor 18 that detects full water are disposed inside to temporarily store the fine bubble mixture generated by the ejector 13. Any one of the chamber tank 10 that can be stored, water from the water intake 5a disposed in the chamber tank 10 and a microbubble mixture in the chamber tank 10 The intake pipe 6 has a dynamic pressure pipe 15 for taking water from the intake port 5a into the ejector 13 when the water intake pump 12 is stopped, and a dynamic pressure pipe is detected by the full water detection sensor 18. It has the control part 25 which drives the water absorption pump 12 so that 15 may be hold | maintained closed and the microbubble mixture in the chamber tank 10 may be sent to the water piping 6.

この構成により、チャンバタンク10を船尾または船内の何れに取付けてもよく、チャンバタンク10内が満水になると、吸水ポンプ12を駆動して微小気泡混合体を循環させたり、吸水ポンプ12を停止して取水口5aから水を取り込んだりして、微小気泡の量を増大させ、あるいは本船舶1の航行時に吸水ポンプ12の駆動を限定することができ、総じて燃料の消費を軽減でき、走行速度の向上にも寄与する省エネルギー化装置4を提供することができる。   With this configuration, the chamber tank 10 may be attached to either the stern or the ship. When the chamber tank 10 is full, the water suction pump 12 is driven to circulate the microbubble mixture or the water suction pump 12 is stopped. Water can be taken in from the intake port 5a to increase the amount of microbubbles, or the drive of the water suction pump 12 can be limited when the ship 1 is navigating. The energy saving apparatus 4 that contributes to the improvement can be provided.

本実施形態に係るもう一つの船舶は、前述の省エネルギー化装置4を船舶本体1に取付けることによって、取付位置の如何によらず、燃料消費を有効に軽減することができる。   Another ship according to the present embodiment can effectively reduce fuel consumption by attaching the energy saving device 4 described above to the ship body 1 regardless of the attachment position.

本実施形態に係る他の船舶は、前述のもう一つの船舶の構成に加え、前記取水配管6は船尾側に取水口5aを、取水口5aと吸水ポンプ12との間に主開閉弁11を有し、前記吐出口9を取水口5aより前進側に位置させ、さらに前記チャンバタンク10を船尾側に外付けていることを特徴としている。この構成により、トータルの燃料消費をさらに軽減でき、走行速度の向上にも寄与する船舶を提供することができる。   In addition to the configuration of the other ship described above, the other intake pipe according to the present embodiment has the intake pipe 6 with a water intake 5a on the stern side and a main on-off valve 11 between the water intake 5a and the water intake pump 12. The discharge port 9 is positioned on the forward side from the water port 5a, and the chamber tank 10 is externally attached to the stern side. With this configuration, it is possible to provide a ship that can further reduce the total fuel consumption and contribute to an improvement in traveling speed.

なお、前記省エネ化装置4の混合気体生成部はエジェクタ13に限定されるものではなく、他の機器で生成される気泡を海水に混合させる装置であってもよい。また、本発明の各部の具体的な構成は上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the mixed gas production | generation part of the said energy saving apparatus 4 is not limited to the ejector 13, The apparatus which mixes the bubble produced | generated with another apparatus with seawater may be sufficient. The specific configuration of each part of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

1…省エネ化装置を備える船舶、
1A…船舶本体,
4…省エネルギー化装置、
5a…取水口、
6…取水配管、
8a…吐出口、
9…吐出配管、
10…チャンバタンク、
13…エジェクタ、
18…満水検知センサ、

1 ... a ship equipped with an energy saving device,
1A ... ship body,
4 ... Energy saving device,
5a ... Water intake,
6 ... Intake piping,
8a ... discharge port,
9 ... discharge piping,
10 ... chamber tank,
13 ... Ejector,
18: Full water detection sensor,

Claims (7)

船尾側において取水口を前進方向に開口させるための取水配管と、この取水配管を通じて取水される水に微小気泡を混合して微小気泡混合体を生成する混合気体生成部と、前記混合気体生成部により生成される微小気泡混合体を吐出する吐出口を前記取水口よりも船首側の船底において後進方向に開口させるための吐出配管とを船舶本体に外付け可能としたことを特徴とする気泡を用いた省エネルギー化装置。   A water intake pipe for opening the water intake in the forward direction on the stern side, a mixed gas generation part that mixes micro bubbles with water taken through the intake pipe to generate a micro bubble mixture, and the mixed gas generation part A bubble characterized in that a discharge pipe for opening a discharge port for discharging a fine bubble mixture generated by the above in the backward direction at the ship bottom side of the bow from the intake port can be externally attached to the ship body. Energy saving device used. 船尾に外付け可能なチャンバタンクを有し、このチャンバタンクに取水配管の一端と混合気体生成部と吐出配管の一端とこの吐出配管に微小気泡混合体を送る吐出ポンプとを内設して、このチャンバタンク内に混合気体生成部により生成される微小気泡混合体を一時的に貯留可能としたことを特徴とする請求項1に記載の気泡を用いた省エネルギー化装置。   It has a chamber tank that can be externally attached to the stern, and in this chamber tank, one end of a water intake pipe, one end of a mixed gas generation unit, one end of a discharge pipe, and a discharge pump for sending a microbubble mixture to this discharge pipe are provided. The energy-saving apparatus using bubbles according to claim 1, wherein the microbubble mixture generated by the mixed gas generation unit can be temporarily stored in the chamber tank. 前記吐出配管は、接着平面と突条とを有する横断面略三角形状の水平配管を持つことを特徴とする請求項1または2に記載の気泡を用いた省エネルギー化装置。   The energy-saving device using bubbles according to claim 1, wherein the discharge pipe has a horizontal pipe having a substantially triangular cross section having an adhesion plane and a protrusion. 請求項1〜3の何れかに記載の省エネルギー化装置を船舶本体に取り付けてなることを特徴とする船舶。   A ship comprising the energy-saving device according to any one of claims 1 to 3 attached to a ship body. 取水口を有する取水配管と、この取水配管に取付けられる主開閉弁と、取水配管に取付けられて水に微小気泡を混合して微小気泡混合体を生成する混合気体生成部と、混合気体生成部により生成される微小気泡混合体を吐出する吐出口を有する吐出配管と、取水配管の一端、混合気体生成部、吐出配管の一端およびこの吐出配管に微小気泡混合体を送る吐出ポンプ並びに満水を検知する満水検知センサが内部に配置されて混合気体生成部により生成される微小気泡混合体を一時的に貯留可能なチャンバタンクと、このチャンバタンク内に配置されて取水口からの水、チャンバタンク内の微小気泡混合体の何れかを取り込む吸水ポンプとを備え、前記取水配管はこの吸水ポンプ停止時に取水口からの水を混合気体生成部に取り込む動圧配管を有するとともに、満水検知センサの満水検出により動圧配管を閉状態に保持してチャンバタンク内の微小気泡混合体を取水配管に送るように吸水ポンプを駆動する制御部を有することを特徴とする気泡を用いた省エネルギー化装置。   A water intake pipe having a water intake port, a main on-off valve attached to the water intake pipe, a gas mixture generating part attached to the water intake pipe for mixing microbubbles with water to generate a microbubble mixture, and a gas mixture generating part Detects a discharge pipe having a discharge port for discharging a microbubble mixture generated by the gas, one end of a water intake pipe, a mixed gas generation unit, one end of the discharge pipe, a discharge pump for sending the microbubble mixture to the discharge pipe, and full water A chamber tank in which a full water detection sensor is disposed, and a microbubble mixture generated by the mixed gas generation unit can be temporarily stored, and water from the water intake port disposed in the chamber tank, in the chamber tank And a water intake pump that takes in any one of the microbubble mixtures, and the intake pipe has a dynamic pressure pipe that takes in water from the intake port into the mixed gas generation section when the water intake pump is stopped. And a control unit that drives the water absorption pump to keep the dynamic pressure pipe closed by the full water detection of the full water detection sensor and to send the fine bubble mixture in the chamber tank to the water pipe. Energy saving device using 請求項5に記載の省エネルギー化装置を船舶本体に備えていることを特徴とする船舶。   A ship comprising the energy-saving device according to claim 5 in a ship body. 前記取水配管は船尾側に取水口を、取水口と吸水ポンプとの間に主開閉弁を有し、前記吐出口を取水口より前進側に位置させ、さらに前記チャンバタンクを船尾側に外付けしていることを特徴とする請求項6に記載の船舶。




The intake pipe has an intake port on the stern side, a main on-off valve between the intake port and the water intake pump, the discharge port is positioned on the forward side from the intake port, and the chamber tank is externally attached to the stern side. The ship according to claim 6, wherein the ship is a ship.




JP2017059928A 2017-03-24 2017-03-24 Energy saving device using air bubbles and ship equipped with this device Active JP6928469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017059928A JP6928469B2 (en) 2017-03-24 2017-03-24 Energy saving device using air bubbles and ship equipped with this device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017059928A JP6928469B2 (en) 2017-03-24 2017-03-24 Energy saving device using air bubbles and ship equipped with this device

Publications (2)

Publication Number Publication Date
JP2018161957A true JP2018161957A (en) 2018-10-18
JP6928469B2 JP6928469B2 (en) 2021-09-01

Family

ID=63859631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017059928A Active JP6928469B2 (en) 2017-03-24 2017-03-24 Energy saving device using air bubbles and ship equipped with this device

Country Status (1)

Country Link
JP (1) JP6928469B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1621625A (en) * 1925-09-14 1927-03-22 Vasco F Casey Air-floated barge
JP2002274478A (en) * 2001-03-16 2002-09-25 Uemoto Kazutoshi Frictional resistance reducing device of ship
JP2016064812A (en) * 2014-09-16 2016-04-28 雅 田篭 Hull fluid resistance reduction device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1621625A (en) * 1925-09-14 1927-03-22 Vasco F Casey Air-floated barge
JP2002274478A (en) * 2001-03-16 2002-09-25 Uemoto Kazutoshi Frictional resistance reducing device of ship
JP2016064812A (en) * 2014-09-16 2016-04-28 雅 田篭 Hull fluid resistance reduction device

Also Published As

Publication number Publication date
JP6928469B2 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2009128211A1 (en) Frictional-resistance reduced ship, and method for steering the same
JP4212640B1 (en) Friction resistance reducing ship and its operating method
JP7334339B2 (en) Method and device for reducing wave-making resistance and frictional resistance during navigation of a ship
KR20110093570A (en) Ship with air bubble generator
CN104229088A (en) Single-direction negative-pressure water discharging system of engine compartment for power surfboard
US20090101056A1 (en) Bow thruster for watercraft
JP2011218959A (en) Ship equipped with bow thruster, ship navigation method and modification method
JP6928469B2 (en) Energy saving device using air bubbles and ship equipped with this device
JP2002002582A (en) Friction resistance reducing ship
JPH08156874A (en) Bilge discharging device of small ship
KR100889975B1 (en) Waterjet driving method and propulsion
JP2006090215A (en) Exhaust system for engine
JP2017165386A (en) Hull frictional resistance reduction device
JP2023067297A (en) Thrust generation system of sailing body, sailing body, and drag reduction method of sailing body
JPH1159563A (en) Friction reducing ship and air generator
JP2005337150A (en) Exhaust control device for water jet propulsion boat
RU2299152C1 (en) Two-mode water scoop of hovercraft water-jet propeller
JP5806251B2 (en) Ship equipped with bubble resistance reduction device and ship resistance reduction method
JP2001328584A (en) Frictional resistance-reduced ship
US20230391436A1 (en) Ship construction and propulsion system
JP2008273493A (en) Minute bubble generating device and hull resistance reduction vessel
JPH1029587A (en) Frictional-resistance reduction device for vessel
JPH10203470A (en) Water jet propulsion high speed ship
JP2010115942A (en) Frictional resistance reduced vessel and its operation method
KR101344687B1 (en) Water shooting type pump system for reducing fuel under the sea

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210806

R150 Certificate of patent or registration of utility model

Ref document number: 6928469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250