JP2018161045A - Power supply system, power-receiving device, and non-contact power supply system - Google Patents

Power supply system, power-receiving device, and non-contact power supply system Download PDF

Info

Publication number
JP2018161045A
JP2018161045A JP2018089151A JP2018089151A JP2018161045A JP 2018161045 A JP2018161045 A JP 2018161045A JP 2018089151 A JP2018089151 A JP 2018089151A JP 2018089151 A JP2018089151 A JP 2018089151A JP 2018161045 A JP2018161045 A JP 2018161045A
Authority
JP
Japan
Prior art keywords
power
coil
feeding
power supply
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018089151A
Other languages
Japanese (ja)
Inventor
河野 実則
Mitsunori Kono
実則 河野
河野 公則
Kiminori Kono
公則 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCS Co Ltd
Original Assignee
RCS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCS Co Ltd filed Critical RCS Co Ltd
Publication of JP2018161045A publication Critical patent/JP2018161045A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Ocean & Marine Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively provide a power supply system, a power-receiving device and a non-contact power supply system in the atmosphere, in a substance of which the transmission loss of an electromagnetic wave signal is larger than that in the atmosphere, in fresh water of which the salt concentration is 0 to 10% or in seawater, or in a combination thereof.SOLUTION: In a non-contact power supply device and a non-contact power supply system, a power-feeding coil and a power-receiving coil are put in a non-saturated state, the power-feeding coil and the power-receiving coil are put in a non-resonant state or in a non-resonant state close to a resonant state, a load Q value thereof is made 50 or less, and a voltage fluctuation rate at load is made 50% or less, otherwise a combination of the above arrangements is embodied. In the power-feeding coil, a magnetic excitation current is driven by an AC electrical power source with a frequency of 50 Hz to over 41 MHz, whereby the power-feeding coil is caused to radiate a high-output fluctuating magnetic field. The radiated fluctuating magnetic field enables non-contact power supply in a near-distance, and enables magnetic wave communications in a middle distance as well.SELECTED DRAWING: Figure 1

Description

この発明は、大気中、電磁波信号の伝搬損失が大気中での伝搬損に比較して大きい物質中、塩分濃度が0%から10%までの真水中もしくは海水中、あるいはこれらの組み合わせの中で、近距離間から中距離間までを含め、ファラデーの電磁誘導の法則に基づき、変動磁界によって誘導結合する非接触給電装置および非接触給電システムを実現するためのものである。
In the atmosphere, the propagation loss of the electromagnetic wave signal is larger than the propagation loss in the atmosphere, the fresh water or the seawater having a salt concentration of 0% to 10%, or the combination thereof. In order to realize a non-contact power feeding device and a non-contact power feeding system that are inductively coupled by a varying magnetic field based on Faraday's law of electromagnetic induction, including between short distance and medium distance.

従来から、給電コイルに空心コイルを用いる非接触電力伝送装置が提案されている。(例えば、特許文献1〜4)
特開2012−151208号 特許第5437650号 特開2012−143106号 特開2016−123187号
Conventionally, a non-contact power transmission device using an air-core coil as a power supply coil has been proposed. (For example, Patent Documents 1 to 4)
JP 2012-151208 A Patent No. 5437650 JP 2012-143106 A JP-A-2006-123187

特許文献1に記載されている従来の「共鳴コイル保持部材、共鳴コイルユニット、及び、非接触電力伝送装置」によれば、「段落[0070]共鳴コイル52は、図7に示すように、例えば、直径5mmの銅線を平板状(渦巻き状)に複数回(n回)巻回した、内径D1が450mm、外径D2が600mm、空心コイルである。」とされている。
しかしながら、特許文献1の方法では、高い周波数で空心コイルを共振させることから、電磁波信号が放射されるため、大気中でも給電効率を低下させ、海水中での非接触給電を阻害するとともに、電磁波通信などへの妨害に対する対策が必要であるなどの問題点がある。
According to the conventional “resonance coil holding member, resonance coil unit, and non-contact power transmission device” described in Patent Document 1, “paragraph [0070] resonance coil 52 includes, for example, as shown in FIG. A copper wire having a diameter of 5 mm is wound in a flat shape (spiral shape) a plurality of times (n times), the inner diameter D1 is 450 mm, the outer diameter D2 is 600 mm, and an air-core coil.
However, in the method of Patent Document 1, since the air-core coil is resonated at a high frequency, an electromagnetic wave signal is radiated. Therefore, power supply efficiency is reduced even in the atmosphere, non-contact power supply is inhibited in seawater, and electromagnetic wave communication is performed. There is a problem that countermeasures against disturbances are necessary.

特許文献2に記載されている従来の「非接触給電装置」によれば、「段落[0006]そして該エアギャップの磁路に、共振回路を構成する共振コイルが配設されている。
該共振回路は、該1次側の電源回路や該2次側の負荷側回路から独立しており、該共振コイルは、該エアギャップの磁路に対し励磁無効電力を供給する。」とされている。
しかしながら、特許文献2の方法では、高電圧化された共振回路が独立して設けられており、電磁波信号が放射されるため、大気中でも給電効率を低下させ、海水中での非接触給電を阻害するとともに、電磁波通信などへの妨害に対する対策が必要であるなどの問題点がある。
According to the conventional “contactless power feeding device” described in Patent Document 2, “paragraph [0006] and a resonance coil constituting a resonance circuit is disposed in the magnetic path of the air gap.
The resonant circuit is independent of the primary side power supply circuit and the secondary load side circuit, and the resonant coil supplies excitation reactive power to the magnetic path of the air gap. It is said that.
However, in the method of Patent Document 2, since a high-voltage resonance circuit is provided independently and an electromagnetic wave signal is radiated, power supply efficiency is lowered even in the atmosphere, and non-contact power supply is inhibited in seawater. In addition, there is a problem that countermeasures against interference with electromagnetic wave communication are necessary.

特許文献3に記載されている従来の「磁界共鳴方式の非接触給電装置」によれば、「段落[解決手段]この非接触給電装置15は、送電側回路6について、送電コイル3と並列コンデンサ11が配されて、並列共振回路が形成され、高周波電源9側の回路部分と、並列コンデンサ11や送電コイル3側の回路部分とが、コンデンサ21,22による電界結合によって、接続されている。
」とされている。
しかしながら、特許文献3の方法では、送電コイル3と並列コンデンサ11が配されて、並列共振回路が形成され、22による電界結合(結合コンデンサ)によって、接続されているため、高い共振電圧が発生し、電磁波信号が放射されるため、大気中でも給電効率を低下させ、海水中での非接触給電を阻害するとともに、電磁波通信などへの妨害に対する対策が必要であるなどの問題点がある。
According to the conventional “magnetic resonance type non-contact power feeding device” described in Patent Document 3, “paragraph [solution] The non-contact power feeding device 15 includes a power transmission coil 3 and a parallel capacitor for the power transmission side circuit 6. 11 is arranged to form a parallel resonant circuit, and the circuit portion on the high frequency power supply 9 side and the circuit portion on the parallel capacitor 11 or power transmission coil 3 side are connected by electric field coupling by the capacitors 21 and 22.
It is said that.
However, in the method of Patent Document 3, since the power transmission coil 3 and the parallel capacitor 11 are arranged to form a parallel resonance circuit and are connected by electric field coupling (coupling capacitor) 22, a high resonance voltage is generated. Since electromagnetic wave signals are radiated, there are problems in that power supply efficiency is reduced even in the atmosphere, non-contact power supply in seawater is obstructed, and countermeasures against interference with electromagnetic wave communication are necessary.

特許文献4に記載されている従来の「ワイヤレス給電装置」によれば、「ワイヤレス電力伝送装置101は、商用周波数を含む任意の周波数の交流電源から、直接あるいはトランス33を介して給電手段のコイル11aを駆動し、少なくとも、給電手段のコイルと受電手段のコイル12aとの両方に、非共振状態のコイルを用い、かつ簡易な調整・制御手段を用い、高効率にワイヤレス電力伝送する。」とされている。
しかしながら、特許文献4の方法では、「変動磁界によって誘導結合するワイヤレス電力伝送装置を安価に提供する。」ことを課題としており、ワイヤレス電力伝送システムとしての訴求が為されておらず、限定された用途に限られている問題点がある。
According to the conventional “wireless power supply device” described in Patent Document 4, “the wireless power transmission device 101 is a coil of power supply means, either directly or via a transformer 33, from an AC power source having an arbitrary frequency including a commercial frequency. 11a is driven, and a non-resonant state coil is used for both the coil of the power supply unit and the coil 12a of the power reception unit, and simple adjustment / control unit is used, and wireless power transmission is performed with high efficiency. Has been.
However, the method of Patent Document 4 has a problem of “providing a wireless power transmission device that is inductively coupled by a variable magnetic field at a low cost”, and has not been promoted as a wireless power transmission system. There is a problem that is limited to applications.

この発明は、上記の問題点を解決するためになされたものであり、給電コイルおよび/あるいは受電コイルを非飽和状態とし、給電コイルおよび/あるいは受電コイルを非共振状態とし、給電コイルおよび/あるいは受電コイルを共振状態に近い非共振状態とし、給電コイルおよび/あるいは受電コイルの負荷Q値を50以下とし、負荷時電圧変動率が50%以下とし、共振周波数が駆動する交流電源の周波数より低い状態とし、単線路とし、複線路とし、平行2線路とし、四角形のコイルとし、円状のコイルとし、あるいはこれらの組合せとし、給電コイルから高出力の変動磁界を放射し、前記放射された高出力の変動磁界が受電コイルと誘導結合することによって生じる起電力を出力電源とする非接触給電装置に関するものであり、電磁波信号の放射を抑制し、高い給電効率であり、大気中、電磁波信号の伝搬損失が大気中での伝搬損に比較して大きい物質中、塩分濃度が0%から10%までの真水中もしくは海水中、あるいはこれらの組み合わせの中で、近距離間から中距離間までを含め、ファラデーの電磁誘導の法則に基づき、変動磁界によって誘導結合する非接触給電装置および非接触給電システムを安価に提供することを目的とする。
The present invention has been made to solve the above-described problems. The power feeding coil and / or the power receiving coil are brought into a non-saturated state, the power feeding coil and / or the power receiving coil are brought into a non-resonant state, and the power feeding coil and / or The power receiving coil is in a non-resonant state close to the resonant state, the load Q value of the power feeding coil and / or the power receiving coil is 50 or less, the voltage fluctuation rate during load is 50% or less, and the resonance frequency is lower than the frequency of the AC power supply to be driven A single line, a double line, a parallel two line, a square coil, a circular coil, or a combination of these, radiating a high-power variable magnetic field from the feeding coil, and The present invention relates to a non-contact power feeding device that uses an electromotive force generated by inductive coupling of a magnetic field of output with a power receiving coil as an output power source. Suppresses signal radiation, has high power supply efficiency, and has a high propagation efficiency in the atmosphere, in which electromagnetic wave signal propagation loss is large compared to propagation loss in the atmosphere, fresh water or seawater with a salinity of 0% to 10% In the middle or a combination of these, the non-contact power feeding device and the non-contact power feeding system that inductively couples with a varying magnetic field based on Faraday's law of electromagnetic induction, including between short distances and medium distances, are provided at low cost. For the purpose.

この発明に係わる非接触給電装置は、給電コイルおよび受電コイルを非飽和状態とし、給電コイルおよび/あるいは受電コイルを非共振状態とし、給電コイルおよび/あるいは受電コイルを共振状態に近い非共振状態とし、給電コイルおよび/あるいは受電コイルの負荷Q値を50以下とし、負荷時電圧変動率を50%以下とし、共振周波数が駆動する交流電源の周波数より低い状態とし、給電コイルを単線路、複線路、平行2線路、円状のコイル、あるいは角形のコイルとし、あるいはこれらの組合せとし、前記給電コイルに周波数が50Hzから41MHzを超える比較的に低い周波数の交流電源を駆動して、前記給電コイルから高出力の変動磁界を放射させ、前記高出力の変動磁界によって前記受電コイルに誘起する起電力を大容量の電源出力とすることによって、電磁波信号の放射を抑制し、電力の伝送効率が高く、大気中、電磁波信号の伝搬損失が大気中での伝搬損に比較して大きい物質中、塩分濃度が0%から10%までの真水中もしくは海水中、あるいはこれらの組み合わせの中で、近距離間での非接触給電から中距離間での磁力波通信までを含め、変動磁界によって誘導結合する非接触給電装置および非接触給電システムを実現可能とするものである。   In the non-contact power feeding device according to the present invention, the power feeding coil and the power receiving coil are desaturated, the power feeding coil and / or the power receiving coil are brought into a non-resonant state, and the power feeding coil and / or the power receiving coil are brought into a non-resonant state close to a resonance state. The load Q value of the feeding coil and / or the receiving coil is set to 50 or less, the voltage fluctuation rate during load is set to 50% or less, and the resonance frequency is lower than the frequency of the AC power source to be driven. A parallel two-line, a circular coil, a square coil, or a combination thereof, and a relatively low frequency AC power source with a frequency exceeding 50 Hz to 41 MHz is driven to the power supply coil. A high output variable magnetic field is radiated, and an electromotive force induced in the receiving coil by the high output variable magnetic field is large. By using the source output, radiation of electromagnetic wave signals is suppressed, power transmission efficiency is high, and in the air, the propagation concentration of electromagnetic wave signals is large compared to the propagation loss in air, and the salinity concentration is 0%. To 10% of fresh water or sea water, or a combination of these, including non-contact power feeding in a short distance to magnetic wave communication in a middle distance, inductively coupled by a variable magnetic field And a non-contact electric power feeding system is realizable.

ここで、配電手段が、前記非飽和状態の給電コイルに、交流電源を、直接供給し、周波数を変換して駆動し、トランスを介して駆動し、位相調整手段を直列に接続して供給し、位相調整手段を並列に接続して供給し、リアクトルとコンデンサとを含む位相調整手段を直列に接続して供給し、リアクトルとコンデンサとを含む位相調整手段を並列に接続して供給し、前記交流電源の電源入力端子にリアクトルを接続して駆動し、あるいはこれらを組合せて駆動し、前記給電コイルから周波数が50Hzから41MHzを超える高出力の変動磁界を放射させ、前記高出力の変動磁界によって前記受電コイルに誘起する起電力を、直接出力し、トランスを介して出力し、位相調整手段を直列に接続して出力し、周波数を変換して出力し、直流電圧に変換して出力し、あるいはこれらの組合せによって、蓄電手段に対して急速充電を可能とする非接触給給電装置および非接触給電システムを実現する。   Here, the power distribution means directly supplies the AC power to the non-saturated power supply coil, converts the frequency to drive, drives through the transformer, and supplies the phase adjustment means connected in series. The phase adjustment means connected in parallel and supplied, the phase adjustment means including the reactor and the capacitor connected in series, the phase adjustment means including the reactor and the capacitor connected in parallel, and supplied, Drive by connecting a reactor to the power input terminal of the AC power supply, or drive them in combination, and radiate a high-output fluctuating magnetic field having a frequency exceeding 50 Hz to 41 MHz from the feeding coil. The electromotive force induced in the receiving coil is directly output, output via a transformer, output by connecting a phase adjusting means in series, converted and output, and converted to a DC voltage. And it outputs the conversion, or a combination thereof, to achieve a non-contact paper feed unit and the non-contact power feeding system capable of rapid charging against accumulator.

また、前記給電コイルを単線路、複線路、あるいは平行2線路で構成し、前記給電コイルと受電コイルとを共振状態に近い非共振状態とすることによって、走行中の移動車両に非接触給電を可能とし、並列駐車中あるいは縦列駐車中の複数台の車両に非接触で急速給電を可能とすることができる。
また、前記給電コイルおよび前記受電コイルを共振状態に近い非共鳴状態とすることで、コイル間の広帯域伝送が可能となり、磁力波通信用アンテナとして共用が可能となり、前記給電コイルと前記受電コイルとの間でデジタル情報の伝送を可能とし、大気中では、前記デジタル情報に基づいて、前記配電手段が、EV車両からの交流電源の起動停止要求を受信し、前記要求に基いて交流電源の起動停止を制御し、水中あるいは海水中では、給電支援手段あるいは給電支援プラットホームが、潜航手段からの給電起動停止要求を受信し、前記潜航手段を誘導制御し、非接触給電の起動停止を制御し、あるいはこれらの組合せを行うことができる。
In addition, the feeding coil is configured by a single line, a multiple line, or two parallel lines, and the feeding coil and the receiving coil are in a non-resonant state close to a resonance state, thereby providing non-contact power feeding to a moving vehicle that is running. It is possible to enable rapid power feeding in a non-contact manner to a plurality of vehicles parked in parallel or in parallel parking.
Also, by making the power supply coil and the power receiving coil in a non-resonant state close to a resonance state, broadband transmission between the coils is possible, and it can be shared as a magnetic wave communication antenna, and the power supply coil and the power receiving coil In the atmosphere, based on the digital information, the power distribution means receives an AC power supply start / stop request from the EV vehicle, and starts the AC power supply based on the request. In the water or in seawater, the power supply support means or the power supply support platform receives a power supply start / stop request from the submergence means, controls the submergence means, controls the start / stop of the non-contact power supply, Alternatively, a combination of these can be performed.

本発明に係る給電装置の具体的な構成は、電磁誘導を用いて受電装置に電力を供給し、受電装置が備える蓄電手段に当該電力を蓄電させるための給電装置であって、給電コイルと、当該給電コイルに励磁電流を流すための交流電源と、上記励磁電流の位相を調整するための位相調整手段とを備え、上記給電コイルと上記位相調整手段とは、並列および直列に結合し、上記給電コイルの誘導性リアクタンスと、上記並列に接続された位相調整手段の容量性リアクタンスと、上記給電コイルの周辺に存在する浮遊容量の容量性リアクタンスとが、共振状態に近い非共振状態であり、上記給電コイルの誘導性リアクタンスと、上記直列に接続された位相調整手段の容量性リアクタンスとが、共振状態に近い非共振状態であることを特徴とするものである。   A specific configuration of a power feeding device according to the present invention is a power feeding device for supplying power to a power receiving device using electromagnetic induction, and storing the power in a power storage unit included in the power receiving device, the power feeding coil, An AC power supply for causing an exciting current to flow through the feeding coil and a phase adjusting unit for adjusting the phase of the exciting current, the feeding coil and the phase adjusting unit being coupled in parallel and in series, The inductive reactance of the feeding coil, the capacitive reactance of the phase adjusting means connected in parallel, and the capacitive reactance of stray capacitance existing around the feeding coil are in a non-resonant state close to a resonance state, The inductive reactance of the feeding coil and the capacitive reactance of the phase adjusting means connected in series are in a non-resonant state close to a resonance state. That.

また、本発明に係る受電装置の具体的な構成は、上記の給電装置から、電磁誘導を用いて電力が供給される受電装置であって、受電コイルと、上記受電コイルが受電した電力を蓄電する蓄電手段とを備えたものである。
特に、上記受電コイルと直列に結合した位相調整手段を備え、当該受電コイルと直列に結合した位相調整手段の容量性リアクタンスと、上記受電コイルの誘導性リアクタンスとが、略同一であることを特徴とするものである。
In addition, a specific configuration of the power receiving device according to the present invention is a power receiving device to which electric power is supplied from the power feeding device using electromagnetic induction, and stores the power received by the power receiving coil and the power receiving coil. Power storage means.
In particular, it comprises phase adjusting means coupled in series with the power receiving coil, and the capacitive reactance of the phase adjusting means coupled in series with the power receiving coil is substantially the same as the inductive reactance of the power receiving coil. It is what.

さらに、本発明に係る非接触給電システムは上記の給電装置と、上記の受電装置とを備えたものである。
Furthermore, the non-contact power feeding system according to the present invention includes the above power feeding device and the above power receiving device.

本発明の非接触給電装置および非接触給電システムは、給電コイルおよび受電コイルを水平方向に対向させ、給電コイルおよび受電コイルを非飽和状態とし、給電コイルおよび/あるいは受電コイルを非共振状態とし、給電コイルおよび/あるいは受電コイルを共振状態近い非共鳴状態とし、給電コイルおよび/あるいは受電コイルの負荷Q値を50以下とし、負荷時電圧変動率を50%以下とし、給電コイルをロングスパンの単線路、複線路、平行2線路、四角形のコイル、あるいは円状のコイルとし、あるいはこれらの組合せとし、前記給電コイルから周波数が50Hzから41MHzを超える高出力の変動磁界を放射することによって、高効率でありかつ大容量であり、大気中、電磁波信号の伝搬損失が大気中での伝搬損に比較して大きい物質中、塩分濃度が0%から10%までの真水中もしくは海水中、あるいはこれらの組み合わせの中で、近距離間での非接触給電から中距離間での磁力波通信までを含め、変動磁界によって誘導結合する非接触給電装置および非接触給電システムを安価に実現できる利点がある。
The non-contact power feeding device and the non-contact power feeding system of the present invention are such that the power feeding coil and the power receiving coil are horizontally opposed, the power feeding coil and the power receiving coil are in a non-saturated state, and the power feeding coil and / or the power receiving coil are in a non-resonant state. The feeding coil and / or the receiving coil are brought into a non-resonant state close to the resonance state, the load Q value of the feeding coil and / or the receiving coil is set to 50 or less, the voltage fluctuation rate during loading is set to 50% or less, and the feeding coil is a single wire having a long span. High efficiency by radiating a high output variable magnetic field having a frequency exceeding 50 Hz to 41 MHz from the power supply coil by using a path, a double line, two parallel lines, a rectangular coil, a circular coil, or a combination thereof. In addition, the propagation loss of electromagnetic wave signals in the atmosphere is large compared to the propagation loss in the atmosphere. Fluctuations, including contactless power supply over short distances to magnetic wave communication over medium distances, in fresh water or seawater with a salinity of 0% to 10%, or a combination of these There is an advantage that a non-contact power supply apparatus and a non-contact power supply system inductively coupled by a magnetic field can be realized at low cost.

本発明の第1の実施形態における非接触給電装置の構成図The block diagram of the non-contact electric power feeder in the 1st Embodiment of this invention 本発明の第1の実施形態における非接触給電装置の他の構成図The other block diagram of the non-contact electric power feeder in the 1st Embodiment of this invention 本発明の第1の実施形態における非接触給電装置の他の構成図The other block diagram of the non-contact electric power feeder in the 1st Embodiment of this invention 本発明の第1の実施形態における非接触給電装置の他の構成図The other block diagram of the non-contact electric power feeder in the 1st Embodiment of this invention 本発明の第1の実施形態におけるコイルの断面図Sectional drawing of the coil in the 1st Embodiment of this invention 本発明の第2の実施形態における非接触給電システムの構成図The block diagram of the non-contact electric power feeding system in the 2nd Embodiment of this invention 本発明の第2の実施形態における非接触給電システムの他の構成図The other block diagram of the non-contact electric power feeding system in the 2nd Embodiment of this invention

図1から図7に示すように、大気中、電磁波信号の伝搬損失が大気中での伝搬損に比較して大きい物質中、塩分濃度が0%から10%までの真水中もしくは海水中、あるいはこれらの組み合わせの中で、ファラデーの電磁誘導の法則に基づく非接触給電装置および非接触給電システムにおいて、前記非接触給電装置が、少なくとも、配電手段と、受電手段とから構成され、前記配電手段が、少なくとも、給電コイルを有し、前記給電コイルが、非飽和状態であり、非共振状態であり、共振状態に近い非共振状態であり、50以下の負荷Q値であり、負荷時電圧変動率が50%以下であり、駆動する交流電源の周波数より低い共振周波数であり、単線路であり、複線路であり、平行2線路であり、四角形のコイルであり、円状のコイルであり、広い帯域幅であり、あるいはこれらの組合せであり、前記受電手段が、少なくとも、受電コイルを有し、前記受電コイルが、非飽和状態であり、非共振状態であり、共振状態に近い非共振状態であり、50以下の負荷Q値であり、負荷時電圧変動率が50%以下であり、駆動する交流電源の周波数より低い共振周波数であり、四角形のコイルであり、円状のコイルであり、広い帯域幅であり、あるいはこれらの組合せであり、   As shown in FIG. 1 to FIG. 7, in the atmosphere, in a substance in which the propagation loss of electromagnetic wave signals is larger than the propagation loss in the atmosphere, in fresh water or seawater with a salinity of 0% to 10%, or Among these combinations, in the non-contact power feeding device and the non-contact power feeding system based on Faraday's law of electromagnetic induction, the non-contact power feeding device includes at least a power distribution unit and a power reception unit, and the power distribution unit At least a power supply coil, the power supply coil being in a non-saturated state, in a non-resonant state, in a non-resonant state close to the resonance state, having a load Q value of 50 or less, and a voltage fluctuation rate during load Is a resonance frequency lower than the frequency of the driving AC power source, is a single line, is a double line, is a parallel two line, is a rectangular coil, is a circular coil, The power receiving means has at least a power receiving coil, the power receiving coil is in a non-saturated state, in a non-resonant state, and close to a resonance state. A load Q value of 50 or less, a voltage fluctuation rate under load of 50% or less, a resonance frequency lower than the frequency of the driving AC power source, a rectangular coil, a circular coil, A wide bandwidth, or a combination of these,

前記給電コイルと受電コイルとが、水平方向に対向し、垂直方向に対向し、あるいはこれらの組合せで対向し、前記配電手段が、前記給電コイルに50Hzから41MHzを超える交流電源を、直接駆動し、周波数を変換して駆動し、トランスを接続して駆動し、位相調整手段を直列に接続して駆動し、位相調整手段を並列に接続して駆動し、位相調整手段を直並列に接続して供給し、リアクトルとコンデンサとを含む位相調整手段を直列に接続して駆動し、リアクトルとコンデンサとを含む位相調整手段を並列に接続して駆動し、前記交流電源の電源入力端子にリアクトルを接続して駆動し、給電制御手段を接続して駆動し、給電手段を接続して駆動し、あるいはこれらを組み合わせて駆動して、前記給電コイルから高出力の変動磁界を放射させ、前記受電手段が、前記給電コイルから放射された高出力の変動磁界によって前記受電コイルに誘起する起電力を、直接出力し、インピーダンス変換手段を介して出力し、トランスを介して出力し、位相調整手段を直列に接続して出力し、位相調整手段を並列に接続して出力し、位相調整手段を直並列に接続して出力し、受電制御手段を接続して出力し、周波数手段を介して出力し、整流手段を接続し直流電圧に変換して出力し、蓄電手段に接続して出力し、あるいはこれらを組合せて出力する。   The power feeding coil and the power receiving coil face each other in the horizontal direction, face in the vertical direction, or face each other in a combination thereof, and the power distribution means directly drives an AC power source exceeding 50 to 41 MHz to the power feeding coil. Drive by converting the frequency, drive by connecting the transformer, drive by connecting the phase adjustment means in series, drive by connecting the phase adjustment means in parallel, and connect the phase adjustment means in series and parallel The phase adjusting means including the reactor and the capacitor is connected in series and driven, and the phase adjusting means including the reactor and the capacitor is connected in parallel to be driven, and the reactor is connected to the power input terminal of the AC power source. Connect and drive, connect and drive power supply control means, connect and drive power supply means, or drive them in combination to release a high-output variable magnetic field from the power supply coil. The power receiving means directly outputs the electromotive force induced in the power receiving coil by the high-power fluctuating magnetic field radiated from the power feeding coil, output via the impedance conversion means, and output via the transformer, Phase adjustment means connected in series and output, phase adjustment means connected in parallel and output, phase adjustment means connected in series and output, power reception control means connected and output, frequency means Via the rectifying means, converted into a DC voltage and output, connected to the power storage means for output, or a combination thereof.

また、図1から図7に示すように、前記給電コイルが、前記供給する交流電源によって生じる磁束密度を、飽和させない空心であり、飽和させない構成であり、飽和させない構造であり、当該コイルの面積内で磁束密度がほぼ均一であり、前記受電コイルの方向に増加させる構造であり、あるいはこれらの組合せである。
また、図1から図7に示すように、前記給電コイルの誘導性リアクタンスと、前記位相調整手段の容量性リアクタンスと、前記給電コイルの周辺に存在する浮遊容量の容量性リアクタンスとが、非共振状態であり、共振状態に近い非共振状態であり、50以下の負荷Q値であり、負荷時電圧変動率が50%以下であり、駆動する交流電源の周波数より低い共振周波数であり、あるいはこれらの組合せである。
Further, as shown in FIGS. 1 to 7, the feeding coil is an air core that does not saturate the magnetic flux density generated by the supplied AC power supply, has a structure that does not saturate, has a structure that does not saturate, and has an area of the coil. The magnetic flux density is substantially uniform and increases in the direction of the power receiving coil, or a combination thereof.
Further, as shown in FIGS. 1 to 7, the inductive reactance of the feeding coil, the capacitive reactance of the phase adjusting means, and the capacitive reactance of stray capacitance existing around the feeding coil are non-resonant. A non-resonant state close to the resonance state, a load Q value of 50 or less, a voltage fluctuation rate during load of 50% or less, and a resonance frequency lower than the frequency of the driving AC power source, or these It is a combination.

また、図1から図7に示すように、前記受電コイルが、前記給電コイルから放射された変動磁界と誘導結合する磁束密度を、飽和させない空心であり、飽和させない構成であり、飽和させない構造であり、当該コイルの面積内で起電力がほぼ均一であり、あるいはこれらの組合せである。
また、図1から図7に示すように、前記受電コイルの誘導性リアクタンスと、前記位相調整手段の容量性リアクタンスと、前記受電コイルの周辺に存在する浮遊容量の容量性リアクタンスとが、非共振状態であり、共振状態に近い非共振状態であり、50以下の負荷Q値であり、負荷時電圧変動率が50%以下であり、誘起する起電力の周波数より低い共振周波数であり、あるいはこれらの組合せである。
Further, as shown in FIGS. 1 to 7, the power receiving coil is an air core that does not saturate the magnetic flux density inductively coupled with the fluctuating magnetic field radiated from the power feeding coil, has a configuration that does not saturate, and has a structure that does not saturate. Yes, the electromotive force is almost uniform within the area of the coil, or a combination thereof.
Further, as shown in FIGS. 1 to 7, the inductive reactance of the receiving coil, the capacitive reactance of the phase adjusting unit, and the capacitive reactance of stray capacitance existing around the receiving coil are non-resonant. A non-resonant state close to the resonance state, a load Q value of 50 or less, a voltage fluctuation rate during load of 50% or less, a resonance frequency lower than the frequency of the induced electromotive force, or these It is a combination.

また、図1から図7に示すように、前記給電コイルと位相調整手段と浮遊容量とからなる直列合成リアクタンス値と、前記受電コイルと位相調整手段と浮遊容量とからなる直列合成リアクタンス値との何れか一方あるいは両方が、前記蓄電手段の内部抵抗を含めた直列抵抗値より小さい値である。
また、図1から図7に示すように、前記給電コイルが、絶縁されたテープ状の平打ち導体あるいは平角導体を複数枚重ねて構成され、単線路で構成され、複線路で構成され、平行2線路で構成され、四角形のコイルで構成され、2回巻以内で構成され、空心であり、前記平打ち導体あるいは平角導体の1枚の厚さが表皮厚さ以内であり、複数枚の絶縁薄板を重ねた厚さであり、面積内に高誘電率の誘電体を有し、面積外に高誘電率の誘電体を有し、全体を耐熱良熱伝導性樹脂成型品に封じ込め、絶縁物により全体を含浸し、線状に配置され、面状に配置され、1面を除き良導電材のケース内に収納され、輸送可能な長さでユニット化され、あるいはこれらの組合せである。
Further, as shown in FIGS. 1 to 7, a series combined reactance value composed of the feeding coil, phase adjusting means and stray capacitance, and a series combined reactance value consisting of the receiving coil, phase adjusting means and stray capacitance, Either one or both are smaller than the series resistance value including the internal resistance of the power storage means.
Further, as shown in FIGS. 1 to 7, the feeding coil is formed by stacking a plurality of insulated tape-like flat conductors or flat conductors, is composed of a single line, is composed of multiple lines, and is parallel. Consists of two lines, is composed of a square coil, is composed of no more than two turns, is air-centered, and the thickness of one of the flat conductors or flat conductors is within the skin thickness. It is the thickness of the stacked thin plates, it has a dielectric with high dielectric constant within the area, has a dielectric with high dielectric constant outside the area, and the whole is sealed in a heat-resistant and heat-conductive resin molded product. The whole is impregnated, arranged in a line, arranged in a plane, accommodated in a case of a highly conductive material except for one side, unitized in a transportable length, or a combination thereof.

また、図1から図7に示すように、前記受電コイルが、絶縁されたテープ状の平打ち導体あるいは平角導体を複数枚重ねて構成され、四角形のコイルで構成され、ループ状に構成され、渦巻状に構成され、フラットワイズ巻に構成され、ソレノイド巻で構成され、複数回巻で構成され、空心であり、前記平打ち導体あるいは平角導体の1枚の厚さが表皮厚さ以内であり、面積内に高誘電率の誘電体を有し、面積外に高誘電率の誘電体を有し、全体を耐熱良熱伝導性樹脂成型品に封じ込め、絶縁物により全体を含浸し、1面を除き良導電材のケース内に収納され、全体をユニット化し、あるいはこれらの組合せである。   Also, as shown in FIG. 1 to FIG. 7, the power receiving coil is formed by stacking a plurality of insulated tape-like flat conductors or flat conductors, is formed of a rectangular coil, and is formed in a loop shape. Constructed in a spiral shape, constructed in a flatwise volume, composed of solenoid windings, composed of multiple turns, air-core, and the thickness of one of the flat conductors or flat conductors is within the skin thickness , Having a dielectric with a high dielectric constant within the area, having a dielectric with a high dielectric constant outside the area, encapsulating the whole in a heat-resistant, good heat conductive resin molded product, impregnating the whole with an insulator, Is housed in a case of a good conductive material, and the whole is unitized, or a combination thereof.

また、図1から図7に示すように、前記平行2線路を構成する平打ち導体の幅が、前記平行2線路の間隔から絶縁距離の1000倍以内を差し引いた値である。
また、図1から図7に示すように、前記交流電源が、定電圧直列共振形インバーターであり、定電流並列共振形インバータであり、定電圧直並列共振形インバータであり、ハーフブリッジインバータであり、フルブリッジインバータであり、負荷インピーダンスより低い出力インピーダンスであり、リアクトルとコンデンサとを直列接続した位相調整手段に対し電源ON時の突入電流を供給可能であり、定振幅デジタル変調が可能であり、あるいはこれらの組合せである。
Further, as shown in FIGS. 1 to 7, the width of the flat conductors constituting the parallel two lines is a value obtained by subtracting 1000 times or less of the insulation distance from the interval between the parallel two lines.
1 to 7, the AC power source is a constant voltage series resonance inverter, a constant current parallel resonance inverter, a constant voltage series / parallel resonance inverter, and a half-bridge inverter. It is a full-bridge inverter, has an output impedance lower than the load impedance, can supply an inrush current when the power is turned on to the phase adjustment means in which a reactor and a capacitor are connected in series, and can perform constant amplitude digital modulation, Or a combination of these.

また、図1から図7に示すように、前記受電コイルに誘起する起電力が、前記給電コイルに供給される交流電源の電圧に依存し、前記給電コイルに供給される励磁電流に依存し、前記給電コイルの形状に依存し、前記給電コイルの誘導性リアクタンスに依存し、前記給電コイルと受電コイルとの間隔に依存し、前記給電コイルの巻き数に依存し、前記受電コイルの巻き数に依存し、前記給電コイルと受電コイルとの巻線比に依存し、前記給電コイルの面積に依存し、前記受電コイルの面積に依存し、前記給電コイルの磁性体の透磁率に依存し、前記受電コイルの磁性体の透磁率に依存し、あるいはこれらの組合せに依存する。
また、図1から図7に示すように、前記受電コイルに誘起する起電力が、前記位相調整手段と直列に接続され、前記位相調整手段と並列に接続され、前記位相調整手段を介さずに接続され、整流手段と接続され、蓄電手段と接続され、50以下の負荷Q値で接続され、負荷時電圧変動率が50%以下で接続され、インピーダンス変換手段に接続され、あるいはこれらの組合せで接続される。
Moreover, as shown in FIGS. 1 to 7, the electromotive force induced in the power receiving coil depends on the voltage of the AC power source supplied to the power feeding coil, depends on the excitation current supplied to the power feeding coil, Depends on the shape of the feeding coil, depends on the inductive reactance of the feeding coil, depends on the distance between the feeding coil and the receiving coil, depends on the number of turns of the feeding coil, and depends on the number of turns of the receiving coil Depends on the winding ratio of the feeding coil and the receiving coil, depends on the area of the feeding coil, depends on the area of the receiving coil, depends on the magnetic permeability of the magnetic body of the feeding coil, It depends on the magnetic permeability of the magnetic body of the power receiving coil, or depends on a combination thereof.
Further, as shown in FIGS. 1 to 7, an electromotive force induced in the power receiving coil is connected in series with the phase adjusting unit, connected in parallel with the phase adjusting unit, and without going through the phase adjusting unit. Connected, connected to rectifying means, connected to power storage means, connected at a load Q value of 50 or less, connected at a load voltage fluctuation rate of 50% or less, connected to impedance conversion means, or a combination thereof. Connected.

また、図1から図7に示すように、前記蓄電手段の充電電流が、前記受電コイルのインピーダンス、前記位相調整手段のインピーダンス、前記整流手段のインピーダンス、前記蓄電手段のインピーダンス、前記蓄電手段の端子電圧、あるいはこれらの組合せによって制限され、前記誘起起電力に対して負荷力率が規定値内である。
また、図1から図7に示すように、前記蓄電手段が、リチウムイオン電池であり、大容量のコンデンサであり、電気二重層のコンデンサであり、リチウムイオンキャパシタであり、前記受電コイルのリアクタンス値より大きな内部抵抗値であり、あるいはこれらの組合せであり、大電流による急速充電を可能にする。
Also, as shown in FIGS. 1 to 7, the charging current of the power storage means is the impedance of the power receiving coil, the impedance of the phase adjusting means, the impedance of the rectifying means, the impedance of the power storage means, and the terminals of the power storage means. It is limited by the voltage or a combination thereof, and the load power factor is within a specified value with respect to the induced electromotive force.
1 to 7, the power storage means is a lithium ion battery, a large capacity capacitor, an electric double layer capacitor, a lithium ion capacitor, and a reactance value of the power receiving coil. It has a larger internal resistance value, or a combination thereof, and enables rapid charging with a large current.

また、図1から図7に示すように、前記給電コイルが、規定の間隔でクロスされ、メッシュ状に配置され、遠隔エリアへの変動磁界の放射を抑制するよう構成され、前記受電コイルが、クロスされた地点を検知して距離を計測し、コイルの中心部から逸脱するのを検知して走行方向の制御を行い、あるいはこれらの組合せである。
また、図1から図7に示すように、前記給電コイルを平打ち導体によって構成し、前記平打ち導体と高誘電率の絶縁物とをサンドイッチ状に重ね合わせてフラットワイズ巻とし、絶縁物を含浸して防水処理を行い、前記平打ち導体の幅広側を水平方向にしてドラムに巻き取り、前記ドラムから巻き戻して地面に設置し、前記平打ち導体の幅広側を水平方向にして車両による輸送可能な長さのユニット構造とし、前記平打ち導体の幅広側を地面に対して水平方向に設置し、あるいはこれらの組合せによって工事費の経済化を図る。
Also, as shown in FIGS. 1 to 7, the feeding coil is crossed at a predetermined interval, arranged in a mesh shape, and configured to suppress radiation of a varying magnetic field to a remote area, The crossing point is detected and the distance is measured, the deviation from the center of the coil is detected, and the traveling direction is controlled, or a combination thereof.
Further, as shown in FIGS. 1 to 7, the feeding coil is constituted by a flat conductor, and the flat conductor and a high dielectric constant insulator are overlapped in a sandwich shape to form a flatwise winding. It is impregnated and waterproofed, the wide side of the flat conductor is wound around a drum in a horizontal direction, unwound from the drum and installed on the ground, and the wide side of the flat conductor is horizontally oriented by the vehicle The unit structure has a length that can be transported, and the wide side of the flat conductor is installed in a horizontal direction with respect to the ground, or a combination thereof is used to make the construction cost economical.

また、図1から図7に示すように、前記給電コイルが、送電線を兼ねており、配電線を兼ねており、地下埋設されており、屋内配線を兼ねており、単線路であり、複線路であり、平行2線路であり、円形のコイルであり、角形のコイルであり、扁平な板状コイルであり、床上に設置され、天井に設置され、壁に設置され、机上に設置され、あるいはこれらの組合せであり、前記受電コイルが前記給電コイルと誘導結合して非接触給電を受ける。
また、図1から図7に示すように、前記給電コイルあるいは受電コイルのいずれか一方の面積を他方のコイルの面積より広くし、前記給電コイルあるいは受電コイルのいずれか一方の長辺を他方のコイルの長辺より大きくし、前記給電コイルあるいは受電コイルのいずれか一方の短辺を他方のコイルの短辺より広くし、あるいはこれらを組合せることで、前記給電コイルと受電コイルとの位置合わせを容易にする。
また、図1から図7に示すように、前記給電コイルが移動体への給電エリア内に複数組が設けられ、前記給電コイルが移動体への給電エリアに沿って複数組が設けられ、あるいはこれらの組合せで設けられ、前記複数組の給電コイルの内少なくとも1組の給電コイルと前記受電コイルとが誘導結合を継続する。
In addition, as shown in FIGS. 1 to 7, the feeding coil also serves as a power transmission line, serves as a distribution line, is buried underground, serves as an indoor wiring, is a single line, and is a double track. It is a road, two parallel tracks, a circular coil, a square coil, a flat plate coil, installed on the floor, installed on the ceiling, installed on the wall, installed on the desk, Or it is a combination thereof, and the power receiving coil is inductively coupled with the power feeding coil to receive non-contact power feeding.
Also, as shown in FIGS. 1 to 7, the area of either the feeding coil or the receiving coil is made larger than the area of the other coil, and the long side of either the feeding coil or the receiving coil is set to the other side. Aligning the feeding coil and the receiving coil by making it larger than the long side of the coil and making the short side of either the feeding coil or the receiving coil wider than the short side of the other coil, or combining them To make it easier.
In addition, as shown in FIGS. 1 to 7, a plurality of sets of the feeding coils are provided in the feeding area to the moving body, and a plurality of sets of the feeding coils are provided along the feeding area to the moving body, or These combinations are provided, and at least one of the plurality of sets of feeding coils and the power receiving coil continue inductive coupling.

また、図1から図7に示すように、前記給電コイルが設置される場合、前記給電コイルの背面に存在する構造物による給電効率の低下を抑制するために、前記給電コイルの背面に、渦電流損の少ない導電体を設置し、高飽和磁束密度の磁性体を設置し、変動磁界を反射する素材を設置し、あるいはこれらの組合せを設置する。
また、図1から図7に示すように、前記受電コイルが設置される場合、前記受電コイルの背面に存在する構造物による給電効率の低下を抑制するために、前記受電コイルの背面に、渦電流損の少ない導電体を設置し、高飽和磁束密度の磁性体を設置し、変動磁界を反射する素材を設置し、あるいはこれらの組合せを設置する。
Also, as shown in FIGS. 1 to 7, when the power supply coil is installed, a vortex is formed on the back surface of the power supply coil in order to suppress a decrease in power supply efficiency due to a structure existing on the back surface of the power supply coil. Install a conductor with less current loss, install a magnetic material with a high saturation magnetic flux density, install a material that reflects a fluctuating magnetic field, or install a combination of these.
Further, as shown in FIGS. 1 to 7, when the power receiving coil is installed, a vortex is formed on the back surface of the power receiving coil in order to suppress a decrease in power supply efficiency due to a structure existing on the back surface of the power receiving coil. Install a conductor with less current loss, install a magnetic material with a high saturation magnetic flux density, install a material that reflects a fluctuating magnetic field, or install a combination of these.

また、図1から図7に示すように、前記配電手段が、複数の給電コイルを並列に接続し、前記複数の給電コイルを直列に接続し、前記交流電源を共通に設けて接続し、単相あるいは多相の交流電源を接続し、前記位相調整手段を共通に設けて接続し、あるいはこれらの組合せによって、給電サービスエリアを拡大し、かつ同時に給電可能な受電コイルの数を増加させる。
また、図1から図7に示すように、前記配電手段が、該当する給電コイルへの交流電源の起動停止を制御し、前記受電手段とデジタル情報の送受信を行い、当該受電手段への課金情報の収集を要求し、前記課金情報をセンターサーバーへ発信し、交流電源の電圧を制御し、過電圧を保護し、供給電流を制御し、過電流を抑制し、あるいはこれらを組合せを行う。
また、図1から図7に示すように、前記受電手段が、前記配電手段との間でデジタル情報の受送信を行い、給電の起動停止要求を送信し、誘起起電力の起動停止を制御し、出力電圧を制御し、過電圧を保護し、出力電流を制御し、過電流を抑制し、課金情報を送信し、課金情報を収集し、あるいはこれらを組合せを行う。
Further, as shown in FIGS. 1 to 7, the power distribution means connects a plurality of feeding coils in parallel, connects the plurality of feeding coils in series, and connects the AC power supply in common. A phase or multi-phase AC power supply is connected, the phase adjusting means is provided in common and connected, or a combination thereof expands the power supply service area and simultaneously increases the number of power receiving coils that can supply power.
Further, as shown in FIGS. 1 to 7, the power distribution means controls the start / stop of the AC power supply to the corresponding power supply coil, transmits / receives digital information to / from the power receiving means, and billing information to the power receiving means The charging information is transmitted to the center server, the voltage of the AC power supply is controlled, the overvoltage is protected, the supply current is controlled, the overcurrent is suppressed, or a combination thereof is performed.
Further, as shown in FIGS. 1 to 7, the power receiving means transmits / receives digital information to / from the power distribution means, transmits a power supply start / stop request, and controls the start / stop of the induced electromotive force. Control the output voltage, protect the overvoltage, control the output current, suppress the overcurrent, send the billing information, collect the billing information, or combine them.

また、図1から図7に示すように、前記給電コイルが前記分布容量および浮遊容量を含む位相調整手段と非共振状態でありあるいは共振状態に近い非共振状態であり、前記受電コイルが前記分布容量および浮遊容量を含む位相調整手段と非共振状態でありあるいは共振状態に近い非共振状態であり、前記給電コイルと受電コイルとの何れか一方あるいは両方が磁力波通信と非接触給電とで共用されあるいは併設され、前記給電コイルと受電コイルとの何れか一方あるいは両方が防水されて水中あるいは海水中に没せられ、あるいはこれらの組合で磁力波通信と非接触給電とを可能にする。
また、図1から図7に示すように、前記交流電源の周波数が、前記給電コイルと受電コイルとの何れか一方あるいは両方を非共振状態で動作可能とする周波数帯であり、30kHz以下の周波数帯であり、高周波利用設備に割り当てられた周波数帯であり、ISMバンドに割当てられた周波数帯であり、あるいはこれらの組合せによって、磁力波通信と大電力の非接触給電との何れか一方あるいは両方を可能とする。
Further, as shown in FIGS. 1 to 7, the feeding coil is in a non-resonant state or a non-resonant state close to a resonance state with the phase adjusting means including the distributed capacitance and stray capacitance, and the power receiving coil is in the distribution state. Phase adjustment means including capacitance and stray capacitance is in a non-resonant state or in a non-resonant state close to the resonance state, and either or both of the feeding coil and the receiving coil are shared by magnetic wave communication and non-contact feeding One or both of the feeding coil and the receiving coil are waterproofed and immersed in water or seawater, or a combination of these enables magnetic wave communication and non-contact power feeding.
Further, as shown in FIGS. 1 to 7, the frequency of the AC power source is a frequency band in which one or both of the feeding coil and the receiving coil can be operated in a non-resonant state, and the frequency is 30 kHz or less. It is a band, a frequency band assigned to high-frequency equipment, a frequency band assigned to an ISM band, or a combination thereof, either or both of magnetic wave communication and high-power non-contact power feeding Is possible.

また、図1から図7に示すように、前記給電コイルと前記受電コイルとの間の広帯域伝送特性を利用して、相互間でデジタル情報を送受信し、相互間でデジタル情報を交換し、相互間の距離を測定し、相互間の位置する方向を測定し、相互間の位置関係を制御し、相互間の自動運転を制御し、相互間の非接触給電を制御し、あるいはこれらの組合せを行う。
また、図1から図7に示すように、前記給電コイルと前記受電コイルとの相互間で送受信されるデジタル情報によって、前記給電コイルに供給される交流電源をパルス幅変調(Pulse-Width Modulation)し、前記給電コイルに供給される交流電源をパルス位相変調(Pulse-Phase Modulation)し、前記給電コイルに供給される交流電源を定振幅変調し、前記給電コイルから放射される変動磁界信号を変調し、あるいはこれらの組合せによって、前記給電コイルから変調された変動磁界信号が送信される。
Further, as shown in FIGS. 1 to 7 , digital information is transmitted and received between each other using the broadband transmission characteristics between the feeding coil and the receiving coil, and the digital information is exchanged between each other. Measure the distance between them, measure the direction between them, control the positional relationship between them, control the automatic operation between them, control the non-contact power feeding between them, or a combination of these Do.
Further, as shown in FIGS. 1 to 7, the AC power supplied to the power supply coil is subjected to pulse width modulation (Pulse-Width Modulation) by digital information transmitted and received between the power supply coil and the power reception coil. The AC power supplied to the power supply coil is subjected to pulse-phase modulation, the AC power supplied to the power supply coil is modulated with constant amplitude, and the variable magnetic field signal radiated from the power supply coil is modulated. Alternatively, a variable magnetic field signal modulated from the feeding coil is transmitted by a combination thereof.

また、図1から図7に示すように、前記受電コイルが、MI(Magnetro-Impedance)素子を用いて構成され、前記MI素子をミキサとして構成し、前記MI素子を複数組用いアレイ状に配置して構成し、あるいはこれらの組合せで構成し、変動磁界信号の高感度な受信を可能にする。
また、図1から図7に示すように、前記給電コイル、前記受電コイル、あるいはこれらの両方が、潜航する潜航手段に搭載され、非接触給電支援手段あるいは非接触給電プラットホームに搭載され、海上を航行する船舶に搭載され、海上を飛行する飛行艇に搭載され、海上の中継手段に搭載され、あるいはこれらの組合せに搭載される。
Further, as shown in FIGS. 1 to 7, the power receiving coil is configured by using MI (Magnetro-Impedance) elements, the MI elements are configured as a mixer, and a plurality of sets of the MI elements are arranged in an array. Or a combination of these to enable highly sensitive reception of a varying magnetic field signal.
Further, as shown in FIGS. 1 to 7, the power feeding coil, the power receiving coil, or both of them are mounted on a submerged means for diving, mounted on a non-contact power feeding support means or a non-contact power feeding platform, and It is mounted on a navigating ship, mounted on a flying boat that flies over the sea, mounted on a sea relay means, or a combination thereof.

また、図1から図7に示すように、水中あるいは海水中を潜航する潜航手段が、非接触給電手段を搭載し、非接触受電手段を搭載し、非接触給電制御手段を搭載し、非接触受電制御手段を搭載し、変動磁界信号による磁力波通信手段を搭載し、蓄電手段を搭載し、推進制御手段を搭載し、あるいはこれらの組合せを搭載し、特定の潜航手段が他方の潜航手段に対して非接触給電を行い、相互間の通信を行い、あるいはこれらの両方を行う。
また、図1から図7に示すように、前記非接触給電支援手段あるいは非接触給電プラットホームが、電力ケーブルを通じて直流電源あるいは交流電源の供給を受け、単線路、複線路、平行2線路、四角形、円状、あるいはこれらの組合せによる給電コイルから変動磁界を水中あるいは海水中に放射し、水中あるいは海水中で活動中の潜航手段に搭載された受電コイルに誘起する起電力を整流手段によって直流電圧に変換し、前記潜航手段に搭載された蓄電手段を充電する。
Further, as shown in FIG. 1 to FIG. 7, the submerged means for submerging in water or seawater is equipped with a non-contact power feeding means, a non-contact power receiving means, a non-contact power feeding control means, and a non-contact Equipped with power reception control means, magnetic wave communication means with fluctuating magnetic field signal, power storage means, propulsion control means, or a combination of these, and a specific submergence means to the other submergence means In contrast, non-contact power feeding is performed, communication is performed between them, or both are performed.
Further, as shown in FIGS. 1 to 7, the non-contact power supply support means or the non-contact power supply platform is supplied with a DC power supply or an AC power supply through a power cable, and a single line, a double line, a parallel two line, a square, A fluctuating magnetic field is radiated into the water or seawater from a feeding coil of a circular shape or a combination of these, and the electromotive force induced in the power receiving coil mounted on the submergence means that is active in water or seawater is converted to a DC voltage by the rectifier. Conversion is performed, and the power storage means mounted on the submergence means is charged.

また、図1から図7に示すように、路面上を移動する移動手段が、非接触受電手段を搭載し、非接触給受電制御手段を搭載し、変動磁界信号による磁力波通信手段を搭載し、蓄電手段を搭載し、運転制御手段を搭載し、あるいはこれらの組合せを搭載し、路面に設置された非接触給電手段を利用し、非接触給受電制御手段を利用し、変動磁界信号による磁力波通信手段を利用し、あるいはこれらの組合せを利用し、非接触給電を受けかつ磁力波通信を行う。
また、図1から図7に示すように、前記配電手段が、電力ケーブルを通じて直流電源あるいは交流電源の供給を受け、単線路、複線路、平行2線路、角形、円形、線状、面状、あるいはこれらの組合せによる給電コイルから変動磁界を大気中に放射し、前記移動手段に搭載された受電コイルに前記放射された変動磁界によって誘起する起電力を整流手段によって直流電圧に変換し、前記移動手段に搭載された蓄電手段を前記直流電圧によって充電する。
Further, as shown in FIGS. 1 to 7, the moving means moving on the road surface is equipped with non-contact power receiving means, non-contact power supply / reception control means, and magnetic wave communication means using a variable magnetic field signal. The power storage means, the operation control means, or a combination of these, the non-contact power supply means installed on the road surface, the non-contact power supply / reception control means, the magnetic force generated by the variable magnetic field signal Using wave communication means or a combination of these, non-contact power supply is received and magnetic wave communication is performed.
Also, as shown in FIGS. 1 to 7, the power distribution means is supplied with a DC power supply or an AC power supply through a power cable, and is a single line, a multiple line, a parallel two line, a square, a circle, a line, a plane, Alternatively, a variable magnetic field is radiated into the atmosphere from a power supply coil by a combination of these, and an electromotive force induced by the radiated variable magnetic field in the power receiving coil mounted on the moving unit is converted into a DC voltage by a rectifying unit, and the movement The power storage means mounted on the means is charged with the DC voltage.

また、図1から図7に示すように、センターサーバを含む運用管制手段、衛星通信網、海洋上の中継手段、前記配電手段、給受電制御手段、および前記受電手段が連携してデジタル情報ネットワークを構成し、前記ネットワーク内で伝送されるデジタル情報に基づいて、移動体からの交流電源の起動停止要求を送受信し、前記起動停止要求に基いて前記交流電源の起動停止を制御し、前記起動停止要求に基いて電力料金を課金し、運用・操縦に必要な情報を中継し、運用・操縦に必要な情報を交換し、運転制御・運転操縦を支援し、あるいはこれらの組合せを行う。   Further, as shown in FIGS. 1 to 7, an operation control means including a center server, a satellite communication network, a marine relay means, the power distribution means, a power supply / reception control means, and the power reception means cooperate to form a digital information network. Configured to transmit / receive an AC power supply start / stop request from a mobile unit based on digital information transmitted in the network, and to control the AC power supply start / stop based on the start / stop request, Charges the electricity fee based on the stop request, relays information necessary for operation / maneuvering, exchanges information necessary for operation / maneuvering, supports operation control / operation maneuver, or performs a combination thereof.

また、図1から図7に示すように、センターサーバを含む交通管制手段、前記配電手段、給受電制御手段、および前記受電手段が連携してデジタル情報ネットワークを構成し、前記ネットワーク内で伝送されるデジタル情報に基づいて、移動体からの交流電源の起動停止要求を送受信し、前記起動停止要求に基いて前記交流電源の起動停止を制御し、前記起動停止要求に基いて電力料金を課金し、運用・運転に必要な情報を中継し、運用・運転に必要な情報を交換し、運転制御・運転操作を支援し、あるいはこれらの組合せを行う。
また、図1から図7に示すように、移動体が信号機によって一時停止させられる道路に沿って前記給電コイルを設置し、前記移動体が停止中に非接触給電を受ける。
Further, as shown in FIGS. 1 to 7, the traffic control means including a center server, the power distribution means, the power supply / reception control means, and the power reception means form a digital information network in cooperation with each other and are transmitted within the network. Based on the digital information, the AC power supply start / stop request from the mobile body is transmitted / received, the AC power supply start / stop is controlled based on the start / stop request, and the power charge is charged based on the start / stop request. It relays information necessary for operation and operation, exchanges information necessary for operation and operation, supports operation control and operation, or performs a combination thereof.
Moreover, as shown in FIGS. 1-7, the said feeding coil is installed along the road where a moving body is temporarily stopped with a traffic light, and the said moving body receives non-contact electric power feeding during a stop.

(実施の形態1)
図1は、本発明の第1の実施形態における非接触給電装置の構成図であり、101は非接触給電装置、11は給電コイル、41は受電コイル、21a、21bは給電コイルの入力端子、51a、51bは受電コイルの出力端子、31は交流電源、32a、32bは並列に接続された位相調整手段、33は配電手段、34は直列に接続された位相調整手段、61は蓄電手段、62は整流手段、63は受電手段、64は直列に接続された位相調整手段、100は給電コイルと受電コイルとの間隔である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a non-contact power feeding device according to a first embodiment of the present invention, where 101 is a non-contact power feeding device, 11 is a power feeding coil, 41 is a power receiving coil, 21a and 21b are input terminals of the power feeding coil, 51a and 51b are output terminals of the receiving coil, 31 is an AC power source, 32a and 32b are phase adjusting means connected in parallel, 33 is power distribution means, 34 is phase adjusting means connected in series, 61 is power storage means, 62 Is a rectifying unit, 63 is a power receiving unit, 64 is a phase adjusting unit connected in series, and 100 is an interval between the feeding coil and the receiving coil.

ここで、前記給電コイル11および受電コイル41は、空心であり、磁束密度が非飽和状態であり、飽和磁束密度が高い磁性体の周辺に設けられ、前記コイルと磁性体とが直接密着せず間隔を置いて設けられ、あるいはこれらの組合せであり、お互いに間隔100を隔て、水平方向に対向しているものとする。
また、前記各コイルは、駆動する交流電源によって、磁束密度が飽和しない構成であり、磁束密度が飽和しない構造であり、あるいは大電流を駆動できる空心とする必要がある。
また、前記給電コイル11と、位相調整手段32a、32bと位相調整手段34と、交流電源31とは、定電圧直並列共振形インバータを構成するものとする。
Here, the power feeding coil 11 and the power receiving coil 41 are air-centered, are provided in the periphery of a magnetic body having a high magnetic flux density in an unsaturated state, and the coil and the magnetic body are not in direct contact with each other. It is assumed that they are provided at an interval or a combination thereof, and are opposed to each other in the horizontal direction with an interval 100 therebetween.
Further, each coil has a structure in which the magnetic flux density is not saturated by the AC power source to be driven, and has a structure in which the magnetic flux density is not saturated, or an air core that can drive a large current.
The power feeding coil 11, the phase adjusting means 32a and 32b, the phase adjusting means 34, and the AC power supply 31 constitute a constant voltage series-parallel resonance type inverter.

また、前記給電コイル11の誘導性リアクタンスと、前記並列に接続された位相調整手段32a、32bの容量性リアクタンスと、前記給電コイルの周辺に存在する浮遊容量の容量性リアクタンスとが、非共振状態であり、共振状態に近い非共振状態であり、50以下の負荷Q値であり、負荷時電圧変動率が50%以下であり、前記給電コイル11に流れる励磁電流を相互に循環して交流電源31の負担を軽減し、前記給電コイル11から放射される電磁波信号の放射を抑制し、かつ変動磁界を効率よく外部に放射するものとする。
また、前記給電コイル11の誘導性リアクタンスと、前記直列に接続された位相調整手段34の容量性リアクタンスとが、非共振状態であり、共振状態に近い非共振状態であり、50以下の負荷Q値であり、負荷時電圧変動率が50%以下であり、前記給電コイル11に流れる実効負荷電流の力率を改善し、かつ前記給電コイル11から放射される電磁波信号の放射を抑制するものとする。
Further, the inductive reactance of the feeding coil 11, the capacitive reactance of the phase adjusting units 32a and 32b connected in parallel, and the capacitive reactance of stray capacitance existing around the feeding coil are in a non-resonant state. A non-resonant state close to the resonance state, a load Q value of 50 or less, a voltage fluctuation rate at the time of load of 50% or less, and mutually circulating the exciting current flowing through the feeding coil 11 to an AC power source It is assumed that the load on the power supply coil 31 is reduced, the radiation of the electromagnetic wave signal radiated from the feeding coil 11 is suppressed, and the variable magnetic field is efficiently radiated to the outside.
The inductive reactance of the feeding coil 11 and the capacitive reactance of the phase adjusting means 34 connected in series are in a non-resonant state, in a non-resonant state close to the resonance state, and a load Q of 50 or less. A voltage fluctuation rate under load of 50% or less, which improves the power factor of the effective load current flowing through the feeding coil 11 and suppresses the emission of electromagnetic wave signals radiated from the feeding coil 11 To do.

また、前記受電コイルの誘導性リアクタンスと、前記受電コイルと直列に接続された位相調整手段64の容量性リアクタンスと、前記受電コイルの周辺に存在する浮遊容量の容量性リアクタンスとが、非共振状態であり、共振状態に近い非共振状態で有り、50以下の負荷Q値であり、負荷時電圧変動率が50%以下であり、電磁波信号の再放射を抑制し、前記給電コイルから放射された変動磁界から起電力を効率よく誘起し、蓄電手段61に有効電力を供給するものとする。
また、前記配電手段33が、前記給電コイル11に、周波数が50Hzから41MHzを超える交流電源を、直接供給し、トランスを介して駆動し、位相制御手段を直列に接続して供給し、位相制御手段を並列に接続して供給し、リアクタを介して駆動し、周波数を変換して駆動し、あるいはこれらの組合せで大電流の励磁電流を駆動し、前記給電コイルから高出力の変動磁界を放射させ、前記受電手段63が、前記受電コイル41に誘起する起電力を、直接出力し、トランスを介して出力し、位相調整手段を直列に接続して出力し、周波数を変換して出力し、インピーダンスを変換して出力し、整流手段62によって直流電圧に変換して出力し、蓄電手段に出力し、あるいはこれらを組合せて大電流の電源として出力し、全体として非接触給電装置を構成する。
Further, the inductive reactance of the power receiving coil, the capacitive reactance of the phase adjusting unit 64 connected in series with the power receiving coil, and the capacitive reactance of stray capacitance existing around the power receiving coil are in a non-resonant state. It is in a non-resonant state close to the resonance state, has a load Q value of 50 or less, a load voltage fluctuation rate of 50% or less, suppresses re-radiation of electromagnetic wave signals, and is radiated from the feeding coil It is assumed that an electromotive force is efficiently induced from a varying magnetic field and effective power is supplied to the power storage means 61.
Further, the power distribution means 33 directly supplies the power supply coil 11 with AC power having a frequency exceeding 50 Hz to 41 MHz, drives it through a transformer, and supplies the phase control means connected in series for phase control. The devices are connected in parallel and supplied, driven through a reactor, driven by converting the frequency, or a combination of these to drive a large excitation current and radiate a high-power fluctuating magnetic field from the feeding coil The power receiving means 63 directly outputs the electromotive force induced in the power receiving coil 41, and outputs it via a transformer. The phase adjusting means is connected in series and output, and the frequency is converted and output. Impedance converted and output, converted to DC voltage by rectifier 62 and output, output to power storage means, or combined to output as a large current power source, and contactless as a whole Constituting the collector.

ここで、前記給電コイル11を駆動する交流電源の電圧をEin*Sin(ωt)とし、前記給電コイル11のインダクタンスをL1とし、ω=2πf=変動磁界の角周波数とすると、入力端子21a、21bに供給される励磁電流Iin(A)は、Iin=(Ein/ωL1)Cos(ωt)となり、大きな励磁電流となるので、前記給電コイルの入力端子側に位相調整手段32a、32bを並列に接続することで、前記交流電源に流れる励磁電流を給電コイルと並列に接続する位相調整手段32a、32bとの間で循環させ、前記給電コイルと直列に接続する位相調整手段34によって負荷力率を改善した状態で、前記給電コイルに大きな励磁電流を供給することができる。   Here, when the voltage of the AC power source for driving the feeding coil 11 is Ein * Sin (ωt), the inductance of the feeding coil 11 is L1, and ω = 2πf = the angular frequency of the varying magnetic field, the input terminals 21a, 21b The excitation current Iin (A) supplied to the capacitor is Iin = (Ein / ωL1) Cos (ωt), which is a large excitation current. Therefore, the phase adjusting means 32a and 32b are connected in parallel to the input terminal side of the feeding coil. As a result, the exciting current flowing in the AC power source is circulated between the phase adjusting means 32a and 32b connected in parallel with the feeding coil, and the load power factor is improved by the phase adjusting means 34 connected in series with the feeding coil. In this state, a large exciting current can be supplied to the feeding coil.

なお、前記給電コイルと、位相調整手段32a、32bおよび前記給電コイルの周辺に存在する浮遊容量とは、非共振状態であり、共振状態に近い非共振状態であり、負荷Qが50以下であり、負荷時電圧変動率が50%以下であり、あるいはこれらの組合せとすることで、電磁波信号の放射を抑制し、変動磁界を効率よく放射し、大気中、電磁波信号の伝搬損失が大気中での伝搬損に比較して大きい物質中、塩分濃度が0%から10%までの真水中もしくは海水中、あるいはこれらの組み合わせの中での非接触給電と磁力波通信とが可能となる。   The feeding coil, the phase adjusting means 32a and 32b, and the stray capacitance existing around the feeding coil are in a non-resonant state, in a non-resonant state close to the resonance state, and the load Q is 50 or less. The load voltage fluctuation rate is 50% or less, or a combination thereof, thereby suppressing the emission of electromagnetic wave signals, efficiently radiating fluctuating magnetic fields, and propagation loss of electromagnetic wave signals in the atmosphere. It is possible to perform non-contact power feeding and magnetic wave communication in a substance that is large compared to the propagation loss of water, in fresh water or seawater having a salinity of 0% to 10%, or in a combination thereof.

また、前記給電コイルの半径をa1、面積をS1、巻き数をN1、磁性体の比透磁率をμe1とし、前記給電コイル11bの地点から距離Z(m)の位置で生じる磁束密度Bは、前記給電コイルと受電コイルとが水平方向に対向し、相対距離をD=(a1^2+Z^2)^(1/2)で表すと、ビオ・サバールの法則より、
B={(Ein/ωL1)*(μ0*μe1*N1*S1)/[2π(a1^2+Z^2)^(3/2)]}Cos(ωt)={(Ein/ωL1)*(μ0*μe1*N1*S1)/(2π*D^3)}Cos(ωt) −−(1)
となる。
In addition, the radius of the feeding coil is a1, the area is S1, the number of turns is N1, the relative permeability of the magnetic material is μe1, and the magnetic flux density B generated at a distance Z (m) from the point of the feeding coil 11b is: When the feeding coil and the receiving coil face each other in the horizontal direction and the relative distance is represented by D = (a1 ^ 2 + Z ^ 2) ^ (1/2), according to Bio-Savart's law,
B = {(Ein / ωL1) * (μ0 * μe1 * N1 * S1) / [2π (a1 ^ 2 + Z ^ 2) ^ (3/2)]} Cos (ωt) = {(Ein / ωL1) * (μ0 * μe1 * N1 * S1) / (2π * D ^ 3)} Cos (ωt) −− (1)
It becomes.

そこで、前記給電コイルと受電コイルとが円状コイルの場合、給電コイルのインダクタンスが近似式として、L1=1.94*10^-6*μe1*N1^2*S1から求められ、前記受電コイルの巻数をN2とし、前記受電コイルの面積をS2とし、μ0=4π*10E-7とし、前記受電コイルの磁性体の比透磁率をμe2とすると、前記受電コイルに誘起する起電力Eoutは、ファラデーの電磁誘導の法則より、
Eout=-dΦ/dt=-N2*S2*dB/dt={[(Ein/10)*(μe2*(N2/N1)*S2)]/D^3]}Sin(ωt)−−(2)
となり、交流電源の電圧と同相であり、振幅の項にωを含まないことから、広帯域特性を有するので、ソースフオロア回路を用いて前記起電力をそのまま出力すると、デジタル通信のための磁力波アンテナとしても共用できることを示す。
Therefore, when the feeding coil and the receiving coil are circular coils, the inductance of the feeding coil can be obtained from L1 = 1.94 * 10 ^ -6 * μe1 * N1 ^ 2 * S1 as an approximate expression, and the number of turns of the receiving coil Is N2, the area of the receiving coil is S2, μ0 = 4π * 10E-7, and the relative permeability of the magnetic material of the receiving coil is μe2, the electromotive force Eout induced in the receiving coil is Faraday's From the law of electromagnetic induction,
Eout = -dΦ / dt = -N2 * S2 * dB / dt = {[(Ein / 10) * (μe2 * (N2 / N1) * S2)] / D ^ 3]} Sin (ωt) −− (2 )
Since it has the same phase as the voltage of the AC power supply and does not include ω in the amplitude term, it has a wideband characteristic. Therefore, if the electromotive force is output as it is using a source follower circuit, it can be used as a magnetic wave antenna for digital communication. Indicates that they can also be shared.

しかし、前記受電コイルを非接触給電に用いるためには、前記起電力から実効電力を出力する必要があり、前記受電コイルのリアクタンスωL2(Ω)と蓄電手段の内部抵抗R(Ω)との関係がωL2<Rの場合には、前記受電コイルが非共振状態であっても、前記蓄電手段に流れる電流Iout(A)は、
Iout=Eout/(R+jωL2)≒Eout/(R)={[(Ein/(10*R))*(μe2*(N2/N1)*S2)]/D^3}Sin(ωt)−−(3)
となり、前記蓄電手段に実効電流が流れ、大気中でも海水中でも非接触給電に適用できることになる。
一方、前記関係ωL2<Rが成立しない場合には、前記蓄電手段に流れる電流Iout(A)の負荷力率が低下し、給電効率が低下する問題が生じる。
However, in order to use the power receiving coil for contactless power feeding, it is necessary to output effective power from the electromotive force, and the relationship between the reactance ωL2 (Ω) of the power receiving coil and the internal resistance R (Ω) of the power storage means Is ωL2 <R, even if the power receiving coil is in a non-resonant state, the current Iout (A) flowing through the power storage means is
Iout = Eout / (R + jωL2) ≒ Eout / (R) = {[(Ein / (10 * R)) * (μe2 * (N2 / N1) * S2)] / D ^ 3} Sin (ωt) − -(3)
Thus, an effective current flows through the power storage means, and can be applied to non-contact power feeding in the air or in seawater.
On the other hand, when the relationship ωL2 <R is not established, there is a problem that the load power factor of the current Iout (A) flowing through the power storage unit is reduced and the power supply efficiency is reduced.

そこで、前記受電コイルにリアクタンスが(1/ωC2)の位相調整手段を直列に接続し、(1/(ω^2*L2*C2))≒1とすると、前記蓄電手段に流れる電流Iout(A)は、
Iout=Eout/(R+jωL2(1-(1/(ω^2*L2*C2)))≒Eout/(R)={[(Ein/(10*R))*(μe2*(N2/N1)*S2)]/D^3}Sin(ωt)−−(4)
となり、前記蓄電手段に起電力と同相の充電電流が流れることになり、実効電力が出力される。
なお、前記(4)式において、前記位相調整手段が直列に接続された場合でも、ωL2(1-(1/(ω^2*L2*C2))<Rが成立する場合を前記受電コイルが共振状態に近い非共振状態で有るものとし、前記受電コイルが共振状態に近い非共振状態で有り、受電コイルの負荷Q値(ωL2/R)が50以下であり、前記受電コイルの共振周波数が駆動する交流電源の周波数より低い状態であり、負荷時電圧変動率が50%以下であり、あるいはこれらの組合せによって、前記受電コイルから再放射される電磁波信号が抑制されるので、海水中での非接触給電が可能となる。
Therefore, when the phase adjusting means having a reactance of (1 / ωC2) is connected in series to the power receiving coil and (1 / (ω ^ 2 * L2 * C2)) ≈1, the current Iout (A )
Iout = Eout / (R + jωL2 (1- (1 / (ω ^ 2 * L2 * C2))) ≒ Eout / (R) = {[(Ein / (10 * R)) * (μe2 * (N2 / N1) * S2)] / D ^ 3} Sin (ωt)-(4)
Thus, a charging current having the same phase as the electromotive force flows through the power storage means, and effective power is output.
In the above equation (4), even when the phase adjusting means is connected in series, the case where ωL2 (1- (1 / (ω ^ 2 * L2 * C2)) <R holds The power receiving coil is in a non-resonant state close to the resonance state, the load coil Q value (ωL2 / R) of the power receiving coil is 50 or less, and the resonance frequency of the power receiving coil is It is in a state lower than the frequency of the alternating current power supply to be driven, the voltage fluctuation rate at the time of load is 50% or less, or the combination thereof, the electromagnetic wave signal re-radiated from the power receiving coil is suppressed. Non-contact power supply is possible.

また、前記給電コイルが磁性体に密着して巻かれており、前記給電コイルに大電流が駆動されると、前記給電コイルから中心点に向かってr(m)の点での磁束密度Br(テスラ)は、Br=μ0*μe1*N1*Iin/2rで表され、r≒0の点では、前記供給電流Iin(A)が大きくなると、前記磁束密度が磁性体の飽和磁束密度を容易に超えるので、少なくともコイルの近辺では空心とする必要がある。
また、大電力を非接触給電するためには、前記給電コイルと受電コイルの両方が大電流によって磁束密度が飽和しないようにするため、空心であり、大電流によって磁束密度が飽和しない構成であり、磁束密度が飽和しない構造であり、あるいはこれらの組合せであり、前記給電コイルの面積内から放射される変動磁界の磁束密度を均一に近づけ、前記受電コイルから誘起する起電力を均一に近づけ、あるいはこれらの対策が必要となる。
In addition, the power supply coil is wound in close contact with a magnetic body, and when a large current is driven to the power supply coil, the magnetic flux density Br (r (m) point from the power supply coil toward the center point ( Tesla) is expressed by Br = μ0 * μe1 * N1 * Iin / 2r, and when r≈0, when the supply current Iin (A) increases, the magnetic flux density easily increases the saturation magnetic flux density of the magnetic material. Therefore, it is necessary to be air-centered at least near the coil.
In addition, in order to supply a large amount of power in a non-contact manner, both the power supply coil and the power receiving coil are air-core so that the magnetic flux density is not saturated by a large current, and the magnetic flux density is not saturated by a large current. The magnetic flux density is not saturated, or a combination thereof, and the magnetic flux density of the varying magnetic field radiated from within the area of the feeding coil is made to be uniform, the electromotive force induced from the power receiving coil is made to be uniform, Or these measures are needed.

ここで、前記受電コイルから実効電力が出力されると、それと等価な実効電力が交流電源から給電されることになるが、前記給電コイルのリアクタンスωL1(Ω)と蓄電手段の内部抵抗R(Ω)との関係がωL1<Rの場合には、交流電源に対する負荷力率が高く給電効率も良好であるが、前記関係ωL2<Rが成立しない場合には、前記給電コイルにリアクタンスが(1/ωC1)の位相調整手段34を直列に接続することで対策する必要がある。
また、前記位相調整手段34が給電コイルと直列に接続された場合でも、ωL1(1-(1/(ω^2*L1*C1))<Rが成立し、前記給電コイルが共振状態に近い非共振状態で有り、前記交流電源の出力インピーダンスを負荷インピーダンスより低くし、前記給電コイルのリアクタンスを小さくし、給電コイルの負荷Q値(ωL1/R)が50以下であり、前記給電コイルの共振周波数が駆動する交流電源の周波数より低い状態であり、負荷時電圧変動率が50%以下であり、あるいはこれらの組合せであれば、前記給電コイルから放射される電磁波信号が抑制されるので、海水中での非接触給電が可能となる。
Here, when the effective power is output from the power receiving coil, the equivalent effective power is supplied from the AC power source, but the reactance ωL1 (Ω) of the power supply coil and the internal resistance R (Ω ) And ωL1 <R, the load power factor with respect to the AC power supply is high and the power supply efficiency is good.However, when the relationship ωL2 <R is not satisfied, the reactance is (1 / It is necessary to take measures by connecting the phase adjusting means 34 of ωC1) in series.
Further, even when the phase adjusting means 34 is connected in series with the feeding coil, ωL1 (1- (1 / (ω ^ 2 * L1 * C1)) <R is satisfied, and the feeding coil is close to the resonance state. It is in a non-resonant state, the output impedance of the AC power supply is made lower than the load impedance, the reactance of the feeding coil is reduced, the load Q value (ωL1 / R) of the feeding coil is 50 or less, and the resonance of the feeding coil If the frequency is lower than the frequency of the alternating-current power supply to be driven and the voltage fluctuation rate under load is 50% or less, or a combination thereof, the electromagnetic wave signal radiated from the feeding coil is suppressed. Non-contact power feeding in the inside becomes possible.

また、前記配電手段33には、交流電源の起動停止、課金情報の収集、複数組の給電コイルの切替え、複数組の給電コイルの合成、あるいはこれらを組合せた機能を付加するものとする。
また、前記給電コイルと受電コイルとの間隔の変化によって、前記受電コイルに誘起する起電力が変化するので、センサーを設けて前記起電力を常時監視し、受電コイルのタップ切替え、リアクトルのタップ切替え、位相調整手段のタップ切替え、給電コイルを駆動する交流電源のパルス幅を制御し、あるいはこれらの組合せなどの調整と制御が必要である。
Further, the power distribution means 33 is added with functions of starting and stopping the AC power supply, collecting billing information, switching a plurality of sets of feeding coils, combining a plurality of sets of feeding coils, or a combination thereof.
In addition, since the electromotive force induced in the power receiving coil changes due to the change in the interval between the power feeding coil and the power receiving coil, a sensor is provided to constantly monitor the electromotive force, and tap switching of the power receiving coil and tap switching of the reactor are performed. Further, it is necessary to adjust and control the tap switching of the phase adjusting means, the pulse width of the AC power source for driving the feeding coil, or a combination thereof.

また、前記給電コイルを路面下に埋設しあるいは前記受電コイルをEV車に搭載する場合に、前記給電コイルの下面あるいは受電コイルの上側に、非磁性体の良導体板を配置することで、路面下に存在する物体あるいはEV車の車体に生じる渦電流損を軽減するとともに、前記良導体板とは逆方向に向けて変動磁界の放射を増大させる効果が期待できる。
また、前記給電コイルから放射される変動磁界の磁力線の方向が一定方向に反射するように、前記良導電体板を湾曲させ、あるいは少なくとも1面が開放された良導電体のケースとすることで、前記給電コイルの利得あるいは指向性の改善が期待できる。
Further, when the power feeding coil is embedded under the road surface or the power receiving coil is mounted on an EV vehicle, a non-magnetic good conductor plate is disposed on the lower surface of the power feeding coil or the upper side of the power receiving coil. The effect of reducing the eddy current loss generated in the object existing in the vehicle body or the vehicle body of the EV vehicle and increasing the radiation of the variable magnetic field in the direction opposite to the good conductor plate can be expected.
In addition, by bending the good conductor plate so that the direction of the magnetic field lines of the fluctuating magnetic field radiated from the feeding coil is reflected in a certain direction, or by making a case of a good conductor having at least one surface open. Improvement of the gain or directivity of the feeding coil can be expected.

また、前記受電コイルに誘起する起電力が、前記給電コイルに供給される交流電源の電圧に依存し、前記給電コイルの誘導性リアクタンスに依存し、前記給電コイルと受電コイルとの間隔に依存し、前記受電コイルの巻き数と給電コイルの巻き数との比に依存し、前記受電コイルの面積に依存し、前記受電コイルの磁性体の比透磁率に依存し、あるいはこれらの組合せに依存することから、これらのパラメータの組み合わせを変化させることで、誘起する起電力を試算して最適化することができる。
また、前記給電コイルおよび受電コイルに、扁平平角導体の短辺を表皮効果によって抵抗値が過大とならない範囲内の絶縁薄板導体を複数枚重ねた厚さとし、あるいは平角導体と絶縁物とをサンドウイッチ状に重ね合わすことで、表皮効果による損失の増加を軽減することができる。
The electromotive force induced in the power receiving coil depends on the voltage of the AC power source supplied to the power feeding coil, depends on the inductive reactance of the power feeding coil, and depends on the distance between the power feeding coil and the power receiving coil. , Depends on the ratio of the number of turns of the power receiving coil and the number of turns of the power feeding coil, depends on the area of the power receiving coil, depends on the relative permeability of the magnetic body of the power receiving coil, or depends on a combination thereof Therefore, by changing the combination of these parameters, the induced electromotive force can be estimated and optimized.
In addition, the feeding coil and the receiving coil have a thickness in which the short sides of the flat rectangular conductor are stacked with a plurality of insulating thin plate conductors within a range in which the resistance value does not become excessive due to the skin effect, or the rectangular conductor and the insulator are sandwiched. By overlapping in the shape, the increase in loss due to the skin effect can be reduced.

図2は、本発明の第1の実施形態における非接触給電装置の他の構成図であり、102は非接触給電装置、11は平行2線路の給電コイル、41は受電コイル、21a、21bは給電コイルの入力端子、51a、51bは受電コイルの出力端子、31は交流電源、32a、32bは並列に接続された位相調整手段、33は配電手段、34は直列に接続された位相調整手段、61は蓄電手段あるいは負荷抵抗、62は整流手段あるいは直流への変換手段、63は受電手段(図示せず)、64は直列に接続された位相調整手段、100は給電コイルと受電コイルとの間隔(図示せず)、105は給電コイルの断面図である。   FIG. 2 is another configuration diagram of the non-contact power feeding apparatus according to the first embodiment of the present invention, in which 102 is a non-contact power feeding apparatus, 11 is a parallel two-line power feeding coil, 41 is a power receiving coil, and 21a and 21b are Input terminals of the feeding coil, 51a and 51b are output terminals of the receiving coil, 31 is an AC power source, 32a and 32b are phase adjusting means connected in parallel, 33 is power distribution means, 34 is phase adjusting means connected in series, 61 is a power storage means or load resistance, 62 is a rectifying means or DC conversion means, 63 is a power receiving means (not shown), 64 is a phase adjusting means connected in series, and 100 is a distance between the feeding coil and the receiving coil. (Not shown) and 105 are sectional views of the feeding coil.

ここで、前記給電コイル11と、受電コイル41とは、共にあるいは何れかが、空心であり、非飽和状態であり、非共振状態であり、共振状態に近い非共振状態であり、水平方向に対向しており、あるいはこれらの組合せであり、給電コイル側には大きな励磁電流を駆動して高出力の変動磁界を放射し、受電コイルから高出力の起電力を誘起することができる。
また、給電コイル11に、単線路、複線路、平行2線路、長方形のループコイル、長方形のヘリカルコイル、長方形の渦巻コイル、あるいはこれらの組合せよる扁平平角のコイルを水平方向に接地して用い、走行車線に沿って設置し、給電サービスエリア内に設置し、シームレスで長尺の給電コイルを構成し、あるいはこれらの組合せにより複数のEV車に搭載された受電コイルに対して同時に大電力の非接触給電を可能にする。
また、前記給電コイルを複数区間に分割し、複数区間で交差させ、あるいはこれらの組合せにより距離情報を発生させることができる。
Here, either or both of the feeding coil 11 and the receiving coil 41 are air-centered, non-saturated, non-resonant, non-resonant near the resonance, and horizontally. They are opposed to each other or a combination thereof, and a large excitation current can be driven to radiate a high-output fluctuating magnetic field on the feeding coil side, so that a high-output electromotive force can be induced from the receiving coil.
In addition, a single flat line, a double line, two parallel lines, a rectangular loop coil, a rectangular helical coil, a rectangular spiral coil, or a flat rectangular coil formed by a combination thereof is grounded in the horizontal direction for the feeding coil 11, Installed along the driving lane, installed in the power supply service area, constituted a seamless and long power supply coil, or a combination of these, high power non-power to the power receiving coils mounted on multiple EV cars at the same time Enables contact power supply.
Further, the feeding coil can be divided into a plurality of sections, intersected in a plurality of sections, or distance information can be generated by a combination thereof.

なお、給電コイルには常時大きな励磁電流が流れるので、前記給電コイルと並列に接続する位相調整手段をリアクトル32bとコンデンサ32aとの直列接続とすることで、前記交流電源31を起動時に流れる突入電流を抑制し、かつ前記給電コイルと直列に接続する位相調整手段34によって力率を改善するとともに、受電手段からの給電要求が無い場合には給電コイルへの電流供給を切断するか、前記給電コイルへの供給電圧を低下させるなどの対策が必要である。
また、前記給電コイルおよび/あるいは受電コイルを平打ち導体によって構成し、前記平打ち導体と高誘電率の絶縁物とをサンドイッチ状に重ね合わせ、図5に示すフラットワイズ巻とし、高誘電率の絶縁物を含浸させて防水処理を行い、前記平打ち導体を水平方向としてドラムに巻き取り、前記平打ち導体を地面に対して水平方向に設置し、前記コイルに分布容量あるいは浮遊容量を付加して前記位相調整手段の負担を軽減し、あるいはこれらの組合せにより経済化を図ることができる。
In addition, since a large exciting current always flows through the power supply coil, an inrush current that flows through the AC power supply 31 when the AC power supply 31 is started up by connecting a phase adjusting unit connected in parallel with the power supply coil to a reactor 32b and a capacitor 32a. And the power factor is improved by the phase adjusting means 34 connected in series with the power supply coil, and when there is no power supply request from the power receiving means, the current supply to the power supply coil is cut off, or the power supply coil It is necessary to take measures such as lowering the supply voltage.
Further, the feeding coil and / or the receiving coil are configured by a flat conductor, and the flat conductor and a high dielectric constant insulator are stacked in a sandwich shape to form a flatwise winding as shown in FIG. It is impregnated with an insulating material to be waterproofed, the flat conductor is wound around a drum in a horizontal direction, the flat conductor is installed in a horizontal direction with respect to the ground, and distributed capacitance or stray capacitance is added to the coil. Thus, the burden on the phase adjusting means can be reduced, or the combination can be made economical.

また、前記給電コイルおよび/あるいは受電コイルの誘導性リアクタンスと、前記位相調整手段の容量性リアクタンスと、前記給電コイルの周辺に存在する浮遊容量の容量性リアクタンスとを、非共振状態とし、共振状態に近い非共振状態とし、50以下の負荷Q値とし、負荷時電圧変動率が50%以下とし、交流電源の周波数より低い共振周波数とし、あるいはこれらの組合せによって、前記給電コイルから放射される電磁波信号を抑制することが可能となり、前記受電コイルから再放射される電磁波信号を抑制することが可能となり、水中あるいは海水中では変位電流の放射あるいは再放射を抑制できるので、渦電流損による損失を抑制できることから、給電コイルから海水中において大きな変動磁界を高い効率で外部へ放射し、受電コイルに大きな起電力を高い効率で誘起することが可能となる。   Further, the inductive reactance of the feeding coil and / or the receiving coil, the capacitive reactance of the phase adjusting means, and the capacitive reactance of stray capacitance existing around the feeding coil are in a non-resonant state, Electromagnetic wave radiated from the feeding coil by a non-resonant state near 50, a load Q value of 50 or less, a load voltage fluctuation rate of 50% or less, a resonance frequency lower than the frequency of the AC power supply, or a combination thereof. It is possible to suppress the signal, to suppress the electromagnetic wave signal re-radiated from the power receiving coil, and to suppress the emission or re-radiation of the displacement current in water or sea water, so that the loss due to the eddy current loss can be reduced. Because it can be suppressed, a large fluctuating magnetic field is radiated from the feeding coil to the outside with high efficiency in the seawater. It is possible to induce a large electromotive force at a high efficiency.

また、前記給電コイルを扁平平行2線路として道路面に水平に設置し、前記受電コイルを四角形のコイルとして前記給電コイルと対向して移動体に設置し、前記給電コイルを駆動する交流電源の電圧をEin*Sin(ωt)とすると、前記受電コイルに誘起する起電力Eoutは、
Eout=-dΦ/dt=[((Ein/Ly1)*N2*S2)/(2^0.5*D1*ACOSH(Lx1/w1))]Sin(ωt) −−(5)
となる。
ここで、Ly1=扁平平行2線路の長さ、N2=受電コイルの巻き数、S2=受電コイルの面積、D1=給電コイルと受電コイルとの相対距離=((d1/2)^2+Z^2)^0.5、Lx1=扁平平行2線路の間隔、w1=扁平平行2線路の幅、t1=扁平平行2線路の厚さとし、t1<<w1とする。
また、前記(5)式によれば、起電力が、(1)受電コイルの巻き数N2と面積S2とに比例して増加し、(2)相対距離D1に反比例して増加し、(3)平行2線路の幅w1がLx1に近づく程増加することを示している。
Further, the power supply coil is installed horizontally on the road surface as two flat parallel lines, the power reception coil is installed as a rectangular coil on the moving body facing the power supply coil, and the voltage of the AC power source that drives the power supply coil Is Ein * Sin (ωt), the electromotive force Eout induced in the receiving coil is
Eout = -dΦ / dt = [((Ein / Ly1) * N2 * S2) / (2 ^ 0.5 * D1 * ACOSH (Lx1 / w1))] Sin (ωt) −− (5)
It becomes.
Here, Ly1 = length of flat parallel two lines, N2 = number of windings of receiving coil, S2 = area of receiving coil, D1 = relative distance between feeding coil and receiving coil = ((d1 / 2) ^ 2 + Z ^ 2) ^ 0.5, Lx1 = interval of two flat parallel lines, w1 = width of two flat parallel lines, t1 = thickness of two flat parallel lines, and t1 << w1.
Further, according to the equation (5), the electromotive force increases in proportion to (1) the number of windings N2 and the area S2 of the receiving coil, (2) increases in inverse proportion to the relative distance D1, and (3 ) The width w1 of the parallel two lines increases as it approaches Lx1.

また、前記受電コイルのリアクタンスωL2(Ω)と蓄電手段の内部抵抗R(Ω)との関係がωL2<Rの場合には、前記受電コイルが非共振状態であっても、前記蓄電手段に流れる電流Iout(A)は、
Iout=Eout/(R+jωL2)≒Eout/(R)=[((Ein/(Ly1*R))*N2*S2)/(2^0.5*D1*ACOSH(Lx1/w1))]Sin(ωt) −−(6)
となり、前記蓄電手段に実効電流が流れ、大気中でも海水中でも非接触給電が可能となる。
また、前記関係ωL2<Rが成立しない場合には、前記受電コイルにリアクタンスが(1/ωC2)の位相調整手段を直列に接続し、(1/(ω^2*L2*C2))≒1とし、共振状態に近い非共振とすることで前記蓄電手段に起電力と同相の充電電流が流れることになる。
Further, when the relationship between the reactance ωL2 (Ω) of the power receiving coil and the internal resistance R (Ω) of the power storage means is ωL2 <R, the current flows to the power storage means even if the power receiving coil is in a non-resonant state. The current Iout (A) is
Iout = Eout / (R + jωL2) ≒ Eout / (R) = [(((Ein / (Ly1 * R)) * N2 * S2) / (2 ^ 0.5 * D1 * ACOSH (Lx1 / w1))] Sin ( ωt) --- (6)
Thus, an effective current flows through the power storage means, and non-contact power feeding is possible in the air and sea water.
Further, when the relationship ωL2 <R is not established, a phase adjusting unit having a reactance of (1 / ωC2) is connected in series to the power receiving coil, and (1 / (ω ^ 2 * L2 * C2)) ≈1 When the non-resonance is close to the resonance state, a charging current having the same phase as the electromotive force flows through the power storage means.

ただし、前記位相調整手段が受電コイルと直列に接続された場合でも、前記受電コイルが共振状態に近い非共振状態で有り、受電コイルの負荷Q値(ωL2/R)が50以下であり、負荷時電圧変動率が50%以下であり、前記受電コイルの共振周波数が駆動する交流電源の周波数より低い状態であり、あるいはこれらの組合せによって、前記受電コイルから再放射される電磁波信号が抑制されるので、海水中での非接触給電が可能となる。
また、前記給電コイルにおいて前記位相調整手段が直列に接続された場合でも、ωL1(1-(1/(ω^2*L1*C1))<Rが成立し前記給電コイルが共振状態に近い非共振状態で有り、給電コイルの負荷Q値(ωL1/R)が50以下であり、負荷時電圧変動率が50%以下であり、前記給電コイルの共振周波数が駆動する交流電源の周波数より低い状態であり、あるいはこれらの組合せによって、前記給電コイルから放射される電磁波信号が抑制されるので、海水中での非接触給電が可能となる。
However, even when the phase adjusting means is connected in series with the power receiving coil, the power receiving coil is in a non-resonant state close to a resonance state, and the load Q value (ωL2 / R) of the power receiving coil is 50 or less. The voltage fluctuation rate is 50% or less, and the resonance frequency of the power receiving coil is lower than the frequency of the AC power source to be driven, or a combination thereof suppresses the electromagnetic wave signal re-radiated from the power receiving coil. Therefore, non-contact power feeding in seawater becomes possible.
Further, even when the phase adjusting means is connected in series in the power supply coil, ωL1 (1- (1 / (ω ^ 2 * L1 * C1)) <R is satisfied and the power supply coil is in a non-resonant state. The resonance state, the load coil Q value (ωL1 / R) is 50 or less, the voltage fluctuation rate under load is 50% or less, and the resonance frequency of the power supply coil is lower than the frequency of the AC power supply to be driven These or a combination thereof suppresses the electromagnetic wave signal radiated from the power supply coil, so that non-contact power supply in seawater is possible.

また、前記給電コイルを幅広の平打ち導体を用いて構成すると、長辺が500m程度までの給電コイルをドラムに巻き取り、専用のトレーラで輸送した後に、道路表面の比較的に浅い部分にドラムを巻戻しながら埋設し、あるいは、給電コイルをユニット化して輸送する場合、トレーラで輸送可能な長さが制限されるため、制限寸法内でユニット化することで、輸送および設置工事の経済化が図れる利点がある。
また、前記長尺の給電コイル全体が、耐熱良熱伝導性樹脂成型品に封じ込められ、絶縁物により含浸され、少なくとも1面が開けた良導電材を設け、あるいはこれらの組合せでユニット化できる。
In addition, when the feeding coil is configured using a wide flat conductor, the feeding coil having a long side of up to about 500 m is wound around a drum and transported by a dedicated trailer, and then the drum is placed on a relatively shallow portion of the road surface. When rewinding or embeding or transporting the power supply coil as a unit, the length that can be transported by the trailer is limited. There is an advantage that can be achieved.
Further, the entire long feeding coil can be enclosed in a heat-resistant and heat-conductive resin molded product, impregnated with an insulating material, provided with a good conductive material having at least one surface opened, or a combination thereof.

図3は、本発明の第1の実施形態における非接触給電装置の他の構成図であり、103は非接触給電装置の構成図、301aから301dは給電コイル、300aから300dは街路ブロックである。
ここで、前記給電コイル301aから301dは、左側走行中のEV車が交差点において信号待ちする区間に設置され、EV車が一時停車している間に非接触給電を可能とする。
FIG. 3 is another configuration diagram of the non-contact power feeding device according to the first embodiment of the present invention, 103 is a configuration diagram of the non-contact power feeding device, 301a to 301d are power feeding coils, and 300a to 300d are street blocks. .
Here, the power supply coils 301a to 301d are installed in a section where an EV vehicle running on the left side waits for a signal at an intersection, and enables non-contact power supply while the EV vehicle is temporarily stopped.

また、前記給電コイル301aから301dは、空心であり、非飽和状態であり、非共振状態であり、共振状態に近い非共振状態であり、受電コイル(表示せず)とは水平方向に対向しており、あるいはこれらの組合せであり、給電コイル側には大きな励磁電流を駆動して高出力の変動磁界を放射し、受電コイルから高出力の起電力を誘起することができる。
また、給電コイル301aから301dは、単線路であり、複線路であり、平行2線路であり、長方形のループコイルであり、長方形の渦巻コイルであり、あるいはこれらの組合せよる長尺のコイルであり、走行車線に沿って設置し、シームレスで長尺の給電コイルを構成し、あるいはこれらの組合せにより複数のEV車に搭載された受電コイルに対して同時に大電力の非接触給電を可能にする。
Further, the feeding coils 301a to 301d are air-centered, non-saturated, non-resonant, non-resonant close to the resonance, and face the power receiving coil (not shown) in the horizontal direction. Or a combination thereof, and a large excitation current can be driven to radiate a high-output fluctuating magnetic field on the feeding coil side, and a high-output electromotive force can be induced from the receiving coil.
The feeding coils 301a to 301d are a single line, a double line, a parallel two line, a rectangular loop coil, a rectangular spiral coil, or a long coil formed by a combination thereof. It is installed along the traveling lane to form a seamless and long power supply coil, or a combination of these enables high-power non-contact power supply to power receiving coils mounted on a plurality of EV cars at the same time.

また、前記配電手段(表示せず)によって、前記複数の給電コイルを並列に接続し、前記複数の給電コイルを直列に接続し、前記交流電源を共通に設けて接続し、単相あるいは多相の交流電源を接続し、前記位相調整手段を共通に設けて接続し、あるいはこれらの組合せによって、給電サービスエリアを拡大し、かつ同時に給電可能な受電コイルの数を増加させることができる。
また、前記複数の給電コイルを直列に接続する場合には、前記位相調整手段の耐圧を増加させる必要があるが、前記位相調整手段の容量値を減少させることができるので、前記位相調整手段の負担を軽減できるメリットが得られる。
Further, the power distribution means (not shown) connects the plurality of power supply coils in parallel, connects the plurality of power supply coils in series, and provides the AC power supply in common for connection. By connecting these AC power sources and connecting the phase adjusting means in common, or by combining them, it is possible to expand the power supply service area and increase the number of power receiving coils that can supply power simultaneously.
Further, when the plurality of feeding coils are connected in series, it is necessary to increase the withstand voltage of the phase adjusting unit, but since the capacitance value of the phase adjusting unit can be decreased, Benefits that can reduce the burden.

なお、給電コイルには、常時大きな励磁電流が流れるので、並列に接続する位相調整手段、無効電力補償手段、位相補償手段、あるいはこれらの組合せを設け、力率を改善するとともに、受電手段からの給電要求が無い場合には給電コイルへの電流供給を切断するか、前記給電コイルへの供給電圧を低下させるか、磁力波通信機能を維持させるなどの対策が必要である。
また、前記給電コイルを扁平平打ち導体によって構成し、前記扁平平打ち導体と高誘電率の絶縁物とをサンドイッチ状に重ね合わせ、図5に示すフラットワイズ巻とし、高誘電率の絶縁物を含浸させて防水処理を行い、前記平打ち導体を水平方向としてドラムに巻き取り、前記平打ち導体を地面に対して水平方向に設置し、前記コイルに分布容量あるいは浮遊容量を付加して前記位相調整手段の負担を軽減し、あるいはこれらの組合せにより経済化を図ることができる。
In addition, since a large exciting current always flows in the power feeding coil, a phase adjusting unit, a reactive power compensating unit, a phase compensating unit, or a combination of these connected in parallel is provided to improve the power factor and from the power receiving unit. When there is no power supply request, it is necessary to take measures such as cutting off the current supply to the power supply coil, reducing the supply voltage to the power supply coil, or maintaining the magnetic wave communication function.
Further, the feeding coil is constituted by a flat flat conductor, and the flat flat conductor and a high dielectric constant insulator are stacked in a sandwich shape to form a flatwise winding as shown in FIG. It is impregnated and waterproofed, the flat conductor is wound around a drum in a horizontal direction, the flat conductor is installed in a horizontal direction with respect to the ground, and a distributed capacitance or stray capacitance is added to the coil to add the phase. The burden on the adjusting means can be reduced, or the combination can be made economical.

図4は、本発明の第1の実施形態における非接触給電装置の他の構成図であり、104は海水中での非接触給電装置、11は給電コイル、31は交流電源、32a、32bは並列に接続する位相調整手段、34は直列に接続する位相調整手段、37は配電手段側防水ケース、41は受電コイル、61は蓄電手段、62は整流手段あるいは直流電圧への変換手段、64は直列に接続する位相調整手段、67は受電手段側防水ケース、100は給電コイルと受電コイルとの間隔(表示せず)である。   FIG. 4 is another configuration diagram of the non-contact power supply apparatus according to the first embodiment of the present invention, in which 104 is a non-contact power supply apparatus in seawater, 11 is a power supply coil, 31 is an AC power source, and 32a and 32b are Phase adjustment means connected in parallel, 34 phase adjustment means connected in series, 37 water distribution case side waterproof case, 41 power receiving coil, 61 electricity storage means, 62 rectification means or DC voltage conversion means, 64 Phase adjusting means connected in series, 67 is a power receiving means side waterproof case, and 100 is an interval (not shown) between the feeding coil and the receiving coil.

ここで、前記給電コイルおよび/あるいは受電コイルを、非共振状態とし、共振状態に近い非共振状態とし、あるいは負荷Q値が50以下とし、負荷時電圧変動率が50%以下とすることで、前記給電コイルからの電磁波信号の放射を抑制し、前記受電コイルからの電磁波の再放射を抑制することが可能となり、塩分濃度が0%から10%までの真水中もしくは海水中で生じる渦電流損を軽減できるので、近距離間で高い給電効率で非接触給電が可能となり、中距離間で磁力波通信が可能となる。
また、前記交流電流の周波数が、前記受電コイルを動作可能とする周波数帯であり、30kHz以下の周波数帯であり、高周波利用設備に割り当てられた周波数帯であり、6.78MHz、13.56MHz、20.34MHz、27.12MHz、および40.68MHzを含むISMバンドに割当てられた周波数帯であり、あるいはこれらを組み合わせることによって、海水中での大電力の非接触給電が可能となる。
Here, the power feeding coil and / or the power receiving coil is set to a non-resonant state, a non-resonant state close to the resonance state, or a load Q value is set to 50 or less, and a voltage fluctuation rate at load is set to 50% or less. It is possible to suppress the emission of electromagnetic wave signals from the power supply coil and to suppress the re-radiation of electromagnetic waves from the power receiving coil, and eddy current loss that occurs in fresh water or seawater with a salt concentration of 0% to 10%. Therefore, non-contact power feeding is possible with high power feeding efficiency over short distances, and magnetic wave communication is possible over medium distances.
The frequency of the alternating current is a frequency band in which the power receiving coil can be operated, is a frequency band of 30 kHz or less, is a frequency band assigned to a high-frequency use facility, 6.78 MHz, 13.56 MHz, It is a frequency band allocated to the ISM band including 20.34 MHz, 27.12 MHz, and 40.68 MHz, or by combining these, high-power non-contact power feeding in seawater becomes possible.

また、前記受電コイルを動作可能とする周波数帯、あるいは30kHz以下の周波数帯を用いる場合には、前記給電コイルが、単線路であり、複線路であり、あるいは平行2線路であり、前記受電コイルが四角形のコイルであり、かつ、前記給電コイルを海底に設置し、海水中に浮遊させて海底にアンカーで固定して設置し、あるいは海面に浮遊させて設置することで、大電力の非接触給電プラットホームが実現できる。
あるいは、前記交流電源が海上に停泊中の船舶から直接供給され、あるいは防水ケース内に設けられた周波数変換手段によって所要の周波数に変換されて供給される。
When using a frequency band in which the power receiving coil can be operated, or a frequency band of 30 kHz or less, the power feeding coil is a single line, a multiple line, or a parallel two line, and the power receiving coil Is a rectangular coil, and the power supply coil is installed on the seabed, suspended in seawater and fixed with an anchor on the seafloor, or suspended on the sea surface, and installed in a high-power non-contact manner. A power supply platform can be realized.
Alternatively, the AC power is supplied directly from a ship anchored at sea, or converted into a required frequency by a frequency conversion means provided in a waterproof case and supplied.

また、前記防水ケースは、深海での使用に耐えるように耐圧構造であり、絶縁物を充填した構造であり、前記給電コイルと受電コイルとが対向している面が開放された構造であり、前記対向している面を除き導電体の構造物で蔽われた構造であり、あるいはこれらの組合せであるものとする。
また、前記受電コイルが潜航中の潜航ロボットに搭載され、前記潜航ロボットが停止中あるいは潜航中に非接触給電を可能とし、および/あるいは磁力波通信によって前記非接触給電プラットホームとの接近と非接触給電とを相互間で制御可能となる。
In addition, the waterproof case has a pressure-resistant structure so as to withstand use in the deep sea, is a structure filled with an insulator, and has a structure in which a surface where the power feeding coil and the power receiving coil are opposed is open, It is a structure covered with a conductor structure except for the facing surfaces, or a combination thereof.
Further, the power receiving coil is mounted on a submerged submarine robot, enables non-contact power supply while the submarine robot is stopped or submerged, and / or approaches and non-contacts with the non-contact power supply platform by magnetic wave communication. The power feeding can be controlled between each other.

図5は、本発明の第1の実施形態におけるコイルの構成図であり、105はコイルの断面図、81aから81cは扁平平打ち導体あるいは扁平平角導体、82a、82bは平行2線路の断面、83は変動磁界である。
ここで、前記導体81aから81cは、短辺の表皮抵抗が許容値内である厚さの扁平平打ち導体あるいは扁平平角導体とし、高誘電率の絶縁物と交互に巻き回され、並列に接続されており、フラットワイズ巻となっており、長辺方向が水平方向に配置され、単線路、複線路、平行2線路、あるいはこれらの組合せを構成し、変動磁界83が垂直方向に放射される。
FIG. 5 is a configuration diagram of a coil according to the first embodiment of the present invention, 105 is a cross-sectional view of the coil, 81a to 81c are flat flat conductors or flat rectangular conductors, 82a and 82b are cross sections of parallel two lines, Reference numeral 83 denotes a variable magnetic field.
Here, the conductors 81a to 81c are flat flat conductors or flat rectangular conductors whose thickness is within an allowable value of the short side skin resistance, and are alternately wound with a high dielectric constant insulator and connected in parallel. It is a flatwise winding, the long side direction is arranged in the horizontal direction, constitutes a single line, a double line, two parallel lines, or a combination thereof, and the variable magnetic field 83 is radiated in the vertical direction. .

特に、前記導体の幅が前記平行2線路の間隔に近づく程、変動磁界83の放射強度が増加し、通常平行2線路間の絶縁距離の1000倍以内に設定される。
同様に、前記扁平平打ち導体あるいは扁平平角導体が垂直方向に配置され、単線路、複線路、平行2線路、円形あるいは角形の閉ループコイル、あるいはこれらの組合せを構成し、変動磁界を垂直方向に放射させても同様な効果が得られる。
また、前記コイルを給電コイルとして用いる場合、大きな励磁電流を駆動する必要があり、フラットワイズ巻とすることで分布容量を附加できることから、力率を改善するために必要な並列に接続される位相調整手段の負担を軽減することができる。
In particular, as the width of the conductor approaches the interval between the two parallel lines, the radiation intensity of the variable magnetic field 83 increases and is usually set within 1000 times the insulation distance between the two parallel lines.
Similarly, the flat flat conductors or flat rectangular conductors are arranged in the vertical direction to form a single line, a double line, two parallel lines, a circular or square closed loop coil, or a combination thereof, and a variable magnetic field in the vertical direction. The same effect can be obtained even if it is emitted.
In addition, when the coil is used as a power supply coil, it is necessary to drive a large excitation current, and a distributed capacity can be added by using a flatwise winding. Therefore, a phase connected in parallel is necessary to improve the power factor. The burden on the adjusting means can be reduced.

また、前記コイルを成形した後に前記絶縁物を含浸することで、ユニット構造となり、工場での生産が可能となる。
また、前記ユニット構造は、少なくとも、前記給電コイルと受電コイルとが対向する面を除き、金属ケース、金属構造物、あるいは耐圧構造物で覆われており、変動磁界83を対向する方向に集中して放射することができる。

(実施の形態2)
Further, by impregnating the insulator after forming the coil, a unit structure is obtained, which enables production in a factory.
Further, the unit structure is covered with a metal case, a metal structure, or a pressure-resistant structure except at least a surface where the power feeding coil and the power receiving coil face each other, and the variable magnetic field 83 is concentrated in the facing direction. Can be emitted.

(Embodiment 2)

図6は、本発明の第2の実施形態における非接触給電システムの構成図であり、91a、91bは潜航手段であり、92a、92bは推進手段であり、93a、93bは磁力波アンテナ兼非接触給受電コイルであり、94a、94bは非接触給受電手段であり、95a、95bは磁力波通信手段であり、96a、96bは推進制御手段である。
ここで、前記潜航手段91a、91bは、海水中で活動する潜航艇であり、海水中で活動する潜航支援艇であり、海水中に設置された非接触給電プラットホームであり、海上に停泊中の非接触給電プラットホームであり、あるいはこれらの組合せであり、かつ、他方に対して非接触給電を行い、他方から非接触給電を受け、相互間で磁力波通信を行い、あるいはこれらの組合せを行う機能を有するものとする。
FIG. 6 is a configuration diagram of a non-contact power feeding system according to the second embodiment of the present invention, in which 91a and 91b are submergence means, 92a and 92b are propulsion means, and 93a and 93b are non-magnetic wave antennas. The contact power supply / reception coils, 94a and 94b are non-contact power supply / reception means, 95a and 95b are magnetic wave communication means, and 96a and 96b are propulsion control means.
Here, the submergence means 91a and 91b are submarine boats that operate in seawater, are submarine support boats that operate in seawater, are non-contact power supply platforms installed in seawater, and are anchored at sea. A function that is a non-contact power supply platform, or a combination thereof, and performs non-contact power supply to the other, receives non-contact power supply from the other, performs magnetic wave communication between each other, or a combination thereof It shall have.

また、前記磁力波アンテナ兼非接触給受電コイル93a、93bは、磁力波アンテナと非接触給受電コイルとが共用され、あるいは磁力波界アンテナと非接触給受電コイルとが並設されるものとする。
また、前記潜航艇の何れかが蓄電池の電力を消耗し給電を受ける必要が生じた場合、周辺に位置する給電支援艇91bに対し磁力波アンテナからデジタル情報により変調された変動磁界信号を送信して給電を要請すると、前記給電支援艇91bは前記潜航艇91aまでの距離と方向を高精度で検知し、推進制御手段によって推進手段を制御し、前記潜航艇91aに接近を試みることができる。
The magnetic wave antenna and non-contact power supply / reception coils 93a and 93b share a magnetic wave antenna and a non-contact power supply / reception coil, or have a magnetic wave field antenna and a non-contact power supply / reception coil arranged in parallel. To do.
In addition, when any of the submarine boats consumes the power of the storage battery and needs to receive power, a fluctuating magnetic field signal modulated by digital information is transmitted from the magnetic wave antenna to the power feeding support boat 91b located in the vicinity. When the power supply is requested, the power supply support boat 91b can detect the distance and direction to the submarine boat 91a with high accuracy, control the propulsion unit by the propulsion control unit, and attempt to approach the submarine boat 91a.

前記潜航艇91aと給電支援艇91bとは、磁力波通信手段95a、95bによってデジタル情報の交換を行い、お互いの非接触給受電コイルが給電可能な範囲に位置するよう推進手段を制御し、両者を誘導制御し、あるいは位置関係を保ちながら非接触給受電を行うことができる。
前記変動磁界信号は変動磁界によって伝搬あるいは拡散し、伝搬速度は毎秒約300kmであり、大気中での超音波信号の約1000倍の速度であるので、相互間の通信に遅れを生じず、海水面での反射が生じないことから、高品質の通信が可能となる。
The submarine boat 91a and the power feeding support boat 91b exchange digital information by using the magnetic wave communication units 95a and 95b, and control the propulsion unit so that the non-contact power receiving and receiving coils are located within a power feedable range. It is possible to perform non-contact power supply and reception control while maintaining the positional relationship.
The fluctuating magnetic field signal is propagated or diffused by the fluctuating magnetic field, and the propagation speed is about 300 km per second, which is about 1000 times the speed of the ultrasonic signal in the atmosphere. Since no reflection occurs on the surface, high quality communication is possible.

また、前記デジタル情報の交換がパルス幅変調方式を含む定振幅変調方式によって行われ、かつ、前記デジタル情報を含む磁力波信号の周波数帯が、前記受電コイルを海水中での通信を可能にする周波数帯であり、30kHz以下の周波数帯であり、高周波利用設備に割り当てられた周波数帯であり、6.78MHz、13.56MHz、20.34MHz、27.12MHz、および40.68MHzを含むISMバンドに割当てられた周波数帯であり、あるいはこれらを組み合わであり、かつ、占有周波数帯域幅が広帯域であるものとする。   Further, the exchange of the digital information is performed by a constant amplitude modulation system including a pulse width modulation system, and the frequency band of the magnetic wave signal including the digital information enables the power receiving coil to communicate in seawater. It is a frequency band, is a frequency band of 30 kHz or less, is a frequency band allocated to high-frequency utilization equipment, and is an ISM band including 6.78 MHz, 13.56 MHz, 20.34 MHz, 27.12 MHz, and 40.68 MHz. It is assumed that the frequency bands are allocated or a combination thereof, and the occupied frequency bandwidth is wide.

図7は、本発明の第2の実施形態における非接触給受電システムの他の構成図であり、11は給電コイル、41は受電コイル、33は配電手段、35は給受電制御手段、36は給電手段、61は蓄電手段、62は整流手段(図示せず)、63は受電手段、66は給受電制御手段、68は移動手段、202は路面である。
ここで、前記移動手段68は、EV車であり、搬送車であり、ハイブリッド車であり、あるいはこれらの組合せであり、前記受電コイル41に誘起する起電力は受電手段63に接続され、内蔵する整流手段62によって直流電圧に変換され、給受電制御手段66を介して蓄電手段61を充電し、充電された電力によって前記移動手段67に電力を供給する。
FIG. 7 is another configuration diagram of the non-contact power supply and reception system according to the second embodiment of the present invention, in which 11 is a power supply coil, 41 is a power reception coil, 33 is power distribution means, 35 is power supply / reception control means, and 36 is Power supply means, 61 is a power storage means, 62 is a rectification means (not shown), 63 is a power reception means, 66 is a power supply / reception control means, 68 is a movement means, and 202 is a road surface.
Here, the moving means 68 is an EV car, a transport car, a hybrid car, or a combination thereof, and an electromotive force induced in the power receiving coil 41 is connected to and built in the power receiving means 63. It is converted into a DC voltage by the rectifying means 62, the power storage means 61 is charged via the power supply / reception control means 66, and power is supplied to the moving means 67 by the charged power.

一方、配電手段33から給受電制御手段35を介して給電手段36に電力ケーブルを通して商用周波数の交流電源が供給され、前記給電手段36によって直接あるいは周波数を変換して給電コイル11に励磁電流を駆動し、前記給電コイル11から前記受電コイル41に向けて大きな変動磁界を放射し、前記変動磁界が前記受電コイル41に誘導結合して起電力を誘起する。
更に、給受電制御手段66と給受電制御手段35とは各々変動磁界信号による磁力波通信手段(表示せず)を内蔵し、受電コイル41と給電コイル11とを変動磁界を誘起する磁力波アンテナとして共用し、あるいは前記受電コイルあるいは給電コイルとは別に磁力波アンテナを並設して制御信号の送受信を行い、非接触給電の起動・停止要求、課金情報、位置情報、自動運転情報、あるいはこれらの組合せによる情報交換を行うものとする。
On the other hand, AC power of commercial frequency is supplied from the power distribution means 33 to the power supply means 36 through the power supply / reception control means 35 through the power cable, and the power supply means 36 drives the excitation current directly or by converting the frequency to the power supply coil 11. Then, a large variable magnetic field is radiated from the power supply coil 11 toward the power receiving coil 41, and the variable magnetic field is inductively coupled to the power receiving coil 41 to induce an electromotive force.
Further, each of the power supply / reception control means 66 and the power supply / reception control means 35 incorporates a magnetic wave communication means (not shown) using a variable magnetic field signal, and induces a variable magnetic field between the power receiving coil 41 and the power supply coil 11. Or a magnetic wave antenna in parallel with the power receiving coil or the feeding coil to transmit and receive control signals, contactless power feeding start / stop requests, billing information, location information, automatic driving information, or these Information exchange by a combination of

また、前記デジタル情報の交換がパルス幅変調方式を含む定振幅変調方式によって行われ、かつ、前記デジタル情報を含む変動磁界信号の周波数帯が、前記受電コイルを非共鳴状態あるいは非共振状態で動作可能とする周波数帯であり、30kHz以下の周波数帯であり、高周波利用設備に割り当てられた周波数帯であり、6.78MHz、13.56MHz、20.34MHz、27.12MHz、および40.68MHzを含むISMバンドに割当てられた周波数帯であり、あるいはこれらを組み合わせであり、かつ、占有周波数帯域幅が法により規定された範囲であるものとする。   Further, the exchange of the digital information is performed by a constant amplitude modulation method including a pulse width modulation method, and the frequency band of the variable magnetic field signal including the digital information is operated in a non-resonant state or a non-resonant state. This is a frequency band that is enabled, is a frequency band of 30 kHz or less, is a frequency band allocated to high-frequency equipment, and includes 6.78 MHz, 13.56 MHz, 20.34 MHz, 27.12 MHz, and 40.68 MHz. It is assumed that the frequency bands are allocated to the ISM band, or a combination thereof, and the occupied frequency bandwidth is within a range prescribed by law.

以上の説明では、前記給電コイルと受電コイルとを非飽和状態で用いることによって、給電コイルおよび受電コイルに大きな電流を流せるので、大容量の非接触給電装置が高い給電効率で実現できることについて述べたが、同時に、前記給電コイルと受電コイルとを非共鳴状態あるいは非共振状態で用い、負荷Q値が50以下であり、負荷時電圧変動率が50%以下であり、共鳴周波数あるいは共振周波数が交流電源の周波数より低い状態であり、非共鳴状態あるいは非共振状態である受電コイルのリアクタンス値が蓄電手段の内部抵抗値より小さい値であり、あるいはこれらの組合せによって、大気中、電磁波信号の伝搬損失が大気中での伝搬損に比較して大きい物質中、塩分濃度が0%から10%までの真水中もしくは海水中、あるいはこれらの組み合わせの中での非接触給電装置および非接触給電システムを安価に実現できるなど、多様な展開が可能となる。   In the above description, since the feeding coil and the receiving coil are used in a non-saturated state, a large current can flow through the feeding coil and the receiving coil, so that a large-capacity non-contact power feeding device can be realized with high feeding efficiency. At the same time, the feeding coil and the receiving coil are used in a non-resonant state or a non-resonant state, the load Q value is 50 or less, the voltage fluctuation rate during load is 50% or less, and the resonance frequency or resonance frequency is AC. Propagation loss of electromagnetic wave signals in the atmosphere due to a lower frequency than the frequency of the power supply, and the reactance value of the receiving coil in the non-resonant state or non-resonant state is smaller than the internal resistance value of the storage means In a substance with a large relative to propagation loss in the atmosphere, in fresh water or seawater with a salinity of 0% to 10%, or Such as a non-contact power feeding device and the non-contact power supply system in the combinations of these can be realized at low cost, a variety of development can be achieved.

また、図1から図7に示すように、移動体が信号機によって一時停車させられる道路面に沿って前記給電コイルを設置し、前記移動体が停車中に非接触給電を行うことができる。   Moreover, as shown in FIGS. 1-7, the said feeding coil can be installed along the road surface where a moving body is temporarily stopped by a traffic light, and non-contact electric power feeding can be performed while the said moving body stops.

本発明は上記のように構成されているため、前記給電コイルと受電コイルとが、非飽和状態であり、非共鳴状態あるいは非共振状態であり、負荷Qが50以下であり、負荷時電圧変動率が50%以下であり、あるいはこれらの組合せであることから、本発明を利用して、走行中あるいは停車中のEV車への大電力の非接触給電を行い、潜航中、歩行中、あるいは走行中のロボットへの大電力の非接触給電を行い、各種の家電製品への非接触給電を行い、水中あるいは海水中で潜航手段に非接触給電を行い、デジタル情報ネットワークを構成して非接触給電システムの効率化を図り、あるいはこれらの組合せを含む広範囲な用途への応用あるいは適用が可能である。
Since the present invention is configured as described above, the power feeding coil and the power receiving coil are in a non-saturated state, a non-resonant state or a non-resonant state, a load Q is 50 or less, and a voltage fluctuation at the time of load Since the rate is 50% or less, or a combination thereof, the present invention is used to perform high-power non-contact power feeding to a running or stopped EV vehicle, while diving, walking, or High-power non-contact power supply to a running robot, non-contact power supply to various home appliances, non-contact power supply to submersible means in water or seawater, and a digital information network is configured to be non-contact It is possible to improve the efficiency of the power feeding system, or to apply or apply to a wide range of uses including combinations thereof.

11 給電コイル
41 受電コイル
21a、21b 接続端子
51a、51b 接続端子
31 交流電源
32a、32b 並列に接続する位相調整手段
33 配電手段
34 直列に接続する位相調整手段
35 給受電制御手段
36 給電手段
37 防水ケース
11 Power supply coil 41 Power reception coil 21a, 21b Connection terminal 51a, 51b Connection terminal 31 AC power supply 32a, 32b Phase adjustment means 33 connected in parallel Power distribution means 34 Phase adjustment means 35 connected in series Power supply / reception control means 36 Power supply means 37 Waterproofing Case

61、61a、61b 蓄電手段
62、62a、62b 整流手段
63 受電手段
64、64a、64b 直列に接続する位相調整手段
66 給受電制御手段
67 防水ケース
68 移動手段
81a、81b、81c 平打ち導体あるいは平角導体
82a、82b 平行2線路の断面
83 変動磁界
91a、91b 潜航手段
92a、92b 推進手段
93a、93b 磁力波アンテナ兼非接触給受電コイル
94a、94b 非接触給受電手段
95a、95b 磁力波通信手段
96a、96b 推進制御手段
61, 61a, 61b Power storage means 62, 62a, 62b Rectifying means 63 Power receiving means 64, 64a, 64b Phase adjusting means connected in series 66 Power supply / reception control means 67 Waterproof case 68 Moving means 81a, 81b, 81c Flat conductor or flat angle Conductor 82a, 82b Parallel two-line cross section 83 Fluctuating magnetic field 91a, 91b Submarine means 92a, 92b Propulsion means 93a, 93b Magnetic wave antenna and non-contact power supply / reception coils 94a, 94b Non-contact power supply / reception means 95a, 95b Magnetic wave communication means 96a 96b Propulsion control means

100 給電コイルと受電コイルとの間隔
101 非接触給電装置の構成図
102 非接触給電装置の他の構成図
103 非接触給電装置の他の構成図
104 海水中での非接触給電装置の構成図
105 コイルの構断面
106 非接触給電システムの構成図
107 非接触給電システムの他の構成図
201 海水面
202 路面
300a、300b、300c 街路ブロック
301a、301b、301c 路面給電装置
DESCRIPTION OF SYMBOLS 100 Space | interval of a feeding coil and a receiving coil 101 Configuration diagram of a non-contact power feeding device 102 Other configuration diagram of a non-contact power feeding device 103 Other configuration diagram of a non-contact power feeding device 104 Configuration diagram 105 of a non-contact power feeding device in seawater Coil cross section 106 Non-contact power supply system configuration diagram 107 Non-contact power supply system configuration diagram 201 Seawater surface 202 Road surfaces 300a, 300b, 300c Street blocks 301a, 301b, 301c Road surface power supply device

Claims (12)

電磁誘導を用いて受電装置に電力を供給するための給電装置であって、
給電コイルと、
当該給電コイルに励磁電流を流すための交流電源と、
上記励磁電流の位相を調整するための位相調整手段と、
を備え、
上記給電コイルが単線路および/あるいは複線路であり、
上記給電コイルと上記位相調整手段は、並列および直列に結合し、
上記給電コイルの誘導性リアクタンスと、上記並列に接続された位相調整手段の容量性リアクタンスと、上記給電コイルの周辺に存在する浮遊容量の容量性リアクタンスとが、共振状態に近い非共振状態であり、
上記給電コイルの誘導性リアクタンスと、上記直列に接続された位相調整手段の容量性リアクタンスとが、共振状態に近い非共振状態である
ことを特徴とする給電装置。
A power supply device for that power to the power receiving device using electromagnetic induction,
A feeding coil;
An AC power supply for passing an exciting current through the power supply coil;
Phase adjusting means for adjusting the phase of the exciting current;
With
The feeding coil is a single line and / or a double line,
The feeding coil and the phase adjusting means are coupled in parallel and in series,
The inductive reactance of the feeding coil, the capacitive reactance of the phase adjusting means connected in parallel, and the capacitive reactance of stray capacitance existing around the feeding coil are in a non-resonant state close to a resonance state. ,
The inductive reactance of the power supply coil and the capacitive reactance of the phase adjusting means connected in series are in a non-resonant state close to a resonance state.
電磁誘導を用いて受電装置に電力を供給するための給電装置であって、
給電コイルと、
当該給電コイルに励磁電流を流すための交流電源と、
上記励磁電流の位相を調整するための位相調整手段と、
を備え、
上記給電コイルが単線路および/あるいは複線路であり、
上記給電コイルと上記位相調整手段は、並列および直列に結合し、
上記励磁電流の角振動数をω、上記給電コイルの誘導性リアクタンスをωL1、上記給電コイルと直列に接続された上記位相調整手段の容量性リアクタンスを1/ωC1、上記受電装置の内部抵抗をRとした際に、
−R<ωL1(1−(1/(ω×ω×L1×C1)))<R
または、0<ωL1/R<50
であることを特徴とする給電装置。
A power supply device for that power to the power receiving device using electromagnetic induction,
A feeding coil;
An AC power supply for passing an exciting current through the power supply coil;
Phase adjusting means for adjusting the phase of the exciting current;
With
The feeding coil is a single line and / or a double line,
The feeding coil and the phase adjusting means are coupled in parallel and in series,
The angular frequency of the excitation current omega, Omegaeru1 the inductive reactance of the feeding coil, the feeding coil and the serially connected phase adjusting means of the capacitive reactance of 1 / ωC1, internal resistance of the powered device Is R,
-R <ωL1 (1- (1 / (ω × ω × L1 × C1))) <R
Or 0 <ωL1 / R <50
A power feeding device characterized in that
上記給電コイルが、扁平で幅広な単線路および/あるいは扁平で幅広な複線路である
ことを特徴とする請求項1または2に記載の給電装置。
The power feeding device according to claim 1 , wherein the power feeding coil is a flat and wide single line and / or a flat and wide double line .
上記給電コイルが、上記交流電源から、直接、もしくはリアクタを介し、あるいはトランスを介し、上記励磁電流を供給される
ことを特徴とする請求項1から3のいずれかに記載の給電装置。
The power feeding device according to any one of claims 1 to 3, wherein the power feeding coil is supplied with the exciting current from the AC power source directly, via a reactor, or via a transformer .
上記給電コイルが、商用電源の、送配電線あるいは屋内配線を兼ねている
ことを特徴とする請求項1から4のいずれかに記載の給電装置。
The power feeding device according to any one of claims 1 to 4, wherein the power feeding coil also serves as a power transmission / distribution line or an indoor wiring of a commercial power source .
請求項1から5のいずれかに記載の給電装置から、電磁誘導を用いて電力が供給される受電コイルA power receiving coil to which electric power is supplied from the power feeding device according to any one of claims 1 to 5 using electromagnetic induction
を備えた受電装置。  A power receiving device comprising:
上記受電コイルと直列および/あるいは並列に結合した位相調整手段を備え、
当該受電コイルと直列および/あるいは並列に結合した位相調整手段の容量性リアクタンスと、上記受電コイルの誘導性リアクタンスとが、略同一である
ことを特徴とする請求項6に記載の受電装置。
Phase adjustment means coupled in series and / or in parallel with the power receiving coil,
The capacitive reactance of the phase adjusting means coupled in series and / or in parallel with the power receiving coil is substantially the same as the inductive reactance of the power receiving coil.
Powered device according to claim 6, characterized in that.
上記受電コイルと直列に結合した位相調整手段を備え、
上記励磁電流の角振動数をω、上記受電コイルの誘導性リアクタンスをωL2、上記受電コイルと接続された上記位相調整手段の容量性リアクタンスを1/ωC2、上記受電装置の内部抵抗をRとした際に、
−R<ωL2(1−(1/(ω×ω×L2×C2)))<R
または、0<ωL2/R<50である
ことを特徴とする請求項6に記載の受電装置。
Phase adjustment means coupled in series with the power receiving coil,
The angular frequency of the excitation current is ω, the inductive reactance of the power receiving coil is ωL2, the capacitive reactance of the phase adjusting means connected to the power receiving coil is 1 / ωC2, and the internal resistance of the power receiving device is R. When
-R <ωL2 (1- (1 / (ω × ω × L2 × C2))) <R
Or 0 <ωL2 / R <50
The power receiving device according to claim 6 .
上記受電コイルが、上記給電コイルと垂直方向に対向する角形のコイルである
ことを特徴とする請求項6から8のいずれかに記載の受電装置。
The power receiving coil is a rectangular coil facing the feeding coil in the vertical direction.
The power receiving device according to claim 6, wherein the power receiving device is a power receiving device.
請求項1から5のいずれかに記載の給電装置と、請求項6から9のいずれかに記載の受電装置と、
を備えた非接触給電システム。
A power feeding device according to any one of claims 1 to 5, a power receiving device according to any one of claims 6 to 9 ,
A non-contact power supply system.
上記給電コイルまたは上記受電コイルから発生する変動磁界を用いたデジタル情報の通信機能を有する
ことを特徴とする請求項10に記載の非接触給電システム。
The contactless power feeding system according to claim 10, further comprising a digital information communication function using a variable magnetic field generated from the power feeding coil or the power receiving coil.
上記受電コイルが、移動体あるいは移動手段に搭載されるThe power receiving coil is mounted on a moving body or moving means.
ことを特徴とする請求項11に記載の非接触給電システム。  The non-contact electric power feeding system according to claim 11 characterized by things.
JP2018089151A 2016-05-09 2018-05-07 Power supply system, power-receiving device, and non-contact power supply system Pending JP2018161045A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016093527 2016-05-09
JP2016093527 2016-05-09
JP2016142630 2016-07-20
JP2016142630 2016-07-20
JP2016182452 2016-09-18
JP2016182452 2016-09-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017558518A Division JPWO2017195581A1 (en) 2016-05-09 2017-04-24 Power feeding device, power receiving device, and non-contact power feeding system

Publications (1)

Publication Number Publication Date
JP2018161045A true JP2018161045A (en) 2018-10-11

Family

ID=60267590

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017558518A Pending JPWO2017195581A1 (en) 2016-05-09 2017-04-24 Power feeding device, power receiving device, and non-contact power feeding system
JP2018089151A Pending JP2018161045A (en) 2016-05-09 2018-05-07 Power supply system, power-receiving device, and non-contact power supply system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017558518A Pending JPWO2017195581A1 (en) 2016-05-09 2017-04-24 Power feeding device, power receiving device, and non-contact power feeding system

Country Status (2)

Country Link
JP (2) JPWO2017195581A1 (en)
WO (1) WO2017195581A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7141920B2 (en) * 2018-11-15 2022-09-26 株式会社ダイヘン Parallel two-wire unit
CN110474407B (en) * 2019-08-27 2022-10-21 武汉大学 Dual-frequency control three-coil induction type wireless charging system and method
CN115723594A (en) * 2021-08-31 2023-03-03 华为数字能源技术有限公司 Transmitting terminal, receiving terminal, dynamic wireless power supply system and electric automobile
CN114301505B (en) * 2021-12-29 2022-12-30 中国人民解放军国防科技大学 Parameter optimization method for underwater magnetic coupling resonance wireless power and signal transmission system
CN116318271B (en) * 2023-03-09 2024-05-28 脉砥微电子(杭州)有限公司 Multi-carrier orthogonal reflection communication circuit and method based on wireless power supply

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11291796A (en) * 1998-04-13 1999-10-26 Toyota Autom Loom Works Ltd Non-contact feeding electrical wire and non-contact feeding electrical wire component body
JP5173901B2 (en) * 2009-03-13 2013-04-03 三菱電機株式会社 Contactless power supply / reception device
US9088307B2 (en) * 2010-12-29 2015-07-21 National Semiconductor Corporation Non-resonant and quasi-resonant system for wireless power transmission to multiple receivers
JP5721001B2 (en) * 2011-04-07 2015-05-20 日立金属株式会社 Coil component and power supply device and charging device using the same
JP5690251B2 (en) * 2011-09-26 2015-03-25 日立マクセル株式会社 Resonance type wireless charger
JPWO2013099221A1 (en) * 2011-12-27 2015-04-30 パナソニックIpマネジメント株式会社 Non-contact charger
WO2013133028A1 (en) * 2012-03-06 2013-09-12 株式会社村田製作所 Power transmission system
JP5918020B2 (en) * 2012-05-21 2016-05-18 株式会社神戸製鋼所 Non-contact power supply coil
WO2014045571A1 (en) * 2012-09-18 2014-03-27 Panasonic Corporation Contactless electric power feeding system
JP5983281B2 (en) * 2012-10-12 2016-08-31 Tdk株式会社 Contactless power supply system
JP6391214B2 (en) * 2013-03-28 2018-09-19 日本信号株式会社 Contactless power supply system
JP6130186B2 (en) * 2013-03-28 2017-05-17 株式会社リューテック Electric vehicle power supply system
JP6596813B2 (en) * 2013-11-28 2019-10-30 Tdk株式会社 Coil for power transmission or power reception used in non-contact power feeding equipment
JP6319667B2 (en) * 2014-05-09 2018-05-09 パナソニックIpマネジメント株式会社 Power supply providing method, charge processing method, power supply system, power supply controller, power supply apparatus, power supply control method, management server, electric vehicle and charge server
JP6308047B2 (en) * 2014-06-24 2018-04-11 株式会社Ihi Contactless power supply system, power transmission device, power reception device

Also Published As

Publication number Publication date
WO2017195581A1 (en) 2017-11-16
JPWO2017195581A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP2018161045A (en) Power supply system, power-receiving device, and non-contact power supply system
US20220258612A1 (en) System and method for powering on-road electric vehicles via wireless power transfer
US8890472B2 (en) Self-charging electric vehicles and aircraft, and wireless energy distribution system
RU2408476C2 (en) Method of wireless electric power transmission and device to this end (versions)
US9972434B2 (en) Magnetically permeable structures
CN103370851B (en) Contactless power supply device
US8292052B2 (en) Power transfer system and method
EP2914454B1 (en) Coil arrangements in wireless power transfer systems for low electromagnetic emissions
US9653206B2 (en) Wireless power charging pad and method of construction
CN102280945A (en) Non-contact power feeding device
CN110168854A (en) With the magnetic structure for induction type power transmission for improving efficiency
Wu et al. Design and implementation of a uniform power and stable efficiency wireless charging system for autonomous underwater vehicles
JP2012143091A (en) Remotely and wirelessly driven charger
CN102545393A (en) Non-contact power feeding apparatus
JP2014093795A (en) Power transmission system
WO2013150785A1 (en) Coil unit, and power transmission device equipped with coil unit
WO2015040650A1 (en) Contactless power transmission device
US20160204621A1 (en) Power Feeding Device and Non-Contact Power Transmission Device
US11605976B2 (en) System and method for wireless transmission of power
KR20200049534A (en) Position alignment apparatus and method for wireless power transfer
US20140246918A1 (en) Power transmission system
Mohamed et al. An overview of inductive power transfer technology for static and dynamic EV battery charging
JP2013214613A (en) Coil unit and power transmission device having coil unit
JP2019004646A (en) Power transmission/distribution system and power transmission/distribution project
KR20200016084A (en) Wireless charging pad and wireless charging apparatus