JP2018160886A - フェーズド・アレイ・アンテナ・システムのための広帯域ビームの拡張 - Google Patents

フェーズド・アレイ・アンテナ・システムのための広帯域ビームの拡張 Download PDF

Info

Publication number
JP2018160886A
JP2018160886A JP2018001093A JP2018001093A JP2018160886A JP 2018160886 A JP2018160886 A JP 2018160886A JP 2018001093 A JP2018001093 A JP 2018001093A JP 2018001093 A JP2018001093 A JP 2018001093A JP 2018160886 A JP2018160886 A JP 2018160886A
Authority
JP
Japan
Prior art keywords
radiation pattern
mpaa
radiating
radiating elements
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018001093A
Other languages
English (en)
Other versions
JP7053272B2 (ja
Inventor
アリレザ・シャポウリー
Shapoury Alireza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2018160886A publication Critical patent/JP2018160886A/ja
Application granted granted Critical
Publication of JP7053272B2 publication Critical patent/JP7053272B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/04Multimode antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/002Antennas or antenna systems providing at least two radiating patterns providing at least two patterns of different beamwidth; Variable beamwidth antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna
    • G01S2013/0263Passive array antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

【課題】フェーズド・アレイ・アンテナ・システムのための広帯域ビームの拡張を提供すること【解決手段】マルチモード・フェーズド・アレイ・アンテナ(「MPAA」)が開示される。前記MPAAは少なくとも2つの動作モードを有する。第1の動作モードが第1のメイン・ビームを生成し、第2の動作モードが第2のビームを生成する。前記MPAAは放射素子のアレイとして配置された複数の放射素子および前記複数の放射素子と信号通信するコントローラを含む。前記コントローラは、前記複数の放射素子を励起して、前記第1の動作モードでの前記第1のメイン・ビームを有する第1の放射パターンおよび前記第2の動作モードでの前記第2のビームを有する第2の放射パターンを生成するように構成される。前記第2のビームは前記第1のメイン・ビームより広く、前記第2の放射パターンは前記複数の放射素子の単一の放射素子に対する放射パターンと同様である。前記コントローラはまた、前記第1のモードおよび第2の動作モードの間で切り替える。【選択図】図1

Description

本開示はアンテナ・システムに関し、特に、フェーズド・アレイ・アンテナに関する。
現在、近代的な通信およびレーダシステムのためのフェーズド・アレイ・アンテナ(「PAA」「フェーズド・アレイ」、「アレイ・アンテナ」、「電子的にスキャンされたアレイ・アンテナ」、または単に、「アレイ」としても知られる)の利用がより一般的になっている。一般に、PAAは大規模な複数の送信または放射(「送受信」または「T/R」)素子を含む。当該T/R素子は互いの間の計画的な電気位相、振幅および時間的関係をもたらすように設計される。PAAは、複数のT/R素子からの全体数の放射信号の建設的な重ね合わせまたは破壊的な干渉を提供するために、各T/R素子から放射された信号のスペクトル、タイミング、振幅およびフェーズを制御することで形成されるビームを有する遠距離放射パターンを生成する。一般に、全体数の放射信号の相互作用は当該ビームを様々な方向に形成し操縦し、当該ビームの方向は、物理的にPAAを移動するのではなく各T/R素子から放射された信号の振幅および位相シフトを制御することで決定される。フェーズ制御は位相シフタおよび真の時間遅延コンポーネントを通じて実施され、振幅制御は減衰器または増幅器を通じて実施され、タイミングおよびスペクトル制御はPAAコントローラ、トランシーバ、およびPAA放射素子および当該送信線の特性に支配されることは当業者により理解される。
(受信および送信の相互関係に基づいて)受信モードと同様に、位相および振幅を制御することで、PAAは、信号を所望の方向から受信することができる。異なるアプリケーションに対して利用しうる、例えば、線形アレイ、平面アレイ、周波数スキャンアレイ、位相増分計算アレイ等を含みうるPAAに対して幾つかの異なるタイプの配置がある。
PAAの共通の特徴は、T/R素子の数が増大するとPAAの指向性も増大するというものである。アンテナの指向性は、他の方向の放射よりも或る方向にどのようにアンテナがエネルギを集中させるかの説明である。一般に、アンテナの指向性は、当該アンテナが100%の放射効率である場合、当該アンテナの電力ゲインに等しい。PAAにより生産された結果の遠距離放射パターンにおいて、当該遠距離放射パターンは一般に、所与の方向の最大放射を含むメインローブ(即ち、メイン・ビームまたはメインローブ)、および他の方向により弱い放射を含むマイナーローブ(即ち、サイド・ローブ)を含む。T/R素子の数がPAAにおいて増大すると、PAAの指向性が増大し、結果として、当該メイン・ビームの幅が減少することは当業者により理解される。
不都合なことに、メイン・ビームの幅が減少すると、当該メイン・ビームは、例えば、レーダ検索機能、ヌル・ファイリング、投光器モード照射、および合成開口部レーダ(「SAR」)を含む幾つかのタイプの通信またはレーダ・アプリケーションの効率的な実装に対して狭すぎることになる。1例として、レーダ検索機能では、当該メイン・ビームは非常に狭いのでフレーム時間が検索されたボリュームと比較して極めて長くなる可能性があり、ミサイルがロックなしに発射されるかまたはロックが当該ミサイルの飛行時間の間に失われる投光器モード照射アプリケーションでは、当該範囲がゼロに近づいているゲーム終了段階で、非常に高い水平加速度が使用されるかもしれず、更新速度が増加する必要があり、当該メイン・ビームは、当該ミサイルのターゲットを捕捉、再補足、またはロックオンするための広いビームを提供するために照射されているターゲット・コンプレックスと比較して狭すぎる。さらに、これはマルチビームに対するヌル・ファイリングにおける適用、または直交波形を有する交換ビームレーダまたは通信アンテナを有し、PAAは、レーダ動作を維持しまたは他のデバイスとの幾つかの通信レベルを保つために軽減する必要がある遠距離放射ビームのローブの間のその遠距離放射パターンにおいてヌルを有する。さらに、SARアプリケーションでは、広いビーム幅が一般に、拡張された期間に対してSARビームにより線形に訪問される地上のオブジェクトまたは位置を照射するために利用される。これらの例の全てにおいて、一般に多数のT/R素子を有するPAAにより生産されるものより広いメイン・ビームが必要である。これらの問題を解決する試みは、既知のPAAのメイン・ビームを整形し広げるためのビームスポイリング技術の利用を含むが、しかし、既知のビームスポイリング技術は依然として、広帯域システムがこれらの問題を解決するのに十分に広いビームを提供しない。
したがって、これらの問題を解決するための改善されたシステムおよび方法が必要である。
マルチモード・フェーズド・アレイ・アンテナ(「MPAA」)が開示される。MPAAは少なくとも2つの動作モードを有する。第1の動作モードが第1のメイン・ビームを生成し、第2の動作モードが第2のビームを生成する。MPAAは放射素子のアレイとして配置された複数の放射素子および当該複数の放射素子と信号通信するコントローラを含む。当該コントローラは、当該複数の放射素子を励起して、第1の動作モードでの第1のメイン・ビームを有する第1の放射パターンおよび第2の動作モードでの第2のビームを有する第2の放射パターンを生成するように構成される。第2のビームは第1のメイン・ビームより広く、第2の放射パターンは当該複数の放射素子の単一の放射素子に対する放射パターンと同様である。当該コントローラはまた、少なくとも第1の動作モードおよび第2の動作モードの間で切り替えるように構成される。
動作の例では、MPAAは第1の放射パターンのメイン・ビームを広げるための方法を実施する。当該方法は当該複数の放射素子を励起して第2の放射パターンを生成するステップを含む。第2の放射パターンは当該複数の放射素子の単一の放射素子の放射パターンと同様であり、第2の放射パターンは第1の放射パターンのメイン・ビームより広い第2のビームを有する。
本発明の他のデバイス、装置、システム、方法、特徴および利点は以下の図面および詳細な説明を検証することで当業者に明らかである。全てのかかる追加のシステム、方法、特徴および利点はこの説明の中にあり、本発明の範囲内にあり、添付クレームにより保護されることが意図されている。
本発明は以下の図面を参照することでより良く理解されうる。当該図面における構成素子は必ずしも正しい縮尺で描かれておらず、本発明の原理の例示が強調されている。当該図面では、同じ参照番号は様々な図面にわたって対応する部分を示す。
本開示に従うマルチモード・フェーズド・アレイ・アンテナ(「MPAA」)の1実装の例は、のシステム図である。 線形(即ち、1次元)MPAAの例の1実装の例の上面図である。 平面(即ち、2次元)MPAAの例の1実装の例の上面図である。 高指向性を有する汎用アンテナに対する遠距離放射パターンの極座標プロットの1実装の例のプロットの図である。 図1Aに示す遠距離放射パターンの極座標プロットの長方形プロットの図である。 等方性アンテナ・ラジエータの遠距離放射パターンの極座標プロットの1実装の例のプロットの図である。 図5Aに示す遠距離放射パターンの極座標プロットの長方形プロットの図である。 本開示に従うアンテナ素子の遠距離放射パターンの極座標プロットの1実装の例のプロットの図である。 本開示に従う図6Aに示す遠距離放射パターンの極座標プロットの長方形プロットの図である。 本開示に従う複数の放射素子に関する例示的な観察ポイントのグラフィカルな図である。 本開示に従うMPAAにより実施される方法の1実装の例の流れ図である。 本開示に従う図1に示す複数の放射素子の遠距離放射パターンの複数の極座標プロットの1実装の例のプロットの図である。 本開示に従う図1および9に示す複数の放射素子の結合された指向性遠距離放射パターンの極座標プロットの1実装の例のプロットの図である。 本開示に従う図1および9に示す複数の放射素子の理想的な結合された無向遠距離放射パターンの極座標プロットの1実装の例のプロットの図である。 本開示に従う図1および9に示す複数の放射素子の非理想的な結合された無向遠距離放射パターンの極座標プロットの1実装の例のプロットの図である。
マルチモード・フェーズド・アレイ・アンテナ(「MPAA」)を開示する。MPAAは少なくとも2つの動作モードを有する。第1の動作モードが第1のメイン・ビームを生成し、第2の動作モードが第2のビームを生成する。MPAAは放射素子のアレイとして配置された複数の放射素子および当該複数の放射素子と信号通信するコントローラを含む。当該コントローラは、当該複数の放射素子を励起して、第1の動作モードでの第1のメイン・ビームを有する第1の放射パターンおよび第2の動作モードでの第2のビームを有する第2の放射パターンを生成するように構成される。第2のビームは第1のメイン・ビームより広く、第2の放射パターンは当該複数の放射素子の単一の放射素子に対する放射パターンと同様である。当該コントローラはまた、少なくとも第1の動作モードおよび第2の動作モードの間で切り替えるように構成される。
動作の例では、MPAAは第1の放射パターンのメイン・ビームを広げるための方法を実施する。当該方法は複数の放射素子を励起して第2の放射パターンを生成するステップを含む。第2の放射パターンは当該複数の放射素子の単一の放射素子の放射パターンと同様であり、第2の放射パターンは当該メイン・ビームより広い第2のビームを有する。
図1では、本開示に従うMPAA100の1実装の例のシステム図が示されている。MPAA100は、信号経路106を介して複数の放射素子102と信号通信する線形(即ち、1次元)、平面(即ち、2次元)、または等角(即ち、3次元)でありうる放射素子のアレイとして配置された複数の放射素子102と、コントローラ104とを含む。本例では、信号経路106は、それぞれ、複数の放射素子102の各放射素子108、110、112、114、116、および118(「アレイ放射素子」または「アレイ素子」としても知られる)と信号通信する信号バス(例えば、コンピュータバス)であってもよい。各放射素子108、110、112、114、116、および118の出力はコントローラ104を介してスペクトル、タイミング、振幅および位相で制御されうる。各放射素子108、110、112、114、116、および118はそれぞれ、例えば、位相シフタ120、124、128、132、136、および140および例えば、減衰器122、126、130、134、138、および142を含む。各放射素子108、110、112、114、116、および118の端末144、146、148、150、152、および154は、それぞれ信号経路158、160、162、164、166、および168を介して結合器/フィード・ネットワーク156と信号通信する。本例では、トランシーバ170はまた、それぞれ信号経路172および174を介して結合器/フィード・ネットワーク156およびコントローラ104の両方と信号通信してもよい。本例では、各放射素子108、110、112、114、116、および118は送受信(「T/R」)モジュールであってもよい。さらに、当該放射素子の各々は、例えば、双極子、開口部、パッチ、または他のタイプの個々のアンテナ放射素子でありうる個々のラジエータ176、178、180、182、184、および186を含んでもよい。
MPAA100、放射素子108、110、112、114、116、および118、およびコントローラ104のまたはそれらに関連付けられた回路、コンポーネント、モジュール、および/またはデバイスは互いと信号通信するとして説明されることは当業者により理解される。信号通信は、回路、コンポーネント、モジュール、および/またはデバイスが別の回路、コンポーネント、モジュール、および/またはデバイスから信号および/または情報を渡しかつ/または受信できるようにする回路、コンポーネント、モジュール、および/またはデバイスの間の任意のタイプの通信および/または接続を指す。当該通信および/または接続が、信号および/または情報を或る回路、コンポーネント、モジュール、および/またはデバイスから別のものへ渡すことができ無線または有線信号経路を含む、回路、コンポーネント、モジュール、および/またはデバイスの間の任意の信号経路に沿ってもよい。当該信号経路は、例えば、導電線、電磁気導波管、光ファイバ、ケーブル、取り付けられたおよび/または電磁気または機械的に接続された端末、準導電性または誘電材料またはデバイス、または他の同様な物理接続または結合のような、物理的なものであってもよい。さらに、信号経路が、通信情報が或る回路、コンポーネント、モジュール、および/またはデバイスから別のものに直接電磁気接続を介して渡されることなく可変のデジタルフォーマットで渡される、自由空間(電磁気伝播の場合)またはデジタルコンポーネントを通じた情報経路のような非物理的なものであってもよい。
本例では、複数の放射素子102は複数の放射素子102の物理的な中心に対応するアレイ中心188を有する。複数の放射素子102の各放射素子ペア(即ち、108および110、110および112、112および114、114および116、および116および118)は同一量の放射素子間距離190(ここでは「d」190と称する)だけ離れた部分である(即ち、等しく離れたアレイ)。本例では、アレイ中心188が半分の距離(即ち、2つの放射素子112および114の間の半分)で示されている。間隔d190の典型的長さは、例えば、MPAA100の動作の中心周波数に対応する動作の4分の1の波長、半分の波長、および全波長を含んでもよい。本例では、説明の簡単さのため複数の放射素子102内に6個(6)の放射素子108、110、112、114、116、および118のみが示されているが、放射素子の実際の数がMPAA100の設計に基づいて6よりも少ないか、多いかまたは大幅に多くてもよく、さらに当該放射素子を必ずしも等間隔にする必要はないことは当業者により理解される。1例として、MPAA100が、当該素子の幾つかの間の間隔が設計(例えば、例えば、最小冗長性線形アレイ(「MRLA」)のような疎に埋められたアンテナ・アレイ)または取付け用支持のような機械制約に起因して必ずしも同様でなくてもよい幾つかの設計においては千個より多くの放射素子を含んでもよい。複数の放射素子102の線形部分の長さが増大すると、長いアレイに対して、第1のヌル(「BWFN」)(即ち、アレイ因子がまずメインローブの正の側と負の側の両方でゼロに行く放射パターンの領域)の間のビーム幅(即ち、メイン・ビームの幅)は、おおよそ、動作波長の2倍(即ち、2x)を、(複数の放射素子102の)放射素子の総数と放射素子の間の間隔d190との積で除したものに等しいことも当業者により理解される。式として書くと、当該BWFNは、以下のように動作波長(「λ」)、複数の放射素子102の放射素子(「N」)の数、および間隔d190に関係する。
Figure 2018160886
図2では、線形(即ち、1次元)MPAA200の1実装の例の上面図が示されている。本例では、MPAA200は、Y軸204とX軸208により定義されたXY平面206内のY軸204に沿った6個(6)の放射素子202(1)、202(2)、202(3)、202(4)、202(5)、および202(6)を含む。前述のように、6個(6)の放射素子202(1)、202(2)、202(3)、202(4)、202(5)、および202(6)のみが例示の目的で示されているが、放射素子の数が2から多数(例えば、1,000より大きい)に変化してもよいことは当業者により理解される。本例では、放射素子202(1)、202(2)、202(3)、202(4)、202(5)、および202(6)の全ては、図1に関して説明されたように素子間距離d190だけ等間隔に離れた部分である。MPAA200は、XY平面206からZ軸210に沿って舷側方向に正の方向で、負の方向でXY平面206に、またはY軸204の負の方向または正の方向の何れかに沿って、その放射を向けてもよい。本例では、MPAA200が、Z軸210の正の方向に沿って舷側方向にその放射パターンを向けるように構成されると仮定する。本例では、結果の放射パターンは、X軸208とY軸204の間の方位角φ212およびY軸204とZ軸210に沿った上下角θ(図示せず)に沿ってスキャンされる。
図3では、平面(即ち、2次元)MPAA301の1実装の例の上面図が示されている。MPAA200に関して図2に示す例と異なり、本例では、MPAA301は、Y軸204とX軸208により定義されるXY平面206内のY軸204に沿った36個の(36)放射素子300(1)乃至300(36)を含む。再度、前述のように、6個の(36)放射素子300(1)乃至300(36)のみが例示の目的で示されるが、放射素子の数が4つから多数(例えば、1,000より大きい)に変化してもよいことは当業者により理解される。本例では、放射素子300(1)乃至300(36)の全ては、X軸218およびY軸214の両方に沿って素子間距離d190だけ等間隔に離間された部分である。素子間距離はまた、場合によっては、疎に埋められたアンテナ・アレイを実現するためにX軸218またはY軸214に沿って不均等であってもよいが、単純さの目的のため、X軸218とY軸214方向の両方における素子間距離間隔はd190に等しい同一の値に設定されていることは理解される。本例では、結果の放射パターンは、球面座標内のX軸208とY軸204の間の方位角φ212、Y軸204とZ軸210に沿った極角(高度としても知られる)θ(図示せず)に沿ってスキャンされる。
図2および3内のMPAA100(それぞれMPAA200およびMPAA301として示される)の例において、個々の放射素子202(1)乃至202(6)または300(1)乃至300(36)は、例えば、開口部アンテナ、マイクロストリップ・アンテナ、パッチ・アンテナ、双極子、または他の周知のアンテナ・ラジエータ素子のような一般に既知のアンテナ・ラジエータであってもよい。1例として、各放射素子は、略定指向性を有するおおよそ等方性のラジエータであり略無指向性の遠距離放射パターンを生成するように構成されたアンテナ・ラジエータであるかまたはそれを含んでもよい。図1と同様に、図2および3の両方において、各個々の放射素子202(1)乃至202(6)または300(1)乃至300(36)は、(図1に示すように)T/Rモジュールの何れかまたはその一部であってもよく、各T/Rモジュールは、とりわけ、位相シフタおよび電力増幅器を含む。当該T/Rモジュールはついで、個々の放射素子202(1)乃至202(6)または300(1)乃至300(36)を励起し、フェーズテーパ、振幅テーパ、またはその両方で複数の放射素子202(1)乃至202(6)または300(1)乃至300(36)を、所望の時間およびスペクトルのプロフィールで励起し、メイン・ビームを有する第1の放射パターンを第1の動作モードで生成し、第1の放射パターンのメイン・ビームをスキャン(即ち、操縦)し、第2のビームを有する第2の放射パターンを第2の動作モードで生成し、第1の動作モードまたは第2の動作モードの何れかで動作するようにMPAA200またはMPAA301を切り替えるように構成されたソフトウェアを格納できるハードウェア・ロジックおよび/またはコンピュータ可読媒体を含みうるビーム操縦コンピュータでありうる(例えば、コントローラ104のような)コントローラと信号通信してもよい。本例では、第2のビームは当該メイン・ビームより広く、第2の放射パターンは複数の放射素子(即ち、202(1)乃至202(6)または300(1)乃至300(36))の単一の放射素子の放射パターンと同様である。再度、本例では、複数の放射素子202(1)乃至202(6)または300(1)乃至300(36)の単一の放射素子は、例えば、略定指向性を有するおおおよそ等方性のラジエータであり略無指向性の遠距離放射パターンを生成するように構成されたアンテナ・ラジエータであるかまたはそれを含んでもよい。さらに、当該放射素子の個々の放射パターン全ての合計は第1の放射パターンまたは第2の放射パターンの両方を生成する。当該複数の放射素子の各放射素子は放射パターンおよび当該放射素子の偏向を含む対応する放射素子ベクトルを有し、当該複数の放射素子はアレイ因子を有するが、本例では、第2の放射パターンは、おおよそ定数のゲインを有し一般に高度および方位角の両方と独立であるアレイ因子を含む。
第1の放射パターンと第2の放射パターンの特性をより良く示すために、図4A、4B、5A、および5Bは、第1の放射パターンと第2の放射パターンに対する極座標プロットおよび長方形プロットを示す。特に、図4Aでは、高指向性を有する汎用アンテナに対する遠距離放射パターンの極座標プロット400の1実装の例のプロットが示されている。極座標プロット400は、Z軸404に沿った正の方向のメインローブ402、Z軸404に沿った負の方向のバックローブ406、およびY軸416の正の方向と負の方向に沿ったサイド・ローブ408、410、412、および414およびX軸404とY軸416の間の角度を含む。本例では、メインローブ402、バックローブ406、およびサイド・ローブ408、410、412、および414は、Z軸404とY軸416により定義されるXY平面420に沿ったスキャン角θ418(即ち、上下角としても知られる極角)に沿って離間される。本例では、送信モードにおいて、放射エネルギの大部分が、メインローブ402内のZ軸404の正の方向に沿って送信され(以降、例えば、Z軸404の正の方向に沿った基準0度のスキャン角度θ418から−30度乃至30度の間のθスキャン角度418と称する)、エネルギの少量の部分のみがバックローブ406、および4つのサイド・ローブ408、410、および412によってカバーされる他の方向(即ち、他の角度θ418)に放射されるので、当該アンテナは高指向性を有する。本例で示す遠距離放射パターンが、個々のアンテナ素子でありうるアンテナまたは当該アンテナの設計に基づくアンテナ・アレイに対する遠距離放射パターンであってもよいことは理解される。1例として、MPAA100が場合によっては、例えば、放射素子の数、放射素子の間の間隔、放射素子のタイプ、および放射素子を励起するために利用される振幅およびフェーズテーパを含む、MPAA100の予め決定された設計パラメータに基づいて、極座標プロット400とおおよそ同様な極座標プロットを有する遠距離放射パターンを生成してもよい。図4Aに示す遠距離放射パターンを生成するMPAA100の例では、当該遠距離放射パターンは、MPAA100の第1の動作モードでメイン・ビーム402を有する第1の放射パターンであってもよい。
図4Bでは、遠距離放射パターンの極座標プロット400の長方形プロット422が示されている。長方形プロット418は、スキャン角度θ418に沿ってメインローブ402、バックローブ406、および4つのサイド・ローブ408、410、および412の((「dB」での振幅軸424に沿った))規模を示すXY平面420に沿って切断された2次元プロットである。本例では、メインローブ402が(スキャン角度418のプラスマイナスの方向に沿って)−3db点の間の距離として定義されたビーム幅426を有し、当該−3db点は、舷側にある(即ち、0度またはラジアンに等しい)スキャン角度θ418に対応する点426で放射される最大エネルギに関して半分の放射エネルギ点を表すことは当業者により理解される。本例では、バックローブ406はおおよそ−16dBであってもよく、サイド・ローブ408、410、および412は−30dB以上であってもよい。しかし、これらの値は純粋に例であり、当該アンテナの励起テーパおよびタイプ、構造および構成の任意の利用に基づいて大幅に変わり得ることは理解される。本開示では「メインローブ」および「メイン・ビーム」という用語を交互に利用してもよいことも理解される。
図5Aを参照すると、等方性アンテナ・ラジエータ502(「等方性ラジエータ」または「点光源」としても知られる)に対する遠距離放射パターンの極座標プロット500の1実装の例のプロットが示されている。図4Aの極座標プロット400と異なり、極座標プロット500はメインローブを含まないが、実際には全ての方向に同一の強度の放射を発する。等方性アンテナ・ラジエータ502は、放射の好適でない方向を有する電磁エネルギの理論的な点光源であることは当業者により理解される。定義により、等方性アンテナ・ラジエータ502は、等方性アンテナ・ラジエータ502を中心とする球に対して全ての方向に均一に放射する。したがって、アンテナ理論では、等方性アンテナ・ラジエータは、例えばアンテナのゲインを決定する際に他のアンテナ・ラジエータと比較される参照ラジエータとして使用される。したがって、アンテナ理論では、等方性アンテナ・ラジエータ202は、全ての方向に0dBの指向性を有すると言われる。図4Aの例と同様に、例えば、極座標プロット500は、Z軸404とY軸416により定義されるXY平面420に沿って参照0度スキャン角度θ418から0乃至360度の間のスキャン角度θ418を通じて回転する。
図5Bでは、図5Aに示す遠距離放射パターンの極座標プロット500の長方形プロット504が示される。本例では、長方形プロット504は、極座標プロット500の遠距離放射パターンの(振幅軸424に沿った)規模を示すXY平面420に沿って切断された2次元プロットである。本例では、極座標プロット500の遠距離放射パターンの長方形プロット504の規模が角度0度508から−180度510および0度508から180度512のスキャン角度θ418の全てに対して定数506であることは当業者により理解される。
図6Aを参照すると、本開示に従うアンテナ素子602の遠距離放射パターンの極座標プロット600の1実装の例のプロットが示されている。図5Aの例と同様に、極座標プロット600はメインローブを含まないが、実際には、放射の大部分が、アンテナ素子602の前面に、正のZ軸404において、0度に等しいスキャン角度θ418で発せられるカージオイド強度の放射を発する。当該放射パターンはついで、0dBから、Y軸416上の負の方向または正の方向に沿って角度0度から−90度および0度から90度のスキャン角度θ418から例えば、おおよそ−3dBからおおよそ−6dBの範囲に外れる。当該放射パターンはついで、角度−90度から−180度および90度から180度のスキャン角度θ418から迅速に外れ、−180(または同一のスキャン角度θ418であるので、180)で極座標プロット600放射パターンがヌル604に降下する。図4Aに示す例と異なり、かつ、図5Aに示す例と同様に、アンテナ素子602の遠距離放射パターンの極座標プロット600は、当該遠距離放射パターンが、Z軸404とY軸416により定義されるXY平面420に沿った参照0度スキャン角度θ418から低指向性を有することを示す。
図6Bでは、本開示に従う図6Aに示す遠距離放射パターンの極座標プロット600の長方形プロット606が示される。本例では、長方形プロット606は、極座標プロット600の遠距離放射パターンの(振幅軸424に沿った)規模を示すXY平面420に沿って切断された2次元プロットである。本例では、極座標プロット600の遠距離放射パターンの長方形プロット606の規模は、角度0度608から−180度610および0度608から180度612のスキャン角度θ418の間の略正弦波であることは当業者により理解される。
本例では、アンテナ素子602の遠距離放射パターンの極座標プロット600は、例えば、パッチ・アンテナのようなマイクロストリップ・アンテナであってもよい。パッチ・アンテナの例示的なケースでは、当該パッチ・アンテナは、おおよそ70乃至100mmの地上面平方(ground plane square)上の約25平方ミリメートル(「mm」)であってもよい。
本開示では、MPAA100が場合によっては、再度例えば、放射素子の数、放射素子の間の間隔、放射素子のタイプ、および放射素子を励起するために利用される振幅およびフェーズテーパを含む、MPAA100の予め決定された設計パラメータに基づいて極座標プロット600とおおよそ類似する極座標プロットを有する遠距離放射パターンを生成してもよい。MPAA100が図6Aに示す遠距離放射パターンを生成する例において、当該遠距離放射パターンは、MPAA100の動作の第2のモードで極座標プロット600の遠距離放射パターンとおおよそ同様な第2のビームを有する第2の放射パターンであってもよい。
図1に戻ると、MPAA100に作用する無線周波数(「RF」)エネルギ波192を受信する動作の例では、コントローラ104により各素子108、110、112、114、116、および118に課されたスペクトル、タイミング、振幅およびフェーズ制御に加えて、空間内のそれらの位置およびRFエネルギ波192の到着の角度に起因して、素子108、110、112、114、116、および118に到着するRFエネルギ波192の間の相対的な位相シフトがある。さらに、各素子108、110、112、114、116、および118の遠距離放射パターンは、入ってくる平面波(即ち、RFエネルギ波192)の到着角度とともに変化する応答につながる。本例では、各素子108、110、112、114、116、および118は同一であり同一のタイプの遠距離放射パターンを生成すると仮定するので、パターン乗算の原理により、MPAA100の設計者が、それをMPAA100の総遠距離放射パターンにおける1つの乗法因子として考えることができることは当業者により理解される。したがって、当該遠距離放射パターンの残りの角度依存性はアレイ因子として既知であり、当該アレイ因子は素子の位置およびそれらの励起によってのみ決定される。図1では、MPAA100は本例では受信側フェーズド・アレイ・アンテナとして示されているが、受信側の放射パターンは相互関係により送信側の遠距離放射パターンと同一であることも当業者により理解される。したがって、本開示では、MPAA100を記述する説明および添付図面は、どちらがより好都合であるかに応じて、受信または送信の視点の何れかで説明される。
前述のように、本開示は、MPAA100の結果の放射パターンが単一のラジエータ(即ち、素子)のアンテナ放射パターンに類似するように半径方向に分散されるように、複数の素子102をMPAA100で励起することを説明する。これは、3次元形式の電磁波式を利用する方法を実施するコントローラ104で実施され制御される。当該電磁波式は媒体を通じてまたは真空内での電磁(「EM」)波の伝播を記述する二次部分微分式であり、Maxwellの式から導出された3次元形式の波式であることは当業者により理解される。単純さのため、本例では、実際の素子が無指向性放射パターンを示さなくてもよいが、当該方法は各素子108、110、112、114、116、および118を点光源として近似する。したがって、本例では、当該方法において、単一の素子がMPAA100のアレイ中心(例えば、X軸208とY軸204の交点)に存在することを仮定する。当該信号素子はまた、定数指向性を有し、ブロードバンドであり、無指向性遠距離放射パターンを有する等方性ラジエータまたは仮想点光源であると仮定される。一般に、当該方法は、電磁波式のMaxwellの微分を利用して、(等方性ラジエータまたは仮想点光源と想定される)この素子周りの任意の空間的位置で測定される時間可変場を記述する。当該方法がついで、複数の素子108、110、112、114、116、および118を既知の振舞いを有する離散放射素子として利用する単一の素子を模倣する(即ち、近似する)MPAA100に対する遠距離放射パターンを生成する。
当該方法は、次数nの第1種の幾つかのBessel関数を利用するMPAA100に対する遠距離放射パターンを生成する。本例では、当該方法は、MPAA100アレイ応答に近似されうるBessel関数の切断正則級数拡張を利用してもよい。当該方法はついで、(複数の素子108、110、112、114、116、および118の)素子励起ごとの正規化定数を利用して、複数の素子108、110、112、114、116、および118の各素子に対する最大(即ち、MPAA100の設計ごとの許容可能値)励起振幅を制限してもよい。本例では、複数の素子108、110、112、114、116、および118の全ての正味の合計が単一の素子と同様な定数ゲイン曲線放射パターンをもたらす。当該方法はまた、この技術を一般に、非等方性ラジエータである素子に対して利用してもよいことは理解される。
本例では、当該方法は、素子のアンテナ・アレイの遠距離放射パターンがアレイ素子ベクトルと当該アンテナ・アレイに対するアレイ因子との積として説明されうる関係を利用する。一般に、当該素子ベクトルは当該素子の放射パターンおよび極性化を包含し、当該アレイ因子は当該素子の空間配置に依存し、それらの励起の重ね合わせを伴う。本例では、当該方法はMPAA100のアレイ因子を操作し、その結果それは定数のゲインとして振る舞う。したがって、当該素子が同様である場合、結果の遠距離放射パターンは、単一の素子と同様である増幅された遠距離放射パターンである。
図7を参照すると、本開示に従う、MPAA712内の複数の放射素子702、704、706、708、および710を参照して例示的な観察ポイント700のグラフィカルな図が示されている。本例では、放射素子702、704、706、708、および710は、1乃至Nに等しいiに対して、X軸714、Y軸716、およびZ軸718に沿ってデカルト位置(Xi、Yi、Xi)に配置される。Nは放射素子の総数である。本例では、MPAA712は、図1のMPAA100、図2のMPAA200、MPAA300、または等角フェーズド・アレイと同じタイプのMPAAであってもよい。
簡単さの目的のため、当該方法は、まず、MPAA712が位置ベクトル
Figure 2018160886
に対応する位置(xi、yi、zi)または(ρi、θi、φi)で空間内に任意に分散された微小単位のセルラジエータ(即ち、前述の放射素子)を有し、ρi、θi、φiは球面座標内の位置の半径距離、極角720、および方位角722を表すと仮定する。本例では、各放射素子702、704、706、708、および710が座標(ρ、θ、φ)に対応する位置ベクトル
Figure 2018160886
を有する観察ポイント700から基準原点706(即ち、前述したアレイの中心)で測定されると仮定して、素子iの各々は遠距離放射パターン
Figure 2018160886
を有する。したがって、これらの素子の結果の遠距離放射パターンは、
Figure 2018160886
である。ここで、
Figure 2018160886
である。本例では、単位ベクトル
Figure 2018160886
はそれぞれ増大するθ720およびφ722の方向を指し、変数
Figure 2018160886
は遠距離放射パターンのθ720およびφ722成分を表し、k=2π/λは波数を表し、ciは経路損失および素子ゲインを含む全体の損失、ゲイン、またはその両方を表し、ωiは素子の重みまたは励起係数を表す複素数であり、
Figure 2018160886
であり、演算子(.)は内積である。式
Figure 2018160886
は一般に、各放射素子702、704、706、708、および710および観察ポイント700の間の距離である。本例では、遠距離放射パターン
Figure 2018160886
に対する関係は、本方法のアプローチを適用してθ720およびφ722において別々に場を広げるオプションを提供するために、θ720およびφ722の角度成分に分割されている。本例では、観察ポイント700が(ρ0724として示される)観察ポイント700への半径距離が動作波長λよりかなり大きいように遠距離にあると仮定する。これを
Figure 2018160886
として表してもよく、iは1からNまで変化する。
これらの数学導出を簡略化するために、当該方法は全ての当該放射素子に対してci=C=cteと仮定する。その結果、当該関係を
Figure 2018160886
と書き直してもよい。ここで、
Figure 2018160886
である。これはアレイ因子であり、
Figure 2018160886
はスカラである。したがって、この関係はパターン乗算の原理を意味する。全体のアレイパターンは、示すようにアレイ因子と素子パターンの積として説明されうる。
Figure 2018160886
これは純粋に素子パターン、周波数、および距離の関数である。これはまた、以下の関係により説明されうる。
Figure 2018160886
これを
Figure 2018160886
と書き直してもよい。これを再度書き換えてもよい。なぜならば、1例として、MPAAを、放射素子間隔dを有する均一な線形アレイとして実装してもよいからである。基準原点706はMPAAの中間にある。したがって、上の関係を
Figure 2018160886
と書き直してもよい。ここで、uはsinθcosθに等しく、Mは(N−1)/2に等しい。
本開示では、目標は、1組のパラメータを発見し、ついで全体のアレイ応答が素子パターン応答の形状を模倣するので第2の項
Figure 2018160886
が定数に見えるという想定を発見することである。ωi(即ち、放射素子の重み付け)に着目すると、上の合計が定数となるように重み付けが取得される。
MPAA内に多数の放射素子があり変数「x」がejkduに等しいことが仮定される場合、当該関係は以下のようであってもよい。
Figure 2018160886
上の式がLaurent級数になることは当業者により理解される。x(例えば、z=e−jkdu)内の変数の選択により、例えば、Z変換のような他の冪級数をまた利用してもよい。当該Z変換を利用することは、異なる要素幾何を考慮するとき、または、さらに各アレイの重みを操作するために有用であることは理解される。さらに、上の関係はまた、離散時間Fourier変換およびそのアイデンティティおよび特性の利用を可能とする。
本例では、単一の点光源のEM場のBessel関数の切断正則級数拡張を利用し、それをアレイ応答に等しくして近似的で最適なアレイ放射素子励起を計算する。各放射素子励起の正規化定数をまた、場合によっては各放射素子に対する最大(即ち、許容可能)励起振幅を制限するように考慮してもよい。より具体的には、Laurent級数を利用することで、Bessel生成関数のアイデンティティの利用を可能とする。
Figure 2018160886
と仮定する。Ji(z)は次数iの第1種のBessel関数であり(iは整数)、
Figure 2018160886
は、ゲイン調節に対して利用される定数係数であると仮定すると、上の式を
Figure 2018160886
と書き直してもよい。パラメータzは自由度である。上式により、Bessel生成関数の利用が可能となる(xが0に等しくないことは既知である)。
Figure 2018160886
これらの式を結合すると、全体のアレイパターンは、以下の式により示されるように各放射素子と比較される同様かつ比例的な応答を示す。
Figure 2018160886
この最終的な式は、全体のアレイの規模応答が、所与のトポロジに対して周波数依存である一般的なフェーズド・アレイと対照的に周波数独立であることを示す。実際に有限個の素子があり、したがって本例では当該和は切り詰められ、
Figure 2018160886
は任意の切り詰め誤差を補償するために利用される。本例では当該誤差項は
Figure 2018160886
である。換言すれば、数値分析を通じて、固定のdおよびkを有する固定の幾何形状に対して、当該誤差を、方位または高度スキャン角度θおよびφに対するz値を選択することで最小化してもよい。一般に、動作の固定のアレイ幾何形状および周波数および選択されたzに対して、当該誤差は、それを「管理可能な」ゲイン調節により補償できるので、決定的である。したがって、zに対するおおよそ最適な選択を、任意のアレイトポロジに対して数値的に計算してもよく、フェーズ変形を削減するために選択してもよい。このプロセスを利用すると、遠距離放射パターンのビームを方位、高度、またはその両方で広げてもよい。パターン乗算原理に基づいて長方形アレイ、円形アレイ、および三角形格子を有する平面アレイに対して同一のプロセスを利用してもよく、3次元非平面アレイトポロジにさらに拡大してもよく、他のアレイ幾何の操作を可能とする離散時間Fourier変換またはZ変換ベースのアプローチをもたらすために上述の式において変数の他の選択が可能であることは当業者により理解される。さらに、本例では同様な放射素子が利用されたが、説明されたアプローチはEM波の重ね合わせを適用することによってハイブリッド合成を介して同様でない放射素子に等しく適用可能であることは当業者により理解される。さらに、当該素子が等しく離れていないか、または、当該アレイが完全に埋められていないとき、これらの失われた素子に対応する項を制御してもよく、または、第1種の(即ち、Ji(z)の)Bessel関数の次数iを、基準原点706からの波長における要素距離に対応するように置き換てもよく、ついで素子励起を再計算し、同様にゲイン
Figure 2018160886
を調節して誤差を削減してもよい。本開示では、ビーム拡大効率ηは、新たに計算される励起Pradが与えられた場合にMPAAにより放射される総電力の最大有能電力Paccとの比として以下の式により説明されうる。
Figure 2018160886
重みゲイン項
Figure 2018160886
が増大された場合、効率が増大するのが好ましいが、スキャン角度誤差のコストが犠牲になる。したがって、効率と誤差の間にトレードオフがある。素子の数が増大すると、放射効率が減少する。しかし素子のサブセットをグループ化してサブアレイを形成することができる。これらのサブセットの放射パターンを単位セルと仮定することで、本開示で論じられた同一の拡大方法を、多数の素子を有するアレイに対するスケーラブルな実装を取得するために適用することができる。
この方法に基づいて、MPAAは、MPAAにより生産された第1の放射パターンのメイン・ビームを広げる方法を実施するためのアプローチを利用する。一般に、当該方法は、複数の放射素子を励起して第2の放射パターンを生成するステップであって、第2の放射パターンは当該複数の放射素子の単一の放射素子の放射パターンと同様であり、第2の放射パターンは当該メイン・ビームより広い第2のビームを有する、ステップを含む。本例では、当該複数の放射素子を励起するステップは一般に、第1の放射パターンを生成する第1の動作モードと第2の放射パターンを生成する第2の動作モードの間で(コントローラを用いて)切り替えるステップを含む。
本例では、当該複数の放射素子を励起するステップは当該複数の放射素子に対する複数の励起信号を決定するステップを含み、当該複数の励起信号は、当該単一の放射素子のEM場に対してBessel関数の切断正則級数拡張を利用し、EM場に対するBessel関数の切断正則級数拡張をMPAAに対するアレイ応答と等しくするステップにより決定される。
より具体的には、上述のアプローチに基づいて、図8において、本開示に従う、MPAAにより実施される方法の1実装の例の流れ図800が示されている。前述のように、当該方法は、ステップ804で当該複数の放射素子の単一の放射素子のEM場を決定するステップにより開始する(802)。当該方法はついで、ステップ806で、初期単位定変数またはゲインを割り当てて当該方法の安定性を保証する。当該方法はついで、ステップ808で、当該EM場に当該ゲインを乗じて増幅されたEM場を取得する。ステップ810では、当該方法はついで引き続いて、ステップ806または808と同時に、またはステップ806または808の前に、MPAAが無限の素子アレイを有すると仮定して、MPAAに対するパラメトリックな(即ち、パラメータとして既知の1つまたは複数の独立な変数とともに変化する)遠距離放射パターンを決定する。この決定が正則級数拡張(Laurent級数であってもよい)をもたらす。MPAAの放射素子に対する励起値は可変である。ステップ812では、当該方法はついで次数iの第1種のBessel関数の点で当該EM場のLaurent級数をマップする(例えば、書き換える)。iは整数である。当該方法はついでステップ814で、当該Bessel関数の正則級数拡張を切り詰めて、MPAA内の実際の有限個の放射素子をマッチするように切断正則級数拡張を同一視(即ち、マッチ)する。本例では、当該切断正則級数拡張が決定されると、当該複数の放射素子を励起して第2の放射パターンを生成するための必要な励起信号は(振幅および位相の両方において)既知であることは当業者により理解される。
当該方法はついで、(ステップ816において)(ステップ808で生成された)増幅されたEM場を、(ステップ814で生成された)切断正則級数拡張と比較し、当該比較(例えば、もしあれば当該結果の差分)がステップ818に渡される。ステップ818では、当該方法は当該切断正則級数(例えば、第1種の切断Bessel関数)を当該増幅されたEM場と同一視する。当該増幅されたEM場は最初にユニットセルの増大された応答であってもよい。本例では、当該結果はMPAAの放射素子に対する初期または更新された素子励起の何れかである。当該方法はついで当該初期または更新された素子励起をステップ820および822の両方に渡す。ステップ820では、当該方法は方位または高度スキャン角度に対する任意の切詰め誤差を決定し、ステップ822では、当該方法は、新たに決定された初期または更新された素子励起が与えられた場合にMPAAにより放射される総電力の最大有能電力に対する比率として放射効率を決定する。当該結果は判定ステップ824に渡される。当該方法は、(ステップ820で決定される)切詰め誤差および/または(ステップ822で決定される)決定された放射効率が当該決定された初期または更新された素子励起の利用に値するかどうかまたは当該初期または更新された素子励起におけるさらなる改良が必要かどうかを判定する。当該方法が(判定ステップ824において)当該決定された初期または更新された素子励起が当該放射素子を励起する際に使用するために許容可能であると判定した場合、当該方法は826で終了する。
実際、当該方法が、判定ステップ824において、決定された初期または更新された素子励起が当該放射素子を励起する際に使用するために許容可能でないと判定した場合、当該方法はステップ828に進む。ステップ828では、当該方法は、ゲイン値(即ち、
Figure 2018160886
)を置換および更新して、任意の切詰め誤差を保証する。当該ゲインは単体(即ち、値1)より大きい。当該更新ゲインはついでステップ808に渡され、EM場と乗算され、当該プロセスは、適切に決定された初期または更新された素子励起が当該放射素子を励起する際に使用するために許容可能であるまでステップ816乃至824を繰り返し、当該方法は826で終了する。
本例示的な方法では、MPAAはまず第1の動作モードで動作しており、MPAAの複数の素子が、典型的なフェーズアレイ・アンテナである、即ち、第1の放射パターンが高指向性、狭いメイン・ビーム、および複数の低いレベルサイド・ローブを有する非常に指向性の高い第1の放射パターンを生成するために励起されることを仮定する。1例として、第1の動作モードでの複数の放射素子の励起は、指向性であり予め決定されたサイド・ローブレベル性能を有するように第1の放射パターンを合成するアレイ配分テーパを利用してもよい。当該アレイ配分の例は、例えば、Dolph-Chebyshev線形アレイ法またはTaylor分布法を利用して合成されたアレイ配分タッパーを含んでもよい。
必要なとき、当該コントローラは、MPAAの動作を第2の動作モードに切り替えて、第1の放射パターンのメイン・ビームよりかなり広いビームを有する第2の放射パターンを生成するように構成される。第2の動作モードでは、当該コントローラは、第1の放射パターンを第2の放射パターンに変更するために、新たな励起レベル(即ち、決定された初期または更新された素子励起)で複数の放射素子を励起するステップをもたらすステップ804乃至828を実施してもよい。一般に、ステップ804乃至828を、場合によってはMPAAの動作の前に、または、当該コントローラがMPAAの動作を第1の動作モードから第2の動作モードに切り替えるとオンザフライで、当該コントローラにより実施してもよい。
本開示で説明されたアプローチに基づいて、当該アプローチはまた、フェーズド・アレイと関連して利用される既知のデジタル回路により生ずる潜在的なラウンドオフまたは量子化誤差を解決することに留意されたい。特に、位相、時間、振幅、および幾つかのケースではスペクトル制御は、多くの近代的なフェーズド・アレイシステムにおいて、デジタル回路により実施される。1例として、フェーズ制御はデジタル位相シフタを利用するステップを実施してもよく、または、振幅制御がデジタル減衰器またはデジタル的に制御された動作増幅器を利用するステップを実施してもよい。一般に、これらのデジタルサブシステムは、量子化および処理における離散ステップの利用に起因してラウンドオフまたは量子化誤差に作用してもよい。一般に、これらの離散ステップは、デジタル・アナログ(および逆も成り立つ)変換に使用される制限された数のビットに起因する。
したがって、本開示で説明されたアプローチを利用することで、量子化効果が励起計算および最適化の間に組み込まれ、ターゲット励起は量子化能力における限定と境界に基づいて計算される。以前に説明されたパラメータzを、結果の素子重量
Figure 2018160886
が正確に当該量子化ステップ上にまたはその近くにあるように選択してもよい。
例えば、169個の素子の励起を最適化するとき、最初の39個の励起が表Aで列挙され、振幅制御は4ビット(即ち、1つの16進数の桁)に制限されており、位相制御は1ビットにのみに制限されている(即ち、位相シフトにおいて0度または位相シフトにおいて180度の何れか)ことを仮定する。かかる制約および限定を、同一のブロック内の最適化の間に組み込むことができ、切詰め誤差が計算される(即ち、ステップ820は、方位または高度スキャン角度に対する任意の切詰め誤差を決定する)。
図9を参照すると、本開示に従う、複数の放射素子102(図1に示す)の遠距離放射パターンの複数の極座標プロット900、902、904、906、908、および910の1実装の例のプロットが示されている。本例では、図1の例と同様に、6個の(6)放射素子202(1)、202(2)、202(3)、202(4)、202(5)、および202(6)のみが示されるが、これは例示の簡単さのためにすぎず、場合によっては多数の放射素子があってもよいことは当業者には理解される。図1に関して説明された例と同様に、本例では6個の放射素子202(1)、202(2)、202(3)、202(4)、202(5)、および202(6)は、アレイ中心188を中心としてその周りに対称的に配置され、各放射素子ペアが素子間間隔d190だけ離間されるとして示される。本例では、当該放射素子は、(図6Aに示す極座標プロット600と同様に)形状がカージオイドである個々の遠距離放射パターンを生成するパッチ・アンテナであってもよい。
図10では、本開示に従う、複数の放射素子102(図1および9に示す)の結合された指向性遠距離放射パターンの極座標プロット1000の1実装の例のプロットが示されている。本例では、結合された指向性遠距離放射パターン1000は、(前述した)第1の動作モードの第1の遠距離放射パターンの例である。
さらに、第1の動作モードにおける当該複数の放射素子102の励起は、指向性であり予め決定されたサイド・ローブレベル性能を有するように、結合された指向性遠距離放射パターン1000を合成するアレイ配分テーパを利用してもよい。再度、当該アレイ配分の例は、例えば、Dolph-Chebyshev線形アレイ法またはTaylor分布法を利用して合成されたアレイ配分タッパーを含んでもよい。
図11を参照すると、本開示に従う、複数の放射素子(図1および9に示す)の理想的な結合された無向遠距離放射パターンの極座標プロット1100の1実装の例のプロットが示されている。本例では、極座標プロット1100が理想的な結合された無向遠距離放射パターンである理由は、複数の放射素子102が線形アレイに編成された無限のまたはほぼ無限の複数の放射素子102であると仮定されることである(例示の目的のため、6個の放射素子202(1)、202(2)、202(3)、202(4)、202(5)、および202(6)のみが示される)。本例では、当該理想的な結合された無向遠距離放射パターンは、(前述のように)第2の動作モードの第2の遠距離放射パターンの例である。本例では、図6Aの例と同様に、極座標プロット1100はメインローブを含まないが、実際にカージオイド強度の放射を発し、当該放射の大部分は正のZ軸404内の放射素子202(1)、202(2)、202(3)、202(4)、202(5)、および202(6)(即ち、舷側)の前部に0度に等しいスキャン角度θ418で放射される。当該結合された無向遠距離放射パターンはついで徐々に、Y軸416上の負の方向または正の方向に沿って角度0度から−90度および0度から90度のスキャン角度θ418から例えばおおよそ−3dB乃至おおよそ−6dBの範囲に、0dBから外れる。当該結合された無向遠距離放射パターンはついで迅速に、角度−90度から−180度および90度から180度のスキャン角度θ418から外れる。−180(または同一のスキャン角度θ418であるので180)で極座標プロット1100放射パターンがヌル1102に落ちる。本例では、理想的な結合された無向遠距離放射パターンが、前述のBessel関数の正則級数拡張を利用して決定される複数の放射素子102の励起により合成される。
図12では、本開示に従う、当該複数の放射素子の非理想的な結合された無向遠距離放射パターン102(図1および9に示す)の極座標プロット1200の1実装の例のプロットが示されている。本例では、非理想的な結合された無向遠距離放射パターンの極座標プロット1200は、非理想的な結合された無向遠距離放射パターンの極座標プロット1200が、PAA内の一定の少数の複数の放射素子102により部分的に生ずるパターン誤差1202を含むということを除いて、理想的な結合された無向遠距離放射パターンの極座標プロット1100と同様である。再度、本例では、当該非理想的な結合された無向遠距離放射パターンは、(前述のように)第2の動作モードの第2の遠距離放射パターンの例である。複数の素子102内の放射素子の数が増大すると、パターン誤差1202の「波紋」が減少することは理解される。実装の例として、以下の表Aは、169個の素子を有する長方形アレイの例の最初の39個の素子に対する対応する計算される励起係数を示す。本例では、第1の、第2の、および第3のカラムは、それぞれX軸、Y軸、およびZ軸に沿った放射素子座標のx、y、およびzである。第4のおよび第5のカラムは、16進数で計算された振幅、および、上述の方法を利用する複数の放射素子102を励起するための度での位相角重み値である。本例では169個の放射素子があると仮定するが、例示の目的のため、6個の(6)放射素子202(1)、202(2)、202(3)、202(4)、202(5)、および202(6)のみが図12で示される。
Figure 2018160886
様々な態様または本発明の詳細を本発明の範囲から逸脱することなく変更してもよいことは理解される。それは包括的ではなく、クレームされた発明を開示された正確な形態に限定しない。さらに、以上の説明は例示の目的のためにすぎず、限定の目的のためではない。修正および変動が上の説明に鑑みて可能であり、または、本発明を実施することから得られうる。当該クレームおよびそれらの均等物は本発明の範囲を定義する。
当該異なる例示された実装の例における当該流れ図およびブロック図は、例示的な例における装置および方法の幾つかの可能な実装のアーキテクチャ、機能、および動作を示す。この点、当該流れ図またはブロック図内の各ブロックは、モジュール、セグメント、関数、動作またはステップの一部、その幾つかの組合せを表してもよい。
例示的な例の幾つかの代替的な実装では、当該ブロック内で示した1つまたは複数の機能は当該図面に示した順序とばらばらに行われてもよい。例えば、幾つかのケースでは、連続的に示された2つのブロックを十分に並列に実行してもよいか、または当該ブロックを場合によっては含まれる機能に応じて逆順に実施してもよい。また、他のブロックを、流れ図またはブロック図内の示されたブロックに加えて追加してもよい。
当該異なる例示的な例の説明を例示および説明の目的のために提供したが、包括的であるとも、当該形態開示した形態における例に制限する意図はない。多くの修正および変形は当業者には明らかであろう。さらに、異なる例示的な例が、他の所望の例と比較して異なる特徴を提供してもよい。選択された1つまたは複数の例は、前記例の原理、実際の適用を最も良く説明し、当業者が考えられる特定の利用に適するように様々な修正で様々な例に対して本開示を理解できるようにするために選択され、説明されている。
102 複数の放射素子
104 コントローラ
170 トランシーバ

Claims (14)

  1. 少なくとも2つの動作モードを有するマルチモード・フェーズド・アレイ・アンテナ(「MPAA」)であって、第1の動作モードがメイン・ビームを有する第1の放射パターンを生成し、第2の動作モードが第2のビームを有する第2の放射パターンを生成し、前記MPAAは、
    放射素子のアレイとして配置された複数の放射素子と、
    前記複数の放射素子と信号通信するコントローラと、
    を備え、
    前記コントローラは前記複数の放射素子を励起して、
    前記第1の動作モードでの前記メイン・ビームを有する前記第1の放射パターンと、
    前記第2の動作モードでの前記第2のビームを有する前記第2の放射パターンと
    を生成するように構成され、
    前記第2のビームは前記メイン・ビームより広く、
    前記第2の放射パターンは前記複数の放射素子の単一の放射素子の放射パターンと同様であり、
    前記コントローラはまた、前記第1のモード動作および前記第2の動作モードの間で切り替えるように構成される、
    MPAA。
  2. 放射素子の前記アレイはアレイ中心を有し、
    前記第2の放射パターンはおおよそ、前記アレイ中心に配置された単一の放射素子の増幅された放射パターンである、
    請求項1に記載のMPAA。
  3. 前記単一の放射素子は略定指向性遠距離放射パターンおよび略無指向性遠距離放射パターンを有する、請求項2に記載のMPAA。
  4. 前記複数の放射素子はアレイ因子を有し、
    前記アレイ因子はおおよそ定数のゲインを有する、
    請求項3に記載のMPAA。
  5. 前記複数の放射素子の各放射素子は対応する放射素子放射パターンを有し、
    前記複数の放射素子の各放射素子の前記放射素子放射パターンの全ての合計が前記第2の放射パターンをもたらす、請求項2に記載のMPAA。
  6. 前記複数の放射素子の各放射素子は送受信(「T/R」)モジュールである、請求項1に記載のMPAA。
  7. 前記複数の放射素子の各放射素子は、放射パターンおよび前記放射素子の偏向を含む対応する素子ベクトルを有する、請求項1に記載のMPAA。
  8. 前記複数の放射素子はアレイ因子を有し
    前記アレイ因子はおおよそ定数のゲインを有する、
    請求項7に記載のMPAA。
  9. 前記コントローラは前記複数の放射素子に対する複数の励起信号を決定することで前記複数の放射素子を励起するように構成され、
    前記複数の励起信号は、前記単一の放射素子の電磁(「EM」)場に対するBessel関数の切断正則級数拡張を利用しEM場に対するBessel関数の前記切断正則級数拡張を前記MPAAに対するアレイ応答と同等視することにより決定される、
    請求項8に記載のMPAA。
  10. 放射素子のアレイとして配置された複数の放射素子およびコントローラを有するマルチモード・フェーズド・アレイ・アンテナ(「MPAA」)により生産された第1の放射パターンのメイン・ビームを広げるための方法であって、
    前記複数の放射素子を励起して第2の放射パターンを生成するステップ
    を含み、
    前記第2の放射パターンは前記複数の放射素子の単一の放射素子の放射パターンと同様であり、
    前記第2の放射パターンは前記メイン・ビームより広い第2のビームを有する、
    方法。
  11. 前記複数の放射素子を励起するステップが、前記第1の放射パターンを生成する第1の動作モードと前記第2の放射パターンを生成する第2の動作モードの間で前記コントローラを切り替えるステップを含む、請求項10に記載の方法。
  12. 前記複数の放射素子を励起するステップは前記複数の放射素子に対する複数の励起信号を決定するステップを含み、
    前記複数の励起信号は、前記単一の放射素子の電磁(「EM」)場に対するBessel関数の切断正則級数拡張を利用しEM場に対するBessel関数の前記切断正則級数拡張を前記MPAAに対するアレイ応答と同等視することにより決定される
    請求項10に記載の方法。
  13. 前記Bessel関数は次数iの第1種のBessel関数であり、iは整数であり、
    前記正則級数はLaurent級数である、
    請求項10に記載の方法。
  14. 不均等素子間隔を有するMPAAに適用され、前記Bessel関数は次数iの第1種のBessel関数であり、基準原点からの波長における前記素子の距離に対応する、請求項10に記載の方法。
JP2018001093A 2017-01-23 2018-01-09 フェーズド・アレイ・アンテナ・システムのための広帯域ビームの拡張 Active JP7053272B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/413,175 US10686251B2 (en) 2017-01-23 2017-01-23 Wideband beam broadening for phased array antenna systems
US15/413,175 2017-01-23

Publications (2)

Publication Number Publication Date
JP2018160886A true JP2018160886A (ja) 2018-10-11
JP7053272B2 JP7053272B2 (ja) 2022-04-12

Family

ID=60674024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018001093A Active JP7053272B2 (ja) 2017-01-23 2018-01-09 フェーズド・アレイ・アンテナ・システムのための広帯域ビームの拡張

Country Status (4)

Country Link
US (1) US10686251B2 (ja)
EP (2) EP3352299B1 (ja)
JP (1) JP7053272B2 (ja)
CN (1) CN108417999B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111123229A (zh) * 2020-01-07 2020-05-08 浙江大学 基于电性能幅值加权的阵元安装位置的测量方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3285083B1 (en) * 2016-08-19 2019-06-12 Rohde & Schwarz GmbH & Co. KG Method for direction finding and direction finding antenna unit
EP3432027B1 (en) * 2017-07-20 2021-09-01 Airbus Defence and Space GmbH High resolution wide swath synthetic aperture radar system
CN110998489B (zh) * 2017-08-07 2022-04-29 索尼公司 相位计算装置、相位计算方法、触觉呈现系统和程序
US10804600B2 (en) * 2018-07-23 2020-10-13 The Boeing Company Antenna and radiator configurations producing magnetic walls
EP3609088A1 (en) * 2018-08-06 2020-02-12 Intel Corporation Techniques for analog beamforming
US11041936B1 (en) * 2018-10-04 2021-06-22 Hrl Laboratories, Llc Autonomously reconfigurable surface for adaptive antenna nulling
CN109492284B (zh) * 2018-10-30 2022-05-03 电子科技大学 一种波导端口共形卷积完美匹配层吸收边界算法
US11340329B2 (en) 2018-12-07 2022-05-24 Apple Inc. Electronic devices with broadband ranging capabilities
US20190319368A1 (en) * 2019-06-03 2019-10-17 Raymond Albert Fillion Electromagnetic Phased Array Antenna with Isotropic and Non-Isotropic Radiating Elements
CN114599587A (zh) * 2019-11-05 2022-06-07 株式会社Qps研究所 航天器
US11228119B2 (en) 2019-12-16 2022-01-18 Palo Alto Research Center Incorporated Phased array antenna system including amplitude tapering system
CN111555015A (zh) * 2020-06-12 2020-08-18 中国气象局气象探测中心 一种双偏振相控阵天线及双偏振相控阵天气雷达
CN113960378A (zh) * 2020-07-20 2022-01-21 川升股份有限公司 准远场量测系统、准远场量测方法
CN112818289B (zh) * 2021-01-11 2022-12-06 厦门大学 一种综合多波束-频率不变的共形阵列的方法
CN113325369B (zh) * 2021-04-21 2023-09-01 南京慧尔视智能科技有限公司 一种mimo微波装置
CN113311383B (zh) * 2021-04-30 2023-12-29 中国人民解放军63892部队 一种基于矩形阵列的天线测向和极化参数联合估计方法
CN115275608B (zh) * 2022-06-30 2024-10-01 航天恒星科技有限公司 一种光相控阵宽角扫描测试系统和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566770A (en) * 1978-11-03 1980-05-20 Bendix Corp Phased array antenna and driving same
JP2015525516A (ja) * 2012-05-31 2015-09-03 アルカテル−ルーセント ワイヤレス通信のためのプリコーディングされた信号の変換

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425567A (en) * 1981-09-28 1984-01-10 The Bendix Corporation Beam forming network for circular array antennas
US4626858A (en) * 1983-04-01 1986-12-02 Kentron International, Inc. Antenna system
US5389939A (en) * 1993-03-31 1995-02-14 Hughes Aircraft Company Ultra wideband phased array antenna
SE509278C2 (sv) * 1997-05-07 1999-01-11 Ericsson Telefon Ab L M Radioantennanordning och förfarande för samtidig alstring av bred lob och smal peklob
US6583760B2 (en) * 1998-12-17 2003-06-24 Metawave Communications Corporation Dual mode switched beam antenna
EP1428291A4 (en) * 2001-08-31 2004-12-08 Univ Columbia SYSTEMS AND METHODS FOR PROVIDING AN OPTIMIZED PLATE ANTENNA EXCITATION TO PLATES COUPLED TO EACH OTHER
US7664533B2 (en) * 2003-11-10 2010-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for a multi-beam antenna system
US7398078B2 (en) * 2004-03-05 2008-07-08 Seknion, Inc. Method and apparatus for security in a wireless network
WO2008034458A1 (en) 2006-09-22 2008-03-27 Telecom Italia S.P.A. Method and system for syntesizing array antennas
CN102683898B (zh) 2012-05-02 2014-12-10 浙江大学 基于贝塞尔函数的圆形口径场分布的阵列天线的设计方法
US20140375518A1 (en) * 2013-06-19 2014-12-25 Radio Frequency Systems, Inc. Amplitude tapered switched beam antenna systems
US10644400B2 (en) * 2013-08-05 2020-05-05 Tubis Technology Inc Hierarchically elaborated phased-array antenna modules and faster beam steering method of operation by a host processor
US9413448B2 (en) * 2014-08-08 2016-08-09 Nxgen Partners Ip, Llc Systems and methods for focusing beams with mode division multiplexing
US9398468B1 (en) 2014-12-29 2016-07-19 Huawei Technologies Co., Ltd. Cellular array with steerable spotlight beams
US9843111B2 (en) * 2015-04-29 2017-12-12 Sony Mobile Communications Inc. Antennas including an array of dual radiating elements and power dividers for wireless electronic devices
US10158173B2 (en) * 2015-05-29 2018-12-18 Huawei Technologies Co., Ltd. Orthogonal-beam-space spatial multiplexing radio communication system and associated antenna array
TWI720052B (zh) * 2015-11-10 2021-03-01 美商Idac控股公司 無線傳輸/接收單元和無線通訊方法
CN113630166B (zh) * 2016-03-03 2024-06-25 交互数字专利控股公司 用于波束成形系统内的波束控制的方法及设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566770A (en) * 1978-11-03 1980-05-20 Bendix Corp Phased array antenna and driving same
JP2015525516A (ja) * 2012-05-31 2015-09-03 アルカテル−ルーセント ワイヤレス通信のためのプリコーディングされた信号の変換

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111123229A (zh) * 2020-01-07 2020-05-08 浙江大学 基于电性能幅值加权的阵元安装位置的测量方法
CN111123229B (zh) * 2020-01-07 2021-12-07 浙江大学 基于电性能幅值加权的阵元安装位置的测量方法

Also Published As

Publication number Publication date
CN108417999B (zh) 2021-10-12
CN108417999A (zh) 2018-08-17
JP7053272B2 (ja) 2022-04-12
EP3352299B1 (en) 2021-04-14
EP3783738A1 (en) 2021-02-24
US20180358696A1 (en) 2018-12-13
US10686251B2 (en) 2020-06-16
EP3352299A1 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP7053272B2 (ja) フェーズド・アレイ・アンテナ・システムのための広帯域ビームの拡張
CN106716720B (zh) 天线系统和波束控制方法
KR102347320B1 (ko) 컨포멀 안테나를 동작시키기 위한 시스템 및 방법
Rocca et al. Synthesis of compromise sum-difference arrays through time-modulation
CN105785328B (zh) 基于子阵划分的fda距离-角度解耦合波束形成方法
US20220069477A1 (en) Antenna device and radar apparatus
Van Luyen et al. Null-steering beamformer using bat algorithm
Alijani et al. Development a new array factor synthesizing technique by pattern integration and least square method
JP2022543045A (ja) 屈折率分布型レンズに基づく通信システム
Geyi Optimal design of antenna arrays
Battaglia et al. Synthesis of orbital angular momentum antennas for target localization
CN109818689B (zh) 一种阵列天线的校准方法、设备、系统以及计算机可读存储介质
Larmour et al. Sparse array mutual coupling reduction
Mohan et al. Design and implementation of Dolph Chebyshev and Zolotarev circular antenna array
Li et al. Synthesis of conical conformal array antenna using invasive weed optimization method
CN109818688B (zh) 一种阵列天线的校准方法、设备、系统以及计算机可读存储介质
Bera et al. Optimization of thinned elliptical antenna arrays using particle swarm optimization
Sayidmarie et al. Synthesis of wide beam array patterns using random phase weights
Nechaev et al. The Research of the Digital Beamforming Algorithm for Optimal Noise Reduction in a Cylindrical Antenna Array with Directive Radiators
RU2649096C1 (ru) Многолучевая антенная система с одним выходом
Pautz et al. Multiple target detection using Rotman lens beamforming
Ercil et al. Array antenna pattern synthesis using measured active element patterns and Gram—Schmidt Orthogonalization
Rahmani et al. Optimum design of conformal array antenna with a shaped radiation pattern and wideband feeding network
Zhang et al. Structured radio beam for radar detection
Zare Low SLL pattern of elliptical aperture array based on innovative optimization method

Legal Events

Date Code Title Description
AA79 Non-delivery of priority document

Free format text: JAPANESE INTERMEDIATE CODE: A24379

Effective date: 20180604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7053272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150