JP2018158315A - Algae separation system and algae separation method - Google Patents

Algae separation system and algae separation method Download PDF

Info

Publication number
JP2018158315A
JP2018158315A JP2017057871A JP2017057871A JP2018158315A JP 2018158315 A JP2018158315 A JP 2018158315A JP 2017057871 A JP2017057871 A JP 2017057871A JP 2017057871 A JP2017057871 A JP 2017057871A JP 2018158315 A JP2018158315 A JP 2018158315A
Authority
JP
Japan
Prior art keywords
ozone
algae
treated
water
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017057871A
Other languages
Japanese (ja)
Other versions
JP7002852B2 (en
Inventor
佐藤 峰彦
Minehiko Sato
峰彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2017057871A priority Critical patent/JP7002852B2/en
Publication of JP2018158315A publication Critical patent/JP2018158315A/en
Application granted granted Critical
Publication of JP7002852B2 publication Critical patent/JP7002852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve settleability in settling-separating of algae.SOLUTION: An algae separation system includes: an ozone addition device for adding ozone of 1 to 120 g-O/mto algae-containing water to be treated; and a settling tank for agglomerating and settling algae contained in the water to be treated to which ozone is added.SELECTED DRAWING: Figure 1

Description

本発明は、藻類分離システム及び藻類分離方法に関する。   The present invention relates to an algae separation system and an algae separation method.

水中で増殖する藻類を分離して水を浄化したり、培養した藻類を水から分離して油分を得る等、生物由来の有機性資源であるバイオマスとして利用したりする技術が開発されている。藻類を水と分離する技術として、凝集剤を添加して沈殿分離する技術の他、粘性物質分泌性微細藻類を添加して凝集沈殿させる技術(例えば、特許文献1を参照)や、低濃度オゾンを使用して曝気を施しながらアオコ等の浮遊物を泡沫浮上分離させる技術(例えば、特許文献2を参照)が提案されている。   Techniques have been developed for separating algae that grow in water and purifying the water, or separating cultured algae from water to obtain oil, and using it as biomass, which is a biological organic resource. As a technique for separating algae from water, in addition to a technique for precipitation separation by adding a flocculant, a technique for adding a coagulant-secreting microalgae to agglomerate and precipitate (for example, see Patent Document 1), low concentration ozone The technique (for example, refer patent document 2) which floats and separates floating substances, such as a giant sea urchin, while aeration is performed using is proposed.

特開2012−200250号公報JP 2012-200250 A 特開2003−225654号公報JP 2003-225654 A

凝集剤による沈降分離において、凝集剤の添加量が増加すると、凝集剤が藻類をバイオマスとして利用する際の妨害物質となったり、凝集剤の添加量に応じてコストが増大したりする。また、凝集剤の添加量が減少すると十分な凝集効果が得られなくなるため、凝集剤の添加量は、汚濁負荷に応じて制御することが求められる。また、粘性物質分泌性微細藻類による凝集沈殿では、凝集剤として添加される粘性物質分泌性微細藻類の濃度を調整しなければ、目的とする藻類の凝集沈殿効果が十分に得られない場合がある。さらに、オゾンを使用して藻類を浮上分離する場合、継続的に曝気処理を施すため使用される動力は増加する。   In the sedimentation separation using the flocculant, when the amount of the flocculant added increases, the flocculant becomes an obstruction substance when using algae as biomass, or the cost increases according to the amount of flocculant added. Moreover, since the sufficient coagulation effect cannot be obtained when the addition amount of the flocculant is reduced, it is required to control the addition amount of the flocculant according to the pollution load. In addition, in coagulation sedimentation by viscous substance-secreting microalgae, the concentration effect of the target alga may not be sufficiently obtained unless the concentration of the viscous substance-secreting microalgae added as a coagulant is adjusted. . Further, when algae are floated and separated using ozone, the power used for continuous aeration treatment increases.

そこで、本発明は、藻類を沈降分離する際の沈降性を向上させる技術を提供することを目的とする。   Then, an object of this invention is to provide the technique which improves the sedimentation property at the time of sedimentation-separating algae.

本発明は、上記課題を解決するため、藻類を含む被処理水に1〜120g−O3/m3のオゾンを添加し沈降分離することにした。 In order to solve the above-mentioned problems, the present invention decided to add 1 to 120 g-O 3 / m 3 of ozone to the water to be treated containing algae and separate it by sedimentation.

詳細には、本発明は、藻類分離システムであって、藻類を含む被処理水に1〜120g−O3/m3のオゾンを添加するオゾン添加装置と、オゾンが添加された被処理水に含まれる藻類を凝集沈殿させる沈殿槽と、を備える。 Specifically, the present invention is an algae separation system, wherein an ozone addition device that adds 1 to 120 g-O 3 / m 3 of ozone to water to be treated containing algae, and water to be treated to which ozone has been added. A sedimentation tank for coagulating and sedimenting the contained algae.

上記の藻類分離システムであれば、沈殿槽に導入された被処理水中で、藻類がオゾンに反応して凝集することにより沈降性が向上し、凝集した藻類は沈殿槽の底部に沈殿する。藻類の沈降性が向上することで、藻類分離システムは、高濃度の藻類を容易に回収することができる。また、藻類の沈降性が向上することで、脱水性能も向上する。   If it is said algal separation system, sedimentation will improve when algae reacts with ozone and aggregates in the to-be-processed water introduce | transduced into the sedimentation tank, and the aggregated algae precipitate at the bottom part of a sedimentation tank. By improving the sedimentation property of algae, the algae separation system can easily collect a high concentration of algae. Moreover, dewatering performance is also improved by improving the sedimentation property of algae.

なお、1〜120g−O3/m3の量のオゾンでは、藻類自体は分解されない。このため、藻類に取り込まれている窒素やリン等の成分は、藻類の死滅や細胞の破壊によって被処理水中に流出することはなく、藻類とともに分離回収することが可能である。また、藻類分離システムは、藻類に固定化されている二酸化炭素(CO2)も回収することができる
In the ozone amount 1~120g-O 3 / m 3, algae itself is not degraded. For this reason, components such as nitrogen and phosphorus incorporated in the algae do not flow into the water to be treated due to the death of the algae or the destruction of the cells, and can be separated and recovered together with the algae. The algae separation system can also recover carbon dioxide (CO 2 ) immobilized on the algae.

また、オゾン添加装置は、更に、オゾンの添加を停止し、沈殿槽は、オゾン添加装置がオゾンの添加を停止している間、藻類を凝集沈殿させるものであってもよい。このような藻類分離システムであれば、オゾンを添加するための処理水槽及び処理水槽から沈殿槽への導入手段を備えなくてもよく、簡便なシステムによって藻類を凝集沈殿させることができる。   Further, the ozone addition device may further stop addition of ozone, and the precipitation tank may agglomerate and precipitate algae while the ozone addition device stops addition of ozone. If it is such an algae separation system, it is not necessary to provide the treatment water tank for adding ozone and the introduction means from the treatment water tank to the precipitation tank, and the algae can be coagulated and precipitated by a simple system.

また、藻類分離システムは、被処理水を貯留する処理水槽と、オゾンが添加された被処理水を、処理水槽から沈殿槽に導入する導入手段と、を更に備えるものであってもよい。このような藻類分離システムであれば、処理水槽は、オゾンが添加された被処理水を沈殿槽に送水したあと、次の被処理水を受け入れられるため、連続してオゾンの添加処理を実施することができる。   The algae separation system may further include a treated water tank for storing the treated water and an introducing means for introducing the treated water added with ozone from the treated water tank to the settling tank. With such an algae separation system, the treated water tank can continuously receive ozone after the treated water to which ozone has been added is sent to the settling tank, so that the next treated water can be received. be able to.

また、藻類分離システムは、処理水槽を複数備え、各処理水槽間において被処理水を送水する送水手段をさらに備えるものであってもよい。このような藻類分離システムであれば、被処理水を各処理水槽に順次送水して、段階的に凝集沈殿させることができる。この場合、オゾンの添加量は、各処理水槽内の被処理水に含まれる藻類の濃度に応じて、処理水槽ごとに変えるようにしてもよい。また、藻類分離システムは、各処理水槽において個別に被処理水を凝集沈殿させることで、1つの処理水槽で処理するよりも多くの被処理水を処理することができる。   Moreover, the algae separation system may include a plurality of treated water tanks, and further include a water feeding means for feeding the treated water between the treated water tanks. With such an algae separation system, the water to be treated can be sequentially fed to each treatment water tank and coagulated and precipitated in stages. In this case, you may make it change the addition amount of ozone for every treated water tank according to the density | concentration of the algae contained in the to-be-treated water in each treated water tank. In addition, the algae separation system can treat a larger amount of water to be treated than in a single water tank by coagulating and precipitating the water to be treated in each water tank.

また、沈殿槽は、底部又は下部側面に、凝集沈殿した藻類を流出させる流出口を有するものであってもよい。このような沈殿槽であれば、凝集沈殿した藻類を効率よく回収することができる。さらに、底部又は下部側面に設けられた流出口から藻類を回収することで、沈殿槽は、藻類の回収中であっても処理水槽から被処理水の導入を受け付けることができる。したがって、沈殿槽は、被処理水の藻類分離処理を連続的に実施することができる。   Moreover, a sedimentation tank may have an outflow port which flows out the agglomerated sedimentary algae in a bottom part or a lower side surface. With such a precipitation tank, agglomerated and precipitated algae can be efficiently recovered. Furthermore, by collecting the algae from the outlet provided at the bottom or the lower side surface, the settling tank can accept the introduction of water to be treated from the treated water tank even during the collection of algae. Therefore, the settling tank can continuously carry out the algae separation treatment of the water to be treated.

また、藻類分離システムは、被処理水から凝集沈殿した藻類を分離する分離手段をさらに備えるものであってもよい。分離手段は、例えば、濾過、遠心分離、フィルタープレスによる加圧濾過である。1〜120g−O3/m3のオゾンを添加することにより、被処理水中の藻類を分離する際の濾過性能及び脱水性能が向上するため、藻類分離システムは、藻類を効率よく回収することができる。 Moreover, the algae separation system may further include a separation means for separating the algae coagulated and precipitated from the water to be treated. The separation means is, for example, filtration, centrifugal separation, and pressure filtration using a filter press. By adding 1 to 120 g-O 3 / m 3 of ozone, the filtration performance and dewatering performance when separating the algae in the water to be treated are improved, so the algae separation system can efficiently recover the algae. it can.

また、藻類分離システムは、被処理水に添加されるオゾンの気泡を吸着する多孔質材料からなる接触材が、被処理水中に配置されるものであってもよい。このような処理水槽であれば、使用されずに排出されるオゾンの量は抑制される。さらに、多孔質材料に吸着したオゾンによって藻類の凝集は促進される。なお、多孔質材料は、活性炭、シリカゲル、ゼオライト、アルミナのいずれか又はそれらの組合せからなる材料であってもよい。粒状の多孔質材料は、ネット等に入れて被処理水中に配置することができる。   In the algae separation system, a contact material made of a porous material that adsorbs ozone bubbles added to the water to be treated may be disposed in the water to be treated. With such a treated water tank, the amount of ozone discharged without being used is suppressed. Furthermore, agglomeration of algae is promoted by ozone adsorbed on the porous material. The porous material may be a material made of activated carbon, silica gel, zeolite, alumina, or a combination thereof. The granular porous material can be placed in the water to be treated in a net or the like.

また、オゾン添加装置は、被処理水から未使用のオゾンを回収し、回収したオゾンを被処理水に添加するものであってもよい。このようなオゾン添加装置であれば、未使用のオゾンを有効に利用することができる。   The ozone addition device may recover unused ozone from the water to be treated and add the recovered ozone to the water to be treated. With such an ozone addition device, unused ozone can be used effectively.

なお、本発明は、方法の側面から捉えることもできる。例えば、本発明は、藻類を含む被処理水に1〜120g−O3/m3のオゾンを添加し、オゾンが添加された被処理水に含まれる藻類を凝集沈殿させる藻類分離方法であってもよい。 The present invention can also be understood from the aspect of the method. For example, the present invention is an algae separation method in which 1 to 120 g-O 3 / m 3 of ozone is added to water to be treated containing algae, and the algae contained in the water to be treated to which ozone is added are coagulated and precipitated. Also good.

本発明によれば、藻類を沈降分離する際の沈降性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the sedimentation property at the time of carrying out sedimentation separation of algae can be improved.

図1は、実施形態に係る藻類分離システムの概略構成を例示する図である。FIG. 1 is a diagram illustrating a schematic configuration of an algae separation system according to an embodiment. 図2は、接触材を配置する処理水槽を例示する図である。FIG. 2 is a diagram illustrating a treated water tank in which the contact material is arranged. 図3は、実施例1における被処理水中の気泡の発生を示す写真である。FIG. 3 is a photograph showing generation of bubbles in the water to be treated in Example 1. 図4は、実施例1における藻類の凝集状態を示す写真である。FIG. 4 is a photograph showing the state of aggregation of algae in Example 1. 図5は、オゾン添加量に対する被処理水中のクロロフィルaの濃度の変化を 示すグラフである。FIG. 5 is a graph showing changes in the concentration of chlorophyll a in the water to be treated relative to the amount of ozone added. 図6は、変形例1に係る藻類分離システムの概略構成を例示する図である。FIG. 6 is a diagram illustrating a schematic configuration of the algae separation system according to the first modification. 図7は、変形例2に係る藻類分離システムの概略構成を例示する図である。FIG. 7 is a diagram illustrating a schematic configuration of an algae separation system according to Modification 2.

以下、本願発明の実施形態について説明する。以下に示す実施形態は、本願発明の一態様を例示したものであり、本願発明の技術的範囲を以下の態様に限定するものではない。   Hereinafter, embodiments of the present invention will be described. The embodiment described below exemplifies one aspect of the present invention, and does not limit the technical scope of the present invention to the following aspect.

<実施形態>
図1は、実施形態に係る藻類分離システムの構成を例示する図である。藻類分離システム10は、処理水槽1、オゾン添加装置2、沈殿槽3、及び導入手段4を備える。
<Embodiment>
Drawing 1 is a figure which illustrates the composition of the algal separation system concerning an embodiment. The algae separation system 10 includes a treated water tank 1, an ozone addition device 2, a precipitation tank 3, and an introduction unit 4.

処理水槽1は、藻類を含む被処理水を受け入れて貯留する。処理水槽1に貯留された被処理水は、オゾン添加装置2によってオゾンが添加されると、導入手段4により沈殿槽3に送水される。オゾン添加後の被処理水が沈殿槽3に送水されると、処理水槽1は、新たな被処理水を受け入れ、連続してオゾンの添加処理をすることができる。   The treated water tank 1 receives and stores treated water containing algae. The treated water stored in the treated water tank 1 is sent to the precipitation tank 3 by the introducing means 4 when ozone is added by the ozone adding device 2. When the water to be treated after the addition of ozone is sent to the settling tank 3, the water tank 1 can receive new water to be treated and continuously add ozone.

オゾン添加装置2は、処理水槽1に貯留された被処理水にオゾンを添加する。オゾン添加量は、1〜120g−O3/m3の範囲であることが好ましい。オゾン添加量については、実施例中、図5及び表1の説明において詳述される。オゾンを被処理水中に供給する方法は、散気管、ディフューザ、マイクロバブル等の公知の技術を用いることができる。また、オゾンは放電式、紫外線式等の公知の技術によって発生させることができる。オゾンの原料となるガスは、空気又は酸素のいずれであってもよい。 The ozone addition device 2 adds ozone to the water to be treated stored in the treated water tank 1. The amount of ozone added is preferably in the range of 1 to 120 g-O 3 / m 3 . The amount of ozone added will be described in detail in the description of FIG. As a method for supplying ozone into the water to be treated, a known technique such as an air diffuser, a diffuser, or a microbubble can be used. Moreover, ozone can be generated by a known technique such as a discharge type or an ultraviolet type. The gas used as the raw material for ozone may be either air or oxygen.

なお、オゾン添加装置2は、塩酸、次亜塩素酸、亜塩素酸、塩素酸、硫酸、硝酸、過酸化水素、リン酸等の無機酸、酒石酸、シュウ酸、クエン酸、リンゴ酸、酢酸、フマル酸、乳酸、プロピオン酸、酪酸、イソクエン酸等の有機酸のいずれか、又はこれらの二以上を組み合わせた触媒又は光触媒を、オゾンとともに被処理水に添加してもよい。また、オゾンが添加された被処理水に、超音波、マイクロ波、赤外線、紫外線等が照射されてもよい。これにより、オゾンによる凝集効果は促進され、より少ない添加量で沈降性向上の効果を得る事が可能である。   The ozone addition device 2 is composed of inorganic acids such as hydrochloric acid, hypochlorous acid, chlorous acid, chloric acid, sulfuric acid, nitric acid, hydrogen peroxide, phosphoric acid, tartaric acid, oxalic acid, citric acid, malic acid, acetic acid, Any of organic acids such as fumaric acid, lactic acid, propionic acid, butyric acid, and isocitric acid, or a catalyst or photocatalyst that is a combination of two or more thereof may be added to the water to be treated together with ozone. Moreover, ultrasonic waves, microwaves, infrared rays, ultraviolet rays, or the like may be irradiated to the water to be treated to which ozone is added. Thereby, the aggregation effect by ozone is accelerated | stimulated and it is possible to acquire the effect of a sedimentation improvement with a smaller addition amount.

沈殿槽3は、処理水槽1から導入された被処理水中の藻類を凝集沈殿させる。沈殿槽3は、底部又は下部側面に、凝集沈殿した藻類を流出させる流出口が設けられてもよい。沈殿槽3は、凝集沈殿した藻類を流出口から回収することで、処理水槽1から連続してオゾンが添加された被処理水を導入することができる。沈殿槽3での滞留時間については、求める上澄み液水質と相関がある。即ち、沈殿槽滞留時間を長時間にするほど、藻類が沈殿し、上澄み水が清浄になる。   The settling tank 3 coagulates and precipitates algae in the for-treatment water introduced from the treated water tank 1. The sedimentation tank 3 may be provided with an outlet for discharging the agglomerated sedimentary algae at the bottom or the lower side surface. The sedimentation tank 3 can introduce the water to be treated to which ozone is continuously added from the treated water tank 1 by collecting the agglomerated and precipitated algae from the outlet. The residence time in the sedimentation tank 3 has a correlation with the desired supernatant liquid water quality. That is, the longer the settling tank residence time, the more algae settle, and the supernatant water becomes cleaner.

導入手段4は、処理水槽1でオゾンが添加された被処理水を沈殿槽3に導入する手段である。導入手段4は、例えば、処理水槽1と沈殿槽3とを接続する配管を通して、被処理
水をポンプによって処理水槽1から沈殿槽3に送水する。
The introduction means 4 is means for introducing the water to be treated, to which ozone has been added in the treated water tank 1, into the precipitation tank 3. For example, the introducing means 4 sends the water to be treated from the treated water tank 1 to the settling tank 3 by a pump through a pipe connecting the treated water tank 1 and the settling tank 3.

(接触材)
図2は、接触材を配置する処理水槽を例示する図である。処理水槽1は、添加されるオゾンを効率よく使用するため、被処理水中に接触材5を配置するものであってもよい。図2に示すように、オゾン添加装置2に接続される供給部2Aは、被処理水中にオゾンを供給する。被処理水に添加されるオゾンは完全には溶解されず、溶解しなかったオゾンは使用されずに水面から放出される。このため、図2に示すように処理水槽内に接触材5を配置し、接触材5にオゾンの気泡を吸着させることで、オゾンの水面からの放出は抑制される。また、接触材5上でオゾンと藻類との反応は促進される。接触材5は、オゾンの気泡を吸着可能な多孔質材料であればよく、例えば、活性炭、シリカゲル、ゼオライト、アルミナのいずれか、又はそれらの組合せからなる材料である。
(Contact material)
FIG. 2 is a diagram illustrating a treated water tank in which the contact material is arranged. In order to use the added ozone efficiently, the treated water tank 1 may be one in which the contact material 5 is disposed in the treated water. As shown in FIG. 2, the supply unit 2A connected to the ozone addition device 2 supplies ozone into the water to be treated. The ozone added to the water to be treated is not completely dissolved, and the ozone that has not been dissolved is released from the water surface without being used. For this reason, as shown in FIG. 2, the contact material 5 is arrange | positioned in a treated water tank, and the discharge | release from the water surface of ozone is suppressed by making the contact material 5 adsorb | suck the bubble of ozone. Further, the reaction between ozone and algae is promoted on the contact material 5. The contact material 5 may be a porous material capable of adsorbing ozone bubbles, for example, a material made of activated carbon, silica gel, zeolite, alumina, or a combination thereof.

<<実施例>>
〔実施例1〕
実施例1は、実施形態に係る藻類分離システム10において、藻類を含む被処理水にオゾンを添加する実験例である。実験は、処理水槽1に窒素及びリン等の液体肥料を入れて、屋外に放置することで藻類を増加させた。なお、液体肥料は、藻類の増殖とともに減少するため、実験中、適宜追加した。実験は、オゾンを添加するオゾン添加系統及び空気を添加する比較系統により実施した。実施例1では、沈殿槽3は用意せず、藻類は処理水槽1において凝集沈殿させた。
<< Example >>
[Example 1]
Example 1 is an experimental example in which ozone is added to water to be treated containing algae in the algae separation system 10 according to the embodiment. In the experiment, algae were increased by putting liquid fertilizers such as nitrogen and phosphorus in the treated water tank 1 and leaving them outdoors. Since liquid fertilizer decreased with the growth of algae, it was added as needed during the experiment. The experiment was carried out with an ozone addition system for adding ozone and a comparative system for adding air. In Example 1, the sedimentation tank 3 was not prepared, and the algae were coagulated and precipitated in the treated water tank 1.

図3及び図4は、実験終了後のオゾン添加系統と比較系統とを比較する写真である。図3は、実施例1における被処理水中の気泡の発生を示す写真である。左側の処理水槽1は比較系統、右側の処理水槽1はオゾン添加系統の実験終了後の状態を示す。右側のオゾン添加系統の処理水槽1では、藻類にオゾンを添加することによって藻類の粘性が高まり、藻類は、粘性によって凝集しフロック状になったと考えられる。なお、水面に表れる気泡の大きさは、右側のオゾン添加系統の方が左側の比較系統よりも大きく、また、オゾン添加系統の方が、気泡が消えにくい状態であることから、オゾンの添加により藻類の粘性が高まったことが示される。   3 and 4 are photographs comparing the ozone addition system and the comparative system after the end of the experiment. FIG. 3 is a photograph showing generation of bubbles in the water to be treated in Example 1. The treated water tank 1 on the left shows the comparison system, and the treated water tank 1 on the right shows the state after the end of the experiment of the ozone addition system. In the treated water tank 1 of the ozone addition system on the right side, the viscosity of the algae is increased by adding ozone to the algae, and the algae are considered to have aggregated into a flock shape due to the viscosity. In addition, the size of bubbles appearing on the water surface is larger in the ozone addition system on the right side than the comparison system on the left side, and in the ozone addition system, the bubbles are more difficult to disappear. It shows that the viscosity of the algae has increased.

図4は、実施例1における藻類の凝集状態を示す写真である。左側の容器は比較系統の被処理水、右側の容器はオゾン添加系統の被処理水を入れて0.5時間程度凝集沈殿させた状態を示す。比較系統の被処理水中の藻類は、一部が沈殿するものの、凝集した塊はオゾン添加系統での藻類の塊よりも細かく、オゾン添加系統のような沈降性の向上は見られなかった。一方、オゾン添加系統では藻類がフロック状となり、沈降性が向上した。なお、オゾン添加系統の容器において、沈殿槽滞留時間を長くすることで、上澄み水はより清浄となる。   FIG. 4 is a photograph showing the state of aggregation of algae in Example 1. The container on the left shows the water to be treated of the comparative system, and the container on the right shows the state where the water to be treated of the ozone addition system is put and coagulated for about 0.5 hours. Although a part of the algae in the treated water of the comparative system was precipitated, the aggregated lump was finer than the algae lump in the ozone-added line, and no improvement in sedimentation was observed as in the ozone-added line. On the other hand, in the ozone-added system, algae became floc-like and sedimentation was improved. In the container of the ozone addition system, the supernatant water becomes cleaner by increasing the residence time of the precipitation tank.

〔実施例2〕
実施例2は、好適なオゾンの添加量を調べるため、被処理水に対するオゾン添加量を変えて、実施例1と同様の実験をした。被処理水に対するオゾン添加量は、藻類が死滅することなく凝集沈殿する範囲であることが好ましい。藻類が死滅しているか否かは、被処理水中のクロロフィルaの濃度を分析することにより判断することができる。クロロフィルaは、緑色色素であって、生きている藻類量と相関があるとされている。藻類が増加するとクロロフィルa濃度は上がり、死滅するとクロロフィルa濃度は下がる。実施例2は、オゾン添加量の増加に伴うクロロフィルa濃度の変化を分析し、藻類が死滅することなく凝集沈殿するようなオゾン添加量の範囲を調べた。なお、クロロフィルaの濃度は、上水試験方法(日本水道協会)に従って測定した。
[Example 2]
In Example 2, an experiment similar to that in Example 1 was performed by changing the amount of ozone added to the water to be treated in order to investigate a suitable amount of ozone added. The amount of ozone added to the water to be treated is preferably within a range where the algae are aggregated and precipitated without dying. Whether or not the algae are dead can be determined by analyzing the concentration of chlorophyll a in the water to be treated. Chlorophyll a is a green pigment and is said to correlate with the amount of living algae. Chlorophyll a concentration increases when algae increase, and chlorophyll a concentration decreases when it kills. In Example 2, the change in the chlorophyll a concentration accompanying the increase in the amount of ozone added was analyzed, and the range of the amount of ozone added so that the algae aggregated and settled without dying. In addition, the density | concentration of chlorophyll a was measured in accordance with the drinking water test method (Japan Water Works Association).

図5は、オゾン添加量に対する被処理水中のクロロフィルaの濃度の変化を示すグラフである。オゾン添加系統において、オゾン添加後、藻類が沈殿し上澄みが見られたが、処理水槽1内の被処理水を攪拌し、藻類も含めたクロロフィルa濃度を測定した。また、比較系統においても、実験終了後、処理水槽1内の被処理水を攪拌し、藻類も含めたクロロフィルa濃度を測定した。図5のグラフの縦軸は、クロロフィルa濃度のオゾン添加系統/比較系統の比率である。横軸は、オゾン添加量である。オゾン添加量を変えて実験をした結果、添加量が124g−O3/m3を超えると、オゾン添加系統の比較系統に対するクロロフィルa濃度の比率が低下していった。即ち、124g−O3/m3を超える量のオゾンを添加することで、藻類は破壊されることがわかった。したがって、藻類を死滅させずに凝集沈殿させるためには、オゾン添加量は、120g−O3/m3以下としておくことが好ましい。 FIG. 5 is a graph showing changes in the concentration of chlorophyll a in the water to be treated with respect to the amount of ozone added. In the ozone addition system, algae precipitated and the supernatant was observed after ozone addition, but the treated water in the treated water tank 1 was stirred and the chlorophyll a concentration including algae was measured. In the comparative system, the water to be treated in the treated water tank 1 was stirred after the experiment, and the chlorophyll a concentration including algae was measured. The vertical axis of the graph of FIG. 5 is the ratio of the ozone addition system / comparison system of chlorophyll a concentration. The horizontal axis represents the amount of ozone added. As a result of the experiment with the ozone addition amount changed, when the addition amount exceeded 124 g-O 3 / m 3 , the ratio of the chlorophyll a concentration to the comparative system of the ozone addition system decreased. That is, it was found that the algae are destroyed by adding ozone in an amount exceeding 124 g-O 3 / m 3 . Therefore, the amount of ozone added is preferably 120 g-O 3 / m 3 or less in order to coagulate and precipitate algae without killing them.

〔実施例3〕
実施例3は、実施例2と同様に、被処理水に対するオゾン添加量を変えて凝集沈殿の実験をした。実験は、オゾンを添加するオゾン添加系統と空気のみを添加する比較系統によって実施され、目視にてオゾン添加系統を比較系統と比較し、オゾン添加系統における凝集性の向上の有無を確認した。実施例3は、オゾン添加量を減少させ、藻類が凝集沈殿しなくなる範囲を調べた。
Example 3
In the same manner as in Example 2, Example 3 was subjected to a coagulation precipitation experiment by changing the amount of ozone added to the water to be treated. The experiment was carried out by an ozone addition system for adding ozone and a comparative system for adding only air, and the ozone addition system was visually compared with the comparison system to confirm the presence or absence of cohesiveness improvement in the ozone addition system. In Example 3, the amount of ozone added was decreased, and the range in which algae no longer coagulate and settled was examined.

表1は、オゾン添加量と藻類の凝集との関係を示す。表1の例は、藻類としてアオコの凝集の様子を観察した結果を示す。   Table 1 shows the relationship between the amount of ozone added and the aggregation of algae. The example of Table 1 shows the result of observing the state of agglomeration as algae.

表1において、“×”は、アオコの凝集が確認されなかったことを示す。“○”は、アオコの凝集が確認されたことを示す。“△”は、“○”の場合程、即ち、オゾン添加量が1g−O3/m3以上の場合程の凝集は確認されなかったが、多少の凝集が見られたことを示す。オゾン添加量が0.8g−O3/m3程度から、藻類の凝集性の向上が確認された。したがって、藻類を凝集沈殿させるためには、オゾン添加量は、1g−O3/m3以上としておくことが好ましい。 In Table 1, “x” indicates that agglomeration of blue sea cucumber was not confirmed. “◯” indicates that agglomeration of blue sea bream was confirmed. “Δ” indicates that agglomeration was not observed as much as in the case of “◯”, that is, as much as when the amount of ozone added was 1 g-O 3 / m 3 or more, but some aggregation was observed. From the ozone addition amount of about 0.8 g-O 3 / m 3 , it was confirmed that the aggregability of algae was improved. Therefore, in order to coagulate and precipitate algae, the amount of ozone added is preferably 1 g-O 3 / m 3 or more.

実施例2及び実施例3の結果より、藻類を死滅させることなく、藻類の沈降性を向上させるためには、オゾン添加量は、1〜120g−O3/m3の範囲であることが好ましいことがわかった。オゾン添加量を1〜120g−O3/m3の範囲内とすることで、藻類分離システム10は、死滅していない高濃度の藻類を分離回収することが可能となる。 From the results of Example 2 and Example 3, the ozone addition amount is preferably in the range of 1 to 120 g-O 3 / m 3 in order to improve the sedimentation property of the algae without killing the algae. I understood it. By making the amount of ozone added within the range of 1 to 120 g-O 3 / m 3 , the algal separation system 10 can separate and collect high-concentration algae that have not been killed.

〔実施例4〕
実施例4は、実施例1と同様の実験を実施し、実験終了後の被処理水を濾過することで
、濾過性能を調べた。実験は、定量濾紙(47mmφ5C)を使用して、5分間の濾過量を計測することにより実施した。表2は、比較系統とオゾン添加系統の濾過量を示す。
Example 4
In Example 4, the same experiment as in Example 1 was performed, and the filtration performance was examined by filtering the water to be treated after the experiment was completed. The experiment was performed by measuring the amount of filtration for 5 minutes using a quantitative filter paper (47 mmφ5C). Table 2 shows the filtration amount of the comparative system and the ozone addition system.

比較系統における濾過量が10ml/5minであるのに対し、オゾン添加系統の濾過量は、19ml/5minであった。オゾンの添加により、藻類の濾過性能は向上することがわかった。また、濾過性能の向上により、凝集沈殿した藻類の脱水性能も向上する。脱水性能が向上することで、脱水のために使用されるエネルギー消費量は抑制される。   The filtration amount in the comparative system was 10 ml / 5 min, whereas the filtration amount in the ozone addition system was 19 ml / 5 min. It was found that the addition of ozone improves the filtration performance of algae. Moreover, the dehydrating performance of the agglomerated sedimentary algae is improved by improving the filtering performance. By improving the dehydration performance, the energy consumption used for dehydration is suppressed.

<実施形態の作用効果>
本実施形態の藻類分離システム10によれば、オゾンが添加され、沈殿槽3に導入された被処理水は、藻類の沈降性が向上し、高濃度の藻類が容易に回収可能である。また、藻類の沈降性の向上に伴い、脱水性能も向上する。さらに沈殿槽3が処理水槽1とは別に設けられるため、連続した藻類分離処理が可能である。
<Effects of Embodiment>
According to the algae separation system 10 of the present embodiment, the treated water introduced into the sedimentation tank 3 to which ozone is added improves the sedimentation properties of the algae, and high-concentration algae can be easily recovered. In addition, the dewatering performance is improved as the algae sedimentation is improved. Furthermore, since the sedimentation tank 3 is provided separately from the treated water tank 1, a continuous algae separation process is possible.

また、処理水槽1内に接触材5を配置することで、使用されずに処理水槽1から排出されるオゾンの量は抑制される。さらに、接触材5に吸着したオゾンによって藻類の凝集は促進される。さらに、使用されずに処理水槽1から排出されるオゾンを回収し、回収したオゾンを被処理水に戻すことで、未使用のオゾンは有効に利用することができる。   Moreover, the quantity of the ozone discharged | emitted from the treated water tank 1 without being used by arrange | positioning the contact material 5 in the treated water tank 1 is suppressed. Further, agglomeration of algae is promoted by ozone adsorbed on the contact material 5. Furthermore, unused ozone can be used effectively by recovering ozone discharged from the treated water tank 1 without being used and returning the recovered ozone to the water to be treated.

<変形例1>
(沈殿槽を備えない藻類分離システム)
上述の実施形態では、藻類分離システム10は、オゾンが添加された被処理水を沈殿槽3に導入し、沈殿槽3において藻類を凝集沈殿させた。変形例1では、藻類分離システム10は、沈殿槽3を備えず、処理水槽1において藻類を凝集沈殿させる。変形例1について、上述の実施形態と異なる点を中心に説明する。
<Modification 1>
(Algae separation system without sedimentation tank)
In the above-described embodiment, the algal separation system 10 introduces the water to be treated to which ozone is added into the sedimentation tank 3, and causes the algae to coagulate and settle in the sedimentation tank 3. In the first modification, the algal separation system 10 does not include the sedimentation tank 3 and causes the algae to coagulate and settle in the treated water tank 1. Modification 1 will be described focusing on differences from the above-described embodiment.

図6は、変形例1に係る藻類分離システムの概略構成を例示する図である。変形例1に係る藻類分離システム101は、沈殿槽31、オゾン添加装置21を備える。   FIG. 6 is a diagram illustrating a schematic configuration of the algae separation system according to the first modification. The algal separation system 101 according to the first modification includes a precipitation tank 31 and an ozone addition device 21.

沈殿槽31は、オゾン添加装置21によって1〜120g−O3/m3のオゾンが添加されると、沈殿槽31内で藻類を凝集沈殿させる。オゾン添加装置21は、沈殿槽31に貯留された被処理水にオゾンを添加すると、オゾンの供給を停止する。なお、オゾンを添加する際の触媒等の添加、赤外線等の照射は、実施形態と同様である。また、沈殿槽31において凝集沈殿した藻類は、実施形態の沈殿槽3と同様に、沈殿槽31の底部又は下部側面に設けられた流出口から回収されるようにしてもよい。さらに、沈殿槽31は、実施形態の処理水槽1と同様に、被処理水中に接触材5を配置してもよい。 The precipitation tank 31 aggregates and precipitates algae in the precipitation tank 31 when 1 to 120 g-O 3 / m 3 of ozone is added by the ozone addition device 21. When ozone is added to the water to be treated stored in the sedimentation tank 31, the ozone addition device 21 stops the supply of ozone. In addition, the addition of a catalyst or the like when adding ozone and the irradiation with infrared rays or the like are the same as in the embodiment. Moreover, you may make it collect | recover the algae which coagulated and settled in the sedimentation tank 31 from the outflow port provided in the bottom part or lower part side surface of the sedimentation tank 31 similarly to the sedimentation tank 3 of embodiment. Furthermore, the precipitation tank 31 may arrange | position the contact material 5 in to-be-processed water similarly to the treated water tank 1 of embodiment.

変形例1に係る藻類分離システム101は、オゾンの添加と藻類の凝集沈殿を交互に実施することで藻類を分離回収するが、沈殿槽31において、被処理水の流入口と処理水の流出口とを所定の間隔を空けて設置することにより、連続的に藻類を分離回収することも可能である。即ち、沈殿槽31の流入口付近でオゾンを添加し、オゾンが添加された被処理水を流出口付近に移送して凝集沈殿させればよい。   The algae separation system 101 according to the modification 1 separates and recovers algae by alternately performing addition of ozone and agglomeration and precipitation of algae. In the settling tank 31, the inlet of the treated water and the outlet of the treated water are collected. Can be continuously separated and collected by a predetermined interval. That is, ozone may be added in the vicinity of the inlet of the sedimentation tank 31, and the water to be treated added with ozone may be transferred to the vicinity of the outlet to be coagulated and precipitated.

このような変形例1によれば、藻類分離システム101は、実施形態にかかる沈殿槽3及び沈殿槽3への被処理水の導入手段4を備えなくてもよく、沈殿槽31を備える簡便なシステムによって藻類を凝集沈殿させることができる。   According to the first modified example, the algal separation system 101 does not need to include the settling tank 3 according to the embodiment and the introduction unit 4 of water to be treated to the settling tank 3, and is simply provided with the settling tank 31. The system can agglomerate and precipitate algae.

<変形例2>
(処理水槽を複数備える藻類分離システム)
上述の実施形態では、藻類分離システム10は、1つの処理水槽1においてオゾンを添加し、オゾン添加後の被処理水を沈殿槽3に導入した。変形例2では、藻類分離システム10は、処理水槽1を複数備える。変形例2について、上述の実施形態と異なる点を中心に説明する。
<Modification 2>
(Algae separation system with multiple treated water tanks)
In the above-described embodiment, the algal separation system 10 added ozone in one treated water tank 1 and introduced the treated water after the addition of ozone into the sedimentation tank 3. In Modification 2, the algal separation system 10 includes a plurality of treated water tanks 1. Modification 2 will be described focusing on differences from the above-described embodiment.

図7は、変形例2に係る藻類分離システムの概略構成を例示する図である。変形例2に係る藻類分離システム102は、処理水槽121、処理水槽122、オゾン添加装置22、沈殿槽3、導入手段4及び送水手段6を備える。沈殿槽3及び導入手段4は、実施形態と同様であるため説明を省略する。   FIG. 7 is a diagram illustrating a schematic configuration of an algae separation system according to Modification 2. The algae separation system 102 according to Modification 2 includes a treated water tank 121, a treated water tank 122, an ozone addition device 22, a sedimentation tank 3, an introduction means 4, and a water supply means 6. Since the sedimentation tank 3 and the introduction means 4 are the same as those in the embodiment, description thereof is omitted.

処理水槽121は、被処理水を受け入れる。被処理水は、1〜120g−O3/m3のオゾンが添加されると、送水手段6により処理水槽122に送水される。処理水槽122は、処理水槽121から被処理水を受け入れ、オゾン添加装置22によってオゾンが添加されると、導入手段4により被処理水を沈殿槽3に導入する。被処理水は、処理水槽121及び処理水槽122(以下、総称して処理水槽12ともいう)において段階的にオゾンが添加された後、沈殿槽3に導入される。各処理水槽におけるオゾンの添加量は、藻類の凝集状態に応じて変更されてもよい。また、処理水槽の数は2に限られず、藻類分離システム102は、2より多くの処理水槽12を備えるようにしてもよい。藻類分離システム102は、被処理水を段階的に処理することで、各処理段階における藻類の凝集状態に応じでオゾンの添加量を調整することができる。 The treated water tank 121 receives treated water. The treated water is fed to the treated water tank 122 by the water feeding means 6 when 1 to 120 g-O 3 / m 3 of ozone is added. The treated water tank 122 receives treated water from the treated water tank 121, and introduces treated water into the sedimentation tank 3 by the introducing means 4 when ozone is added by the ozone adding device 22. The water to be treated is introduced into the sedimentation tank 3 after ozone is added stepwise in the treated water tank 121 and the treated water tank 122 (hereinafter collectively referred to as the treated water tank 12). The amount of ozone added in each treatment water tank may be changed according to the agglomeration state of the algae. Further, the number of treated water tanks is not limited to two, and the algal separation system 102 may include more than two treated water tanks 12. The algal separation system 102 can adjust the amount of ozone added according to the agglomeration state of the algae in each treatment stage by treating the water to be treated in stages.

なお、図7は、被処理水を複数の処理水槽12で段階的に処理する例を示すが、各処理水槽12は、導入手段4によって、それぞれが沈殿槽3に接続され、個別に被処理水を処理するようにしてもよい。この場合、藻類分離システム102は、処理水槽12の数に応じた量の被処理水を処理することができる。また、藻類分離システム102は、各処理水槽12内の被処理水に含まれる藻類の濃度に応じて、各処理水槽12に対するオゾンの添加量を調整することができる。   In addition, although FIG. 7 shows the example which processes a to-be-treated water in the some treated water tank 12, each treated water tank 12 is each connected to the settling tank 3 by the introduction means 4, and is individually treated. Water may be treated. In this case, the algae separation system 102 can treat the amount of water to be treated according to the number of the treated water tanks 12. Moreover, the algae separation system 102 can adjust the addition amount of ozone with respect to each treated water tank 12 according to the density | concentration of the algae contained in the to-be-treated water in each treated water tank 12.

オゾン添加装置22は、処理水槽12に貯留された被処理水にオゾンを添加する。図7の例では、オゾン添加装置22は、処理水槽122内の被処理水にオゾンを添加する。オゾン添加装置22は、処理水槽122において使用されなかったオゾンを回収し、回収したオゾンを、ブロワ等により処理水槽121内の被処理水に添加する。処理水槽121へのオゾンの添加量は、モータの回転速度や調節弁等によりブロワの風量を調節することで制御することが可能である。処理水槽121において使用されなかったオゾンは、空中に排気される。   The ozone addition device 22 adds ozone to the water to be treated stored in the treated water tank 12. In the example of FIG. 7, the ozone addition device 22 adds ozone to the water to be treated in the treated water tank 122. The ozone addition device 22 collects ozone that has not been used in the treated water tank 122, and adds the collected ozone to the treated water in the treated water tank 121 using a blower or the like. The amount of ozone added to the treated water tank 121 can be controlled by adjusting the air volume of the blower using the rotation speed of a motor, a control valve, or the like. Ozone that has not been used in the treated water tank 121 is exhausted into the air.

なお、図7の例と異なり、オゾン添加装置22は、まず、処理水槽121にオゾンを添加し、使用されなかったオゾンを処理水槽122に添加するようにしてもよい。また、藻類分離システム102は複数のオゾン添加装置22を備え、各処理水槽12は、それぞれに接続されたオゾン添加装置22からオゾンの供給を受けるようにしてもよい。オゾンを添加する際の触媒等の添加、赤外線等の照射は、実施形態と同様である。各処理水槽12は、実施形態と同様に、被処理水中に接触材5を配置してもよい。   Note that unlike the example of FIG. 7, the ozone addition device 22 may first add ozone to the treated water tank 121 and add ozone that has not been used to the treated water tank 122. Moreover, the algae separation system 102 may include a plurality of ozone addition devices 22, and each treated water tank 12 may be supplied with ozone from the ozone addition devices 22 connected thereto. Addition of a catalyst or the like when adding ozone and irradiation with infrared rays or the like are the same as in the embodiment. Each treated water tank 12 may arrange the contact material 5 in the treated water as in the embodiment.

このような変形例2によれば、藻類分離システム102は、被処理水を各処理水槽12に順次送水して、段階的に凝集沈殿させることができる。また、藻類分離システム102は、各処理水槽12がそれぞれ個別に被処理水を凝集沈殿させることで、1つの処理水槽12で処理するよりも多くの被処理水を処理することができる。   According to the second modification, the algae separation system 102 can sequentially feed the water to be treated to the respective treatment water tanks 12 so as to coagulate and precipitate in stages. Moreover, the algae separation system 102 can process more to-be-processed water than processing with the one treated water tank 12, because each treated water tank 12 coagulates and precipitates treated water individually.

10,101,102・・藻類分離システム:1,11,12,121,122・・処理水槽:2,21,22・・オゾン添加装置:3・・沈殿槽:4・・導入手段:5・・接触材:6・・送水手段 10, 101, 102 ... Algae separation system: 1, 11, 12, 121, 122 ... Water tank: 2, 21, 22 ... Ozone addition device: 3 .... Precipitation tank: 4 .... Introducing means: 5.・ Contact material: 6. ・ Water supply means

Claims (10)

藻類を含む被処理水に1〜120g−O3/m3のオゾンを添加するオゾン添加装置と、
前記オゾンが添加された前記被処理水に含まれる前記藻類を凝集沈殿させる沈殿槽と、を備える、
藻類分離システム。
An ozone addition device for adding 1 to 120 g-O 3 / m 3 of ozone to the water to be treated containing algae;
A sedimentation tank that coagulates and precipitates the algae contained in the treated water to which the ozone has been added,
Algae separation system.
前記オゾン添加装置は、更に、前記オゾンの添加を停止し、
前記沈殿槽は、前記オゾン添加装置が前記オゾンの添加を停止している間、前記藻類を凝集沈殿させる、
請求項1に記載の藻類分離システム。
The ozone addition device further stops the addition of the ozone,
The sedimentation tank agglomerates and precipitates the algae while the ozone addition device stops adding the ozone.
The algae separation system according to claim 1.
前記被処理水を貯留する処理水槽と、
前記オゾンが添加された前記被処理水を、前記処理水槽から前記沈殿槽に導入する導入手段と、を更に備える、
請求項1に記載の藻類分離システム。
A treated water tank for storing the treated water;
An introduction means for introducing the treated water to which the ozone has been added from the treated water tank into the settling tank;
The algae separation system according to claim 1.
前記処理水槽を複数備え、
各処理水槽間において前記被処理水を送水する送水手段をさらに備える、
請求項3に記載の藻類分離システム。
A plurality of the treatment water tanks are provided,
Further comprising water supply means for supplying the treated water between the treated water tanks,
The algae separation system according to claim 3.
前記沈殿槽は、底部又は下部側面に、前記凝集沈殿した前記藻類を流出させる流出口を有する、
請求項1から4のいずれか一項に記載の藻類分離システム。
The sedimentation tank has an outlet for allowing the agglomerated and precipitated algae to flow out at the bottom or the lower side surface.
The algae separation system according to any one of claims 1 to 4.
前記被処理水から前記凝集沈殿した前記藻類を分離する分離手段をさらに備える、
請求項1から5のいずれか一項に記載の藻類分離システム。
Further comprising separation means for separating the agglomerated sedimented algae from the treated water.
The algae separation system according to any one of claims 1 to 5.
前記被処理水に添加される前記オゾンの気泡を吸着する多孔質材料からなる接触材が、前記被処理水中に配置される、
請求項1から6のいずれか一項に記載の藻類分離システム。
A contact material made of a porous material that adsorbs the bubbles of ozone added to the water to be treated is disposed in the water to be treated.
The algae separation system according to any one of claims 1 to 6.
前記多孔質材料は、活性炭、シリカゲル、ゼオライト、アルミナのいずれか又はそれらの組合せからなる材料である、
請求項7に記載の藻類分離システム。
The porous material is a material made of activated carbon, silica gel, zeolite, alumina, or a combination thereof,
The algae separation system according to claim 7.
前記オゾン添加装置は、前記被処理水から未使用の前記オゾンを回収し、回収した前記オゾンを前記被処理水に添加する、
請求項1から8のいずれか一項に記載の藻類分離システム。
The ozone addition device recovers the unused ozone from the treated water, and adds the recovered ozone to the treated water.
The algae separation system according to any one of claims 1 to 8.
藻類を含む被処理水に1〜120g−O3/m3のオゾンを添加し、
前記オゾンが添加された前記被処理水に含まれる前記藻類を凝集沈殿させる、
藻類分離方法。
Add 1 to 120 g-O 3 / m 3 of ozone to the treated water containing algae,
Coagulating and precipitating the algae contained in the treated water to which the ozone has been added,
Algae separation method.
JP2017057871A 2017-03-23 2017-03-23 Algae separation system, algae separation method and algae production method Active JP7002852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017057871A JP7002852B2 (en) 2017-03-23 2017-03-23 Algae separation system, algae separation method and algae production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017057871A JP7002852B2 (en) 2017-03-23 2017-03-23 Algae separation system, algae separation method and algae production method

Publications (2)

Publication Number Publication Date
JP2018158315A true JP2018158315A (en) 2018-10-11
JP7002852B2 JP7002852B2 (en) 2022-02-04

Family

ID=63796207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017057871A Active JP7002852B2 (en) 2017-03-23 2017-03-23 Algae separation system, algae separation method and algae production method

Country Status (1)

Country Link
JP (1) JP7002852B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423749B2 (en) * 1974-11-22 1979-08-16
JPS59193192A (en) * 1983-04-15 1984-11-01 Mitsubishi Electric Corp Device for supplying ozone intermittently
JPH02149397A (en) * 1988-11-28 1990-06-07 Toshiba Corp Water treatment apparatus
JPH02137996U (en) * 1989-04-21 1990-11-16
JPH09239382A (en) * 1996-03-04 1997-09-16 Nakamura Denki Seisakusho:Kk Water purifier
JPH10235118A (en) * 1997-02-28 1998-09-08 Amano Corp Device for cleaning pond water or the like
JP2000061208A (en) * 1998-08-25 2000-02-29 Jc Engineering Kk Organic material flocculation accelerator and flocculation accelerating method
JP2001340847A (en) * 2000-06-01 2001-12-11 Canon Inc Aeration/separation apparatus for removing/separating algae, green algae, and red tide plankton
JP2002177990A (en) * 2000-12-14 2002-06-25 Yasumasa Kondo Water cleaning method and water cleaning plant
JP2002301484A (en) * 2001-04-03 2002-10-15 Fuso Kensetsu Kogyo Kk Method for removing residual ozone in treatment of raw water
JP2015503325A (en) * 2011-12-21 2015-02-02 ヘリアエ デベロップメント、 エルエルシー System and method for contaminant removal from microalgal cultures

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423749B2 (en) * 1974-11-22 1979-08-16
JPS59193192A (en) * 1983-04-15 1984-11-01 Mitsubishi Electric Corp Device for supplying ozone intermittently
JPH02149397A (en) * 1988-11-28 1990-06-07 Toshiba Corp Water treatment apparatus
JPH02137996U (en) * 1989-04-21 1990-11-16
JPH09239382A (en) * 1996-03-04 1997-09-16 Nakamura Denki Seisakusho:Kk Water purifier
JPH10235118A (en) * 1997-02-28 1998-09-08 Amano Corp Device for cleaning pond water or the like
JP2000061208A (en) * 1998-08-25 2000-02-29 Jc Engineering Kk Organic material flocculation accelerator and flocculation accelerating method
JP2001340847A (en) * 2000-06-01 2001-12-11 Canon Inc Aeration/separation apparatus for removing/separating algae, green algae, and red tide plankton
JP2002177990A (en) * 2000-12-14 2002-06-25 Yasumasa Kondo Water cleaning method and water cleaning plant
JP2002301484A (en) * 2001-04-03 2002-10-15 Fuso Kensetsu Kogyo Kk Method for removing residual ozone in treatment of raw water
JP2015503325A (en) * 2011-12-21 2015-02-02 ヘリアエ デベロップメント、 エルエルシー System and method for contaminant removal from microalgal cultures

Also Published As

Publication number Publication date
JP7002852B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
JP6109189B2 (en) System and method for contaminant removal from microalgal cultures
WO2000030982A1 (en) Method of treating liquid, liquid treatment apparatus, and liquid treatment system
JP2000263056A (en) Liquid treatment method and liquid treatment system
JP5997755B2 (en) Sludge treatment method and carbide utilization method
CN109264845A (en) A kind of device and method of reverse osmosis concentrated water organic matter and ammonia nitrogen removal simultaneously
CN203878007U (en) Power plant desulfurization wastewater treatment device
JP2001340847A (en) Aeration/separation apparatus for removing/separating algae, green algae, and red tide plankton
JP2018158315A (en) Algae separation system and algae separation method
CN105174541A (en) Deep sewage treatment device and method by means of membrane coagulation reaction and powdered activated carbon adsorption
CN205061742U (en) Utilize membrane thoughtlessly to congeal device of joint powder active carbon adsorption advanced treatment sewage of reaction
CN108675504A (en) A kind of circular water treating system for swimming pool
JP6879869B2 (en) Wastewater treatment method
JP4488794B2 (en) Method and system for treating fermentation residual liquid and other anaerobic organic compound-containing liquid
JPH1133561A (en) Flocculation and sedimentation treatment equipment
JP2000197895A (en) Water purifying treatment method and apparatus
RU2315007C1 (en) Method of purification of the water from the harmful impurities and the installation for the method realization
CN220034278U (en) Quick remove device of particulate matter in fresh water aquaculture water
CN205528284U (en) Carry on adsorption material processing system of functional type microorganism
JPH0751668A (en) Purification treatment of sewage
CN211311131U (en) Organic garbage waste water treatment system
CN108996823A (en) A kind of casting industry wastewater treatment equipment and method
CN108911380A (en) Food Industry Wastewater treatment process and its device
CN216106521U (en) Organic sewage treatment system
CN207760160U (en) Laboratory inorganic wastewater processing unit
CN107902806A (en) A kind of secondary precipitation of Heihe road and biochemical treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228

R150 Certificate of patent or registration of utility model

Ref document number: 7002852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150