JP2018157727A - Bridgeless power factor correction circuit - Google Patents

Bridgeless power factor correction circuit Download PDF

Info

Publication number
JP2018157727A
JP2018157727A JP2017054626A JP2017054626A JP2018157727A JP 2018157727 A JP2018157727 A JP 2018157727A JP 2017054626 A JP2017054626 A JP 2017054626A JP 2017054626 A JP2017054626 A JP 2017054626A JP 2018157727 A JP2018157727 A JP 2018157727A
Authority
JP
Japan
Prior art keywords
inductor
current
circuit
voltage
detection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017054626A
Other languages
Japanese (ja)
Inventor
小龍 江
Xiaolong Jiang
小龍 江
大西 浩之
Hiroyuki Onishi
浩之 大西
真吾 長岡
Shingo Nagaoka
真吾 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2017054626A priority Critical patent/JP2018157727A/en
Priority to PCT/JP2017/041704 priority patent/WO2018173364A1/en
Publication of JP2018157727A publication Critical patent/JP2018157727A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a bridgeless power factor correction circuit capable of achieving simplification of a circuit, miniaturization of the whole size and cost reduction without using an expensive circuit component for voltage/current detection.SOLUTION: A bridgeless PFC circuit 100 includes: a step-up inductor L for accumulating energy from an input power source IP and converting a low-voltage high-current to a high-voltage low-current; switches Q1, Q2 for performing switching operation to intermittently accumulate energy in the step-up inductor; rectification elements D1, D1 for preventing backflow of respective currents from the switches; a current smoothing capacitor C for smoothing energy outputted from the step-up inductor L; an input voltage detection circuit 10 for detecting input voltage Vin while defining that the one side of the input power source IP as reference potential; an inductor current detection circuit 20 for detecting an inductor current by a resistor 21 inserted into a path of an inductor current; and an output voltage detection circuit 30 for detecting an output voltage Vo while defining that the one side of the input power source IP as the reference potential.SELECTED DRAWING: Figure 1

Description

本発明は、整流用ブリッジを持たないブリッジレス力率改善(PFC:Power Factor Correction)回路に関し、特に、トーテムポール・ブリッジレスPFC回路における電圧・電流センサの簡素化に関する。   The present invention relates to a bridgeless power factor correction (PFC) circuit having no rectifying bridge, and more particularly to simplification of a voltage / current sensor in a totem pole / bridgeless PFC circuit.

従来、交流入力に接続されるスイッチング電源では、入力電力の力率を改善するとともに高調波電流を抑制するため、PFC回路が用いられている。一般的には整流用ブリッジを設けたものも多いが、ブリッジ自体の損失が高効率化や小型化の妨げにもなるため、このような整流用ブリッジを持たないブリッジレスPFC回路も提案されている(例えば、特許文献1または特許文献2の図10を参照)。   Conventionally, in a switching power supply connected to an AC input, a PFC circuit is used to improve the power factor of input power and suppress harmonic current. In general, many rectifier bridges are provided, but since the loss of the bridge itself hinders high efficiency and miniaturization, bridgeless PFC circuits that do not have such rectifier bridges have also been proposed. (For example, refer to FIG. 10 of Patent Document 1 or Patent Document 2).

さらに、交流入力側に設けられたインダクタに対して、交流入力の正の半サイクルで高周波スイッチングの対象となるスイッチング素子と、負の半サイクルで高周波スイッチングの対象となるスイッチング素子とをそれぞれ接続したトーテムポール方式のブリッジレス力率コンバータも提案されている(例えば、特許文献3参照)。   Furthermore, a switching element that is subject to high-frequency switching in the positive half cycle of the AC input and a switching element that is subject to high-frequency switching in the negative half cycle are connected to the inductor provided on the AC input side, respectively. A totem pole type bridgeless power factor converter has also been proposed (see, for example, Patent Document 3).

特開2002−017087号公報JP 2002-017087 A 国際公開第2010/061654号International Publication No. 2010/061654 特開2012−070490号公報JP 2012-070490 A

従来のブリッジレスPFC回路では、入力側の電圧、電流や出力側の電圧を測定する必要があるが、回路の入力側と出力側の間にはスイッチング動作するスイッチング素子が存在し、特に入力側の電圧測定点と出力側の電圧測定点の電位は大きく異なるため、特許文献1のようにトランスなどの絶縁型の検出素子または検出回路を使用していた。そのため回路の複雑化を招いたり、高価な回路部品を使う必要があった。   In the conventional bridgeless PFC circuit, it is necessary to measure the voltage and current on the input side and the voltage on the output side, but there is a switching element that performs switching operation between the input side and the output side of the circuit. Since the potentials at the voltage measurement point and the voltage measurement point on the output side are greatly different, an insulation type detection element or detection circuit such as a transformer is used as in Patent Document 1. For this reason, the circuit is complicated and expensive circuit parts must be used.

従来技術のこのような課題に鑑み、本発明の目的は、電圧・電流検出のために高価な回路部品を使用することなく回路の簡素化や全体の小型化およびコストダウンなどを可能とするブリッジレス力率改善回路を提供することである。   In view of such problems of the prior art, an object of the present invention is to provide a bridge that can simplify a circuit, reduce the overall size, reduce costs, and the like without using expensive circuit components for voltage / current detection. It is to provide a power factor correction circuit.

上記目的を達成するため、本発明のブリッジレス力率改善回路は、交流の入力電源からのエネルギーを蓄積して、低圧高電流から高圧低電流に変換する昇圧インダクタと、この昇圧インダクタに断続的にエネルギーを蓄積するためのスイッチング動作を行うスイッチング素子と、このスイッチング素子からの電流の逆流を防止する整流素子と、前記昇圧インダクタより出力されたエネルギーを平滑化する平滑コンデンサと、前記昇圧インダクタを流れるインダクタ電流の経路に挿入された電流検出素子によって前記インダクタ電流を検出するインダクタ電流検出回路と、前記入力電源の一方側を基準電位として入力電圧を検出する入力電圧検出回路と、負荷への出力電圧を前記入力電源の前記一方側を基準電位として検出する出力電圧検出回路と、前記インダクタ電流検出回路によるインダクタ電流検出結果と、前記入力電圧検出回路による入力電圧検出結果と、前記出力電圧検出回路による出力電圧検出結果とに基づいて前記スイッチング動作を制御する制御部とを備えることを特徴とする。   In order to achieve the above object, a bridgeless power factor correction circuit according to the present invention accumulates energy from an AC input power source and converts it from a low voltage high current to a high voltage low current, and the boost inductor intermittently. A switching element that performs a switching operation for accumulating energy, a rectifying element that prevents a backflow of current from the switching element, a smoothing capacitor that smoothes energy output from the boost inductor, and the boost inductor An inductor current detection circuit that detects the inductor current by a current detection element inserted in a path of the flowing inductor current, an input voltage detection circuit that detects an input voltage using one side of the input power supply as a reference potential, and an output to a load An output voltage detection circuit that detects the voltage using the one side of the input power supply as a reference potential. And a control unit that controls the switching operation based on an inductor current detection result by the inductor current detection circuit, an input voltage detection result by the input voltage detection circuit, and an output voltage detection result by the output voltage detection circuit. It is characterized by providing.

ここで、出力電圧検出回路は、例えば、抵抗および差動増幅器で構成されてもよいが、これに限らない。また、電流検出素子としては、例えば抵抗が挙げられるが、これに限らない。この電流検出素子はいずれかの一端が前記基準電位に接続されており、前記インダクタ電流検出回路は、前記入力電源の一方側を基準電位として前記電流検出素子の両端の電圧を測定することにより前記インダクタ電流を検出するようにしてもよい。   Here, the output voltage detection circuit may be configured with, for example, a resistor and a differential amplifier, but is not limited thereto. Moreover, as a current detection element, although resistance is mentioned, for example, it is not restricted to this. One end of the current detection element is connected to the reference potential, and the inductor current detection circuit measures the voltage across the current detection element by measuring one side of the input power supply as a reference potential. The inductor current may be detected.

また、ブリッジレス力率改善回路として、具体的にはトーテムポール・ブリッジレス力率改善回路が挙げられるが、これに限らない。   The bridgeless power factor correction circuit is specifically a totem pole / bridgeless power factor correction circuit, but is not limited thereto.

このような構成のブリッジレス力率改善回路によれば、電圧・電流検出のために高価な回路部品を使用する必要がなくなり、回路の簡素化や全体の小型化およびコストダウンなどが可能となる。   According to the bridgeless power factor correction circuit having such a configuration, it is not necessary to use expensive circuit parts for voltage / current detection, and the circuit can be simplified, the entire size can be reduced, and the cost can be reduced. .

本発明のブリッジレス力率改善回路によれば、電圧・電流検出のために高価な回路部品を使用する必要がなくなり、回路の簡素化や全体の小型化およびコストダウンなどが可能となる。   According to the bridgeless power factor correction circuit of the present invention, it is not necessary to use expensive circuit parts for voltage / current detection, and the circuit can be simplified, the entire size can be reduced, and the cost can be reduced.

本発明の一実施形態に係るトーテムポール・ブリッジレスPFC回路100の概略構成を示す回路図である。1 is a circuit diagram showing a schematic configuration of a totem pole / bridgeless PFC circuit 100 according to an embodiment of the present invention. FIG. インダクタ電流検出回路20の概略構成を例示する回路図である。3 is a circuit diagram illustrating a schematic configuration of an inductor current detection circuit 20. FIG. 出力電圧検出回路30の概略構成を例示する回路図である。3 is a circuit diagram illustrating a schematic configuration of an output voltage detection circuit 30. FIG.

以下、本発明に係る実施形態を、図面を参照して説明する。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings.

<実施形態の全体構成>
図1は本発明の一実施形態に係るトーテムポール・ブリッジレスPFC回路100の概略構成を示す回路図である。
<Overall Configuration of Embodiment>
FIG. 1 is a circuit diagram showing a schematic configuration of a totem pole bridgeless PFC circuit 100 according to an embodiment of the present invention.

この図1に示すように、ブリッジレスPFC回路100は、交流の入力電源IPからの電力エネルギーを蓄積して、低圧高電流から高圧低電流に変換する昇圧インダクタLと、この昇圧インダクタLに断続的に電力エネルギーを蓄積するためのスイッチング動作を行うスイッチQ1およびスイッチQ2と、これらのスイッチQ1およびスイッチQ2からの各電流の逆流を防止する整流素子D1および整流素子D1と、昇圧インダクタLより出力された電力エネルギーを平滑化する電流平滑コンデンサCと、入力電源IPの一方側を基準電位として入力電圧Vinを検出する入力電圧検出回路10と、昇圧インダクタLを流れるインダクタ電流の経路に挿入された抵抗21の両端に発生する電圧によってインダクタ電流を検出するインダクタ電流検出回路20と、出力負荷OLへの出力電圧Voを入力電源IPの一方側を基準電位として検出する出力電圧検出回路30とを備えている。   As shown in FIG. 1, a bridgeless PFC circuit 100 stores power energy from an AC input power source IP and converts it from a low voltage and high current to a high voltage and low current, and the boost inductor L is intermittently connected. Switch Q1 and switch Q2 for performing a switching operation for accumulating power energy, rectifier element D1 and rectifier element D1 for preventing backflow of currents from these switches Q1 and Q2, and output from boost inductor L Current smoothing capacitor C for smoothing the generated power energy, input voltage detection circuit 10 for detecting input voltage Vin using one side of input power supply IP as a reference potential, and an inductor current path flowing through boost inductor L Inductor current for detecting the inductor current by the voltage generated across the resistor 21 A detection circuit 20, and an output voltage detection circuit 30 for detecting the output voltage Vo to the output load OL one side of the input power IP as a reference potential.

ここで、抵抗21は電流検出素子の一例であるが、このような電流検出素子は抵抗に限らない。   Here, the resistor 21 is an example of a current detection element, but such a current detection element is not limited to a resistance.

スイッチQ1およびスイッチQ2としては、例えば電界効果トランジスタ(FET)やIGBTなどのスイッチング素子が挙げられるが、これらに限らない。   Examples of the switch Q1 and the switch Q2 include, but are not limited to, a switching element such as a field effect transistor (FET) and an IGBT.

また、スイッチQ1およびスイッチQ2は、入力電圧検出回路10、インダクタ電流検出回路20、および出力電圧検出回路30による各検出結果に基づいて出力電圧Voが一定となるように、それぞれのスイッチング動作(オン/オフやタイミングなど)が制御部(不図示)によって制御される。   Further, the switch Q1 and the switch Q2 have their respective switching operations (ON) so that the output voltage Vo becomes constant based on the detection results by the input voltage detection circuit 10, the inductor current detection circuit 20, and the output voltage detection circuit 30. / Off, timing, etc.) are controlled by a control unit (not shown).

入力電圧検出回路10は、直列接続された抵抗11および抵抗12で構成されている。入力電圧Vinが分圧された電圧を検出すれば、抵抗11と抵抗12の比に基づいて入力電圧Vinを算出することができる。   The input voltage detection circuit 10 includes a resistor 11 and a resistor 12 connected in series. If a voltage obtained by dividing the input voltage Vin is detected, the input voltage Vin can be calculated based on the ratio of the resistor 11 and the resistor 12.

出力電圧検出回路30は、抵抗31〜34および差動増幅器35で構成されているが、詳細は後述する。   The output voltage detection circuit 30 includes resistors 31 to 34 and a differential amplifier 35, and details will be described later.

また、差動増幅器27(詳細は後述)および差動増幅器35の電源は共通であり、基準電位を0Vとした±15Vの電圧が供給される。   Further, the power supply of the differential amplifier 27 (details will be described later) and the differential amplifier 35 are common, and a voltage of ± 15 V with a reference potential of 0 V is supplied.

<インダクタ電流検出回路20の具体例>
図2はインダクタ電流検出回路20の概略構成を例示する回路図である。ただし、このような構成に限るわけではない。
<Specific Example of Inductor Current Detection Circuit 20>
FIG. 2 is a circuit diagram illustrating a schematic configuration of the inductor current detection circuit 20. However, the configuration is not limited to this.

この図2に示すように、インダクタ電流検出回路20は、インダクタ電流を検出するための抵抗21に加えて、抵抗22〜25、コンデンサ26、および差動増幅器27を備えている。抵抗21の一端が抵抗23を介して差動増幅器27の反転入力に接続されるとともに基準電位に接続されており、抵抗21の他端は抵抗24を介して差動増幅器27の非反転入力に接続されている。また、差動増幅器27の反転入力と出力とが抵抗22を介して接続されるとともに、この抵抗22と並列にコンデンサ26が接続されている。   As shown in FIG. 2, the inductor current detection circuit 20 includes resistors 22 to 25, a capacitor 26, and a differential amplifier 27 in addition to a resistor 21 for detecting the inductor current. One end of the resistor 21 is connected to the inverting input of the differential amplifier 27 through the resistor 23 and is connected to the reference potential, and the other end of the resistor 21 is connected to the non-inverting input of the differential amplifier 27 through the resistor 24. It is connected. The inverting input and output of the differential amplifier 27 are connected via a resistor 22, and a capacitor 26 is connected in parallel with the resistor 22.

このような構成を用いて抵抗21の両端の電圧を測定する。この電圧と抵抗21の抵抗値を用いて抵抗21に流れる電流を計算することにより、インダクタ電流検出回路20はインダクタ電流を検出することができる。   The voltage across the resistor 21 is measured using such a configuration. By calculating the current flowing through the resistor 21 using this voltage and the resistance value of the resistor 21, the inductor current detection circuit 20 can detect the inductor current.

また、ブリッジレスPFC回路100は、入力電源IPから100V〜240Vの入力電圧Vinが供給され、このインダクタ電流検出回路20には、数A〜数十Aの電流が流れる。例えば、抵抗21の値を5mΩとしたときに抵抗21の両端にかかる電圧は最大75mV程度である。   The bridgeless PFC circuit 100 is supplied with an input voltage Vin of 100 to 240 V from the input power supply IP, and a current of several A to several tens of A flows through the inductor current detection circuit 20. For example, when the value of the resistor 21 is 5 mΩ, the voltage applied to both ends of the resistor 21 is about 75 mV at maximum.

したがって、差動増幅器27の反転入力の電圧は基準電位と同じとなり、また非反転入力の電圧は最大75mV程度となるので、差動増幅器27の入力電圧を低くすることができる。   Accordingly, the voltage at the inverting input of the differential amplifier 27 is the same as the reference potential, and the voltage at the non-inverting input is about 75 mV at maximum, so that the input voltage of the differential amplifier 27 can be lowered.

このとき、測定すべき電流の周波数は回路のスイッチング周波数に関係するが、電流形状は三角波となるため周波数は高い。例えば、スイッチング周波数が1MHzのとき、5次高調波まで含むと仮定すれば、5MHz程度まで測定可能でなければならない。   At this time, the frequency of the current to be measured is related to the switching frequency of the circuit, but the frequency is high because the current shape is a triangular wave. For example, when the switching frequency is 1 MHz, it is necessary to be able to measure up to about 5 MHz, assuming that the fifth harmonic is included.

<出力電圧検出回路30の具体例>
図3は出力電圧検出回路30の概略構成を例示する回路図である。
<Specific Example of Output Voltage Detection Circuit 30>
FIG. 3 is a circuit diagram illustrating a schematic configuration of the output voltage detection circuit 30.

この図3に示すように、抵抗31および抵抗32は直列接続されており、その接続点が差動増幅器35の非反転入力に接続されている。抵抗31の一端(抵抗32とは反対側)は出力負荷OLの一方側(図1参照)に接続されるとともに、抵抗32の一端(抵抗31とは反対側)は入力電源IP側の基準電位(図1参照)に接続されている。また、抵抗33および抵抗34も直列接続されており、その接続点が差動増幅器35の反転入力に接続されている。抵抗33の一端(抵抗34とは反対側)は出力負荷OLの他方側(図1参照)に接続されるとともに、抵抗34の一端(抵抗33とは反対側)は入力電源IP側の基準電位(図1参照)に接続されている。   As shown in FIG. 3, the resistor 31 and the resistor 32 are connected in series, and the connection point is connected to the non-inverting input of the differential amplifier 35. One end of the resistor 31 (on the opposite side to the resistor 32) is connected to one side (see FIG. 1) of the output load OL, and one end of the resistor 32 (on the opposite side to the resistor 31) is the reference potential on the input power supply IP side. (See FIG. 1). The resistor 33 and the resistor 34 are also connected in series, and the connection point is connected to the inverting input of the differential amplifier 35. One end of the resistor 33 (on the side opposite to the resistor 34) is connected to the other side (see FIG. 1) of the output load OL, and one end of the resistor 34 (on the side opposite to the resistor 33) is the reference potential on the input power source IP side. (See FIG. 1).

これにより、入力電源IP側を基準電位として出力負荷の両端の電位差を測定することにより出力電圧Voを検出することができる。なお、抵抗32に対する抵抗31の抵抗値比は、例えば数十倍とすればよい。抵抗34に対する抵抗33の抵抗値比も同様である。例えば、抵抗31および抵抗33の値をそれぞれ493kΩ、抵抗32および抵抗34の値をそれぞれ10kΩとする。   Thus, the output voltage Vo can be detected by measuring the potential difference between both ends of the output load with the input power source IP side as the reference potential. Note that the resistance value ratio of the resistor 31 to the resistor 32 may be several tens of times, for example. The resistance value ratio of the resistor 33 to the resistor 34 is the same. For example, the value of the resistor 31 and the resistor 33 is 493 kΩ, and the value of the resistor 32 and the resistor 34 is 10 kΩ.

出力電圧検出回路30が測定すべき出力電圧Voは400V程度であるが、基準電位から見たときの出力負荷OLのスイッチQ1側の電圧は500V程度となり、スイッチQ2側の電圧は100V程度となる。この場合でも、差動増幅器35の反転入力は1V程度、非反転入力は0.2V程度の電圧となるので、差動増幅器35の入力電圧を低くすることができる。カットオフ周波数も20Hz程度に対応できればよい。   The output voltage Vo to be measured by the output voltage detection circuit 30 is about 400V, but when viewed from the reference potential, the voltage on the switch Q1 side of the output load OL is about 500V, and the voltage on the switch Q2 side is about 100V. . Even in this case, the inverting input of the differential amplifier 35 is about 1V, and the non-inverting input is about 0.2V. Therefore, the input voltage of the differential amplifier 35 can be lowered. The cut-off frequency only needs to correspond to about 20 Hz.

なお、本発明は、その主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文にはなんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   It should be noted that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-mentioned embodiment is only a mere illustration in all points, and should not be interpreted limitedly. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、例えば、AC−DCコンバータや電源装置などに好適である。   The present invention is suitable for an AC-DC converter, a power supply device, and the like, for example.

100 ブリッジレスPFC回路
10 入力電圧検出回路
11、12 抵抗
20 インダクタ電流検出回路
22〜25 抵抗
26 コンデンサ
27 差動増幅器
30 出力電圧検出回路
31〜34 抵抗
35 差動増幅器
C 電流平滑コンデンサ
D1、D2 整流素子
IP 入力電源
L 昇圧インダクタ
OL 出力負荷
Q1、Q2 スイッチ
Vin 入力電圧
Vo 出力電圧
100 Bridgeless PFC Circuit 10 Input Voltage Detection Circuit 11, 12 Resistance 20 Inductor Current Detection Circuit 22-25 Resistance 26 Capacitor 27 Differential Amplifier 30 Output Voltage Detection Circuit 31-34 Resistance 35 Differential Amplifier C Current Smoothing Capacitor D1, D2 Rectification Element IP Input power supply L Boost inductor OL Output load Q1, Q2 Switch Vin Input voltage Vo Output voltage

Claims (4)

交流の入力電源からのエネルギーを蓄積して、低圧高電流から高圧低電流に変換する昇圧インダクタと、
この昇圧インダクタに断続的にエネルギーを蓄積するためのスイッチング動作を行うスイッチング素子と、
このスイッチング素子からの電流の逆流を防止する整流素子と、
前記昇圧インダクタより出力されたエネルギーを平滑化する平滑コンデンサと、
前記昇圧インダクタを流れるインダクタ電流の経路に挿入された電流検出素子によって前記インダクタ電流を検出するインダクタ電流検出回路と、
前記入力電源の一方側を基準電位として入力電圧を検出する入力電圧検出回路と、
負荷への出力電圧を前記入力電源の前記一方側を基準電位として検出する出力電圧検出回路と、
前記インダクタ電流検出回路によるインダクタ電流検出結果と、前記入力電圧検出回路による入力電圧検出結果と、前記出力電圧検出回路による出力電圧検出結果とに基づいて前記スイッチング動作を制御する制御部と
を備えることを特徴とするブリッジレス力率改善回路。
A boost inductor that accumulates energy from an AC input power source and converts low voltage high current to high voltage low current;
A switching element that performs a switching operation for intermittently storing energy in the boost inductor;
A rectifying element that prevents backflow of current from the switching element;
A smoothing capacitor for smoothing the energy output from the boost inductor;
An inductor current detection circuit for detecting the inductor current by a current detection element inserted in a path of an inductor current flowing through the boost inductor;
An input voltage detection circuit for detecting an input voltage using one side of the input power supply as a reference potential;
An output voltage detection circuit for detecting an output voltage to a load using the one side of the input power supply as a reference potential;
A control unit that controls the switching operation based on an inductor current detection result by the inductor current detection circuit, an input voltage detection result by the input voltage detection circuit, and an output voltage detection result by the output voltage detection circuit; Bridgeless power factor correction circuit.
請求項1に記載のブリッジレス力率改善回路において、
前記出力電圧検出回路は、抵抗および差動増幅器で構成されていることを特徴とするブリッジレス力率改善回路。
The bridgeless power factor correction circuit according to claim 1,
The bridgeless power factor correction circuit, wherein the output voltage detection circuit is composed of a resistor and a differential amplifier.
請求項1に記載のブリッジレス力率改善回路において、
前記電流検出素子はいずれかの一端が前記基準電位に接続されており、
前記インダクタ電流検出回路は、前記入力電源の一方側を基準電位として前記電流検出素子の両端の電圧を測定することにより前記インダクタ電流を検出することを特徴とするブリッジレス力率改善回路。
The bridgeless power factor correction circuit according to claim 1,
One end of the current detection element is connected to the reference potential,
The bridgeless power factor correction circuit, wherein the inductor current detection circuit detects the inductor current by measuring a voltage across the current detection element with one side of the input power supply as a reference potential.
トーテムポール・ブリッジレス力率改善回路であることを特徴とする、請求項1〜3のいずれか1項に記載のブリッジレス力率改善回路。   The bridgeless power factor correction circuit according to any one of claims 1 to 3, wherein the bridgeless power factor correction circuit is a totem pole / bridgeless power factor correction circuit.
JP2017054626A 2017-03-21 2017-03-21 Bridgeless power factor correction circuit Pending JP2018157727A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017054626A JP2018157727A (en) 2017-03-21 2017-03-21 Bridgeless power factor correction circuit
PCT/JP2017/041704 WO2018173364A1 (en) 2017-03-21 2017-11-20 Bridgeless power factor correction circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017054626A JP2018157727A (en) 2017-03-21 2017-03-21 Bridgeless power factor correction circuit

Publications (1)

Publication Number Publication Date
JP2018157727A true JP2018157727A (en) 2018-10-04

Family

ID=63586338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017054626A Pending JP2018157727A (en) 2017-03-21 2017-03-21 Bridgeless power factor correction circuit

Country Status (2)

Country Link
JP (1) JP2018157727A (en)
WO (1) WO2018173364A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165883A (en) * 2019-06-21 2019-08-23 海信(广东)空调有限公司 A kind of non-bridge PFC circuits and frequency conversion product
CN110212749A (en) * 2019-06-21 2019-09-06 海信(广东)空调有限公司 A kind of PFC module
JP7471948B2 (en) 2020-08-03 2024-04-22 東芝テック株式会社 Power Conversion Equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856116A (en) * 2020-07-21 2020-10-30 广州金升阳科技有限公司 Bridgeless PFC current sampling circuit and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019637A (en) * 2010-07-08 2012-01-26 Fujitsu Ltd Voltage dividing power factor improvement circuit, voltage dividing power factor improvement device, and voltage dividing power factor improvement method
US9590494B1 (en) * 2014-07-17 2017-03-07 Transphorm Inc. Bridgeless power factor correction circuits
JP6286380B2 (en) * 2015-02-16 2018-02-28 東芝テック株式会社 Power converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165883A (en) * 2019-06-21 2019-08-23 海信(广东)空调有限公司 A kind of non-bridge PFC circuits and frequency conversion product
CN110212749A (en) * 2019-06-21 2019-09-06 海信(广东)空调有限公司 A kind of PFC module
CN110212749B (en) * 2019-06-21 2022-03-04 海信(广东)空调有限公司 PFC module
JP7471948B2 (en) 2020-08-03 2024-04-22 東芝テック株式会社 Power Conversion Equipment

Also Published As

Publication number Publication date
WO2018173364A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP5182375B2 (en) PFC converter
US8953347B2 (en) Capacitor discharging circuit and power converter
US20090230929A1 (en) Bridgeless pfc circuit for crm and controlling method thereof
TWI508423B (en) Power conversion device
US9917503B2 (en) Overcurrent protection circuit and power factor correction circuit comprising the same
KR20170120592A (en) Semiconductor device for power control
WO2016086897A1 (en) Current zero-crossing detection circuit and method, and load voltage detection circuit and method
US9923455B2 (en) Current-sensing and gain-switching circuit and method for using wide range of current
TWI685183B (en) Hybrid-mode boost power factor corrector
JP6607495B2 (en) Power converter
JP2014042433A (en) Bridgeless pfc converter with average current mode control
WO2018173364A1 (en) Bridgeless power factor correction circuit
CN110719020B (en) Control circuit and control method
KR20080004704A (en) Single stage power factor correction circuit by boundary conduction mode
JP2009513094A (en) Power factor correction boost circuit
TWI646760B (en) Electric conversion device
CN109088536B (en) Active power factor correction circuit and method for improving harmonic waves and driving system
JP2014099948A (en) Switching power supply device
JP2009033959A (en) Power supply changeover unit controlled by sampling coil voltage
JP6022883B2 (en) Power supply
JP2012175828A (en) Current detection circuit of step-up converter
US9606565B2 (en) Power supply with a switch converter
JP6940010B2 (en) Integrated circuit, power supply circuit
JP5588393B2 (en) Synchronous rectifier converter and its test system
JP4499641B2 (en) AC load device