JP2018155518A - 電子スピン共鳴装置 - Google Patents

電子スピン共鳴装置 Download PDF

Info

Publication number
JP2018155518A
JP2018155518A JP2017050576A JP2017050576A JP2018155518A JP 2018155518 A JP2018155518 A JP 2018155518A JP 2017050576 A JP2017050576 A JP 2017050576A JP 2017050576 A JP2017050576 A JP 2017050576A JP 2018155518 A JP2018155518 A JP 2018155518A
Authority
JP
Japan
Prior art keywords
frequency
signal
resonator
phase
electron spin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017050576A
Other languages
English (en)
Other versions
JP6815637B2 (ja
Inventor
英夫 赤羽
Hideo Akabane
英夫 赤羽
博匡 藤井
Hirotada Fujii
博匡 藤井
美穂 江本
Miho Emoto
美穂 江本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Sapporo Medical University
Original Assignee
Osaka University NUC
Sapporo Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Sapporo Medical University filed Critical Osaka University NUC
Priority to JP2017050576A priority Critical patent/JP6815637B2/ja
Publication of JP2018155518A publication Critical patent/JP2018155518A/ja
Application granted granted Critical
Publication of JP6815637B2 publication Critical patent/JP6815637B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

【課題】構成が簡易化された電子スピン共鳴装置を提供する。【解決手段】電子スピン共鳴装置1は、整合同調回路50と共振器41とを有する共振部40と、発振器21を有し、発振器21の発振周波数に基づく高周波を共振器41に出力する高周波出力部20と、共振器41で反射された高周波の反射波の強度情報と位相情報とを有するI(In−phase)信号及びQ(Quadrature−phase)信号をそれぞれ共振部40に負帰還する制御部10と、を備え、整合同調回路50は、I信号及びQ信号の一方に基づいて共振部40のインピーダンスを調整し、I信号及びQ信号の他方に基づいて共振器41の共振周波数を高周波の周波数に同調する。【選択図】図1

Description

本発明は、電子スピン共鳴(EPR:Electron Paramagnetic Resonance)を用いた生体中のフリーラジカルのイメージングが可能な電子スピン共鳴装置に関する。
一般的に、EPR測定法は、電子が有する磁気モーメントの運動を利用して、フリーラジカルのような不対電子を持つ原子や分子について測定する方法である。EPR測定により、例えば、小動物中のフリーラジカルのイメージングを行うことができる。
電子スピン共鳴装置には、主に、連続波EPR(CW−EPR)法が採用されている。CW−EPR法は、共振器に供給される高周波(マイクロ波)の周波数を一定にし、磁場掃引を行うことでEPR信号を測定する方法である。EPR測定では、EPR吸収が発生すると共振器の整合がずれて反射波が発生し、反射波の強度と位相を検出することでEPR信号を取得できる。このとき、高感度化のために、さらに、磁場変調をかけて測定される。
しかしながら、反射波は、共振器の不整合により発生するため、小動物等の動き等による共振器の不整合によっても発生する。つまり、EPR吸収による反射波を測定するために、小動物等の動き等による反射波を抑制する必要がある。
そこで、共振器の共振周波数を共振器に供給される高周波の周波数に同調させる自動同調回路、及び、共振器のインピーダンスを整合する自動整合回路が組み込まれた電子スピン共鳴装置が提案されている(例えば、特許文献1参照)。特許文献1の技術によれば、EPR測定を安定的に行うことができる。
特開2007−10331号公報
特許文献1の技術では、高周波の周波数をFM変調することで共振器の共振周波数とのずれを検知し、負帰還することで共振器の共振周波数を安定化している。また、整合用の調整信号をAM変調し、位相検波することで共振器の整合の度合いを検知し、負帰還することで共振器の整合を安定化している。
しかしながら、これらの変調方式を用いて反射波を抑制するために、変調周波数生成回路、位相検波回路及びフィードバック信号生成回路などからなるアナログ制御回路が用いられており、電子スピン共鳴装置の構成が複雑になってしまっている。電子スピン共鳴装置の構成が複雑になることで、EPR信号の信号(Signal)と雑音(Noise)との比であるSN比の劣化、及び電子スピン共鳴装置の高コスト化などの問題がある。
そこで、本発明は、上記問題に鑑みてなされたものであり、構成が簡易化された電子スピン共鳴装置を提供することを目的とする。
上記目的を達成するために、本発明の一形態に係る電子スピン共鳴装置は、整合同調回路と共振器とを有する共振部と、発振器を有し、前記発振器の発振周波数に基づく高周波を前記共振器に出力する高周波出力部と、前記共振器で反射された前記高周波の反射波の強度情報と位相情報とを有するI(In−phase)信号及びQ(Quadrature−phase)信号をそれぞれ前記共振部に負帰還する制御部と、を備え、前記整合同調回路は、前記I信号及び前記Q信号の一方に基づいて前記共振部のインピーダンスを調整し、前記I信号及び前記Q信号の他方に基づいて前記共振器の共振周波数を前記高周波の周波数に同調する。
これによれば、反射波の強度情報と位相情報とを有するIベースバンド成分(I信号と呼ぶ)及びQベースバンド成分(Q信号と呼ぶ)がそれぞれ直接共振器(共振部)の整合及び同調を行う整合同調回路に負帰還され、共振器(共振部)の整合と同調とを同時に行うことができる。つまり、従来から用いられているAM変調及びFM変調が用いられないため、アナログ制御回路が不要になり、電子スピン共鳴装置の構成を簡易化することができる。したがって、SN比が向上しフリーラジカルを高精度にイメージングすることができ、また、電子スピン共鳴装置を低コスト化することができる。
また、前記電子スピン共鳴装置は、さらに、前記反射波の位相を前記共振器に入射する高周波の位相に対して略45度又は略225度に調整する位相器を備えることにしてもよい。
これによれば、負帰還されるI信号及びQ信号の強度を略同じにすることができる。
また、前記電子スピン共鳴装置は、さらに、前記反射波をフィルタリングするバンドパスフィルタと、フィルタリングされた反射波をデジタル変換するADコンバータと、を備え、前記高周波出力部は、さらに、前記発振器の発振周波数をm(mは奇数)×n(nは整数)で分周する第1分周器と、前記発振器の発振周波数を4×nで分周する第2分周器と、を有し、前記発振器の発振周波数に基づく高周波として、前記第2分周器で分周された周波数の高周波を前記共振器に出力し、前記ADコンバータは、前記第1分周器で分周された周波数をサンプリング周波数として、前記フィルタリングされた反射波をデジタル変換することにしてもよい。
これによれば、信号をバンドパスフィルタにより所望の帯域に制限し、サンプリング周波数よりも高い周波数の情報を取り出すバンドパスサブサンプリングを用いることができ、DCオフセット等を除去することができる。また、汎用の周波数発生器の代わりに第1分周器及び第2分周器を用いることで、それぞれが同期している、ADコンバータ用のクロック信号と位相ノイズの低い高周波を生成することができる。
また、前記制御部は、FPGA(Field Programmable Gate Array)により構成されることにしてもよい。
これによれば、例えば、電子スピン共鳴装置に用いられるDDC(Digital Down Convertor)、位相器及びデジタルフィルタ等のDSP(Digtal Signal Processor)をFPGAにより実現できる。また、近年、FPGAが低コストで実現されているため、電子スピン共鳴装置をより低コスト化することができる。
本発明により、構成が簡易化された電子スピン共鳴装置を実現できる。
よって、本発明に係る電子スピン共鳴装置は、EPR技術の普及に役立ち、多くのライフサイエンス研究者に用いられることで、生命科学・医学領域でのレドックス研究に貢献できるものと期待される。
実施の形態に係る電子スピン共鳴装置の一例を示す回路構成図である。 実施の形態に係るFPGAの一例を示すブロック図である。 実施の形態に係る整合同調回路の一例を示す回路構成図である。 反射波の位相と共振器のカップリング状態との関係を示す図である。 実施の形態に係る整合同調回路により整合及び同調が行われたときの反射波の強度を示す図である。 実施の形態に係る電子スピン共鳴装置及び従来の電子スピン共鳴装置により取得されるEPRスペクトルを示す図である。
以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
図1は、実施の形態に係る電子スピン共鳴装置1の一例を示す回路構成図である。
電子スピン共鳴装置1は、CW−EPR法によりEPR測定をするための装置であり、制御部10、高周波出力部20、高周波取得部30、共振部40、磁気回路部60、サーキュレータ70、LNA(Low Noise Amplifier)80及びPC(Personal Computer)90を備える。
制御部10は、FPGA100、DAコンバータ(DAC)11a〜11h及びUSB−IOポート12を備える。
FPGA100は、書き込まれたプログラムにより任意の回路構成を形成するプログラマブルデバイスである。例えば、一般的な電子スピン共鳴装置に用いられるDDC、位相器若しくはデジタルフィルタ等のDSPがFPGA100により実現される。FPGA100の動作については、後述する図2で詳細に説明する。
DAC11a〜11hは、FPGA100から取得するデジタルデータをアナログデータに変換する電子回路である。DAC11aは、後述する増幅器61aに磁場変調信号を出力する。DAC11bは、後述する掃引部63aに磁場掃引をするための信号を出力する。DAC11cは、後述する共振器41(整合同調回路50)に整合制御(MC:Matching Control)信号を出力する。DAC11dは、共振器41(整合同調回路50)に同調制御(TC:Tuning Control)信号を出力する。DAC11e〜11gは、後述する勾配磁場制御部62aに勾配磁場を生成するための信号を出力する。DAC11hは、後述する発振器21に発振周波数に応じた電圧を供給する。
USB−IOポート12は、USBケーブル等が差し込まれる接続口であり、PC90等と制御部10とを接続する。
PC90は、制御部10に接続されるコンピュータであり、制御部10(FPGA100)とデータ転送を行う。PC90は、磁場掃引するためのデジタルデータ及び勾配磁場を生成するためのデジタルデータを生成し、これらのデータは、FPGA100が有するRAM(Random Access Memory)に記憶される。また、PC90は、制御部10(FPGA100)から受け取ったEPRデータを処理することでフリーラジカルのイメージングを行う。
高周波出力部20は、発振器21、第1分周器22、第2分周器23、減衰器24及び位相器25を有し、発振器21の発振周波数に基づく高周波を、サーキュレータ70を介して共振器41に出力する。また、高周波出力部20は、発振器21の発振周波数に基づくクロック信号を後述するADコンバータ(ADC)33に出力する。
発振器21は、例えば、供給される電圧に応じて発振周波数を制御するVCO(Voltage Controlled Oscillator)であり、FPGA100で生成された、目的の発振周波数に対応するデジタルデータがDAC11hでアナログ電圧に変換され発振器21が有する発振周波数制御ポートに出力される。
第1分周器22は、発振器21の発振周波数をm(mは奇数)×n(nは整数)で分周する分周器であり、クロック信号を、位相器25を介してADC33に出力する。
第2分周器23は、発振器21の発振周波数を4×nで分周する分周器であり、高周波を、減衰器24を介してサーキュレータ70に出力する。
EPRの共鳴周波数は、外部磁場に応じて決まる。本実施の形態では、後述するように外部磁場がおよそ27mTであることから、高周波の周波数としては、およそ750MHzが用いられる。例えば、n=1(第2分周器23の分周比が1/4)の場合に、高周波の周波数が750MHzとなるためには、発振器21の発振周波数として3GHzが用いられる。同様に、n=2(第2分周器23の分周比が1/8)の場合に、高周波の周波数が750MHzとなるためには、発振器21の発振周波数として6GHzが用いられる。本実施の形態では、第2分周器23として、発振器21の発振周波数を例えば4(n=1)で分周する分周器が用いられ、発振器21の発振周波数としては、3GHzが用いられる。
また、ADC33は、後述するように、500MspsのADコンバータであることから、ADC33を駆動させるためには、クロック信号の周波数は、500MHz以下となる必要がある。本実施の形態では、発振器21の発振周波数として3GHzが用いられるため、第1分周器22について、最小のm×nは7となる(クロック信号の周波数が428.6MHzとなる)。例えば、m×n=5の場合、クロック信号の周波数は600MHzとなり、ADC33は駆動できない。なお、発振器21の発振周波数が6GHz(n=2)の場合、第1分周器22について、最小のm×nは14となる。
例えば、発振周波数が750MHzの発振器が用いられる場合に、クロック信号の周波数を428.6MHzとするためには、4倍の逓倍器を用いて3GHzを作り、その後、第1分周器22を用いて7で分周する必要がある。この場合、逓倍器は、変換損失及び付加位相ノイズ等が大きいため、電子スピン共鳴装置の性能が劣化してしまうおそれがある。これに対して、電子スピン共鳴装置1は、逓倍器が用いられておらず、発振周波数が3GHzの発振器21、分周比が1/4の第2分周器23、及び、分周比が1/7の第1分周器22が用いられているため、電子スピン共鳴装置1の性能が劣化してしまうことを抑制できる。また、第2分周器23が用いられることで、高い周波数から分周されて生成された高周波の位相ノイズを低減できる。例えば、周波数が2倍変わることで位相ノイズは6dB低下する。本実施の形態では、第2分周器23の分周比が1/4のため、位相ノイズを12dB低下させることができる。
減衰器24は、例えば、デジタルステップアッテネータであり、第2分周器23から入力された高周波をFPGA100から供給される制御データに応じた強度まで減衰させ、サーキュレータ70に出力する。
位相器25は、ADC33に出力されるクロック信号の位相を調整する。クロック信号の位相は、例えば、360度以上変化させることができる。詳細は後述するが、位相器25は、クロック信号の位相を調整することで、検出される反射波の位相を共振器41に入射する高周波の位相に対して略45度又は略225度に調整する。
サーキュレータ70は、高周波出力部20から高周波を共振器41に供給し、共振器41で反射された反射波を、LNA80を介して高周波取得部30に伝送する。サーキュレータ70は、高周波出力部20に接続された入力ポートとLNA80に接続された出力ポートとのアイソレーション特性として、750MHz帯で少なくとも30dB以上のアイソレーション特性を有している。
共振部40は、後述する図3に示すように、共振器41、整合同調回路50を有する。図1では、共振器41及び整合同調回路50の図示を省略している。共振器41は、例えば1ターンコイルを有するループギャップ共振器であり、内部に小動物等の試料が置かれる。共振器41には、整合同調回路50と同軸ケーブルとを介してサーキュレータ70から高周波が供給される。内部に試料が置かれた共振器41から反射された反射波は、整合同調回路50と同軸ケーブルとを介してサーキュレータ70に戻される。
磁気回路部60は、 変調コイル61、変調コイル61に供給する電力を増幅する増幅器61a、勾配コイル62、勾配磁場制御部62a、掃引コイル63、及び、磁場掃引制御部63aを有する。なお、磁気回路部60は、例えば27mTの永久磁石(図示せず)を有する。
変調コイル61は、高感度のEPR測定を実現するために変調磁場を試料に印加するコイルであり、DAC11aからの磁場変調信号が増幅器61aに増幅されて供給される。変調コイル61は、例えば、サドルコイルであり、共振器41を囲うように配置される。
勾配コイル62は、勾配磁場を生成するためのコイルである。勾配磁場制御部62aは、DAC11e〜11gからの、x方向、y方向及びz方向に関して空間的に線形な磁場を生成するための信号に応じて、勾配コイル62に流れる電流を制御する。
掃引コイル63は、磁場掃引を行うためのコイルである。磁場掃引制御部63aは、DAC11bからの磁場掃引をするための信号に応じて、掃引コイル63に流れる電流を制御する。掃引コイル63は、例えばヘルムホルツコイルである。
高周波取得部30は、サーキュレータ70から出力され、LNA80で増幅された反射波を取得する。高周波取得部30は、LNA31、バンドパスフィルタ(BPF)32及びADC33を有する。
LNA31は、LNA80で増幅された反射波を再度増幅する。
BPF32は、LNA31で増幅された反射波をフィルタリングするフィルタであり、例えば、SAW(Surface Acoustic Wave)フィルタである。BPF32は、バンドパスサブサンプリングを行うために、反射波の周波数を例えば740MHz〜760MHzに制限する。
ADC33は、BPF32によってフィルタリングされた反射波をデジタル変換し、FPGA100にデジタルデータを出力する。ADC33は、例えば500Msps、12ビットの高速ADコンバータである。ADC33は、第1分周器22からのクロック信号に応じたサンプリング周波数で、反射波をサンプリングする。本実施の形態では、当該サンプリング周波数は、高周波の周波数の4/7倍となる。ADC33のサンプリング周波数としては、バンドパスサブサンプリングを使用したデジタルダウンコンバートに対応する周波数が選択される。
次に、FPGA100の動作の詳細について図2を用いて説明する。
図2は、実施の形態に係るFPGA100の一例を示すブロック図である。
FPGA100は、機能構成要素として、DDC部101、ダウンサンプリング部102、位相器103、FIR(Finite Impulse Response)ローパスフィルタ(LPF)104、加算減算器105、ダウンサンプリング部106、FIRBPF107、DDC部108、積分器110、減衰器111、NCO(Numerical Controlled Oscillator)112及び減衰器113を有する。本実施の形態では、FPGA100は、制御部10に設けられているが、FPGA100が有するこれらの機能構成要素は、例えば、制御部10と高周波取得部30とに分散配置されてもよい。具体的には、DDC部101及びダウンサンプリング部102が高周波取得部30に設けられたFPGAによって実現され、その他の機能構成要素がFPGA100によって実現されてもよい。
DDC部101は、ADC33から出力された反射波(デジタルデータ)の振幅情報と位相情報とを有するIベースバンド成分(I信号と呼ぶ)及びQベースバンド成分(Q信号と呼ぶ)を得るために、当該デジタルデータを0Hz近傍に周波数変換する処理であるデジタルダウンコンバート処理を行う。DDC部101は、当該デジタルデータに対して1回目の間引き処理を行うことで、当該デジタルデータを2つのデータに分ける。DDC部101は、1回目の間引き処理により得られる2つのデータのうちの一方のデータに対して2回目の間引き処理を行うことで、当該一方のデータをさらに2つのデータに分ける。そして、DDC部101は、2回目の間引き処理により得られる2つのデータのそれぞれを引き算することにより、例えばI信号を取得する。DDC部101は、1回目の間引き処理により得られる2つのデータのうちの他方のデータについても同じように処理を行うことにより、例えばQ信号を取得する。各間引き処理により、データのサンプリング周波数は、ADC33のサンプリング周波数の1/4となり、また引き算をすることにより、ADC33に起因するDCオフセットは相殺される。
反射波の位相は、例えば、位相器25を用いてADC33のクロック信号の位相を調整することにより、共振器41に入射する高周波の位相に対して略45度又は略225度に調整される。なお、後述するように、FPGA100上に実装された位相器103により、同様に反射波の位相が信号処理により調整されてもよい。この場合、高周波出力部20は、位相器25を有していなくてもよい。これらの方法により、I信号及びQ信号は、強度が略同じに調整される。
ダウンサンプリング部102は、0Hz近傍にダウンコンバートされたI信号及びQ信号のサンプリング周波数を積算と間引き処理することにより、サンプリング周波数を低下させる。例えば、ダウンサンプリング部102は、ADC33でのサンプリング周波数の1/64の周波数にしたI信号及びQ信号を出力する。
位相器103は、(I+jQ)×(cosθ+jsinθ)で表される処理を行う複素数の除算器である。ただし、jは虚数単位であり、θはシフトさせる位相量である。位相器103は、I信号及びQ信号の信号強度を略同じにする為に、反射波の位相を共振器41に入射する高周波の位相に対して略45度又は略225度に調整する。位相のシフト量は、PC90からFPGA100に制御信号が転送されることで制御することができる。また、I信号及びQ信号の絶対値の差を積分し、位相器103に負帰還することにより、反射波の位相を共振器41に入射する高周波の位相に対して略45度又は略225度に自動制御することができる。
FIRLPF104は、低域通過型のデジタルフィルタであり、変調コイル61による磁場変調の周波数の2倍以上大きい高周波成分のノイズ除去をダウンサンプリング106の処理の前に行うことで、ダウンサンプリング部106の処理に起因する高周波ノイズの折り返し成分を低減させる。
FIRLPF104から出力されたI信号及びQ信号は、試料(小動物等)の動き等によって発生する共振器41のインピーダンス変化に起因する不整合による反射波を抑制するために共振部40に負帰還されるが、FIRLPF104から出力されたI信号及びQ信号は、EPR信号の生成のためにも使われる。まずは、EPR信号の生成のための処理について説明する。
加算減算器105は、I信号とQ信号との減算及び加算を行う。EPR吸収により発生する反射波は、EPR分散により発生する反射波と位相が90度異なる。さらに、EPR分散による反射波は、温度や動物の動き等による共振器41の特性の変動に伴う不整合による反射波と同じ位相である。I信号とQ信号の強度がほぼ同じになるように、例えば位相器103を用いて、位相を調整しているため、I信号とQ信号との減算により、EPR吸収により発生する反射波が残り、EPR分散により発生する反射波が消える。一方、I信号とQ信号との加算により、EPR分散により発生する反射波が残り、EPR吸収により発生する反射波が消える。ただし、測定したEPRスペクトルを確認しながら位相を調整していくことで、最終的にはEPR吸収のみを確実に取り出すことができる。
後述する整合同調回路50によって共振器41からの反射波は抑制されるが、変調コイル61によって変調磁場が生成されるため、EPR信号(EPR吸収により発生する反射波及びEPR分散により発生する反射波)は高い周波数の信号となる。したがって、共振部40に負帰還される信号の帯域幅が変調磁場の周波数よりも小さい場合には、変調磁場の周波数のEPR信号は抑制されずに残る。例えば、変調磁場の周波数は105kHzであり、小動物等の動きの周波数に比べて高いため、小動物等の動きによる反射波は消え、高い周波数のEPR信号は残る。そして、EPR信号は、ダウンサンプリング部106、FIRBPF107、DDC部108によって、デジタルバンドパスサブサンプリングが行われ、復調される。
ダウンサンプリング部106は、加算減算器105から出力された、変調されたEPR信号をその変調周波数の4倍の周波数でサンプリングされたEPR信号となるように間引き処理を行う。例えば、ダウンサンプリング部106は、当該変調されたEPR信号が、ADC33でのサンプリング周波数の1/1024の周波数にサンプリングされたEPR信号になるように間引き処理を行う。
FIRBPF107は、ダウンサンプリング部106から出力された、変調されたEPR信号に適用され、変調周波数付近の信号を通過させる帯域通過型のデジタルフィルタである。FIRBPF107は、例えば、タップ数が301のデジタルフィルタであり、デジタルバンドパスサブサンプリングを行うために、帯域幅を5kHz程度に制限する。
DDC部108は、変調されたEPR信号を復調し、そのI信号及びQ信号を得るためのデジタルダウンコンバート処理を行う。また、DDC部108は、EPR信号に対して1回目の間引き処理を行うことで、当該EPR信号を2つのデータに分ける。DDC部108は、1回目の間引き処理により得られる2つのデータのうちの一方のデータに対して2回目の間引き処理を行うことで、当該一方のデータをさらに2つのデータに分ける。そして、DDC部108は、2回目の間引き処理により得られる2つのデータのそれぞれを引き算することにより、例えばI信号を取得する。DDC部108は、1回目の間引き処理により得られる2つのデータのうちの他方のデータについても同じように処理を行うことにより、例えばQ信号を取得する。例えば、DDC部108は、ADC33でのサンプリング周波数の1/4096のサンプリング周波数で0Hz近傍にダウンコンバートされたEPR信号を出力する。
なお、デジタルバンドパスサブサンプリング及び磁場変調のタイミングを同期させるために、NCO112は、ADC33のクロック信号を用いて磁場変調信号を生成し、減衰部113は、当該磁場変調信号の強度を調整する。 それらにより、変調コイル61から発生する変調磁場の位相と強度を調整することができる。
このようにして、EPR信号は復調され、EPRデータはPC90に転送される。
次に、試料(小動物等)の動き等によって発生する共振器41のインピーダンス変化に起因する不整合による反射波を抑制するための処理について説明する。
積分器110は、反射波を0とする制御目標に反射波を一致させるために必要となり、FIRLPF104から出力されたI信号及びQ信号を積分する。
減衰部111は、積分されたI信号及びQ信号の強度を調整する。
そして、I信号は、DAC11cによってアナログ変換される。アナログ変換されたI信号は、共振器41の整合制御のためのMC信号として使われる。また、Q信号は、DAC11dによってアナログ変換される。アナログ変換されたQ信号は、共振器41の同調制御のためのTC信号として使われる。MC信号及びTC信号の電圧レンジは、例えば、0Vから19Vである。MC信号及びTC信号は整合同調回路50に入力される。
図3は、実施の形態に係る整合同調回路50の一例を示す回路構成図である。図3に示されるように、MC信号はバラクタダイオード51及び52に逆電圧を誘起させる。つまり、MC信号の電圧値に応じて共振器41に並列に接続されたバラクタダイオード51及び52の容量値が変化し、共振部40のインピーダンスが変化する。具体的には、MC信号の電圧値に応じて、共振部40に接続された部品又は同軸ケーブル等とのインピーダンス整合が行われる。また、TC信号はバラクタダイオード53に逆電圧を誘起させる。つまり、TC信号の電圧値に応じてバラクタダイオード53の容量値が変化し、共振器41の共振周波数が変化する。具体的には、TC信号の電圧値に応じて、共振器41の共振周波数と高周波の周波数との同調が行われる。
なお、MC信号が入力されるポートに接続された抵抗54a及びコンデンサ55a、並びに、TC信号が入力されるポートに接続された抵抗54b及びコンデンサ55bによりそれぞれCRフィルタが形成される。各CRフィルタは、遮断周波数が例えば1.6kHzであり、MC信号及びTC信号を平滑し、制御の帯域を狭める。また、各CRフィルタは、磁場変調により配線に電圧ノイズが誘起された場合に、その電圧ノイズが各バラクタダイオードに印加されないように、当該電圧ノイズをフィルタする役割がある。また、インダクタ56a〜56cは、高周波を遮断し、直流を含む低周波を導通する。つまり、インダクタ56a〜56cは、ローパスフィルタとなる。
このように、整合同調回路50は、I信号及びQ信号の一方(本実施の形態ではI信号)に基づいて共振部40のインピーダンスを調整し(例えば50Ωにし)、I信号及びQ信号の他方(本実施の形態ではQ信号)に基づいて共振器41の共振周波数を高周波の周波数に同調する。これにより、共振器41は、クリティカルカップリング状態となっていき、共振器41からの反射波は抑制される。
なお、MC信号及びTC信号は、それぞれ独立して扱われるため、それぞれ同程度の強度であることが好ましい。MC信号及びTC信号のうちの一方の強度が大きいと他方の強度が小さくなるためである。これについて、図4を用いて説明する。
図4は、反射波の位相と共振器41のカップリング状態との関係を示す図である。
図4の(a)及び(c)に示されるように、共振器41がオーバーカップリング状態又はアンダーカップリング状態の場合、共振器41からの反射波が発生する。反射波の位相は、入射波の位相を基準にすると、カップリング状態に応じて0度または180度となる。ただし、一般的には、ADC33で検出される反射波の位相は、共振部40に接続されるケーブルの長さ又は共振部40に接続される部品等によって変化するため、位相器25又は位相器103を用いることで、反射波の位相を所望の位相θにすることができる。つまり、位相器25又は位相器103によって位相を補償することができる。I信号及びQ信号の強度は反射波の位相θに応じて変化し、図4の(a)に示されるように位相θが略45度、又は、図4の(c)に示されるように位相θが略225度のときに、I信号及びQ信号の強度は同程度となる。そして、整合同調回路50にI信号及びQ信号が負帰還されることで、共振器41は、図4の(b)に示されるようにクリティカルカップリング状態となり、共振器41からの反射波は例えばゼロになる。ここで、整合同調回路50により整合及び同調が行われたときの反射波について、図5を用いて説明する。
図5は、実施の形態に係る整合同調回路50により整合及び同調が行われたときの反射波の強度を示す図である。横軸は、共振器41に入射する高周波の周波数を示し、縦軸は、共振器41で反射された高周波の反射波の強度を示す。なお、MC信号及びTC信号の電圧値が第1条件のときに図5の実線で示される結果が得られ、第2条件のときに図5の破線で示される結果が得られた。第1条件及び第2条件は、それぞれ異なる条件であるが、共振器41がクリティカルカップリング状態となったときの条件である。図5に示されるように、第1条件及び第2条件のいずれも、反射波の強度が特定の周波数で小さくなっており、I信号及びQ信号に基づく整合同調回路50の整合及び同調が正しく行われていることがわかる。
以上説明したように、電子スピン共鳴装置1は、共振器41で反射された高周波の反射波に含まれる位相と強度情報から共振器41を制御する整合用及び同調用のI信号及びQ信号を生成し、それらの信号を共振部40(整合同調回路50)に別々に負帰還することで、FM変調及びAM変調等の変調方式を用いずに共振器41の自動整合及び自動同調を行うことができる。したがって、変調周波数生成回路、位相検波回路及びフィードバック信号生成回路などからなるアナログ制御回路が不要になり、電子スピン共鳴装置1の構成を簡易化することができる。
なお、低周波帯域(例えば小動物等の動きに基づく周波数帯域)の反射波は、I信号及びQ信号に基づく整合同調回路50の整合及び同調によって抑制されるが、変調磁場の周波数(例えば105kHz等)の反射波は抑制されずに残る。また、高周波、クロック信号及び変調磁場信号は発振器21から生成されているため、これらの信号は全て同期しており、EPR信号の復調が容易になる。
また、高周波出力部20は、発振周波数が高周波の周波数(例えば750MHz)の4×n(nは整数)倍の周波数(例えば3、6、12GHz)等の発振器21を有し、第2分周器23によって当該発振周波数を分周することで位相ノイズが低い高周波を生成できる。また、高周波出力部20は、第1分周器22によって当該発振周波数をm(mは奇数)×n(例えば7、14、28等)で分周した、ADC33用のクロック信号を容易に生成できる。
また、アナログ制御回路が不要になり、電子スピン共鳴装置1の構成が簡易化されることで、EPR信号のSN比を改善することができる。
図6は、実施の形態に係る電子スピン共鳴装置1及び従来の電子スピン共鳴装置により取得されるEPRスペクトルを示す図である。図6に示される実線は、電子スピン共鳴装置1により取得されるEPRスペクトルを示し、図6に示される破線は、従来の電子スピン共鳴装置により取得されるEPRスペクトルを示す。なお、これらのEPRスペクトルは、EPR吸収による反射波に基づいて測定された1次微分スペクトルである。図6に示されるように、従来の電子スピン共鳴装置と比較して、電子スピン共鳴装置1は、SN比が約1.8倍改善している。このように、電子スピン共鳴装置1の構成が簡易化されることで、EPR信号のSN比を改善することができる。
以上、本発明の電子スピン共鳴装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本発明の範囲内に含まれる。
例えば、上記実施の形態では、反射波がデジタルデータに変換されて処理されたが、アナログデータのまま処理されてもよい。
また、例えば、上記実施の形態では、整合同調回路50は、I信号に基づいて共振器41のインピーダンスを整合し、Q信号に基づいて共振器41の共振周波数を高周波の周波数に同調したが、これに限らない。例えば、整合同調回路50は、Q信号に基づいて共振器41のインピーダンスを整合し、I信号に基づいて共振器41の共振周波数を高周波の周波数に同調してもよい。
また、例えば、上記実施の形態では、整合同調回路50は、MC信号及びTC信号に応じて容量値が変化するバラクタダイオード51〜53を有していたが、これに限らない。例えば、整合同調回路50は、MC信号及びTC信号に応じて容量値が変化するその他の可変コンデンサを有していてもよい。
本発明に係る電子スピン共鳴装置は、小動物等の体内におけるフリーラジカルのイメージング、食品検査(酸化還元に伴いラジカルの生成)、被曝放射線量の評価(電離放射線による物質中における不対電子の生成)等の産業的若しくは医療的用途に利用できる。
1 電子スピン共鳴装置
10 制御部
11a〜11h DAC
12 USB−IOポート
20 高周波出力部
21 発振器
22 第1分周器
23 第2分周器
24 減衰器
25 位相器
30 高周波取得部
31、80 LNA
32 BPF
33 ADC
40 共振部
41 共振器
50 整合同調回路
51〜53 バラクタダイオード
54a、54b 抵抗
55a、55b コンデンサ
56a〜56c インダクタ
60 磁気回路部
61 変調コイル
61a 増幅器
62 勾配コイル
62a 勾配磁場制御部
63 掃引コイル
63a 磁場掃引制御部
70 サーキュレータ
90 PC
100 FPGA
101、108 DDC部
102、106 ダウンサンプリング部
103 位相器
104 FIRLPF
105 加算減算器
107 FIRBPF
110 積分器
111、113 減衰器
112 NCO

Claims (4)

  1. 整合同調回路と共振器とを有する共振部と、
    発振器を有し、前記発振器の発振周波数に基づく高周波を前記共振器に出力する高周波出力部と、
    前記共振器で反射された前記高周波の反射波の強度情報と位相情報とを有するI(In−phase)信号及びQ(Quadrature−phase)信号をそれぞれ前記共振部に負帰還する制御部と、を備え、
    前記整合同調回路は、前記I信号及び前記Q信号の一方に基づいて前記共振部のインピーダンスを調整し、前記I信号及び前記Q信号の他方に基づいて前記共振器の共振周波数を前記高周波の周波数に同調する、
    電子スピン共鳴装置。
  2. 前記電子スピン共鳴装置は、さらに、前記反射波の位相を前記共振器に入射する高周波の位相に対して略45度又は略225度に調整する位相器を備える、
    請求項1に記載の電子スピン共鳴装置。
  3. 前記電子スピン共鳴装置は、さらに、
    前記反射波をフィルタリングするバンドパスフィルタと、
    フィルタリングされた反射波をデジタル変換するADコンバータと、を備え、
    前記高周波出力部は、さらに、
    前記発振器の発振周波数をm(mは奇数)×n(nは整数)で分周する第1分周器と、
    前記発振器の発振周波数を4×nで分周する第2分周器と、を有し、
    前記発振器の発振周波数に基づく高周波として、前記第2分周器で分周された周波数の高周波信号を前記共振器に出力し、
    前記ADコンバータは、前記第1分周器で分周された周波数をサンプリング周波数として、前記フィルタリングされた反射波をデジタル変換する、
    請求項1又は2に記載の電子スピン共鳴装置。
  4. 前記制御部は、FPGA(Field Programmable Gate Array)により構成される、
    請求項1〜3のいずれか1項に記載の電子スピン共鳴装置。
JP2017050576A 2017-03-15 2017-03-15 電子スピン共鳴装置 Active JP6815637B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017050576A JP6815637B2 (ja) 2017-03-15 2017-03-15 電子スピン共鳴装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017050576A JP6815637B2 (ja) 2017-03-15 2017-03-15 電子スピン共鳴装置

Publications (2)

Publication Number Publication Date
JP2018155518A true JP2018155518A (ja) 2018-10-04
JP6815637B2 JP6815637B2 (ja) 2021-01-20

Family

ID=63715599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017050576A Active JP6815637B2 (ja) 2017-03-15 2017-03-15 電子スピン共鳴装置

Country Status (1)

Country Link
JP (1) JP6815637B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397988A (en) * 1991-08-02 1995-03-14 Bruker Analytische Messtechnik Gmbh Method and device for tuning a HF source, in particular for tuning a microwave source of an electron spin resonance spectrometer
JP2000065769A (ja) * 1998-08-19 2000-03-03 Japan Science & Technology Corp 共振器及び電子スピン共鳴測定装置
JP2007010331A (ja) * 2005-06-28 2007-01-18 Yamagata Univ 電子スピン共鳴測定装置の自動制御装置
JP2008003029A (ja) * 2006-06-26 2008-01-10 Jeol Ltd Esr装置
JP2008180510A (ja) * 2007-01-23 2008-08-07 Yamagata Univ 共振器及び電子スピン共鳴分光装置
JP2014138699A (ja) * 2012-12-18 2014-07-31 Toshiba Corp 磁気共鳴イメージング装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397988A (en) * 1991-08-02 1995-03-14 Bruker Analytische Messtechnik Gmbh Method and device for tuning a HF source, in particular for tuning a microwave source of an electron spin resonance spectrometer
JP2000065769A (ja) * 1998-08-19 2000-03-03 Japan Science & Technology Corp 共振器及び電子スピン共鳴測定装置
JP2007010331A (ja) * 2005-06-28 2007-01-18 Yamagata Univ 電子スピン共鳴測定装置の自動制御装置
JP2008003029A (ja) * 2006-06-26 2008-01-10 Jeol Ltd Esr装置
JP2008180510A (ja) * 2007-01-23 2008-08-07 Yamagata Univ 共振器及び電子スピン共鳴分光装置
JP2014138699A (ja) * 2012-12-18 2014-07-31 Toshiba Corp 磁気共鳴イメージング装置

Also Published As

Publication number Publication date
JP6815637B2 (ja) 2021-01-20

Similar Documents

Publication Publication Date Title
JP3018197B2 (ja) 磁気共鳴像形成システム
US7146146B2 (en) Systems and methods for coherent adaptive calibration in a receiver
US8244192B2 (en) System and method for wireless communication of magnetic resonance data
CN102053233B (zh) 局部线圈装置中的mr信号传输
NL2003775C2 (en) Magnetic resonance imaging apparatus.
US9529067B2 (en) Arrangement for the transmission of magnetic resonance signals
US11209468B2 (en) Apparatus and method for detecting object features
JP6389508B2 (ja) 無線周波数アンテナ装置、mrイメージングシステム、磁気共鳴信号提供方法及びソフトウェアパッケージ
WO2016031108A1 (ja) Fmcwレーダー
Sato-Akaba et al. Development of an L-band rapid scan EPR digital console
JP5465380B2 (ja) 高周波信号の位相ジッターを測定する装置
CN107290697B (zh) 磁共振射频线圈和磁共振系统
US6297637B1 (en) High-frequency receiver, particularly for a nuclear magnetic resonance apparatus
JP6815637B2 (ja) 電子スピン共鳴装置
JP2008039641A (ja) 核磁気共鳴装置
US9553601B2 (en) Conversion of analog signal into multiple time-domain data streams corresponding to different portions of frequency spectrum and recombination of those streams into single-time domain stream
US20200412390A1 (en) Radio frequency circuits and methods of processing radio frequency signals
JP2007003458A (ja) ディジタル直交ロックイン検出方法及び装置
EP2328269B1 (en) Harmonic rejection mixer based on oversampled local oscillators
JP2010190836A (ja) 周波数測定装置及び検査システム
US5999889A (en) Antenna performance monitor
US4873486A (en) Magnetic resonance spectrometer
JPH08105922A (ja) スペクトラムアナライザ
JP2006017486A (ja) 核磁気共鳴を用いるスペクトル分析方法および核磁気共鳴装置
CN109474288A (zh) 基于反相抵消机制提高接收机动态范围的电路结构

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201216

R150 Certificate of patent or registration of utility model

Ref document number: 6815637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250