JP2018155092A - Method for removing contaminant on inner face of pipeline - Google Patents

Method for removing contaminant on inner face of pipeline Download PDF

Info

Publication number
JP2018155092A
JP2018155092A JP2018047866A JP2018047866A JP2018155092A JP 2018155092 A JP2018155092 A JP 2018155092A JP 2018047866 A JP2018047866 A JP 2018047866A JP 2018047866 A JP2018047866 A JP 2018047866A JP 2018155092 A JP2018155092 A JP 2018155092A
Authority
JP
Japan
Prior art keywords
pig
pipe
pipeline
fluid
pigs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018047866A
Other languages
Japanese (ja)
Other versions
JP7193794B2 (en
Inventor
潤 霜村
Jun Shimomura
潤 霜村
道浦 吉貞
Yoshisada Michiura
吉貞 道浦
祥一 平田
Shoichi Hirata
祥一 平田
昌也 硲
Masaya Hazama
昌也 硲
藤本 光伸
Mitsunobu Fujimoto
光伸 藤本
山本 政和
Masakazu Yamamoto
政和 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SUIKI CHOSA KK
Kurimoto Ltd
Original Assignee
NIPPON SUIKI CHOSA KK
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SUIKI CHOSA KK, Kurimoto Ltd filed Critical NIPPON SUIKI CHOSA KK
Publication of JP2018155092A publication Critical patent/JP2018155092A/en
Application granted granted Critical
Publication of JP7193794B2 publication Critical patent/JP7193794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten a removing (cleaning) time of a contaminant in a pipeline and to reduce a use amount of a pressure-fed fluid.SOLUTION: A method for removing a contaminant on an inner face of a pipeline comprises: putting a pig 20 from a part (a launcher L) of a pipeline A into the pipeline; pressure-feeding a fluid from the part of the pipeline into the pipeline, to move the pig 20 in the length direction of the pipeline; peeling a contaminant on an inner face of the pipeline by friction of the pig with the inner face of the pipeline; and taking out the pig and the peeled contaminant together with the fluid out of another part (a catcher C) of the pipeline. Multiple pigs 20 can be used in a manner that before a preceding pig reaches the another part of the pipeline, a following pig is moved from the part of the pipeline successively, independently and freely (feeding pigs successively). At this time, the following pig is made harder than the preceding pig, and/or a diameter of the following pig is made larger than that of the preceding pig. By feeding the pigs successively, cleaning time can be shortened and a use amount of the pressure-fed fluid can be reduced.SELECTED DRAWING: Figure 1

Description

この発明は、上水道、農業用水、工業用水等の流体管路内面(内部)の夾雑物の除去方法及びその方法に使用する装置に関するものである。   The present invention relates to a method for removing impurities on the inner surface (inside) of a fluid pipe such as waterworks, agricultural water, and industrial water, and an apparatus used for the method.

この種の管路、例えば、上水道、農業用水、工業用水等の水管路は、長時間の共用年数を経過すると、その内面(内部)に、水質由来の析出物が付着したり、取水の際に混入した砂等の固形物が堆積したりして、水(流体)の通過断面積が減少したり、管路の機能診断を行う際の観察の支障となる場合がある。以下、その析出物や固形物等を「夾雑物」という。   This type of pipeline, for example, water pipelines such as waterworks, agricultural water, industrial water, etc., after a long period of common use, deposits from water quality adhere to the inner surface (inside) or when water is taken In some cases, solid matter such as sand accumulated in the water deposits, the cross-sectional area of water (fluid) passing through may decrease, or the observation of the function diagnosis of the pipeline may be hindered. Hereinafter, the precipitates and solids are referred to as “contaminants”.

このような夾雑物が堆積・付着した管路は水などの流体の流れが悪くなることにより出水不足となり、所要の流量を流すことができなくなるとともに、堆積及び付着した夾雑物からの濁質異物流出により水質悪化の原因となる。このため、従来から、その管路内の夾雑物を除去する方法が発案されている。例えば、管路の一部(投入口)からピグを管路内に投入し、その管路の一部から管路内に流体(水)を圧送して管路の長さ方向に前記ピグを走行させ、その走行に伴う、ピグと管路内面との摩擦によって管路内の夾雑物を剥離して押し進め、管路の他部(排出口)からピグ及び剥離した夾雑物を流体と共に取り出す管路内面の夾雑物を除去する方法がある(特許文献1、2参照)。
従来の管路内面の夾雑物除去方法は、径の異なる複数のピグを用意し、その径の小さいピグから少しずつ径の大きいピグを管路に順々に投入し、夾雑物を徐々に除去するようにしている。
Pipes where such foreign substances are deposited and adhered become deficient due to poor flow of water and other fluids, making it impossible to flow the required flow rate, and turbid foreign substances from accumulated foreign substances. Runoff causes water quality deterioration. For this reason, conventionally, a method for removing impurities in the pipeline has been proposed. For example, a pig is introduced into a pipe line from a part (input port) of a pipe line, and a fluid (water) is pumped into the pipe line from a part of the pipe line so that the pig is placed in the length direction of the pipe line. A pipe that travels, removes the impurities in the pipe line by the friction between the pig and the inner surface of the pipe, and pushes it forward, and takes out the pig and the separated dirt from the other part (discharge port) together with the fluid. There is a method of removing impurities on the road inner surface (see Patent Documents 1 and 2).
The conventional method for removing contaminants on the inner surface of a pipeline is to prepare a plurality of pigs with different diameters, and gradually introduce the smaller diameter pigs into the pipeline in order from the smaller ones to gradually remove the contaminants. Like to do.

特開2002−200465号公報JP 2002-200465 A 特開2009−189910号公報JP 2009-189910 A 特開2009−22918号公報JP 2009-22918 A 特開2016−107247号公報JP, 2006-107247, A 特許第6232650号公報Japanese Patent No. 6232650

上記従来において、各ピグの管路への投入は、その投入されたピグが管路の他部から取り出された(回収した)後、つぎのピグを投入している。これは、ピグが夾雑物の除去を完了したか否かを確認するためである。このとき、所要量の圧送流体を送り込んでもピグが管路他部に至らない場合(ピグが管路内に詰まった場合)、後押しのピグを投入してそのピグによって先行きのピグを押し出すようにもしている(特許文献1段落0021等参照)。
この一のピグの管路一部から他部に至る毎に(一通過毎に)、流体の圧送を繰り返すのは、流体の無駄であるとともに、ピグの挿入毎に、そのための装置を設置し直すのに多くの時間がかかり、夾雑物を除去する管路の休止時間(断水時間)も長くなるため、その管路を敷設した地域の社会生活に大きな影響が出ている。
In the prior art, each pig is introduced into the pipeline after the inserted pig is taken out (recovered) from the other part of the pipeline. This is to confirm whether the pig has completed the removal of the contaminants. At this time, if the pig does not reach the other part of the pipeline even if the required amount of pumping fluid is fed (if the pig is clogged in the pipeline), insert the boosting pig and push the forward pig out with that pig. (See Patent Document 1, paragraph 0021).
Repeating the pumping of the fluid every time it passes from one part of the pipe of one pig to another part (every passage) is a waste of fluid, and each time a pig is inserted, a device for that purpose is installed. It takes a lot of time to fix the problem, and the pause time (water shut-off time) of the pipeline that removes the contaminants becomes longer, which greatly affects the social life of the area where the pipeline is laid.

この発明は、以上の実状の下、夾雑物の除去時間を短くするとともに圧送流体の使用量を少なくすることを課題とする。   This invention makes it a subject to reduce the usage-amount of a pumping fluid while shortening the removal time of a contaminant under the above actual condition.

上記課題を達成するため、この発明は、先行きのピグが上記管路の他部に至る前に後行きのピグを投入して連続的に走行させることとしたのである。すなわち、この夾雑物除去方法を「連球法」と称し、この連球法は、通常の洗浄方法が1回の洗浄に1つのピグを投入して回収し、その投入・回収作用におけるピグの直径等を変えて複数回繰り返すのに対し、管路内に所定の間隔(距離)を空けて複数のボールを順々に投入してそれぞれ独立し自由に走行させて夾雑物を除去することとしたのである。
先行きのピグが管路内にある時に、後行きのピグが管路に投入されて流体によって押されれば、前後のピグ間の流体を介して先行きのピグが押されて夾雑物の除去を行いながら進行(走行)して取り出し部(他部)に至る。このとき、特許文献3図1に示されるように、清掃具(ピグ)を連結せず、各ピグを独立して自由に管路内を走行させるので、各ピグは他のピグの動向に関係なく夾雑物の除去作用を行い、効率の良い除去作用が行われる。また、何らかの事情によって、先行きのピグが管路内に留まっていても、後行きのピグに押されて一緒に取り出し部に至る。
このように、ピグを連続的に投入すれば(連球法によれば)、その各ピグで夾雑物の除去を行うことができ、各ピグの一通過毎に除去作用を行う場合に比べれば、作業時間も短くなるとともに、ピグ走行用流体量も少なくなる。また、ピグの挿入は同一作業の繰り返しのため、その同一作業を連続して繰り返せば、そのピグの挿入装置の設置時間も短くなり、さらに洗管中の断水時間の大幅な短縮もできる。
In order to achieve the above object, according to the present invention, the forward pig is inserted and continuously run before the forward pig reaches the other part of the pipe. In other words, this contaminant removal method is referred to as the “continuous ball method”. In this continuous ball method, the normal cleaning method is to collect and collect one pig in one cleaning, and the pigs in the charging / recovering action are recovered. While repeating multiple times with different diameters, etc., throwing a plurality of balls one after the other with a predetermined interval (distance) in the pipeline and removing them by running independently independently It was.
When the forward pig is in the pipeline and the backward pig is put into the pipeline and pushed by the fluid, the forward pig is pushed through the fluid between the previous and next pigs to remove contaminants. It proceeds (runs) while performing and reaches the takeout part (other part). At this time, as shown in FIG. 1 of Patent Document 3, since each pig is allowed to travel freely in the pipeline without connecting the cleaning tool (pig), each pig is related to the trend of other pigs. Eliminates impurities and performs efficient removal. Moreover, even if the future pig remains in the pipeline due to some reason, it is pushed by the backward pig and reaches the take-out section together.
In this way, if the pigs are continuously inserted (according to the continuous ball method), impurities can be removed by each pig, compared with the case where the removal action is performed for each passage of each pig. The working time is shortened, and the amount of pig running fluid is also reduced. Moreover, since the insertion of a pig is a repetition of the same operation, if the same operation is repeated continuously, the installation time of the insertion device for the pig can be shortened, and the water shutoff time during washing can be greatly reduced.

この発明の具体的な構成としては、管路の一部からピグを管路内に投入し、その管路の一部から管路内に流体を圧送して管路の長さ方向にピグを走行させ、そのピグの走行に伴い、ピグと管路内面との摩擦によって管路内の夾雑物を剥離して押し進め、管路の他部から前記ピグ及び剥離した夾雑物を取り出す管路内面の夾雑物除去方法であって、前記複数のピグを、先行きのピグが管路の他部に至る前に前記一部から後行きのピグを連続的に走行させるとともに、先行きのピグ及び後行きのピグを独立して自由に走行させる構成を採用することができる。
このとき、「連球法」には、管路内に、2つ以上のピグがあれば、その態様が含まれ、当然に、全てのピグが管路内に位置する態様も含まれる。但し、ピグが管路内に詰まって、後押し用のピグを投入する態様は含まれない。連球法によるピグの管路への投入方法は、一のピグを管路に投入してその管路途中で停止させ、つぎのピグを投入する動作を繰り返したり、複数の投入機で連続して投入したりすることができる(図12参照)。
上記ピグの管路内の走行は、管路の一部から管路内に流体を圧送する手段に代えて、洗浄区間を独立させずに、上流から下流に流体の流れがある箇所では、その流れにより、ピグを走行させることができる(管路内に元々存在する流体によってピグを走行させることができる)。
As a specific configuration of the present invention, a pig is introduced into a pipe line from a part of the pipe line, and a fluid is pumped into the pipe line from a part of the pipe line so that the pig is inserted in the length direction of the pipe line. As the pig travels, the contaminants in the pipeline are peeled off and pushed forward by friction between the pig and the pipeline inner surface, and the pig and the separated contaminants are taken out from the other part of the pipeline. A method for removing contaminants, wherein the plurality of pigs are continuously run from the part to the forward pig before the forward pig reaches the other part of the pipeline, and the forward pig and the forward pig It is possible to adopt a configuration in which the pig is allowed to travel independently and freely.
At this time, the “joint ball method” includes a mode in which there are two or more pigs in the pipe, and naturally includes a mode in which all the pigs are located in the pipe. However, a mode in which the pig is clogged in the pipe line and the pig for boosting is introduced is not included. The method of throwing a pig into the pipe line by the continuous ball method is to throw one pig into the pipe line, stop it halfway, and repeat the action of throwing the next pig, or continuously with multiple throwers. (See FIG. 12).
Traveling in the pipe line of the pig is not performed by a means for pumping fluid from a part of the pipe line into the pipe line. The flow allows the pig to run (the pig can be run by the fluid originally present in the conduit).

この構成において、上記ピグの硬度を、先行きのピグより後行きのピグが硬いものとしたり、先行きのピグの径より後行きのピグの径を大きくしたり、その両者を採用したりすることができる。一方、その逆に、上記ピグの硬度を、先行きのピグより後行きのピグが柔らかいものとしたり、先行きのピグの径より後行きのピグの径を小さくしたり、その両者を採用したりすることもできる。この硬度や径、及びそれらの異なるピグの投入順序は、管路の状態等に基づく洗浄効果の向上や時間短縮等を図れるように、実験や実操業に基づき適宜に設定する。   In this configuration, the hardness of the above-mentioned pig may be harder in the backward pig than the forward pig, or the diameter of the backward pig may be larger than the diameter of the forward pig, or both may be adopted. it can. On the other hand, the hardness of the above-mentioned pig is made softer in the rear pig than in the future pig, the diameter of the rear pig is made smaller than the diameter of the forward pig, or both are adopted. You can also. The hardness and diameter, and the order of inserting the different pigs are appropriately set based on experiments and actual operations so that the cleaning effect can be improved and the time can be shortened based on the condition of the pipe line.

通常、ピグの硬度が高くなれば、同一径の場合、剥離効果が高まる。透水性が高ければ、ピグを通り過ぎた流水によってピグ進行方向前方の夾雑物をほぐして移動し易くなる効果がある。このため、最初は、透水性の高いピグを投入し、徐々に、透水性が低くても弾性定数の高いピグを投入することが好ましい。
いずれにしても、先行きのピグと後行きのピグは、密度、透水率、弾性定数(弾性係数)を異ならせることが好ましい。また、管路内径とピグ径の比は、1:1.0〜1.5が好ましい。さらに、管路の材質に応じてピグの硬さも変更することが好ましい。
このように、投入するピグの硬度を徐々に高く(硬く)したり、径を徐々に大きくしたり等することによって、夾雑物の円滑な除去を行うことができる。ここでいう硬度はアスカーゴム硬度計C型で計った場合の硬度を言う。その硬度は弾性定数に影響する。
以上のピグの密度、透水率、弾性定数を異ならせることは、各ピグが独立して自由に走行するため、その異ならせたことに基づく機能を有効に発揮する。
Usually, if the hardness of a pig becomes high, the peeling effect will increase in the case of the same diameter. If the water permeability is high, there is an effect that it is easy to move by loosening the impurities in front of the pig traveling direction by running water passing through the pig. For this reason, it is preferable to first add a pig with high water permeability and gradually add a pig with a high elastic constant even if the water permeability is low.
In any case, it is preferable that the forward pig and the backward pig have different densities, water permeability, and elastic constants (elastic coefficients). The ratio of the pipe inner diameter and the pig diameter is preferably 1: 1.0 to 1.5. Furthermore, it is preferable to change the hardness of the pig according to the material of the pipe line.
Thus, the impurities can be smoothly removed by gradually increasing the hardness of the pig to be added (hardening), gradually increasing the diameter, or the like. The hardness here refers to the hardness when measured with an Asker rubber hardness meter C type. Its hardness affects the elastic constant.
Differentiating the density, water permeability, and elastic constant of the above pigs effectively exhibits a function based on the different pigs because each pig runs independently and freely.

なお、管路内のピグの走行は、そのピグの投入部からの流体流入によって行えば、例えば、複数の投入機と、流体圧送用ポンプとを有し、各投入機は、切替弁を介して管路及びポンプにそれぞれ接続されており、切替弁によって管路及びポンプに各投入機を個別かつ選択的に接続する構成を採用すれば、装置全体の小型化が図れるが、本願の優先日から出願日の間に出願された特許文献5のように、導管からの流体流入によってその管路内のピグの走行を行うようにすることもできる。   In addition, if the traveling of the pig in the pipe line is performed by fluid inflow from the pig feeding section, for example, it has a plurality of feeding machines and a fluid pressure pump, and each feeding machine is connected via a switching valve. If the configuration is adopted in which each input device is individually and selectively connected to the pipeline and the pump by the switching valve, the entire device can be reduced in size. As described in Japanese Patent Application Laid-Open No. 2004-228620, the pig can be run in the pipeline by inflow of fluid from the conduit.

この発明は、以上のように、先行きのピグが管路の他部(取り出し部)に至る前に後行きのピグを投入して連続的に走行させるとともに、先行きのピグ及び後行きのピグを独立して自由に走行させることとしたので、夾雑物の除去作業時間の短縮を図り得るとともに、圧送流体の量を少なくできるため、作業効率の向上を図るとともに作業コストの低減を図ることができる。   As described above, according to the present invention, the forward pig and the forward pig are continuously run by inserting the backward pig before the forward pig reaches the other part (extraction part) of the pipeline. Since it is allowed to run independently and independently, it is possible to shorten the time for removing contaminants and to reduce the amount of pumping fluid, thereby improving work efficiency and reducing work costs. .

この発明に係る管路内の夾雑物除去方法を実施するための実験管路図であり、(a)は概略図、(b)は分岐部の拡大図BRIEF DESCRIPTION OF THE DRAWINGS It is an experimental pipeline figure for implementing the contaminant removal method in the pipeline which concerns on this invention, (a) is a schematic diagram, (b) is an enlarged view of a branch part. 同夾雑物除去方法の一実施形態に使用するピグ(PCボール)の各例図Examples of pigs (PC balls) used in one embodiment of the same contaminant removal method ピグの透水率の測定説明図Illustration of measurement of water permeability of pig ピグの弾性定数の測定説明図Illustration of measurement of pig's elastic constant 連球洗浄模式図を示し、(a)は管路内に夾雑物が無い場合、(b)は同夾雑物を介在した場合A schematic diagram of continuous ball cleaning is shown, (a) when there is no contaminant in the pipeline, (b) when the contaminant is interposed 同夾雑物除去方法の一実施形態の管路の断面図Sectional drawing of the pipe line of one Embodiment of the same foreign material removal method ピグの摩擦力の測定説明図Illustration of measuring the frictional force of a pig ピグの密度測定結果説明図Pig density measurement result explanatory diagram ピグの弾性定数測定結果説明図Pig elastic constant measurement result explanatory diagram ピグの他の透水試験説明図Illustration of other permeability test of pig ピグの透水率測定結果説明図Pigment permeability measurement result explanatory diagram 他の実施形態の要部管路図Main part pipeline diagram of other embodiments

図1に示す実験管路を製作し、この管路Aにおいて、管路内の夾雑物の除去作用を実験した。その管路はパイプ材料からなり、そのパイプ1は、内部が観察できるよう透明の塩化ビニル製(呼び径:φ100、外径:114mm、内径:104mm、厚さ:5mm)を用い、ランチャー(投入機)L及びキャッチャー(受け取り機)Cの他、約20m間隔で分岐部(分岐1〜4)を設置した。
ランチャーLとキャッチャーCには圧力計(アナログ4a及びデジタル4b)を設置し、圧力の監視及びデータ採取を行うとともに、キャッチャーCに流量計5を設置して、これを基に管内流速の設定を行った。管路長等は図示及び下記表1のとおりである。図中、6はポンプ、7は水槽である。
The experimental pipeline shown in FIG. 1 was manufactured, and in this pipeline A, the effect of removing impurities in the pipeline was tested. The pipe is made of pipe material, and the pipe 1 is made of transparent vinyl chloride (nominal diameter: φ100, outer diameter: 114 mm, inner diameter: 104 mm, thickness: 5 mm) so that the inside can be observed, and a launcher (input) Machine) In addition to L and catcher (receiver) C, branch sections (branches 1 to 4) were installed at intervals of about 20 m.
A pressure gauge (analog 4a and digital 4b) is installed in the launcher L and the catcher C to monitor the pressure and collect data, and a flow meter 5 is installed in the catcher C to set the flow velocity in the pipe. went. The pipe length and the like are as shown in Table 1 below. In the figure, 6 is a pump and 7 is a water tank.

Figure 2018155092
Figure 2018155092

ランチャーL及びキャッチャーCは、特許文献4などに開示されている従来周知のものであって、後述のピグ20を管路内に投入し得るとともに、管路から取り出し得るものである。
分岐部(分岐1〜4)10は、図1(b)に示すように、T字管11をパイプ1の間に介設し、その一口に単管12を接続し、その単管12の上端をフランジや蓋によって閉塞したものであり、その蓋を外すことによってピグ20を投入したり、取り出したり、洗浄距離を変えたり、万一、管路が閉塞した場合のピグ20等の排出口としたりした。
The launcher L and the catcher C are conventionally well-known ones disclosed in Patent Document 4 and the like, and a pig 20 described later can be put into the pipe and can be taken out from the pipe.
As shown in FIG. 1B, the branch portion (branch 1 to 4) 10 has a T-shaped tube 11 interposed between the pipes 1, and a single tube 12 is connected to the mouth of the single tube 12. The upper end is closed by a flange or lid, and by removing the lid, the pig 20 is inserted, removed, the cleaning distance is changed, or the discharge port of the pig 20 in the event that the pipe line is blocked And so on.

ピグ20は、図2に示す、軟質ウレタン樹脂の発泡体からなる球状をしたものであって、表2に示す、ソフトタイプ20Y(図2(a)、表1のNo1〜5)、ハードタイプ20B(同図(b)、同表のNo6〜10)、中空タイプ20C(同図(c)、同表のNo11〜12)、成型品タイプ20W(同図(d)、同表のNo13)を製作した。以下、これらのピグ20Y、20B、20C、20Wの総称符号を「20」とする。   The pig 20 has a spherical shape made of a soft urethane resin foam as shown in FIG. 2, and is shown in Table 2 as soft type 20Y (FIG. 2 (a), No. 1-5 in Table 1), hard type. 20B (the figure (b), No. 6-10 of the table), hollow type 20C (the figure (c), No 11-12 of the table), molded product type 20W (the figure (d), No 13 of the table) Was made. Hereinafter, the generic symbol of these pigs 20Y, 20B, 20C, and 20W is “20”.

ソフトタイプ20Y、ハードタイプ20Bは無垢(中実)の連続気泡、中空タイプ20Cは、ハードタイプ20Bを二つ割りにしてその中を切り取って(中空21を形成して)接合したものであり、成型品タイプ20Wは金型成形であり、他の20Y、20B(C)は、発泡後、切削整形して球状とした。表2中の「呼び径」の列のY、B、C、Wにつづく数字は「呼び径」、例えば、「Y−110」は「ソフトタイプ20Yで呼び径:110」を示す。
この実験では、ソフトタイプ20Yを黄色に着色し、成型品タイプ20Wを白色に着色し、ハードタイプ20B、中空タイプ20Cを黒色に着色した。また、ソフトタイプ20Yのアスカーゴム硬度計C型で計った硬度は2〜5、ハードタイプ20Bの同硬度は10〜20であった。
The soft type 20Y and the hard type 20B are solid (solid) open cells, and the hollow type 20C is obtained by dividing the hard type 20B in two and cutting it out (forming the hollow 21) to form a molded product. Type 20W was mold forming, and the other 20Y and 20B (C) were cut and shaped into a spherical shape after foaming. The numbers following Y, B, C, and W in the “Nominal Diameter” column in Table 2 indicate “Nominal Diameter”, for example, “Y-110” indicates “Soft Type 20Y and Nominal Diameter: 110”.
In this experiment, the soft type 20Y was colored yellow, the molded product type 20W was colored white, and the hard type 20B and the hollow type 20C were colored black. Moreover, the hardness measured with the Asker rubber hardness tester C type of the soft type 20Y was 2 to 5, and the hardness of the hard type 20B was 10 to 20.

Figure 2018155092
Figure 2018155092

また、ソフトタイプY−110、ハードタイプB−110について、常温体積及び乾燥質量から密度を求めた結果を表3に示す。その数値は、各々2回の測定の平均値を示し、常温とは実験場所の空気調和をしていない時の温度を言い、乾燥質量とは、同じく、その実験場所の空気調和をしていない大気中における実験前の質量を言う。この実験時の温度:15℃、湿度:60%であった。
この結果から、ソフトタイプY−110は、見かけ密度:0.05(g/cm)程度、ハードタイプB−110は、同0.08(g/cm)程度である。
Table 3 shows the results of obtaining the density from the normal temperature volume and the dry mass for the soft type Y-110 and the hard type B-110. The numerical value shows the average value of two measurements each, and the normal temperature means the temperature when the experimental place is not air conditioned, and the dry mass is also not the air conditioned of the experimental place. The mass before the experiment in the atmosphere. In this experiment, the temperature was 15 ° C. and the humidity was 60%.
From this result, the soft type Y-110 has an apparent density of about 0.05 (g / cm 3 ), and the hard type B-110 has a level of about 0.08 (g / cm 3 ).

Figure 2018155092
Figure 2018155092

さらに、ソフトタイプY−110、ハードタイプB−110について、透水率を求め、その結果を表4に示す。その透水率は、図3に示すように、φ104透明VP(塩化ビニル)管(パイプ1)にピグ20を両者の間から水wが通過しないように嵌め込み、矢印のようにピグ20を透過した水の透水率(cm/s)=透過水体積(cm)/(通過断面積(cm)×通過時間(s))で求めた。 Furthermore, water permeability was calculated | required about soft type Y-110 and hard type B-110, and the result is shown in Table 4. As shown in FIG. 3, the water permeability is fitted into a φ104 transparent VP (vinyl chloride) pipe (pipe 1) so that the water w does not pass through between the two, and the pig 20 passes through as indicated by an arrow. Water permeability (cm / s) = permeated water volume (cm 3 ) / (passage cross-sectional area (cm 2 ) × passage time (s)).

Figure 2018155092
Figure 2018155092

また、ソフトタイプY−110、ハードタイプB−110について、弾性定数を求め、その結果を表5に示す。その弾性定数は、図4に示すように、上皿秤Hにピグ20を載せ、板を介して荷重Nをかけて、自然状態からの直径が、70%(w70)及び50%(w50)に圧縮するために必要な荷重(N)を求めた。このとき、自然状態からの圧縮直径dが70%の場合の荷重を「w70」、同50%の場合の荷重を70%時点からの増加分「w50−w70」とし、その弾性定数(N/cm)は、=荷重(N)/区間変位(cm)で求めた。その区間変位は、各々、圧縮率30%の場合は自然直径〜70%圧縮直径間、圧縮率50%の場合は自然直径〜50%圧縮直径間の距離とした。表5中の「圧縮直径d」の左列は「自然直径に対する圧縮直径の割合%」、右列は「圧縮直径」をそれぞれ示す。 Further, the elastic constants were obtained for the soft type Y-110 and the hard type B-110, and the results are shown in Table 5. As shown in FIG. 4, the elastic constant is obtained by placing a pig 20 on an upper pan balance H, applying a load N through a plate, and the diameters from the natural state are 70% (w 70 ) and 50% (w 50 ), the load (N) necessary for compression was determined. At this time, the load when the compression diameter d from the natural state is 70% is “w 70 ”, the load when the compression diameter d is 50% is the increment “w 50 −w 70 ” from the 70% time point, and its elastic constant (N / cm) was obtained by = load (N) / section displacement (cm). The section displacement was the distance between the natural diameter and 70% compression diameter when the compression rate was 30%, and the distance between the natural diameter and 50% compression diameter when the compression rate was 50%. In Table 5, the left column of “compression diameter d” indicates “ratio of compression diameter to natural diameter%”, and the right column indicates “compression diameter”.

Figure 2018155092
Figure 2018155092

この各ピグ20を、上記管路Aに投入した際の「対管内径比」、ランチャーLへの「押込み圧力(水圧)」、管路A内にピグ20を移動させるための「始動圧力」、「定常圧力(始動から排出までの水圧)」及び「排出圧力」を表6に示す。   “Pipe inner diameter ratio” when each of the pigs 20 is put into the pipe A, “pushing pressure (water pressure)” into the launcher L, and “starting pressure” for moving the pig 20 into the pipe A Table 6 shows “steady pressure (water pressure from start to discharge)” and “discharge pressure”.

Figure 2018155092
Figure 2018155092

この実験結果によると、押込み圧力は、ピグ(PCボール)20が中実の場合、硬さの差による違いはほとんどないが、直径の影響が顕著であり(No1、2と3〜5)、管内径との比が1.5を超えるφ150辺りから急激に上昇する(No3〜5、No8〜10)。一方の中空タイプ(No11、12)は、φ150であってもさほど押込み圧力が上昇することはない。
始動圧力及び定常圧力については、始動圧力がハードタイプのφ150以上(No8〜10)で高くなる傾向がある以外はほぼ0.01〜0.03MPaと一定である。
排出圧力は、一連の圧力変動の中で最も高くなる傾向があり、0.3MPa以上となると、水撃圧による管路の振動、軋みが感じられた。
According to this experimental result, when the pig (PC ball) 20 is solid, there is almost no difference due to the difference in hardness, but the influence of the diameter is remarkable (Nos. 1, 2 and 3 to 5), The ratio rises rapidly from around φ150 where the ratio to the inner diameter of the tube exceeds 1.5 (No 3 to 5, No 8 to 10). On the other hand, the hollow pressure (No. 11, 12) does not increase so much even if it is φ150.
The starting pressure and the steady pressure are substantially constant at 0.01 to 0.03 MPa except that the starting pressure tends to increase when the hard type is φ150 or more (No. 8 to 10).
The discharge pressure tended to be the highest in a series of pressure fluctuations. When the discharge pressure was 0.3 MPa or more, vibration and stagnation of the pipe line due to water hammer pressure were felt.

つぎに、上記管路Aにおいて、無負荷(ピグ20の入っていない)状態で、同一ポンプ圧力:0.3MPa、吐出量:19.8m/h(流速:0.7m/s)の条件下の、各ピグ20の各区間(スタート位置S(ランチャーL)→分岐1等)の移動時間及び移動速度を表7に示す。なお、ポンプの吐出圧及び流量は、上水道における洗浄作業の実績値から決定した。 Next, in the above-mentioned pipeline A, in the no-load state (without the pig 20), the same pump pressure: 0.3 MPa, discharge rate: 19.8 m 3 / h (flow rate: 0.7 m / s) Table 7 shows the movement time and movement speed of each section (start position S (launcher L) → branch 1, etc.) of each pig 20 below. In addition, the discharge pressure and flow rate of the pump were determined from the actual values of cleaning work in the waterworks.

Figure 2018155092
Figure 2018155092

この実験結果によると、同一圧力、同一流量の設定の下では、ソフトタイプ20Y(No1〜5)とハードタイプ20B(No6〜10)の速度差が顕著であり、同一径を比較した場合、ハードタイプ20Bの速度はソフトタイプ20Yの80〜85%程度となる。
中空タイプ20C(No11、12)については、φ120(No11)ではソフトタイプ20Yとハードタイプ20Bの中間的値、φ150(No12)はハードタイプ20Bと同等となっている。
According to this experimental result, under the same pressure and the same flow rate, the speed difference between the soft type 20Y (No. 1 to 5) and the hard type 20B (No. 6 to 10) is significant. The speed of the type 20B is about 80 to 85% of the soft type 20Y.
For the hollow type 20C (No11, 12), φ120 (No11) has an intermediate value between the soft type 20Y and the hard type 20B, and φ150 (No12) is equivalent to the hard type 20B.

さらに、ポンプ6の作動を上記表7の実験と同様に設定し、先行きのピグ20が管路Aの他部(キャッチャーC)に至る前に後行きのピグ20を連続的に走行させるとともに、先行きピグ20及び後行きのピグ20を独立して自由に同時に走行させる実験(「連球法」実験)の結果を表8及び図5(a)に示す。
この表の各実験No1〜6において、ピグ20を投入した順番、種類とともに、発射(投入)時及び到達時のピグ20の位置(ランチャーLからの距離)、相互の間隔を示し、図5(a)にそれらの模式図を示す。その図5(a)中、灰色丸のピグがソフトタイプ20Y、黒色丸のピグがハードタイプ20Bである。下記図5(b)も同様である。
このとき、ピグ20は、ランチャーLから1投目を投入後、ポンプ6を作動させて所定距離を先送りして停止させ、以後、同様の手順で2投目以降を投入した。予定数のピグ20が投入し終わったら(管路A内に全てのピグ20が位置する状態、好ましくは、分岐1まで、又は分岐2までに位置する状態で)、ポンプ6を再作動させて各ピグ20を一斉に移動させ、1投目がキャッチャーC直下のエルボに到着した時点でピグ20を停止させた(水の圧入を停止させた状態)。測定項目は、投入直後のピグ20の位置、2投目以降との間隔、及び1投目のピグ20がキャッチャーC直下のエルボに到達した時点での移動距離、2投目以降との間隔、並びに移動時間である。
Further, the operation of the pump 6 is set in the same manner as in the experiment of Table 7 above, and the forward pig 20 is continuously run before the forward pig 20 reaches the other part (catcher C) of the pipe A, Table 8 and FIG. 5 (a) show the results of an experiment in which the forward pig 20 and the backward pig 20 run independently and simultaneously at the same time ("ball game" experiment).
In each experiment No. 1 to 6 in this table, the order and type of the pigs 20 introduced, the positions of the pigs 20 at the time of launching (injection) and arrival (distance from the launcher L), and the distance between them are shown in FIG. A schematic diagram thereof is shown in a). In FIG. 5A, the gray round pig is the soft type 20Y, and the black round pig is the hard type 20B. The same applies to FIG. 5B below.
At this time, after throwing the first throw from the launcher L, the pig 20 actuated the pump 6 to stop it by a predetermined distance, and thereafter throws the second and subsequent throws in the same procedure. When the planned number of pigs 20 has been introduced (with all pigs 20 located in line A, preferably up to branch 1 or up to branch 2), pump 6 is reactivated. The pigs 20 were moved all at once, and when the first throw arrived at the elbow immediately below the catcher C, the pigs 20 were stopped (water injection stopped). The measurement items are the position of the pig 20 immediately after the insertion, the interval between the second and subsequent throws, the movement distance when the pig 20 of the first throw reaches the elbow immediately below the catcher C, the interval between the second and subsequent throws, And travel time.

Figure 2018155092
Figure 2018155092

この実験結果から、同一硬さであれば(実験No1〜3)、80mの移動の間に複数のピグ20の相対位置が変化する割合は15%以内であり、かつ距離が縮まる方向である。一方、ソフトタイプ20Yとハードタイプ20Bを一緒に送った場合は(実験No4〜6)、ハードタイプ20Bが遅れる傾向にあり、ソフトタイプ20Yとハードタイプ20Bの走行距離からハードタイプ20Bが85〜90%の速度差で移動しているとみられ、これは上記表7の基礎実験の傾向と整合している。   From this experimental result, if the hardness is the same (Experiment Nos. 1 to 3), the ratio of the relative positions of the plurality of pigs 20 changing during the movement of 80 m is within 15%, and the distance decreases. On the other hand, when the soft type 20Y and the hard type 20B are sent together (Experiment No. 4 to 6), the hard type 20B tends to be delayed, and the hard type 20B is 85 to 90 from the travel distance of the soft type 20Y and the hard type 20B. % Speed difference, which is consistent with the basic experiment trend in Table 7 above.

つぎに、管路A内に、夾雑物a、a’がある状態で連球法にてピグ20を通過させ、洗浄性の確認とピグ20の挙動を確認した。このとき、夾雑物の投入量は図6に示すように、夾雑物a、a’が管路A(パイプ1)内径の1/4かつ長さが100m堆積した状態を想定し、その体積から砂a及びシルト混じり粘土a’の比重又は密度を乗じて算出した質量とした。なお、砂(硅砂5号)aのかさ比重は1.56、現場採取土(シルト混じり粘土)a’については、過去に行った同種の土壌の分析結果から密度2.81(g/cm)、含水比120%の単位体積当たりの質量1.41(kg/cm)を用いた。
ピグ20の投入種類及び順番については、上水道での経験と応用実験の結果から1投目:Y-120→2投目:B-150の順とし、現場採取土a’については3投目としてY-180を追加した。すなわち、管路に投入するピグ20の径及び硬度を順々に大きくかつ硬くした。その結果を表9及び図5(b)に示し、前者が同実験No1、後者が同実験No2である。
Next, the pig 20 was allowed to pass through the continuous ball method in the state where the contaminants a and a ′ were present in the pipe A, and the cleaning performance and the behavior of the pig 20 were confirmed. At this time, as shown in FIG. 6, the input amount of the foreign substances is assumed that the foreign substances a and a ′ are accumulated 1/4 of the inner diameter of the pipe A (pipe 1) and 100 m in length. The mass was calculated by multiplying the specific gravity or density of sand a and silt mixed clay a ′. In addition, the specific gravity of the sand (sand sand No. 5) a is 1.56, and the on-site collected soil (silted clay) a ′ has a density of 2.81 (g / cm 3) based on the analysis result of the same kind of soil conducted in the past. ), A mass per unit volume of 1.41 (kg / cm 3 ) with a water content ratio of 120% was used.
As for the input type and order of the pig 20, the first throw: Y-120 → second throw: B-150 in the order from the experience in the water supply and the results of applied experiments, and the third throw for the on-site sampling soil a ′ Y-180 was added. That is, the diameter and hardness of the pig 20 to be put into the pipe line were sequentially increased and hardened. The results are shown in Table 9 and FIG. 5B, where the former is the experiment No1 and the latter is the experiment No2.

Figure 2018155092
Figure 2018155092

砂aは、1投目のピグ20YがランチャーLから1mほど進んだところで停滞してしまった。このため、圧力を0.3MPaから0.4MPaに上げると前記停滞した1投目のピグ20Yは徐々に動き始め、そのピグ20Yを通り抜けた水流が堆積した砂aの上部を押し流す作用が強まると、速度を上げて砂aを押し始め、最終的にキャッチャーCまで運んだ。ただし、1投目だけでは、管底部に残留分が確認でき、それらが2投目(ピグ20B)で除去される様子も確認できた。
その連球法での洗浄途中の様子から、1投目で押し残した残留分を、2投目、3投目(現場採取土a’のみ)が搬送、除去していることが確認できた。この実験No2では3投目にソフトタイプ20Yを使用した。このことから、管路Aの状況に応じて、ソフトタイプ20Yとハードタイプ20Bの硬度や径の異なるピグ20を適宜に選択して投入したり、最終はソフトタイプ20Yによって仕上げ洗浄したりすれば、円滑な夾雑物a、a’の除去ができることが推測できる。
Sand a stopped when the first pig 20Y advanced about 1 m from the launcher L. For this reason, when the pressure is increased from 0.3 MPa to 0.4 MPa, the stagnated first pig 20Y gradually starts to move, and the action of pushing the upper part of the sand a on which the water flow passing through the pig 20Y has accumulated increases. The speed was increased and the sand a was pushed, and finally it was carried to the catcher C. However, the residue at the bottom of the tube could be confirmed with only the first throw, and it was confirmed that they were removed at the second throw (Pig 20B).
It was confirmed from the state during the cleaning by the continuous ball method that the second and third throws (only on-site sampled soil a ′) transported and removed the residue remaining after the first throw. . In this experiment No. 2, soft type 20Y was used for the third throw. From this, depending on the situation of the pipeline A, the soft type 20Y and the hard type 20B can be appropriately selected and thrown in the pig 20 having different hardness and diameter, or finally, the soft type 20Y can be finished and washed. It can be estimated that smooth impurities a and a ′ can be removed.

以上の実験結果から以下の考察を行った。
1.基礎実験(ピグ(PCボール)20)の基本的な挙動の確認
「ランチャーLの押込み圧力、始動圧力、定常圧力及びキャッチャーCの排出圧力の確認」
ランチャーLの押込み圧力がピグ20の直径に影響を受けるのは、ランチャーLのなかでは、非圧縮状態のピグ20を管路A(パイプ1)内径まで縮径する必要があるためで、中実タイプ20Y,20Bでは管路A(パイプ1)の直径に応じた押込み圧力が必要となるのは当然の結果であると考える。また、中空タイプ20Cは、口径の小さい投入口から大径の管路洗浄を可能とするために試行されたタイプで、押込み圧力、排出圧力は中実タイプ20Y,20Bより低く抑えられることが確認できたが、一方で反発力の低下に伴う洗浄性への影響については別途検証を要するものと考えるが、洗浄力は低下すると考える。
始動圧力、定常圧力は、ほぼ、どのタイプでも変わりなく、ハードタイプ20Bのφ150以上のもので始動圧力がやや高まるのみであった。これもピグ20Bの硬さが弾性定数に基づく反発力として現れたものであり、その傾向が数値的に把握できたことは有意である。
排出圧力については、移動していたピグ20が管路A(パイプ1)より小さい口径を通過しようとして一時的に管路Aが閉塞状態となるため、水撃圧が発生しているようである。
管路Aの口径や管路長が大きくなると、その作用も増大する可能性があり、排出圧力の管理が重要な要素であると考える。
The following considerations were made from the above experimental results.
1. Confirmation of basic behavior of basic experiment (Pig (PC ball) 20) “Confirmation of pushing pressure, starting pressure, steady pressure and discharge pressure of catcher C of launcher L”
The reason why the pushing pressure of the launcher L is affected by the diameter of the pig 20 is that, in the launcher L, it is necessary to reduce the diameter of the uncompressed pig 20 to the inner diameter of the pipe A (pipe 1). In the types 20Y and 20B, it is a natural result that the pressing pressure corresponding to the diameter of the pipe A (pipe 1) is required. In addition, the hollow type 20C has been tried to enable large-diameter pipe cleaning from a small-diameter inlet, and it has been confirmed that the indentation pressure and discharge pressure can be kept lower than the solid types 20Y and 20B. However, on the other hand, the effect on detergency due to the decrease in repulsive force is considered to require separate verification, but the detergency will decrease.
The starting pressure and the steady pressure were almost the same for all types, and the starting pressure was only slightly increased with the hard type 20B having φ150 or more. This also shows that the hardness of the pig 20B appears as a repulsive force based on the elastic constant, and it is significant that the tendency can be grasped numerically.
With regard to the discharge pressure, it seems that water hammer pressure is generated because the pipe A is temporarily closed while the moving pig 20 passes through a smaller diameter than the pipe A (pipe 1). .
When the diameter and length of the pipe A are increased, the action may be increased, and it is considered that the management of the discharge pressure is an important factor.

2.同一圧力下での移動速度の確認
実用的な条件設定であるポンプ圧力:0.3MPa、管内流速:0.7m/sの下で種類の異なるピグ20を送ると、ピグ口径(直径)の影響よりも、硬さの影響が大きく出ることが分かる。ソフトタイプ20Yはほぼ無負荷時の流速と等しい速度で移動する一方で、ハードタイプ20Bはその85〜90%程度の速度となる。
2. Confirmation of moving speed under the same pressure When different types of pigs 20 are sent under practical conditions such as pump pressure: 0.3 MPa and pipe flow velocity: 0.7 m / s, the effect of the diameter of the pig It turns out that the influence of hardness comes out rather than. The soft type 20Y moves at a speed substantially equal to the flow speed at no load, while the hard type 20B has a speed of about 85 to 90%.

参考として、今回使用したピグ20について、φ104透明VP(塩化ビニル)管(パイプ1)における接触面積と静止摩擦力、動摩擦力を測定した結果を表10に示す。その測定方法は図7の方法による。このとき、静止摩擦力Nは、荷重Fをピグ20にのみに加えたとき、動き出す瞬間のはかりDの値、動摩擦力Nはおよそ30mm/sで移動中の値を読んだ。Lはピグ20の接触長さである。   As a reference, Table 10 shows the results of measuring the contact area, static friction force, and dynamic friction force in a φ104 transparent VP (vinyl chloride) pipe (pipe 1) for the pig 20 used this time. The measuring method is based on the method of FIG. At this time, the static frictional force N was read when the load F was applied only to the pig 20 and the value of the balance D at the moment when it started to move, and the dynamic frictional force N was about 30 mm / s. L is the contact length of the pig 20.

Figure 2018155092
Figure 2018155092

この実験結果から、動摩擦力については、φ150のハードタイプ20Bはソフトタイプ20Yの約2倍となることが判った。また、ハードタイプ20Bの速度低下の原因は、おそらく動摩擦力の差によるものであると考えるが、一部に、製造方法の差による透水率の違いなども考えられる。   From this experimental result, it was found that the dynamic friction force of φ150 hard type 20B is about twice that of soft type 20Y. Moreover, although the cause of the speed reduction of the hard type 20B is considered to be probably due to a difference in dynamic friction force, a difference in water permeability due to a difference in manufacturing method may be considered in part.

連球法における挙動については、
第1投目のピグが約20mほど先行した状態から、キャッチャーCまで移動する間の、各ピグ20Y、20Bの位置関係に着目した。すなわち約80〜85mを移動する間の相互間隔の変化については、同一硬さであれば、その間隔は縮まる傾向にあるが、短縮代はもとの間隔の10〜15%程度である。
これにハードタイプ20Bが加わると、ソフトタイプ20Yに比べさらに15%程度遅れながら移動し、最終的にハードタイプ20Bの後ろにソフトタイプ20Yを入れる場合は当初距離の25〜30%程度間隔が縮まると考えなければならない。
このことから、ソフトタイプ20Y→ハードタイプ20Bを順々に投入するのが好ましいことが分かる(図5(a)参照)。
For the behavior in the continuous ball method,
Attention was paid to the positional relationship between each of the pigs 20Y and 20B during the movement to the catcher C from the state in which the first throwing pig was about 20 m ahead. That is, as for the change of the mutual interval during the movement of about 80 to 85 m, if the hardness is the same, the interval tends to be reduced, but the shortening margin is about 10 to 15% of the original interval.
When the hard type 20B is added to this, it moves with a delay of about 15% compared to the soft type 20Y, and when the soft type 20Y is finally inserted behind the hard type 20B, the interval is shortened by about 25-30% of the initial distance. Must be considered.
From this, it can be seen that it is preferable to insert the software type 20Y → the hardware type 20B in order (see FIG. 5A).

夾雑物除去実験(砂及び現場採取土)においては、
管路内への夾雑物の投入量は、図6に示すように、砂(硅砂5号)a、現場採取土(シルト混じり粘土)a’とも300kgを投入した。砂aについては、ポンプ圧力を0.4MPaまで上昇して排出することができたが、排出時間も16分と夾雑物のない状態とくらべて5倍を要した。管路Aへの圧力の影響や、模擬管路の内面状況が理想的であることを鑑みると、0.3MPa以下での運用が実用上の限界条件と考える。
一方、現場採取土a’については、ポンプ圧0.3MPaで全量排出でき、2投目、3投目が各々積み残した夾雑物を回収しながら搬送していく様子が確認できた。
洗浄性については、当初粘着性のあるシルト混じり粘土a’のほうが悪いと予測していたが、砂aに比べて良好であった。これは、模擬管路の内面状態が良好なことや細粒分が多く見かけの比重が軽いことに加え、充填してから間がなく圧密されずに浮遊状態の粒子が多く存在していることも影響しているのではないかと考える。
この実験結果から、洗浄性は、「粘土混じりシルトa’」→「砂a」→「石」の順に悪くなるといえる。
「連球法」の効果については、夾雑物a、a’を投入した状態(表8のNo3の時間:4分22秒)と夾雑物がない状態(表8のNo1の時間:3分24秒)とをくらべると、1分程度時間は遅くなるが、3回ボール(ピグ)を個々に通過させる場合に比べると、水量も時間も短縮できる。
今回の実験結果から、連球法と単純に3回洗浄との時間及び水量を比較すると表11のようになり、連球法が優れていることが理解できる。
In the foreign matter removal experiment (sand and soil collected on site)
As shown in FIG. 6, the amount of foreign substances introduced into the pipeline was 300 kg for both sand (sand sand No. 5) a and on-site collected soil (silted clay) a ′. As for sand a, the pump pressure could be increased to 0.4 MPa and discharged, but the discharge time was 16 minutes, which was 5 times longer than the state without impurities. In view of the influence of pressure on the pipe A and the ideal condition of the inner surface of the simulated pipe, operation at 0.3 MPa or less is considered as a practical limit condition.
On the other hand, with respect to the on-site collected soil a ′, it was possible to discharge the entire amount at a pump pressure of 0.3 MPa, and it was confirmed that the second and third shots were transported while collecting the foreign matter left unloaded.
As for the detergency, it was predicted that the clay a ′ mixed with silt having tackiness at first was worse, but it was better than the sand a. This is because the inner surface of the simulated pipeline is good and there are many fine particles and the apparent specific gravity is light, and there are many floating particles that are not compacted soon after filling. I think that is also affecting.
From this experimental result, it can be said that the detergency deteriorates in the order of “clay mixed silt a ′” → “sand a” → “stone”.
Regarding the effect of the “ream ball method”, the state in which impurities a and a ′ were introduced (No. 3 time in Table 8: 4 minutes 22 seconds) and the state in which no impurities were present (No. 1 time in Table 8: 3 minutes 24) Compared with the case where the ball (pig) is individually passed three times, the amount of water and the time can be shortened.
From the results of this experiment, comparing the time and water amount between the continuous ball method and the three-time washing, it becomes as shown in Table 11 and it can be understood that the continuous ball method is superior.

Figure 2018155092
Figure 2018155092

さらに、このPCボール(ピグ)20の密度、弾性定数(弾性率、弾性係数)及び透水率が使用に耐え得るかを検証するために、各径のPCボール20に、図2(a)、(b)に示す軟質ウレタン樹脂の発泡体からなる球状をした無垢のソフトタイプ及びハードタイプを用い、「密度」、「透水率」、「弾性定数」を各々以下の方法で測定した。   Furthermore, in order to verify whether the density, elastic constant (elastic modulus, elastic modulus), and water permeability of the PC ball (pig) 20 can withstand use, the PC ball 20 of each diameter is shown in FIG. Using a solid soft type and a hard type made of a soft urethane resin foam shown in (b), “density”, “water permeability”, and “elastic constant” were measured by the following methods.

「密度の測定」
各PCボール20について、上記と同様に、実外径(直径)d(mm)から求めた体積(cm)の計算結果と質量m(g)を用い、下記式(1)により、密度ρ(g/cm)を算出した。
ρ=m/V ・・・・・・(1)
その結果を表12、図8に示す。
この図8及び表12によると、ソフトタイプが0.059[g/cm]、0.058[g/cm]程度、ハードタイプが0.099[g/cm]、0.091[g/cm]程度となっており、後者が前者に対し、密度が約1.6倍と高い。
"Density measurement"
For each PC balls 20, in the same manner as above, using Jitsusoto径(diameter) d volume obtained from (mm) (cm 3) calculation results of the mass m (g), the following equation (1), the density ρ (G / cm 3 ) was calculated.
ρ = m / V (1)
The results are shown in Table 12 and FIG.
According to FIG. 8 and Table 12, the soft type is about 0.059 [g / cm 3 ], 0.058 [g / cm 3 ], and the hard type is 0.099 [g / cm 3 ], 0.091 [ g / cm 3 ], and the latter has a density as high as about 1.6 times that of the former.

Figure 2018155092
Figure 2018155092

「弾性定数]
上記図4において、上皿秤Hに代えて偏平状体重計を採用し、上記弾性定数の測定と同様に、その体重計の上面(載置面)にピグ20を載せ、板を介して荷重Nをかけて、自然状態からの直径が、70%(w70)及び50%(w50)に圧縮するために必要な荷重(N)を求めた。
その測定結果を表13、図9に示す。その表13中の「圧縮直径d」の左列は「自然直径に対する圧縮直径の割合%」、右列は「圧縮直径」をそれぞれ示す。
この表13及び図9によると、ハードタイプの弾性定数(弾性係数)がソフトタイプより、1.2〜1.5倍高くなって硬いことが分かる。
"Elastic constant"
In FIG. 4, a flat weight scale is adopted instead of the upper pan scale H, and the pig 20 is placed on the upper surface (mounting surface) of the weight scale in the same manner as the measurement of the elastic constant, and the load is loaded through the plate. Multiplying N, the load (N) required to compress the natural diameter to 70% (w 70 ) and 50% (w 50 ) was determined.
The measurement results are shown in Table 13 and FIG. In Table 13, the left column of “compression diameter d” indicates “ratio of compression diameter to natural diameter%”, and the right column indicates “compression diameter”.
According to Table 13 and FIG. 9, it can be seen that the hard type elastic constant (elastic coefficient) is 1.2 to 1.5 times higher than the soft type and is hard.

Figure 2018155092
Figure 2018155092

「透水率]
図10に示す装置によって測定した。その装置は、100mmφの塩化ビニル管31の両端面にゴム輪32を固定するとともに、ゴム板33を宛がい、ゴム輪32を間にして前記ゴム板33と押し輪34をボルト・ナット35で締め付けることによって管31内を止水する。その管31内に金網36で塞いだ75mmφの塩化ビニル管37を同軸に設け、前記管31内にPCボール20を装填する。管31の一方には、複数のバルブ38a、38b、38cを設けたホース38、38を介して水Wを流入可能とすると共に、管31の他方からは、バルブ38dを設けたホース38を介してポリタンク39に前記水Wを流入可能とする。図中、38eは水圧計である。
"Water permeability"
The measurement was performed by the apparatus shown in FIG. The apparatus fixes a rubber ring 32 to both end faces of a 100 mm diameter vinyl chloride pipe 31 and addresses a rubber plate 33. The rubber plate 33 and the push ring 34 are connected with bolts and nuts 35 with the rubber ring 32 in between. By tightening, the inside of the pipe 31 is stopped. A 75 mm diameter vinyl chloride tube 37 closed with a wire mesh 36 is provided coaxially in the tube 31, and the PC ball 20 is loaded into the tube 31. Water W can flow into one of the pipes 31 via hoses 38, 38 provided with a plurality of valves 38a, 38b, 38c, and from the other of the pipes 31 via a hose 38 provided with a valve 38d. Thus, the water W can flow into the poly tank 39. In the figure, 38e is a water pressure gauge.

この透水性試験装置において、まず、図中、一番左のバルブ38aとその直線上にあるバルブ38bを開き、管31内を満水とする。つぎに、出口側(右側)のバルブ38dを開き、管31内及びPCボール20内のエアを抜き抜き取った後、一番左のバルブ38aを一旦閉じ、出口側のホース38をポリタンク39の中に入れる。
この状態において、一番左のバルブ38aを開けると共に、ストップウォッチでその開放時からの経過時間を計測しつつ、ポリタンク39に10Lの水が入ったら、バルブ38aとストップウォッチを止める。
この作用の後、蓋40を開け、ボール20のサイズ・種類を変更し、上記の作用を繰り返して、各PCボール20の透水率を測定した。その測定結果を表14、図11に示す。
In this water permeability test apparatus, first, the leftmost valve 38a and the valve 38b on the straight line in the figure are opened to fill the pipe 31 with water. Next, the valve 38d on the outlet side (right side) is opened, and the air in the pipe 31 and the PC ball 20 is extracted and then the leftmost valve 38a is temporarily closed, and the hose 38 on the outlet side is placed in the poly tank 39. Put in.
In this state, the leftmost valve 38a is opened and the elapsed time from the opening time is measured by the stopwatch, and when 10 L of water enters the poly tank 39, the valve 38a and the stopwatch are stopped.
After this action, the lid 40 was opened, the size and type of the ball 20 were changed, and the above action was repeated to measure the water permeability of each PC ball 20. The measurement results are shown in Table 14 and FIG.

Figure 2018155092
Figure 2018155092

この透水率実験の結果によると、図11に示すように、ハードタイプのボール20Bの方がソフトタイプのボール20Yに比べて透水率が高いことが分かる。このため、ソフトタイプのボール20Yがハードタイプのボール20Bに比べて水圧を受けやすいことが理解でき、最初の夾雑物除去には好ましいことが分かる。すなわち、ソフトタイプのボール20Yで最初の夾雑物除去を行い、続いて、ハードタイプのボール20Bで除去し残った夾雑物除去を行うことが好ましいことが分かる。
また、透水率が変化すると、ボール20を押す力が変わってくるため、管31内の進行速度が変化しやすいと言える。管31に対してPCボール20が大きくなると、ボールにできるシワが大きくなり、透水率に影響が出やすかった。
According to the result of this water permeability test, as shown in FIG. 11, it can be seen that the hard type ball 20B has a higher water permeability than the soft type ball 20Y. For this reason, it can be understood that the soft-type ball 20Y is more susceptible to water pressure than the hard-type ball 20B, which is preferable for the first removal of contaminants. That is, it can be seen that it is preferable to first remove impurities with the soft-type ball 20Y, and then remove the remaining impurities with the hard-type ball 20B.
Moreover, since the force which pushes the ball | bowl 20 will change if a water permeability changes, it can be said that the advancing speed in the pipe | tube 31 is easy to change. When the PC ball 20 is larger than the tube 31, the wrinkles that can be formed on the ball are increased, and the water permeability is likely to be affected.

以上の実験から、連球法による洗浄が優れていることを確認でき、これによって、既設管路の洗浄を円滑に行い得ることが確認できる。この管路内の夾雑物の除去は、従来と同様に、その除去のみならず、管路の機能診断を行う前に行ったり、その除去の後に、前記機能診断を行ったりする場合がある。
その連球法による洗浄は、上水道のみならず、農業用パイプライン(農業用水管路)、化学工場の薬品ライン等の他の流体管路に採用し得ることは言うまでもない。
なお、連球法によって複数のピグ20を連続して管路に投入する場合は、ランチャーLを複数用意することが好ましい。例えば、図12に示す態様とし、回路切替弁8によって両ランチャーL、Lを管路A及びポンプ6に交互に(個別かつ選択的に)接続してピグ20を投入する。
ピグ20は球状に限らず、特許文献1図7、図12等に記載の銃弾状等と任意である。また、ピグ20の外周面には慣性を高める、シリコーンゴム等のコーティングをすることが好ましい。
From the above experiment, it can be confirmed that the cleaning by the continuous ball method is excellent, and thereby, it can be confirmed that the existing pipe line can be cleaned smoothly. The removal of contaminants in the pipe line may be performed before performing the function diagnosis of the pipe line, or after the removal, in addition to the removal of the contaminants in the conventional manner.
Needless to say, the cleaning by the continuous ball method can be applied not only to waterworks but also to other fluid pipelines such as agricultural pipelines (agricultural water pipelines) and chemical lines in chemical factories.
In addition, when throwing a plurality of pigs 20 into a pipe line continuously by the continuous ball method, it is preferable to prepare a plurality of launchers L. For example, in the embodiment shown in FIG. 12, both the launchers L and L are connected alternately (individually and selectively) to the pipeline A and the pump 6 by the circuit switching valve 8 and the pig 20 is inserted.
The pig 20 is not limited to a spherical shape, and may be a bullet shape described in Patent Document 1, FIGS. Moreover, it is preferable to coat the outer peripheral surface of the pig 20 with silicone rubber or the like that increases inertia.

なお、上記実施形態は、管路が塩化ビニル製であったため、ソフトタイプ20Y(黄色)→ハードタイプ29B(黒色)→ソフトタイプ20Y(黄色)の順で投入したが、管路の材質によって適宜に変更することは勿論であり、例えば、内面モルタルライニングのダクタイル鋳鉄管にあっては、ソフトタイプ20Y(黄色)→ソフトタイプ20Y(黄色)→ハードタイプ29B(黒色)の順で投入する。
このように、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
In the above embodiment, since the pipe line is made of vinyl chloride, the soft type 20Y (yellow) → hard type 29B (black) → soft type 20Y (yellow) was introduced in this order, but depending on the material of the pipe Of course, in the case of a ductile cast iron pipe with an inner surface mortar lining, the soft type 20Y (yellow) → the soft type 20Y (yellow) → the hard type 29B (black) is charged in this order.
Thus, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

C キャッチャー
L ランチャー
1 パイプ
4 圧力計
5 流量計
20、20Y、20B、20W ピグ(PCボール)
C Catcher L Launcher 1 Pipe 4 Pressure gauge 5 Flow meter 20, 20Y, 20B, 20W Pig (PC ball)

Claims (5)

管路(A)の一部からピグ(20)を管路(A)内に投入し、その管路(A)の一部から管路(A)内に流体を圧送して、又は管路(A)内に元々存在する流体によって、管路(A)の長さ方向に前記ピグ(20)を走行させ、そのピグ(20)の走行に伴い、ピグ(20)と管路(A)内面との摩擦によって管路(A)内の夾雑物(a、a’)を剥離して押し進め、管路(A)の他部から前記ピグ(20)及び剥離した夾雑物(a、a’)を取り出す管路内面の夾雑物除去方法であって、
上記複数のピグ(20Y、20B、20W)を、先行きのピグが上記管路の他部に至る前に上記一部から後行きのピグを前記管路(A)に投入して連続的に走行させるとともに、先行きのピグ及び後行きのピグを独立して自由に走行させることを特徴とする管路内面の夾雑物除去方法。
Pig (20) is introduced into the pipe (A) from a part of the pipe (A), and fluid is pumped into the pipe (A) from a part of the pipe (A), or the pipe The pig (20) is caused to travel in the length direction of the pipe (A) by the fluid originally present in (A), and the pig (20) and the pipe (A) are moved along with the running of the pig (20). The impurities (a, a ′) in the pipe (A) are peeled off and pushed forward by friction with the inner surface, and the pig (20) and the peeled impurities (a, a ′) from the other part of the pipe (A). ) To remove contaminants on the inner surface of the pipeline,
The plurality of pigs (20Y, 20B, 20W) are continuously run with the forward pigs from the part to the pipe (A) before the forward pig reaches the other part of the pipe. And a contaminant removal method on the inner surface of the pipeline, wherein the forward pig and the backward pig are allowed to travel independently and freely.
上記ピグ(20)の硬度が、先行きのピグ(20)より後行きのピグ(20)が硬いことを特徴とする請求項1に記載の管路内面の夾雑物除去方法。   The method for removing contaminants on the inner surface of the pipe according to claim 1, wherein the hardness of the pig (20) is harder in the backward pig (20) than in the forward pig (20). 上記ピグ(20)の径が、先行きのピグ(20)より後行きのピグ(20)が大きいことを特徴とする請求項1又は2に記載の管路内面の夾雑物除去方法。 The method for removing contaminants on the inner surface of the pipe according to claim 1 or 2, wherein the diameter of the pig (20) is larger in the backward pig (20) than in the forward pig (20). 上記管路(A)内のピグの走行をそのピグの投入部からの流体流入、又は管路(A)内に元々存在する流体によって行う請求項1乃至3の何れか1つに記載の管路内面の夾雑物除去方法。   The pipe according to any one of claims 1 to 3, wherein the running of the pig in the pipe (A) is performed by a fluid inflow from a pig inlet or a fluid originally present in the pipe (A). A method for removing impurities on the road surface. 請求項1乃至4の何れか1つの管路内面の夾雑物除去方法に使用する管路洗浄装置であって、
複数の投入機(L)と、流体圧送用ポンプ(6)とを有し、前記各投入機(L)は、切替弁(8)を介して上記管路(A)及び前記ポンプ(6)にそれぞれ接続されており、
上記切替弁(8)によって上記管路(A)及びポンプ(6)に上記各投入機(L)を個別かつ選択的に接続することを特徴とする管路洗浄装置。
A pipeline cleaning device used in the contaminant removal method on the inner surface of any one of claims 1 to 4,
A plurality of charging machines (L) and a fluid pressure pump (6) are provided, and each of the charging machines (L) is connected to the pipe (A) and the pump (6) via a switching valve (8). Each connected to
A line cleaning device characterized in that the input devices (L) are individually and selectively connected to the line (A) and the pump (6) by the switching valve (8).
JP2018047866A 2017-03-15 2018-03-15 Method for removing contaminants from inner surface of pipeline Active JP7193794B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017050119 2017-03-15
JP2017050119 2017-03-15

Publications (2)

Publication Number Publication Date
JP2018155092A true JP2018155092A (en) 2018-10-04
JP7193794B2 JP7193794B2 (en) 2022-12-21

Family

ID=63717798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047866A Active JP7193794B2 (en) 2017-03-15 2018-03-15 Method for removing contaminants from inner surface of pipeline

Country Status (1)

Country Link
JP (1) JP7193794B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461977A (en) * 1990-06-28 1992-02-27 Japan Steel & Tube Constr Co Ltd Pig and method for discharging residual water
JPH0550050A (en) * 1991-08-22 1993-03-02 Honda Motor Co Ltd Device for removing deposit in pipe
JPH0866669A (en) * 1994-08-29 1996-03-12 Kawasaki Heavy Ind Ltd Repeating pig shooter
JPH09126399A (en) * 1995-10-31 1997-05-13 Asia Kako Kk Recovery device for fluid in pipe of fluid transfer piping
JPH11245300A (en) * 1998-02-27 1999-09-14 Tokyo Gas Co Ltd Method for repairing existing pipeline
JP2002200465A (en) * 2000-12-28 2002-07-16 Sadakuni Daiku Method of extruding pig stopped in pipe by pushing pig
JP2005040742A (en) * 2003-07-24 2005-02-17 Sadakuni Daiku Automatic transportation pipe washing apparatus using pig
JP2009022918A (en) * 2007-07-23 2009-02-05 Kajima Corp Cleaning tool, cooling tool charging device, and method for cleaning the inside of piping
JP2009189910A (en) * 2008-02-12 2009-08-27 Masakazu Yamamoto Method for cleaning inside of pipe
JP2010051885A (en) * 2008-08-27 2010-03-11 Lining Service Kk Pig cleaner and pig cleaning method of piping
JP2014064961A (en) * 2012-09-24 2014-04-17 Daiku Sadakuni Cleaning pig for waterwork pipe
JP2016107247A (en) * 2014-12-10 2016-06-20 中里建設株式会社 Duct cleaning device and duct cleaning method
JP6232650B1 (en) * 2016-10-07 2017-11-22 中里建設株式会社 Pipe cleaning device and pipe cleaning method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461977A (en) * 1990-06-28 1992-02-27 Japan Steel & Tube Constr Co Ltd Pig and method for discharging residual water
JPH0550050A (en) * 1991-08-22 1993-03-02 Honda Motor Co Ltd Device for removing deposit in pipe
JPH0866669A (en) * 1994-08-29 1996-03-12 Kawasaki Heavy Ind Ltd Repeating pig shooter
JPH09126399A (en) * 1995-10-31 1997-05-13 Asia Kako Kk Recovery device for fluid in pipe of fluid transfer piping
JPH11245300A (en) * 1998-02-27 1999-09-14 Tokyo Gas Co Ltd Method for repairing existing pipeline
JP2002200465A (en) * 2000-12-28 2002-07-16 Sadakuni Daiku Method of extruding pig stopped in pipe by pushing pig
JP2005040742A (en) * 2003-07-24 2005-02-17 Sadakuni Daiku Automatic transportation pipe washing apparatus using pig
JP2009022918A (en) * 2007-07-23 2009-02-05 Kajima Corp Cleaning tool, cooling tool charging device, and method for cleaning the inside of piping
JP2009189910A (en) * 2008-02-12 2009-08-27 Masakazu Yamamoto Method for cleaning inside of pipe
JP2010051885A (en) * 2008-08-27 2010-03-11 Lining Service Kk Pig cleaner and pig cleaning method of piping
JP2014064961A (en) * 2012-09-24 2014-04-17 Daiku Sadakuni Cleaning pig for waterwork pipe
JP2016107247A (en) * 2014-12-10 2016-06-20 中里建設株式会社 Duct cleaning device and duct cleaning method
JP6232650B1 (en) * 2016-10-07 2017-11-22 中里建設株式会社 Pipe cleaning device and pipe cleaning method

Also Published As

Publication number Publication date
JP7193794B2 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
CN101553324B (en) Apparatus and method for cleaning pipes and pipe systems
Arney et al. Cement-lined pipes for water lubricated transport of heavy oil
CN210534149U (en) Crude oil pipeline wax deposit pigging simulation experiment device
CN107433273B (en) Harmless treatment method for waste crude oil pipeline
CN107335663A (en) A kind of pipeline Sorbet flusher and purging method
CN102580954A (en) Pipeline ice crystal flusher
RU2324103C1 (en) Method of pipeline rehabilitation, mobile repair complex for rehabilitation and pipeline covering equipment
DE112012005894T5 (en) Use, system and method for pipe cleaning
JP6310184B2 (en) Cleaning pipeline survey method
CN1415806A (en) Machine for clearing piping , its clearing method and element for preventing leakage of compressed air
JP7255830B2 (en) Pipe cleaning method and pipe cleaning system
CN203725451U (en) Sweeping system for submarine delivery pipelines
JP5191243B2 (en) How to clean piping using ice blocks
JP2018155092A (en) Method for removing contaminant on inner face of pipeline
JP5562773B2 (en) Method and apparatus for cleaning tap water piping
US6726778B2 (en) Method for cleaning and renovating pipelines
CN102172572B (en) Inner wall washing and coating corrosion resisting method for manifold pipelines in oil fields
JP2009066522A (en) Cleaning method of waterwork pipe
JP3231472B2 (en) Piping rehabilitation method
JP2015080745A (en) Pipeline cleaning method
CN110726638B (en) Quantitative detection method for cleanliness of waste oil pipelines
JPH0368484A (en) Method for cleaning drainpipe
US4229852A (en) Portable pipe cleaning apparatus
WO1993025328A1 (en) Method and apparatus for cleaning tubulars
CN105804696A (en) Sewage re-injection main line alternate type scale removal technological method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221201

R150 Certificate of patent or registration of utility model

Ref document number: 7193794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350