JP2018154369A - Pet molding container and manufacturing method thereof - Google Patents

Pet molding container and manufacturing method thereof Download PDF

Info

Publication number
JP2018154369A
JP2018154369A JP2017053222A JP2017053222A JP2018154369A JP 2018154369 A JP2018154369 A JP 2018154369A JP 2017053222 A JP2017053222 A JP 2017053222A JP 2017053222 A JP2017053222 A JP 2017053222A JP 2018154369 A JP2018154369 A JP 2018154369A
Authority
JP
Japan
Prior art keywords
pet
container
surface layer
intermediate layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017053222A
Other languages
Japanese (ja)
Inventor
田中 祐介
Yusuke Tanaka
祐介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Risupack Co Ltd
Original Assignee
Risupack Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Risupack Co Ltd filed Critical Risupack Co Ltd
Priority to JP2017053222A priority Critical patent/JP2018154369A/en
Publication of JP2018154369A publication Critical patent/JP2018154369A/en
Priority to JP2022102328A priority patent/JP7442576B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a PET molding container having high glossiness and heat resistance and having shock resistance improved more than a C-PET molding container, and a manufacturing method thereof.SOLUTION: This PET molding container has: an intermediate layer that includes C-PET; and outer and inner surface layers that include A-PET not containing a crystal nucleus agent and that are laminated on the surface of the intermediate layer, and the sum total of the thicknesses of the outer and inner surface layers is within 16% of the thickness of the entire container. The container is acquired by thermoforming a laminate sheet at a temperature equal to or higher than a PET crystallization temperature and crystallizing the A-PET in the intermediate layer, the laminate sheet having an intermediate layer that includes a crystal nucleus agent and A-PET of IV=0.7 or higher and outer and inner surface layers that include A-PET not containing a crystal nucleus agent and that are laminated on the surface of the intermediate layer, the sum total of the thicknesses of the outer and inner surface layers being within 16% of the thickness of the entire sheet.SELECTED DRAWING: None

Description

本発明は、光沢度及び耐熱性に優れると共に、結晶性ポリエチレンテレフタレート(C−PET)成形容器と比べて耐寒衝撃性が向上したポリエチレンテレフタレート(PET)成形容器及びその製造方法に関する。   The present invention relates to a polyethylene terephthalate (PET) molded container having excellent glossiness and heat resistance, and having improved cold impact resistance compared to a crystalline polyethylene terephthalate (C-PET) molded container, and a method for producing the same.

PETは、化学的及び物理的性質に優れ、飲料ボトル等の容器、フィルム、及びシート等に広く利用されている。近年、家庭用の電子レンジ及びオーブンが普及し、様々な半調理済みの冷凍食品が流通している。このような食品に使用される容器は、単に内容物を収容するだけでなく、広い温度範囲での使用に耐え得る耐熱性及び耐衝撃性が求められる。   PET has excellent chemical and physical properties and is widely used in containers such as beverage bottles, films, and sheets. In recent years, household microwave ovens and ovens have become widespread, and various semi-cooked frozen foods have been distributed. Containers used for such foods are required not only to contain the contents but also to have heat resistance and impact resistance that can withstand use in a wide temperature range.

従来、耐熱性に優れたPET容器として、金型中で二次成形及び結晶化することにより得られるC−PET成形容器が実用化されている。PET成形容器の物性を改善するために、種々の技術が提案されている。例えば、特許文献1には、内外側に非晶性PET、中間層に結晶性PETが配置され、各層が非晶状態である積層シートを、結晶性PETの結晶化温度以下の温度で熱成形し、次いで、外側から結晶性PETの結晶化温度に加熱することにより、中間層の結晶性PETを熱結晶化させる耐熱PET容器の製造方法が記載されている。特許文献2には、固有粘度(IV値)が0.70dl/gのポリエステル系樹脂と、n−ヘキサン抽出成分が3重量%以下のポリオレフィン樹脂と、を含むポリエステル系樹脂シート及びその成形品が記載されている。   Conventionally, as a PET container excellent in heat resistance, a C-PET molded container obtained by secondary molding and crystallization in a mold has been put into practical use. Various techniques have been proposed to improve the physical properties of PET molded containers. For example, in Patent Document 1, amorphous PET is disposed on the inner and outer sides, crystalline PET is disposed on the intermediate layer, and a laminated sheet in which each layer is in an amorphous state is thermoformed at a temperature lower than the crystallization temperature of crystalline PET. Then, a method for producing a heat-resistant PET container is described in which the crystalline PET in the intermediate layer is thermally crystallized by heating from the outside to the crystallization temperature of crystalline PET. Patent Document 2 discloses a polyester resin sheet containing a polyester resin having an intrinsic viscosity (IV value) of 0.70 dl / g, and a polyolefin resin having an n-hexane extraction component of 3% by weight or less, and a molded product thereof. Have been described.

特許第4223700号公報Japanese Patent No. 4223700 特許第3594083号公報Japanese Patent No. 3594083

PET容器においても、上記のように、広い温度範囲での使用に耐え得る耐熱性及び耐衝撃性が求められる。しかし、C−PET成形容器は耐熱性に優れる反面、耐衝撃性に劣るという問題点がある。また、C−PET成形容器は成形の際、結晶化のために含まれているポリオレフィン系樹脂等の結晶核剤が、ロール又は金型に付着し、歩留りが悪いことが問題となっている。更に、通常、C−PETはA−PET(本書面において「A−PET」とは、一般的に結晶化していない状態であるが、結晶化温度以上で長時間加熱する等の方法により結晶化させることもできるPETを意味する。)と比べると、光沢度及び耐熱性に劣るという問題がある。   Also in the PET container, as described above, heat resistance and impact resistance that can withstand use in a wide temperature range are required. However, while the C-PET molded container is excellent in heat resistance, it has a problem that it is inferior in impact resistance. Further, the C-PET molded container has a problem in that the yield is poor because a crystal nucleating agent such as a polyolefin-based resin included for crystallization adheres to a roll or a mold during molding. Furthermore, C-PET is usually A-PET (in this document, “A-PET” is generally not crystallized, but is crystallized by a method such as heating for a long time above the crystallization temperature. Compared with PET, which can also be made to have a glossiness and heat resistance, there is a problem.

本発明は、光沢度及び耐熱性に優れると共に、C−PET成形容器と比べて耐衝撃性が向上したPET成形容器及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a PET molded container excellent in glossiness and heat resistance and having improved impact resistance as compared with a C-PET molded container, and a method for producing the same.

本発明のPET成形容器は、C−PETを含む中間層と、結晶核剤を含有しない非晶状態のPETで構成され、前記中間層の外側表面及び内側表面に積層された外側表面層及び内側表面層と、を有し、前記外側表面層及び内側表面層の厚みの合計が、容器全体の厚みの16%以内であることを特徴とする。   The PET molded container of the present invention comprises an intermediate layer containing C-PET and an amorphous PET containing no crystal nucleating agent, and an outer surface layer and an inner layer laminated on the outer surface and the inner surface of the intermediate layer. And the total thickness of the outer surface layer and the inner surface layer is within 16% of the total thickness of the container.

本発明のPET成形容器の製造方法は、結晶核剤及びIV=0.7以上の非晶状態のPETを含む中間層と、結晶核剤を含有しない非晶状態のPETで構成され、前記中間層の外側表面及び内側表面に積層された外側表面層及び内側表面層と、を有し、前記外側表面層及び内側表面層の厚みの合計が、シート全体の厚みの16%以内である積層シートを、PETの結晶化温度以上の温度で熱成形し、前記中間層の非晶状態のPETを結晶化することを特徴とする。   The method for producing a PET molded container of the present invention comprises a crystal nucleating agent and an intermediate layer containing an amorphous PET having an IV of 0.7 or more, and an amorphous PET containing no crystal nucleating agent, A laminated sheet having an outer surface layer and an inner surface layer laminated on the outer surface and the inner surface of the layer, wherein the total thickness of the outer surface layer and the inner surface layer is within 16% of the total thickness of the sheet Is thermoformed at a temperature equal to or higher than the crystallization temperature of PET to crystallize the amorphous PET in the intermediate layer.

本発明のPET成形容器は、光沢度に優れ、C−PET成形容器と同等の耐熱性を有すると共に、全てC−PET層のみからなる成形容器と比べて耐寒衝撃性に優れている。よって、本発明のPET成形容器は、広い温度範囲での使用に耐え得る耐熱性及び耐衝撃性を有する。本発明のPET成形容器の製造方法では、成形時のロール汚れ又は金型汚れを低減することができる。よって、本発明の製造方法では、PET成形容器の製造における歩留りを改善することができる。   The PET molded container of the present invention is excellent in glossiness, has the same heat resistance as that of a C-PET molded container, and is excellent in cold shock resistance as compared with a molded container consisting entirely of a C-PET layer. Therefore, the PET molded container of the present invention has heat resistance and impact resistance that can withstand use in a wide temperature range. In the method for producing a PET molded container of the present invention, roll dirt or mold dirt at the time of molding can be reduced. Therefore, in the production method of the present invention, the yield in the production of the PET molded container can be improved.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

(1)PET成形容器
本実施形態に係るPET成形容器(以下、「本容器」という。)は、結晶性PET(C−PET)を含む中間層と、結晶核剤を含有しない非晶状態のPETで構成され、前記中間層の外側表面及び内側表面に積層された外側表面層及び内側表面層と、を有し、前記外側表面層及び内側表面層の厚みの合計が、容器全体の厚みの16%以内である。
(1) PET Molded Container A PET molded container (hereinafter referred to as “the present container”) according to this embodiment is an amorphous layer containing no crystalline nucleating agent and an intermediate layer containing crystalline PET (C-PET). An outer surface layer and an inner surface layer made of PET and laminated on the outer surface and the inner surface of the intermediate layer, and the total thickness of the outer surface layer and the inner surface layer is the total thickness of the container Within 16%.

前記中間層は、前記外側表面層及び内側表面層(以下、両者を総称して「表面層」という。)に間に位置し、C−PETを含む層である。前記中間層は単層構造でもよく、結晶化の程度等が異なる多層構造でもよい。   The intermediate layer is located between the outer surface layer and the inner surface layer (hereinafter collectively referred to as “surface layer”) and is a layer containing C-PET. The intermediate layer may have a single layer structure or a multilayer structure with different degrees of crystallization.

前記C−PETの結晶化度については特に限定はない。該結晶化度は通常、10〜40%である。前記C−PETは通常、PET及び結晶核剤を含有する組成物を結晶化することにより形成される。前記結晶核剤は、PETを結晶化することができる限り、その種類及び含有量に特に限定はない。前記結晶核剤として、例えば、ポリオレフィン(例えば、ポリエチレン)系樹脂等の有機結晶核剤、並びにタルク、カオリン、及びシリカ等の無機結晶核剤が挙げられる。前記結晶核剤として好ましくは、ポリオレフィン系樹脂を含有する結晶核剤であり、より好ましくは、ポリエチレン系樹脂を含有する結晶核剤である。前記結晶核剤の含有量は、前記中間層を形成するための、PET及び結晶核剤を含有する組成物全量中、0.5〜10重量%、好ましくは1〜8重量%、更に好ましくは1〜6質量%である。   There is no particular limitation on the crystallinity of the C-PET. The crystallinity is usually 10 to 40%. The C-PET is usually formed by crystallizing a composition containing PET and a crystal nucleating agent. The type and content of the crystal nucleating agent are not particularly limited as long as PET can be crystallized. Examples of the crystal nucleating agent include organic crystal nucleating agents such as polyolefin (for example, polyethylene) resins, and inorganic crystal nucleating agents such as talc, kaolin, and silica. The crystal nucleating agent is preferably a crystal nucleating agent containing a polyolefin resin, and more preferably a crystal nucleating agent containing a polyethylene resin. The content of the crystal nucleating agent is 0.5 to 10% by weight, preferably 1 to 8% by weight, more preferably in the total amount of the composition containing PET and the crystal nucleating agent for forming the intermediate layer. 1 to 6% by mass.

前記内側表面層は、容器の内側(内容物を収容する側)の最表面層であり、前記外側表面層は、容器の外側(内側の反対側)の最表面層である。前記表面層は、結晶核剤を含有しない非晶状態のPETで構成される。前記表面層は、結晶核剤を含有しない非晶状態のPETのみで構成されてもよい。本容器は、前記表面層を有することにより、耐衝撃性、特に耐寒衝撃性に優れる。本書面において、「非晶状態のPET」は、A−PETのように結晶化していない状態のPET及びPET−Gのように完全に結晶化しない状態のPETを指す。前記「非晶状態のPET」として好ましくは、A−PETのように結晶化していない状態のPETである。   The inner surface layer is an outermost surface layer on the inner side (the side containing the contents) of the container, and the outer surface layer is an outermost surface layer on the outer side (the opposite side of the inner side) of the container. The surface layer is made of amorphous PET that does not contain a crystal nucleating agent. The surface layer may be composed of only amorphous PET containing no crystal nucleating agent. By having the surface layer, the container is excellent in impact resistance, particularly cold impact resistance. In this document, “amorphous PET” refers to PET that is not crystallized like A-PET and PET that is not completely crystallized like PET-G. The “amorphous PET” is preferably PET that is not crystallized like A-PET.

前記「非晶状態のPET」、好ましくはA−PETのIV値は0.7以上、好ましくは0.75以上である。前記IV値が上記範囲であると、優れた耐衝撃性を奏するので好ましい。   The “amorphous PET”, preferably A-PET, has an IV value of 0.7 or more, preferably 0.75 or more. It is preferable for the IV value to be in the above range since excellent impact resistance is exhibited.

前記外側表面層及び前記内側表面層の厚みの合計は、容器全体の厚みの16%以内、好ましくは12%以内、更に好ましくは10%以内である。ここで、「容器全体の厚み」とは、前記外側表面層、前記内側表面層、及び前記中間層の厚みの合計を意味する。   The total thickness of the outer surface layer and the inner surface layer is within 16%, preferably within 12%, more preferably within 10% of the total thickness of the container. Here, the “total thickness of the container” means the total thickness of the outer surface layer, the inner surface layer, and the intermediate layer.

前記外側表面層及び前記内側表面層の厚みの合計が上記範囲であると、中間層のC−PETによる耐熱性を確保すると共に、A−PET等の非晶状態のPETによる光沢度及び耐衝撃性の向上を実現することができる。一般に層の厚みが薄くなると熱伝導率が良くなると考えられる。しかし、PETは通常、結晶化速度が遅い。よって、表面層をA−PETで構成した場合、表面層の厚さが薄くても、A−PETの非晶状態が維持されるため、A−PETの利点、即ち優れた光沢度及び耐衝撃性を維持できるという、当業者に全く予測し得ない意外な効果を実現することができる。本容器では、具体的には、例えば、JIS Z8741に準拠して60°の角度で測定した光沢度を98%以上とすることができる。これにより、優れた見栄えを実現することができる。   When the total thickness of the outer surface layer and the inner surface layer is within the above range, the heat resistance by C-PET of the intermediate layer is ensured, and the glossiness and impact resistance by amorphous PET such as A-PET are secured. The improvement of property can be realized. Generally, it is considered that the thermal conductivity is improved as the thickness of the layer is reduced. However, PET usually has a slow crystallization rate. Therefore, when the surface layer is composed of A-PET, even if the surface layer is thin, the amorphous state of A-PET is maintained, so the advantages of A-PET, that is, excellent glossiness and impact resistance. It is possible to realize an unexpected effect that can be maintained by a person skilled in the art, which can maintain the performance. In this container, specifically, for example, the glossiness measured at an angle of 60 ° in accordance with JIS Z8741 can be 98% or more. Thereby, the outstanding appearance can be realized.

前記外側表面層及び前記内側表面層の各厚みは同じでもよく、異なってもよい。前記外側表面層及び前記内側表面層の厚みの合計が上記範囲内である限り、前記外側表面層及び前記内側表面層の各厚みには特に限定がない。前記外側表面層及び前記内側表面層の各厚みの上限は通常8%、好ましくは6%、更に好ましくは4%である。前記外側表面層及び前記内側表面層の各厚みの下限は通常3%である。下限値が3%であると、安定して表面層厚みを持たせることができるので好ましい。   The thicknesses of the outer surface layer and the inner surface layer may be the same or different. As long as the total thickness of the outer surface layer and the inner surface layer is within the above range, each thickness of the outer surface layer and the inner surface layer is not particularly limited. The upper limit of each thickness of the outer surface layer and the inner surface layer is usually 8%, preferably 6%, and more preferably 4%. The lower limit of each thickness of the outer surface layer and the inner surface layer is usually 3%. A lower limit of 3% is preferable because the surface layer thickness can be stably provided.

前記「容器全体の厚み」については特に限定はなく、必要に応じて適宜決定することができる。前記「全体の厚み」は、例えば20〜1000μmとすることができる。   The “thickness of the entire container” is not particularly limited and can be appropriately determined as necessary. The “total thickness” can be set to, for example, 20 to 1000 μm.

前記中間層及び表面層は、必要に応じて他の成分を含んでいてもよい。該他の成分として、例えば、PET成形容器で用いられている種々の添加剤が挙げられる。該添加剤として具体的には、例えば、着色剤、難燃剤、紫外線吸収剤、蛍光増白剤、帯電防止剤、防曇剤、滑剤、アンチブロッキング剤、耐衝撃剤、流動性改良剤、可塑剤、分散剤、及び抗菌剤が挙げられる。   The intermediate layer and the surface layer may contain other components as necessary. Examples of the other components include various additives used in PET molded containers. Specific examples of such additives include, for example, colorants, flame retardants, ultraviolet absorbers, fluorescent brighteners, antistatic agents, antifogging agents, lubricants, antiblocking agents, impact resistance agents, fluidity improvers, plasticizers. Agents, dispersants, and antibacterial agents.

本容器のIV値は通常0.7以上、好ましくは0.75以上である。シート成形により本容器を得る場合、通常、原料のPETシートのIV値と本容器のIV値とは同程度である。よって、原料のPETシートのIV値をもって本容器のIV値としてもよい。   The IV value of this container is usually 0.7 or more, preferably 0.75 or more. When this container is obtained by sheet molding, the IV value of the raw material PET sheet and the IV value of the container are generally the same. Therefore, the IV value of the raw material PET sheet may be used as the IV value of the container.

本容器の製造方法には特に限定はない。本容器は通常、本発明の製造方法により製造することができる。   There are no particular limitations on the method of manufacturing the container. This container can usually be manufactured by the manufacturing method of the present invention.

本容器の用途には特に限定はない。本容器は、例えば、飲食品包装用容器として用いることができる。上記のように、本容器は耐熱性に優れていることから、高温での使用に好適に適用できる。よって、本容器は特に、電子レンジ等による再加熱をする、半調理済みの冷凍食品用の包装用容器として好適に使用することができる。   There is no limitation in particular in the use of this container. This container can be used as a container for food and beverage packaging, for example. As described above, since this container is excellent in heat resistance, it can be suitably applied to use at high temperatures. Therefore, in particular, this container can be suitably used as a packaging container for semi-cooked frozen food that is reheated by a microwave oven or the like.

(2)PET成形容器の製造方法
本実施形態に係るPET成形容器の製造方法(以下、「本方法」という。)は結晶核剤及びIV=0.7以上の非晶状態のPETを含む中間層と、結晶核剤を含有しないIV=0.7以上の非晶状態のPETで構成され、前記中間層の外側表面及び内側表面に積層された外側表面層及び内側表面層と、を有し、前記外側表面層及び内側表面層の厚みの合計が、シート全体の厚みの16%以内である積層シートを、PETの結晶化温度以上の温度で熱成形し、前記中間層の非晶状態のPETを結晶化する。
(2) Method for Producing PET Molded Container A method for producing a PET molded container according to this embodiment (hereinafter referred to as “the present method”) is an intermediate containing a crystal nucleating agent and an amorphous PET having an IV = 0.7 or more. A layer, and an outer surface layer and an inner surface layer that are made of PET in an amorphous state of IV = 0.7 or more that does not contain a crystal nucleating agent, and are laminated on the outer surface and the inner surface of the intermediate layer. The laminated sheet in which the total thickness of the outer surface layer and the inner surface layer is within 16% of the total thickness of the sheet is thermoformed at a temperature equal to or higher than the crystallization temperature of PET, and the intermediate layer is in an amorphous state. Crystallize the PET.

前記中間層、前記外側表面層及び前記内側表面層の内容については、本容器における説明が妥当する。本方法では、成形部材(ロール又は金型等)と接する前記表面層が結晶核剤を含有しないA−PET等の非晶状態のPETで構成されている。よって、中間層のC−PETによる耐熱性を維持しつつ、結晶核剤に起因する成形部材の汚れを抑制することができ、歩留りを向上させることができる。   Regarding the contents of the intermediate layer, the outer surface layer, and the inner surface layer, the description in this container is appropriate. In this method, the surface layer in contact with the molded member (roll or mold or the like) is composed of amorphous PET such as A-PET that does not contain a crystal nucleating agent. Therefore, while maintaining the heat resistance by C-PET of the intermediate layer, it is possible to suppress the stain on the molded member due to the crystal nucleating agent, and to improve the yield.

前記積層シートを得る方法には特に限定はなく、公知のPETシートの成形方法により得ることができる。該成形方法としては、例えば、押出成形、射出成形、カレンダー成形、中空成形、真空成形、圧空成形が挙げられる。   The method for obtaining the laminated sheet is not particularly limited, and can be obtained by a known PET sheet molding method. Examples of the molding method include extrusion molding, injection molding, calendar molding, hollow molding, vacuum molding and pressure molding.

本方法により得られる容器は、上記のように、IV値が低くても優れた耐衝撃性を有する。よって、原料のPETとして、IV値が低いPETを使用することができる。また、原料のPETとして、新材PET(バージンPET)若しくは再利用PET又はこれらの混合物を用いることができる。前記PETとして、IV値が低いPET又は再利用PETを用いると、廃材量を減少させることにより環境への負荷が軽減され、また、生産コストを下げることができるので好ましい。前記再利用ポリエステル樹脂としては、例えば、工場内で発生したポリエステル樹脂の破材(例えば、容器成形時の破材)及びポリエステル樹脂含有製品から回収されたポリエステル樹脂が挙げられる。   As described above, the container obtained by this method has excellent impact resistance even if the IV value is low. Therefore, PET having a low IV value can be used as the raw material PET. Moreover, new material PET (virgin PET), reusable PET, or a mixture thereof can be used as the raw material PET. It is preferable to use PET having a low IV value or reused PET as the PET because the amount of waste material is reduced, the environmental load is reduced, and the production cost can be reduced. Examples of the recycled polyester resin include broken polyester resin material generated in a factory (for example, broken material at the time of container molding) and polyester resin recovered from a polyester resin-containing product.

本方法では、PETの結晶化温度以上の温度で熱成形し、前記中間層の非晶状態のPETを結晶化することができる限り、容器の成形方法には特に限定はない。前記成形方法として、ポリエステル樹脂組成物について一般に採用されている公知の成形方法、具体的には、例えば、真空成形法及び圧空成形法が挙げられる。   In this method, as long as the amorphous PET in the intermediate layer can be crystallized at a temperature equal to or higher than the crystallization temperature of PET, there is no particular limitation on the method for molding the container. Examples of the molding method include known molding methods generally employed for polyester resin compositions, specifically, for example, vacuum molding and pressure molding.

前記PETの結晶化温度以上の温度は、前記中間層の非晶状態のPETを結晶化することができる温度であれば特に限定はない。該温度は通常150〜200℃である。   The temperature above the crystallization temperature of the PET is not particularly limited as long as it is a temperature at which the amorphous PET in the intermediate layer can be crystallized. The temperature is usually 150 to 200 ° C.

また、容器の成形方法において、その他の成形条件については、熱成形をすることができる限り特に限定はなく、必要に応じて適宜決定することができる。例えば、成形条件は数秒から3分程度とすることができる。本方法では、前記表面層の厚さが薄いことから、短時間の熱成形でも前記中間層の非晶状態のPETを結晶化することができ、且つ前記表面層のA−PET等の非晶状態のPETの非晶状態を維持することができる。   In the container molding method, other molding conditions are not particularly limited as long as thermoforming can be performed, and can be appropriately determined as necessary. For example, the molding conditions can be from a few seconds to about 3 minutes. In this method, since the thickness of the surface layer is thin, it is possible to crystallize the amorphous PET in the intermediate layer even by short-time thermoforming, and amorphous such as A-PET in the surface layer. The amorphous state of the PET in the state can be maintained.

以下、実施例により本発明を具体的に説明する。尚、本発明は、実施例に示す形態に限定されない。本発明の実施形態は、目的及び用途等に応じて、本発明の範囲内で種々変更することができる。   Hereinafter, the present invention will be described specifically by way of examples. In addition, this invention is not limited to the form shown in the Example. The embodiment of the present invention can be variously modified within the scope of the present invention depending on the purpose and application.

(1)PET成形容器の製造
原料として、以下の各成分を用いた。尚、「MB」はマスターバッチの略である。また、以下の「PET1」及び「PET2」のIV値(dl/g)は、JIS K 7367−5に準拠して測定した。溶媒として、フェノール/1,1,2,2−テトラクロロエタン(重量比3/1)の混合溶媒を用いた。
(A)PET1(新材);遠東新世紀股▲分▼有限公司製「CH611」(IV値;1.05dl/g)
(B)PET2(新材);海南逸盛石化有限公司製「YS−H01」(IV値;0.75dl/g)
(C)結晶核剤MB;スイスSukano社製ポリエチレン系結晶核剤「S320」(ポリエチレン含量;90%)
(D)着色MB;PET40%+酸化チタン(TiO)60%
(1) Production of PET molded container The following components were used as raw materials. “MB” is an abbreviation for master batch. In addition, IV values (dl / g) of the following “PET1” and “PET2” were measured in accordance with JIS K 7367-5. As a solvent, a mixed solvent of phenol / 1,1,2,2-tetrachloroethane (weight ratio 3/1) was used.
(A) PET1 (new material); “CH611” manufactured by Far East New Century Co., Ltd. (IV value; 1.05 dl / g)
(B) PET2 (new material); “YS-H01” (IV value; 0.75 dl / g) manufactured by Hainan Yusheng Petrochemical Co., Ltd.
(C) Crystal nucleating agent MB; polyethylene-based crystal nucleating agent “S320” manufactured by Sukano, Switzerland (polyethylene content: 90%)
(D) Colored MB: PET 40% + titanium oxide (TiO 2 ) 60%

表面層形成材料及び中間層形成材料中の各成分の配合割合を表1に示す。実施例1では、PET(新材)を表面層形成材料として使用した。比較例1及び2では、PET(新材)及び結晶核剤MBを表1の割合で混合することにより、表面層形成材料を調製した。また、表1の割合でPET(新材)、結晶核剤MB及び着色MBを混合することにより、中間層形成用材料を調製した。   Table 1 shows the blending ratio of each component in the surface layer forming material and the intermediate layer forming material. In Example 1, PET (new material) was used as the surface layer forming material. In Comparative Examples 1 and 2, a surface layer forming material was prepared by mixing PET (new material) and crystal nucleating agent MB at the ratio shown in Table 1. Further, an intermediate layer forming material was prepared by mixing PET (new material), crystal nucleating agent MB, and colored MB in the proportions shown in Table 1.

前記中間層形成用材料及び前記表面層形成用材料を2軸押出機(株式会社プラスチック工学研究所製:型式「SBIN―42―S2―30−L」)に供給し、加工温度280℃で溶融混練押出しを行うことにより、PETシートを製造した。得られたPETシートは、シート厚みが0.40mmであり、層構造が2種3層(内側表面層/中間層/外側表面層=4/92/4)である。   The intermediate layer forming material and the surface layer forming material are supplied to a twin-screw extruder (manufactured by Plastic Engineering Laboratory Co., Ltd. model “SBIN-42-S2-30-L”) and melted at a processing temperature of 280 ° C. A PET sheet was produced by kneading extrusion. The obtained PET sheet has a sheet thickness of 0.40 mm and a layer structure of two types and three layers (inner surface layer / intermediate layer / outer surface layer = 4/92/4).

Figure 2018154369
Figure 2018154369

得られたPETシートを真空成形することにより(金型温度;160℃、成形時間;3秒)、実施例1並びに比較例1及び2のPET成形容器を製造した。該容器は、128mmφ×35mmの丸型カップである。   The obtained PET sheet was vacuum molded (mold temperature: 160 ° C., molding time: 3 seconds) to produce the PET molded containers of Example 1 and Comparative Examples 1 and 2. The container is a round cup of 128 mmφ × 35 mm.

(2)性能評価
実施例1並びに比較例1及び2のPET成形容器について、以下の方法により、耐熱性、耐寒衝撃性及び光沢度を評価した。
(2) Performance evaluation About the PET molding container of Example 1 and Comparative Examples 1 and 2, heat resistance, cold impact resistance, and glossiness were evaluated by the following methods.

(A)耐熱性
PET成形容器に食材(グラタンソース)を入れ、220℃のオーブンレンジで20分間加熱した。加熱前に、垂直に交差するように容器の直径に二方向の寸法及び容器の高さ寸法を測定し、加熱後に同じ個所の寸法を測定し、加熱前後の寸法の割合から収縮率を算出した。結果を表2に示す。表2中、「変化なし」は、収縮率が1%未満であることを意味する。
(A) Heat resistance A foodstuff (gratin sauce) was put in a PET molded container and heated in a microwave oven at 220 ° C for 20 minutes. Before heating, measure the dimensions of the container in two directions and the height of the container so that they intersect perpendicularly, measure the dimensions of the same part after heating, and calculate the shrinkage ratio from the ratio of the dimensions before and after heating . The results are shown in Table 2. In Table 2, “No change” means that the shrinkage rate is less than 1%.

Figure 2018154369
Figure 2018154369

表2より、実施例1のPET成形容器では、加熱後の収縮率が1%未満であり、耐熱性に優れていることが分かる。この耐熱性試験における加熱条件(220℃)において、C−PETで構成されるPET成形容器では変形は認められないことから、実施例1のPET成形容器は、C−PETで構成されるPET成形容器と同等の耐熱性を有する。   From Table 2, it can be seen that in the PET molded container of Example 1, the shrinkage after heating is less than 1%, and the heat resistance is excellent. Under the heating conditions (220 ° C.) in this heat resistance test, no deformation is observed in the PET molded container composed of C-PET, so the PET molded container of Example 1 is PET molded composed of C-PET. It has the same heat resistance as the container.

(B)耐寒衝撃性
PET成形容器に水を入れて、−30℃雰囲気下で2日間保管することにより凍らせた。その後、PET成形容器を段ボール箱に入れて(梱包数;容器6個×2段積み=12個)、箱ごと水平に落下させ(落下高さ;1.5m及び2m)、落下後に箱の中にある容器の割れ個数を確認した。各条件について2回ずつ試験を行った。結果を表3に示す。
(B) Cold impact resistance Water was put into a PET molded container and frozen by storing in a −30 ° C. atmosphere for 2 days. After that, put the PET molded container in a cardboard box (packing number; 6 containers x 2 stacks = 12) and drop the whole box horizontally (fall height: 1.5m and 2m) The number of cracks in the container was confirmed. The test was performed twice for each condition. The results are shown in Table 3.

Figure 2018154369
Figure 2018154369

表3より、実施例1は、IV値が同程度の比較例2と比べて容器の割れ個数が少なく、実施例1よりもIV値が大きい比較例1と同程度の結果であった。よって、実施例1は、IV値が低くても優れた耐衝撃性を有する。   From Table 3, Example 1 had the same number of cracks in the container as Comparative Example 2 having the same IV value, and the same result as Comparative Example 1 having a larger IV value than Example 1. Therefore, Example 1 has excellent impact resistance even when the IV value is low.

(C)光沢度
測定機(日本電色工業製「VG7000」)を用いて、PET成形容器の内面の光沢度を測定した。測定方法は、JIS Z 8741に準拠して、入射・受光角度を60°として測定を行った。また、参考として、A−PET成形容器の内面の光沢度も測定した。これらの結果を表4に示す。
(C) Glossiness The glossiness of the inner surface of the PET molded container was measured using a measuring instrument (“VG7000” manufactured by Nippon Denshoku Industries Co., Ltd.). The measurement was performed according to JIS Z 8741 with the incident / light receiving angle set to 60 °. For reference, the glossiness of the inner surface of the A-PET molded container was also measured. These results are shown in Table 4.

Figure 2018154369
Figure 2018154369

表4より、実施例1の光沢度は、比較例1及び2の光沢度よりも優れ、A−PET成形容器と同等の光沢度であることが分かる。実施例及び比較例の結果の差異は、表面の平滑性によるもの(前者は後者よりも平滑性に優れる。)と考えられる(これは発明者個人の見解の表明であり、発明を限定する趣旨の記載ではない。)。   From Table 4, it can be seen that the glossiness of Example 1 is superior to that of Comparative Examples 1 and 2 and is equivalent to that of the A-PET molded container. The difference between the results of the examples and the comparative examples is considered to be due to the smoothness of the surface (the former is superior to the latter in terms of smoothness) (this is an expression of the inventor's personal opinion, and is intended to limit the invention) Is not described.)

Claims (3)

結晶性PETを含む中間層と、結晶核剤を含有しない非晶状態のPETで構成され、前記中間層の外側表面及び内側表面に積層された外側表面層及び内側表面層と、を有し、
前記外側表面層及び内側表面層の厚みの合計が、容器全体の厚みの16%以内であることを特徴とする、PET成形容器。
An intermediate layer containing crystalline PET, and an outer surface layer and an inner surface layer made of amorphous PET not containing a crystal nucleating agent and laminated on the outer surface and the inner surface of the intermediate layer,
The PET molded container, wherein the total thickness of the outer surface layer and the inner surface layer is within 16% of the total thickness of the container.
JIS Z8741に準拠して60°の角度で測定した光沢度が98%以上であることを特徴とする、請求項1記載のPET成形容器。   The PET molded container according to claim 1, wherein the glossiness measured at an angle of 60 ° in accordance with JIS Z8741 is 98% or more. 結晶核剤及びIV=0.7以上の非晶状態のPETを含む中間層と、結晶核剤を含有しない非晶状態のPETで構成され、前記中間層の外側表面及び内側表面に積層された外側表面層及び内側表面層と、を有し、前記外側表面層及び内側表面層の厚みの合計が、シート全体の厚みの16%以内である積層シートを、PETの結晶化温度以上の温度で熱成形し、前記中間層の前記非晶状態のPETを結晶化することを特徴とする、PET成形容器の製造方法。   It is composed of an intermediate layer containing a crystal nucleating agent and an amorphous PET of IV = 0.7 or more, and an amorphous PET containing no crystal nucleating agent, and is laminated on the outer surface and the inner surface of the intermediate layer. A laminated sheet having an outer surface layer and an inner surface layer, wherein the total thickness of the outer surface layer and the inner surface layer is within 16% of the total thickness of the sheet, at a temperature equal to or higher than the crystallization temperature of PET. A method for producing a PET molded container, which comprises thermoforming and crystallizing the amorphous PET in the intermediate layer.
JP2017053222A 2017-03-17 2017-03-17 Pet molding container and manufacturing method thereof Pending JP2018154369A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017053222A JP2018154369A (en) 2017-03-17 2017-03-17 Pet molding container and manufacturing method thereof
JP2022102328A JP7442576B2 (en) 2017-03-17 2022-06-27 PET molded container and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017053222A JP2018154369A (en) 2017-03-17 2017-03-17 Pet molding container and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022102328A Division JP7442576B2 (en) 2017-03-17 2022-06-27 PET molded container and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2018154369A true JP2018154369A (en) 2018-10-04

Family

ID=63717616

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017053222A Pending JP2018154369A (en) 2017-03-17 2017-03-17 Pet molding container and manufacturing method thereof
JP2022102328A Active JP7442576B2 (en) 2017-03-17 2022-06-27 PET molded container and its manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022102328A Active JP7442576B2 (en) 2017-03-17 2022-06-27 PET molded container and its manufacturing method

Country Status (1)

Country Link
JP (2) JP2018154369A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212840A (en) * 1992-02-04 1993-08-24 Ajinomoto Co Inc Heat-sealable polyester sheet
JP2907685B2 (en) * 1993-06-28 1999-06-21 積水化成品工業株式会社 Polyethylene terephthalate sheet molded heat-resistant container and method for producing the same
JP2005289472A (en) * 2004-04-01 2005-10-20 Lining Container Kk Thermoformed multi-layer container and manufacturing method thereof
JP2006312485A (en) * 2005-05-09 2006-11-16 Ryoji Odate Multilayered structure resin container
JP4223700B2 (en) * 2001-06-29 2009-02-12 株式会社吉野工業所 Manufacturing method of heat-resistant PET container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212840A (en) * 1992-02-04 1993-08-24 Ajinomoto Co Inc Heat-sealable polyester sheet
JP2907685B2 (en) * 1993-06-28 1999-06-21 積水化成品工業株式会社 Polyethylene terephthalate sheet molded heat-resistant container and method for producing the same
JP4223700B2 (en) * 2001-06-29 2009-02-12 株式会社吉野工業所 Manufacturing method of heat-resistant PET container
JP2005289472A (en) * 2004-04-01 2005-10-20 Lining Container Kk Thermoformed multi-layer container and manufacturing method thereof
JP2006312485A (en) * 2005-05-09 2006-11-16 Ryoji Odate Multilayered structure resin container

Also Published As

Publication number Publication date
JP7442576B2 (en) 2024-03-04
JP2022132301A (en) 2022-09-08

Similar Documents

Publication Publication Date Title
JP4776236B2 (en) Polylactic acid-based stretched laminated film
KR20070106679A (en) Biodegradable paper-based cup or package and production method
JP5903980B2 (en) Multilayer polyester sheet and molded product thereof
CN102365171A (en) Biaxially oriented metallized polylactic acid film with high metal adhesion and high barrier properties
JP5903981B2 (en) Multilayer polyester sheet and molded product thereof
US11230418B2 (en) Food container with reduced elution of hazardous substances
JP2008062524A (en) Film for laminating thermoforming sheet
TWI833128B (en) Heat-shrinkable polyester film
JP7442576B2 (en) PET molded container and its manufacturing method
JP3398579B2 (en) Heat-resistant transparent multilayer polyester sheet and molded product
KR101842601B1 (en) Heat resisting material having improved appearance, manufacturing method of the same and packaging container comprising the same
JP2017170902A (en) Multilayered polyester sheet and molded article of the same
JPS5939547A (en) Polyester multilayer vessel excellent in gas permeability-resistance and its manufacture
US10815347B2 (en) Blush-resistant film including pigments
JP6966274B2 (en) Multi-layer sheet for thermoforming and molded products
JP5153463B2 (en) Stretched polyester film for molding
DK3178883T3 (en) COMPOSITION FOR THE PREPARATION OF PARTICULARS ON THE BASIS OF PART CRYSTALLINE POLYETHYLENTRPHPHALATE
JP2004176042A (en) White polyester film for molding container, and container
TWI634007B (en) Molded body and method of manufacturing same
JPH10120802A (en) Polyester sheet and packaging container produced by fabricating the same
JP3811636B2 (en) Polyester laminated sheet and molded product comprising the same
WO2023149476A1 (en) Multilayer sheet for food, packaging material for food, container for food, and manufacturing method for multilayer sheet for food
WO2023149475A1 (en) Multilayer sheet for food, packaging material for food, container for food, and manufacturing method for multilayer sheet for food
JP2023088586A (en) Multilayer polyester sheet and packaging container using the same
JPH02127437A (en) Sheet comprising polyester resin composition and hot-molded material thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220329