JP4223700B2 - Manufacturing method of heat-resistant PET container - Google Patents

Manufacturing method of heat-resistant PET container Download PDF

Info

Publication number
JP4223700B2
JP4223700B2 JP2001199952A JP2001199952A JP4223700B2 JP 4223700 B2 JP4223700 B2 JP 4223700B2 JP 2001199952 A JP2001199952 A JP 2001199952A JP 2001199952 A JP2001199952 A JP 2001199952A JP 4223700 B2 JP4223700 B2 JP 4223700B2
Authority
JP
Japan
Prior art keywords
pet
container
crystalline
heat
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001199952A
Other languages
Japanese (ja)
Other versions
JP2003011947A (en
Inventor
槙作 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Kogyosho Co Ltd
Original Assignee
Yoshino Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshino Kogyosho Co Ltd filed Critical Yoshino Kogyosho Co Ltd
Priority to JP2001199952A priority Critical patent/JP4223700B2/en
Publication of JP2003011947A publication Critical patent/JP2003011947A/en
Application granted granted Critical
Publication of JP4223700B2 publication Critical patent/JP4223700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱PET容器に関する。
【0002】
【発明が解決しようとする課題】
PETを素材とした樹脂シートを熱成形した深絞り容器は、従来より知られているが、以下述べるような問題点があるため、耐熱性、耐衝撃性を有する耐熱容器を得ることは困難であった。
【0003】
熱成形による容器は比較的小型容器であるため、延伸倍率が低いので、充分な配向結晶化が得られず、耐熱性、剛性を大きくすることができなかった。
また、耐熱性を向上させるために、加熱金型でヒートセットを行うと、内部応力や熱収縮のために容器の寸法精度が悪いという問題があった。
また、結晶化すると、耐衝撃性が低くなり、割れやすくなったり、ヒートシール性も悪くなるという問題等がある。
【0004】
耐熱PETトレーの成形に使用される結晶化促進核剤入りの結晶性PET(CーPET)は、トレーと同じような成形プロセスではカップのような深絞り成形ができない。
【0005】
本発明は、上記の問題を解決することを課題とし、結晶状態の異なるPETを積層構成することによって、耐熱性、耐衝撃性の優れた耐熱PET容器を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記の課題を解決するため、耐熱PET容器の製造方法として、非晶性PETと結晶性PETとの各層が非晶状態である積層シートを、結晶性PETが容器の外側に配置されるようにして結晶性PETの結晶化温度以下の温度で熱成形することによって容器を成形し、次いで成形された容器を、容器内側と同形状の治具に嵌挿し、外側からヒーターにより結晶性PETの結晶化温度に加熱して、結晶性PETを熱結晶化させたことを特徴とする構成を採用する。
【0007】
製造方法の別実施形態として、内外側に非晶性PET、中間層に結晶性PETを配置し、各層が非晶状態である積層シートを、結晶性PETの結晶化温度以下の温度で熱成形することによって容器を成形し、次いで成形された容器を、容器内側と同形状の治具に嵌挿し、外側からヒーターにより結晶性PETの結晶化温度に加熱して、結晶性PETを熱結晶化させたことを特徴とする構成を採用する。
【0008】
また、製造方法の他の実施形態として、非晶性PETと、リサイクルPETと結晶性PETとを順次積層した積層シートを、結晶性PETが容器の外側に配置されるようして結晶性PETの結晶化温度以下の温度で熱成形することによって容器を成形し、次いで成形された容器を、容器内側と同形状の治具に嵌挿し、外側からヒーターにより結晶性PETの結晶化温度に加熱して、リサイクルPETと結晶性PETを熱結晶化させたことを特徴とする構成を採用する。
【0009】
【発明の実施の形態】
次に、本発明第1実施形態の耐熱PET容器について、図面を参照して説明する。
図1において、Aは、耐熱PET容器の容器本体であり、該容器本体Aは、胴壁1と底壁2および胴壁1上端に設けられた環状の上周縁3とからなっている。
【0010】
容器本体Aは、PETを素材樹脂とし、内側層4と外側層5の二層の積層体によって形成されている。
内側層4は、非晶性PETで非晶状態のPETである。
外側層5は、結晶性PETで、熱成形された後に加熱され、熱結晶化された結晶状態のPETである。
【0011】
次に、上記耐熱PET容器の製造方法について説明する。
容器の成形は、各層が非晶状態である非晶性PETと結晶性PETとの積層シートを、結晶性PETが容器の外側に配置されるようにし、通常の熱成形機を用い、結晶性PETの結晶化温度以下の温度で熱成形し、全てが非晶状態の容器を成形する。
【0012】
次に、容器の結晶化工程について説明する。
図2に示すように、熱成形された非晶質の容器を、容器内側と同形状のコア10とフランジ11とを具えた治具12に嵌挿し、吸引孔13を通じて真空吸引して治具12に締着させ、次いで、容器を回転させ、ヒーター14によって結晶性PETの結晶化温度(実施例では120゜C以上)の温度に加熱する。
外側の結晶性PETは、熱結晶化し、内側層4の非晶性PETは非晶状態のままである。
【0013】
外側層5は、熱結晶化したことによって耐熱性が付与され、色は透明から白色になる。
その際、容器を治具12に吸引締着しているので、内部応力や熱収縮のために容器の寸法が変わるということはない。
また、加熱装置として、容器と同形状の雄型と雌型を用いて型締めして、結晶化温度に加熱してもよい。
【0014】
次に、耐熱PET容器の作用効果について説明する。
耐熱容器の外側層5が熱結晶化PETであるので、耐熱性、剛性が付与される。 また、外側層5は熱結晶化により、透明から白色に変わるため着色する必要はない。
内側層4は非晶状態であるため、耐熱容器に耐衝撃性を付与される。
また、この耐熱PET容器には、内容物を収納した後に、被蓋フィルムを上周縁3にヒートシールするようにしているが、上周縁3上面は非晶性PETであるので、ヒートシール性は損なわれない。
【0015】
容器の廃棄にあたって、使用している樹脂はPETだけであるので、樹脂のリサイクルが可能である。
【0016】
次に、本発明第2実施形態の耐熱PET容器について説明する。
本実施形態は、容器本体の層構成を三層としたものである。
図3において、Aaは第1実施形態と同様の容器本体であり、容器本体Aaは、内側層20、中間層21、外側層22の三層から構成されている。
内側層20と外側層22は非晶性PET、中間層21は結晶化された結晶性PETである。
【0017】
耐熱PET容器の成形は、両外側に非晶性PET、中間層に結晶性PETを三層積層した各層が非晶状態の積層シートを、結晶性PETの結晶化温度以下の温度で熱成形することによって容器を成形し、次いで第1実施形態と同様にして、結晶性PETの結晶化温度以上に加熱して中間層21の結晶性PETを熱結晶化させる。
かくして、耐熱PET容器が得られる。
【0018】
本実施形態の耐熱容器は、前記第1実施形態と同様の作用効果がもたらされるが、さらに、外側層22が非晶性PETで透明であることによって、耐衝撃性とデザイン性の優れた耐熱容器が得られる。
【0019】
次に、第3実施形態の耐熱容器について説明する。
本実施形態は、耐熱容器の層構成を三層とし、結晶性PETを主とするリサイクルPETを用いたものである。
【0020】
図4において、Abは第1実施形態と同様の容器本体であり、該容器本体Abは、内側層30、中間層31、外側層32の三層から構成されている。
内側層30は非晶性PET、中間層31は熱結晶化されたリサイクルPET、外側層32は熱結晶化された結晶性PETである。
【0021】
耐熱PET容器の成形は、非晶性PET、リサイクルPET、結晶性バージンPETを順次積層した各層が非晶状態の積層シートを、結晶性PETが容器の外側層となるようにして結晶性PETの結晶化温度以下の温度で熱成形することにより容器を成形し、次いで成形された容器を加熱装置により結晶性PETの結晶化温度以上に加熱する。
かくして、中間層31と外側層32が熱結晶化された耐熱PET容器が得られる。
また、中間層にリサイクルPET、外側層にCーPETを用いてもよい。
【0022】
本実施形態の耐熱PET容器は、第1実施形態と同様の作用効果を得ることができるが、さらに、リサイクルPETを用いることによって、資源の再利用、節減に貢献することができる。
【0023】
【発明の効果】
本発明は、上記のように構成されているから、次の効果を奏する。
非晶性PETと熱結晶化された結晶性PETとの積層体によって容器本体を形成しているから、耐熱性と剛性、耐衝撃性に優れた耐熱PET容器が得られた。
【0024】
各層が非晶状態にある非晶性PETと結晶性PETの積層シートから、結晶性PETの結晶化温度以下の温度で成形するから、深絞り成形が容易にできるようになった。
【0025】
また、三層の積層シートから成形するときには、リサイクルPETを利用することができるようになり、資源の再利用に貢献することができた。
【図面の簡単な説明】
【図1】 第1実施形態の耐熱PET容器の説明図で、(a)は容器本体の断面正面図、(b)は容器本体壁面の断面図である。
【図2】 加熱装置の説明図である。
【図3】 第2実施形態の容器本体壁面の断面図である。
【図4】 第3実施形態の容器本体壁面の断面図である。
【符号の説明】
A、Aa、Ab 容器本体
1 胴壁
2 底壁
3 上周縁
4、20、30 内側層
5、22、32 外側層
10 コア
11 フランジ
12 治具
13 吸引孔
14 ヒーター
21、31 中間層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-resistant PET container.
[0002]
[Problems to be solved by the invention]
A deep-drawn container obtained by thermoforming a resin sheet made of PET has been conventionally known. However, because of the following problems, it is difficult to obtain a heat-resistant container having heat resistance and impact resistance. there were.
[0003]
Since the container formed by thermoforming is a relatively small container, the stretch ratio is low, so that sufficient orientation crystallization cannot be obtained, and heat resistance and rigidity cannot be increased.
Further, when heat setting is performed with a heating mold in order to improve heat resistance, there is a problem that the dimensional accuracy of the container is poor due to internal stress and heat shrinkage.
In addition, when crystallized, there are problems such as low impact resistance, easy cracking, and poor heat sealability.
[0004]
Crystalline PET (C-PET) containing a crystallization accelerating nucleating agent used for molding a heat-resistant PET tray cannot be deep drawn like a cup in the same molding process as the tray.
[0005]
An object of the present invention is to provide a heat-resistant PET container having excellent heat resistance and impact resistance by laminating and forming PET having different crystal states.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a heat-resistant PET container manufacturing method in which a laminated sheet in which each layer of amorphous PET and crystalline PET is in an amorphous state is disposed outside the container. In this way, the container is molded by thermoforming at a temperature lower than the crystallization temperature of crystalline PET, and then the molded container is inserted into a jig having the same shape as the inside of the container, and crystallized by a heater from the outside. The structure characterized by heat-crystallizing crystalline PET by heating to the crystallization temperature of crystalline PET is employ | adopted.
[0007]
As another embodiment of the manufacturing method, amorphous PET is disposed on the inner and outer sides, crystalline PET is disposed on the intermediate layer, and a laminated sheet in which each layer is in an amorphous state is thermoformed at a temperature lower than the crystallization temperature of crystalline PET. Then, the container is molded, and then the molded container is inserted into a jig having the same shape as the inside of the container, and heated from the outside to the crystallization temperature of crystalline PET by thermal crystallization. A configuration characterized by having been adopted is adopted.
[0008]
As another embodiment of the manufacturing method, a laminated sheet obtained by sequentially laminating amorphous PET, recycled PET, and crystalline PET is used to form crystalline PET so that the crystalline PET is disposed outside the container. The container is formed by thermoforming at a temperature below the crystallization temperature, and then the formed container is inserted into a jig having the same shape as the inside of the container, and heated from the outside to the crystallization temperature of crystalline PET. Thus, a configuration characterized by thermally crystallizing recycled PET and crystalline PET is adopted.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the heat-resistant PET container according to the first embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, A is a container body of a heat-resistant PET container, and the container body A is composed of a trunk wall 1, a bottom wall 2, and an annular upper peripheral edge 3 provided at the upper end of the trunk wall 1.
[0010]
The container body A is made of a two-layered laminate of an inner layer 4 and an outer layer 5 using PET as a raw material resin.
The inner layer 4 is amorphous PET and PET in an amorphous state.
The outer layer 5 is crystalline PET, which is a PET in a crystalline state that is heat-crystallized after being thermally molded.
[0011]
Next, the manufacturing method of the said heat-resistant PET container is demonstrated.
For forming the container, a laminated sheet of amorphous PET and crystalline PET in which each layer is in an amorphous state is arranged so that the crystalline PET is arranged outside the container, and a crystalline material is used with a normal thermoforming machine. Thermoforming is performed at a temperature lower than the crystallization temperature of PET to form an entirely amorphous container.
[0012]
Next, the crystallization process of the container will be described.
As shown in FIG. 2, the thermoformed amorphous container is inserted into a jig 12 having a core 10 and a flange 11 having the same shape as the inside of the container, and vacuum sucked through a suction hole 13 to form a jig. Then, the container is rotated and heated to a temperature of the crystallization temperature of crystalline PET (120 ° C. or more in the embodiment) by the heater 14.
The outer crystalline PET is thermally crystallized and the amorphous PET of the inner layer 4 remains in an amorphous state.
[0013]
The outer layer 5 is given heat resistance due to thermal crystallization, and the color changes from transparent to white.
At this time, since the container is sucked and fastened to the jig 12, the dimensions of the container do not change due to internal stress or heat shrinkage.
Further, as a heating device, a male mold and a female mold having the same shape as the container may be clamped and heated to the crystallization temperature.
[0014]
Next, the effect of the heat resistant PET container will be described.
Since the outer layer 5 of the heat-resistant container is thermally crystallized PET, heat resistance and rigidity are imparted. Further, the outer layer 5 does not need to be colored because it changes from transparent to white by thermal crystallization.
Since the inner layer 4 is in an amorphous state, impact resistance is imparted to the heat-resistant container.
Further, in this heat-resistant PET container, after the contents are stored, the cover film is heat-sealed to the upper peripheral edge 3, but the upper surface of the upper peripheral edge 3 is amorphous PET. Not damaged.
[0015]
When discarding the container, the only resin used is PET, so that the resin can be recycled.
[0016]
Next, the heat resistant PET container of the second embodiment of the present invention will be described.
In the present embodiment, the layer structure of the container body is three layers.
In FIG. 3, Aa is a container body similar to that of the first embodiment, and the container body Aa is composed of three layers: an inner layer 20, an intermediate layer 21, and an outer layer 22.
The inner layer 20 and the outer layer 22 are amorphous PET, and the intermediate layer 21 is crystallized crystalline PET.
[0017]
The heat-resistant PET container is molded by thermoforming a laminated sheet in which three layers of amorphous PET are laminated on both outer sides and crystalline PET is laminated on the intermediate layer and each layer is in an amorphous state at a temperature lower than the crystallization temperature of crystalline PET. Thus, the container is molded, and then the crystalline PET of the intermediate layer 21 is thermally crystallized by heating to a temperature equal to or higher than the crystallization temperature of the crystalline PET in the same manner as in the first embodiment.
Thus, a heat-resistant PET container is obtained.
[0018]
The heat-resistant container of the present embodiment provides the same effects as those of the first embodiment, but further, the outer layer 22 is made of amorphous PET and is transparent so that it has excellent impact resistance and design. A container is obtained.
[0019]
Next, the heat-resistant container of 3rd Embodiment is demonstrated.
In this embodiment, the heat-resistant container has three layers and uses recycled PET mainly made of crystalline PET.
[0020]
In FIG. 4, Ab is a container body similar to that of the first embodiment, and the container body Ab is composed of three layers: an inner layer 30, an intermediate layer 31, and an outer layer 32.
The inner layer 30 is amorphous PET, the intermediate layer 31 is thermally crystallized recycled PET, and the outer layer 32 is thermally crystallized crystalline PET.
[0021]
Molding of the heat-resistant PET container is performed by forming a laminated sheet in which each layer of amorphous PET, recycled PET, and crystalline virgin PET is sequentially laminated, and the crystalline PET is an outer layer of the container. The container is formed by thermoforming at a temperature below the crystallization temperature, and then the formed container is heated to a temperature above the crystallization temperature of crystalline PET by a heating device.
Thus, a heat-resistant PET container in which the intermediate layer 31 and the outer layer 32 are thermally crystallized is obtained.
Further, recycled PET may be used for the intermediate layer, and C-PET may be used for the outer layer.
[0022]
The heat-resistant PET container of the present embodiment can obtain the same effects as the first embodiment, but can further contribute to resource reuse and saving by using recycled PET.
[0023]
【The invention's effect】
Since this invention is comprised as mentioned above, there exists the following effect.
Since the container body is formed of a laminate of amorphous PET and thermally crystallized crystalline PET, a heat resistant PET container excellent in heat resistance, rigidity, and impact resistance was obtained.
[0024]
Since a layered sheet of amorphous PET and crystalline PET in which each layer is in an amorphous state is molded at a temperature lower than the crystallization temperature of crystalline PET, deep drawing can be easily performed.
[0025]
Moreover, when it shape | molds from a three-layer lamination sheet, it became possible to utilize recycling PET and was able to contribute to reuse of resources.
[Brief description of the drawings]
1A and 1B are explanatory views of a heat-resistant PET container according to a first embodiment, wherein FIG. 1A is a sectional front view of a container body, and FIG. 1B is a sectional view of a container body wall surface.
FIG. 2 is an explanatory diagram of a heating device.
FIG. 3 is a cross-sectional view of a container body wall surface according to a second embodiment.
FIG. 4 is a cross-sectional view of a container body wall surface according to a third embodiment.
[Explanation of symbols]
A, Aa, Ab Container body
1 body wall
2 Bottom wall
3 Upper edge
4, 20, 30 inner layer
5, 22, 32 outer layer
10 cores
11 Flange
12 Jig
13 Suction hole
14 Heater
21, 31 Intermediate layer

Claims (3)

非晶性PETと結晶性PETとの各層が非晶状態である積層シートを、結晶性PETが容器の外側に配置されるようにして結晶性PETの結晶化温度以下の温度で熱成形することによって容器を成形し、次いで成形された容器を、容器内側と同形状の治具に嵌挿し、外側からヒーターにより結晶性PETの結晶化温度に加熱して、結晶性PETを熱結晶化させたことを特徴とする耐熱PET容器の製造方法。Thermoforming a laminated sheet in which each layer of amorphous PET and crystalline PET is in an amorphous state at a temperature equal to or lower than the crystallization temperature of crystalline PET so that the crystalline PET is disposed outside the container. The container was then molded, and the molded container was then inserted into a jig having the same shape as the inside of the container, and the crystallized PET was thermally crystallized by heating from the outside to the crystallization temperature of crystalline PET. A method for producing a heat-resistant PET container. 内外側に非晶性PET、中間層に結晶性PETを配置し、各層が非晶状態である積層シートを、結晶性PETの結晶化温度以下の温度で熱成形することによって容器を成形し、次いで成形された容器を、容器内側と同形状の治具に嵌挿し、外側からヒーターにより結晶性PETの結晶化温度に加熱して、結晶性PETを熱結晶化させたことを特徴とする耐熱PET容器の製造方法。Amorphous PET is disposed on the inner and outer sides, crystalline PET is disposed on the intermediate layer, and a laminated sheet in which each layer is in an amorphous state is molded by thermoforming at a temperature lower than the crystallization temperature of crystalline PET, Next, the molded container is inserted into a jig having the same shape as the inside of the container, and heated from the outside to the crystallization temperature of the crystalline PET, and the crystalline PET is thermally crystallized. A method for producing a PET container. 非晶性PETと、リサイクルPETと結晶性PETとを順次積層した積層シートを、結晶性PETが容器の外側に配置されるようして結晶性PETの結晶化温度以下の温度で熱成形することによって容器を成形し、次いで成形された容器を、容器内側と同形状の治具に嵌挿し、外側からヒーターにより結晶性PETの結晶化温度に加熱して、リサイクルPETと結晶性PETを熱結晶化させたことを特徴とする耐熱PET容器の製造方法。Thermoforming a laminated sheet of amorphous PET, recycled PET, and crystalline PET in sequence, at a temperature below the crystallization temperature of crystalline PET so that the crystalline PET is placed outside the container. The container is then molded, and then the molded container is inserted into a jig having the same shape as the inside of the container, and heated from the outside to the crystallization temperature of the crystalline PET by a heater to recycle the recycled PET and the crystalline PET. A method for producing a heat-resistant PET container, characterized in that
JP2001199952A 2001-06-29 2001-06-29 Manufacturing method of heat-resistant PET container Expired - Fee Related JP4223700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001199952A JP4223700B2 (en) 2001-06-29 2001-06-29 Manufacturing method of heat-resistant PET container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001199952A JP4223700B2 (en) 2001-06-29 2001-06-29 Manufacturing method of heat-resistant PET container

Publications (2)

Publication Number Publication Date
JP2003011947A JP2003011947A (en) 2003-01-15
JP4223700B2 true JP4223700B2 (en) 2009-02-12

Family

ID=19037160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001199952A Expired - Fee Related JP4223700B2 (en) 2001-06-29 2001-06-29 Manufacturing method of heat-resistant PET container

Country Status (1)

Country Link
JP (1) JP4223700B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154369A (en) * 2017-03-17 2018-10-04 リスパック株式会社 Pet molding container and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617673B1 (en) * 2007-11-12 2013-12-31 Placon Corporation Thermoformable heat-sealable PET sheet material
JP6406565B2 (en) * 2013-11-27 2018-10-17 大日本印刷株式会社 Polyester film
JP2015112768A (en) * 2013-12-10 2015-06-22 大日本印刷株式会社 Polyester sheet
JP6844650B2 (en) * 2019-04-25 2021-03-17 大日本印刷株式会社 Polyester film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154369A (en) * 2017-03-17 2018-10-04 リスパック株式会社 Pet molding container and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003011947A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP3828598B2 (en) In-mold label container and manufacturing method thereof
JPS59159309A (en) Method for forming multi-color skin member
JP4223700B2 (en) Manufacturing method of heat-resistant PET container
JPH10218235A (en) Compound container and its manufacture
JP6300072B2 (en) In-mold label container and manufacturing method thereof
JP4629171B2 (en) In-mold label container and manufacturing method thereof
JP2002002655A (en) Pulp mold tray and its producing method
JP6569963B2 (en) In-mold label container and manufacturing method thereof
JP3776491B2 (en) Barrier molded article and manufacturing method thereof
JP2007308163A (en) Composite container and its manufacturing process
JP4509334B2 (en) Molding method of resin panel
JP4278849B2 (en) Molding method of resin panel
JP4319729B2 (en) Cooling container and manufacturing method thereof
JP3020075U (en) Drain pan for air conditioner
JP2006182411A (en) In-mold container and its manufacture method
JP2001328614A (en) Heat-resistant container and its manufacturing method
JPH04331132A (en) Method of painting expansion-molded vessel
JP2001322617A (en) Heat-resistant container
JP2935066B2 (en) Hot plate molding method for food container lid
JP4115151B2 (en) Manufacturing method of decorative sheet and decorative molded product
JP3209232B2 (en) Method for manufacturing multilayer thin-walled container
JPH03274139A (en) Preparation of container
JP2007076011A (en) Manufacturing method of composite molded product
JP4077233B2 (en) Synthetic resin thin container
JP5167864B2 (en) Paper cup

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Ref document number: 4223700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees