WO2023149476A1 - Multilayer sheet for food, packaging material for food, container for food, and manufacturing method for multilayer sheet for food - Google Patents

Multilayer sheet for food, packaging material for food, container for food, and manufacturing method for multilayer sheet for food Download PDF

Info

Publication number
WO2023149476A1
WO2023149476A1 PCT/JP2023/003229 JP2023003229W WO2023149476A1 WO 2023149476 A1 WO2023149476 A1 WO 2023149476A1 JP 2023003229 W JP2023003229 W JP 2023003229W WO 2023149476 A1 WO2023149476 A1 WO 2023149476A1
Authority
WO
WIPO (PCT)
Prior art keywords
food
resin layer
temperature
layer
slope
Prior art date
Application number
PCT/JP2023/003229
Other languages
French (fr)
Japanese (ja)
Inventor
直紀 田矢
壮 宮田
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2023149476A1 publication Critical patent/WO2023149476A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a multilayer food sheet, a packaging material for food, a container for food, and a method for producing a multilayer food sheet.
  • food containers, etc. are required to have heat resistance because they may come into direct or indirect contact with heated food.
  • containers used for foods that are heated by a microwave oven or the like are required to maintain their intended functions without being deformed or degraded even under heating.
  • synthetic resins with good heat resistance such as polypropylene, have conventionally been used for the resin layers of multilayer food sheets.
  • Patent Document 1 As a microwave paper container having a resin layer having excellent oil resistance when heated, a laminate having a resin layer made of a kneaded product of biomass resin and synthetic resin on at least one side of a paper substrate is molded. Disclosed is a microwave paper container characterized by:
  • Patent Document 1 is a technique that requires the blending of a synthetic resin that may affect the environment in addition to the biomass resin, so it sufficiently solves the problem of reducing the environmental load. I wouldn't say. Therefore, there is a demand for a multi-layer food sheet that uses materials with less environmental impact and that has excellent heat resistance.
  • the present invention has been made in view of the above problems, and has a small environmental load and excellent heat resistance.
  • the object is to provide a food container.
  • the present inventors have found that the above problems can be solved by applying a resin layer containing polylactic acid and exhibiting specific behavior in thermomechanical analysis to a multi-layer food sheet. Arrived.
  • the present invention relates to the following [1] to [12].
  • [1] having a paper substrate and a resin layer provided on one or both sides of the paper substrate,
  • the resin layer contains polylactic acid
  • the slope of the curve at each temperature was obtained, and the slope was measured against the temperature.
  • a multi-layer sheet for foods, wherein the temperature-slope curve obtained by plotting has two or less peaks.
  • the softening point temperature obtained by analysis according to JIS K 7196 (2012) from the temperature-displacement curve corresponding to the maximum peak of the displacement slope. is 140° C. or higher, the food multilayer sheet according to [1] above.
  • the multi-layered sheet for foods according to [8] The multi-layer sheet for food according to any one of [1] to [7] above, wherein the resin layer has a thickness of 1 to 120 ⁇ m. [9] Any one of the above [1] to [8], wherein the displacement rate of the resin layer between 0 ° C. and 140 ° C. measured by thermomechanical analysis according to JIS K 7196 (2012) is 20% or less. 3.
  • the multi-layer sheet for food according to . [10] A food packaging material formed using the multi-layer food sheet according to any one of [1] to [9] above.
  • a method for producing a multilayer food sheet according to any one of [1] to [9] above comprising a step of forming a resin layer by forming a layer of a resin layer-forming material containing polylactic acid, followed by annealing treatment.
  • the present invention it is possible to provide a multi-layer food sheet with low environmental load and excellent heat resistance, a method for producing the same, and a food packaging material and a food container using the multi-layer food sheet.
  • the lower and upper limits described stepwise can be independently combined.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • biomass means renewable organic resources derived from living organisms, excluding fossil resources.
  • the food multilayer sheet of the present embodiment is Having a paper substrate and a resin layer provided on one or both surface sides of the paper substrate,
  • the resin layer contains polylactic acid
  • the slope of the curve at each temperature was obtained, and the slope was measured against the temperature.
  • the food multilayer sheet has two or less peaks in a plotted temperature-slope curve (hereinafter also referred to as "the number of peaks of displacement slope").
  • FIG. 1 shows a schematic cross-sectional view of a multilayer food sheet 1 that is an example of the present embodiment.
  • the food multi-layer sheet 1 has a structure in which a resin layer 3 is directly laminated on one surface of a paper substrate 2 .
  • a resin layer 3 is directly laminated on one surface of a paper substrate 2 .
  • the paper base material of the food multilayer sheet of the present embodiment is not particularly limited, and can be appropriately selected according to the use of the food multilayer sheet.
  • Examples of paper substrates include woodfree paper, kraft paper, glassine paper, parchment paper, rayon paper, gravure paper, art paper, coated paper, recycled paper, and synthetic paper. One layer of these paper substrates may be used alone, or two or more layers of the same or different paper substrates may be laminated for use.
  • the paper substrate may be subjected to a surface modification treatment to improve adhesion on the side on which the resin layer is provided.
  • a surface modification treatment include formation of a primer layer, ozone treatment, corona treatment, plasma treatment, and ultraviolet treatment. These surface treatments may be performed singly or in combination. Among these, ozone treatment and corona treatment are preferred.
  • the basis weight of the paper base is not particularly limited, it is preferably 20 to 400 g/m 2 , more preferably 30 to 350 g/m 2 , still more preferably 40 to 300 g/m 2 .
  • the basis weight of the paper substrate is preferably 20 to 100 g/m 2 , more preferably 30 to 80 g/m 2 , still more preferably 40 to 60 g/m 2 .
  • the basis weight of the paper substrate is preferably 100-400 g/m 2 , more preferably 150-350 g/m 2 , still more preferably 200-300 g/m 2 .
  • the basis weight of the paper base is within the above range, the balance between lightness and strength of the paper base tends to be better.
  • the thickness of the paper substrate is not particularly limited, but is preferably 20 ⁇ m to 2 mm, more preferably 30 ⁇ m to 1 mm, still more preferably 40 ⁇ m to 500 ⁇ m.
  • the thickness of the paper substrate is preferably 25-110 ⁇ m, more preferably 35-90 ⁇ m, and even more preferably 45-80 ⁇ m.
  • the thickness of the paper substrate is preferably 100-600 ⁇ m, more preferably 160-500 ⁇ m, still more preferably 220-400 ⁇ m.
  • the thickness of the paper substrate is at least the above lower limit, the strength of the paper substrate is improved, and it tends to be possible to suppress unintentional tearing. Further, when the thickness of the paper substrate is equal to or less than the above upper limit, the lightness and flexibility tend to be better.
  • the "thickness of the paper base material” means the thickness of the entire paper base material, and when the paper base material is a base material consisting of multiple layers, the total means the thickness of
  • the resin layer of the food multi-layer sheet of the present embodiment contains polylactic acid.
  • the resin layer may contain only polylactic acid, but may contain components other than polylactic acid, if necessary. Examples of components other than polylactic acid include nucleating agents.
  • polylactic acid Lactic acid which is a raw material for polylactic acid, is a renewable biomass material because it can be produced by allowing lactic acid bacteria to act on glucose, sucrose, etc. extracted from plants.
  • polylactic acid is a resin that is biodegradable under predetermined conditions, the multi-layered sheet for food according to the present embodiment, in which polylactic acid is used for the resin layer, has a small environmental load.
  • biodegradability means a property capable of being chemically decomposed by the action of hydrolysis, enzymatic decomposition, microbial decomposition, or the like.
  • polylactic acid examples include, for example, one or more selected from the group consisting of L homopolymers, D homopolymers, L and D copolymers, L and D isomers, and poly(lactic acid) other than lactic acid. Examples thereof include copolymers with monomers.
  • One type of polylactic acid may be used alone, or two or more types may be used in combination.
  • Polylactic acid may contain structural units derived from monomers other than lactic acid, but from the viewpoint of further reducing the environmental load, the content of structural units derived from monomers other than lactic acid is Low is preferred. From this point of view, the content of lactic acid-derived structural units contained in polylactic acid is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and still more preferably 99 to 100% by mass.
  • the content of the structural unit derived from the L-form in the total polylactic acid contained in the resin layer is The content is preferably 94 to 100% by mass, more preferably 95 to 100% by mass, still more preferably 96 to 99.8% by mass.
  • the mass average molecular weight (Mw) of polylactic acid is not particularly limited, but is preferably 10,000 to 1,000,000, more preferably 50,000 to 800,000, and still more preferably 100,000 to 600,000. be.
  • Mw mass-average molecular weight
  • the mass average molecular weight (Mw) can be measured by the method described in Examples.
  • the melt flow rate (MFR) of polylactic acid at a temperature of 210° C. and a load of 2.16 kg is not particularly limited, but is preferably 3 to 20 g/10 minutes, more preferably 4 to 18 g/10 minutes, and still more preferably 5 to 18 g/10 minutes. 15 g/10 minutes.
  • MFR melt flow rate
  • the melt flow rate (MFR) of polylactic acid can be measured by the method described in Examples.
  • Polylactic acid may be obtained by a one-step process of directly polymerizing lactic acid to obtain a polymer, or obtained by a two-step process of ring-opening polymerization of lactide obtained by a cyclization reaction to obtain a polymer. It can be anything.
  • the content of polylactic acid in the resin layer is not particularly limited, but from the viewpoint of further reducing the environmental load, it is preferably 60 to 100% by mass, more preferably 80 to 100% by mass, based on the resin layer (100% by mass). 100% by mass, more preferably 90 to 100% by mass.
  • the content of polylactic acid in all the resins contained in the resin layer is not particularly limited, but from the viewpoint of further reducing the environmental load, it is preferably is 90 to 100% by mass, more preferably 95 to 100% by mass, still more preferably 99 to 100% by mass.
  • nucleating agent When the resin layer further contains a nucleating agent, the crystallinity of the resin layer is enhanced, and the number of peaks of the displacement slope of the resin layer tends to be easily adjusted to two or less.
  • a nucleating agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • nucleating agents examples include inorganic nucleating agents such as clay, talc, bentonite, silica, calcium sulfate, calcium carbonate, sodium hydrogen carbonate, and ammonium hydrogen carbonate; metal carboxylates, sorbitol compounds, metal phosphate organic nucleating agents such as salts;
  • the content of the nucleating agent in the resin layer is not particularly limited. 100% by mass), preferably 0.1 to 40% by mass, more preferably 1 to 25% by mass, and still more preferably 2 to 10% by mass.
  • the resin layer may or may not contain components other than the components described above as long as the effects of the present invention are not impaired.
  • Other components include, for example, resins other than polylactic acid; additives such as antioxidants, lubricants, ultraviolet absorbers, colorants, and antiblocking agents; and the like.
  • additives such as antioxidants, lubricants, ultraviolet absorbers, colorants, and antiblocking agents; and the like.
  • one type may be used alone, or two or more types may be used in combination.
  • the resin other than polylactic acid is preferably a biomass-derived resin from the viewpoint of further reducing the environmental load.
  • the content of the biomass-derived resin (including polylactic acid) contained in the resin layer is preferably based on the total resin (100% by mass) contained in the resin layer. is 90 to 100% by mass, more preferably 95 to 100% by mass, still more preferably 99 to 100% by mass.
  • the content of the other components is not particularly limited, but each is preferably 0.0001 to 40% by mass, more preferably 0.0001 to 40% by mass, based on the resin layer (100% by mass). is 0.0005 to 25% by mass, more preferably 0.001 to 10% by mass.
  • the heat of fusion of the resin layer in differential scanning calorimetry according to JIS K 7122 (2012) is preferably 36 J/g or more, more preferably 37 J/g or more, still more preferably 38 J/g or more, and even more preferably 39 J/g or more. is.
  • the heat of fusion of the resin layer is equal to or higher than the above lower limit, the multi-layer sheet for food of the present embodiment has excellent heat resistance.
  • the amount of heat of fusion of the resin layer can be adjusted within the above range, for example, by increasing the crystallinity of the resin layer.
  • Examples of the method for enhancing the crystallinity of the resin layer include a method of adding a nucleating agent, a method of performing an annealing treatment after forming a layer of the resin layer-forming material, and the like. It is also effective to select polylactic acid having a high L-form content as the polylactic acid contained in the resin layer.
  • the upper limit of the heat of fusion of the resin layer is not particularly limited, it is preferably 60 J/g or less, more preferably 55 J/g or less, still more preferably 50 J/g or less.
  • the resin layer has appropriate flexibility, and the occurrence of cracks, peeling, etc. in the resin layer due to bending, impact, etc. tends to be suppressed.
  • the heat of fusion of the resin layer can be measured by the method described in Examples.
  • the melting point of the resin layer is not particularly limited, it is preferably 140 to 180°C, more preferably 150 to 175°C, still more preferably 160 to 170°C.
  • the melting point of the resin layer is at least the above lower limit, the resin layer is less likely to melt even when it comes into contact with heated food or the like, and there is a tendency to obtain a multi-layered sheet for food with more excellent heat resistance.
  • the melting point of the resin layer is equal to or lower than the above upper limit, the resin layer has appropriate flexibility, and the resin layer tends to be prevented from cracking, peeling, or the like due to bending, impact, or the like. .
  • the melting point of the resin layer can be measured by the method described in Examples.
  • thermomechanical properties of resin layer In the temperature-displacement curve from -20 ° C. to the indentation completion temperature of the resin layer obtained by thermomechanical analysis according to JIS K 7196 (2012), the slope of the curve at each temperature is obtained, and the slope is plotted against the temperature. The number of peaks in the temperature-slope curve obtained by this is two or less. When the number of peaks of the displacement slope is 2 or less, the multi-layered sheet for food of the present embodiment has excellent heat resistance.
  • the peak number of the displacement slope of the resin layer can be adjusted to the above range by, for example, increasing the crystallinity of the resin layer.
  • Examples of the method for enhancing the crystallinity of the resin layer include a method of adding a nucleating agent, a method of performing an annealing treatment after forming a layer of the resin layer-forming material, and the like. It is also effective to select polylactic acid having a high L-form content as the polylactic acid contained in the resin layer.
  • the peak number of the displacement slope can be measured by the method described in the Examples.
  • the softening point temperature T ( 1) is not particularly limited, but is preferably 140° C. or higher, more preferably 143° C. or higher, and still more preferably 145° C. or higher.
  • the softening point temperature T(1) of the resin layer is equal to or higher than the above lower limit, the multilayer food sheet of the present embodiment tends to be more excellent in heat resistance.
  • the softening point temperature T(1) of the resin layer is not particularly limited, but is preferably 180° C. or lower, more preferably 170° C. or lower, and even more preferably 165° C. or lower.
  • the softening point temperature T(1) of the resin layer When the softening point temperature T(1) of the resin layer is equal to or lower than the above upper limit, the resin layer has appropriate flexibility, and the occurrence of cracks, peeling, or the like in the resin layer due to bending, impact, or the like is suppressed. tend to The softening point temperature T(1) can be measured by the method described in Examples.
  • the displacement rate between 0 ° C. and 140 ° C. of the resin layer measured by thermomechanical analysis according to JIS K 7196 (2012) (absolute value of displacement at 140 ° C. ⁇ 100/thickness of the resin layer at 0 ° C.) Although not limited, it is preferably 20% or less, more preferably 15% or less, and still more preferably 10% or less. When the displacement rate between 0° C. and 140° C. of the resin layer is equal to or less than the above upper limit, the multilayer food sheet of the present embodiment tends to be more excellent in heat resistance.
  • the displacement rate between 0° C. and 140° C. of the resin layer is preferably as small as possible, and may be 0%. good.
  • the displacement rate between 0° C. and 140° C. of the resin layer can be measured by the method described in Examples.
  • the thickness of the resin layer is not particularly limited, it is preferably 1 to 120 ⁇ m, more preferably 5 to 50 ⁇ m, still more preferably 10 to 40 ⁇ m.
  • the thickness of the resin layer is at least the above lower limit, the multilayer food sheet of the present embodiment tends to have better water resistance, oil resistance, and the like. Further, when the thickness of the resin layer is equal to or less than the above upper limit, the environmental load can be further reduced, and the economic efficiency tends to be excellent.
  • the ratio of the thickness of the resin layer to the thickness of the paper base [resin layer/paper base] is not particularly limited, but is preferably 0.01 to 1.5, more preferably 0.03 to 0.8. , more preferably 0.05 to 0.5.
  • the thickness ratio [resin layer/paper substrate] is at least the above lower limit, the multi-layered sheet for food of the present embodiment tends to have better water resistance, oil resistance, and the like. Further, when the thickness ratio [resin layer/paper substrate] is equal to or less than the above upper limit, the environmental load tends to be further reduced.
  • the food multi-layer sheet of the present embodiment may or may not have one or more layers other than the paper substrate and the resin layer.
  • Other layers can be provided, for example, between the paper substrate and the resin layer, on the side opposite to the resin layer of the paper substrate, and when there are two or more other layers, each has the same composition or may have different compositions.
  • Other layers include, for example, a barrier layer provided between the paper substrate and the resin layer, an adhesive layer for improving the adhesion between any of the layers, and a layer for imparting design properties to the paper substrate.
  • the printing layer etc. which are provided are mentioned.
  • the components contained in the other layers are preferably biomass-derived components from the viewpoint of further reducing the environmental load.
  • the barrier layer includes, for example, a gas barrier layer that blocks permeation of oxygen gas and water vapor, and a light-shielding barrier layer that imparts a light-shielding property that blocks permeation of visible light, ultraviolet light, and the like.
  • a gas barrier layer that blocks permeation of oxygen gas and water vapor
  • a light-shielding barrier layer that imparts a light-shielding property that blocks permeation of visible light, ultraviolet light, and the like.
  • These can be formed by, for example, vapor deposition films of inorganic substances, inorganic oxides, etc.; metal foils; and the like.
  • Vapor-deposited films of inorganic substances, inorganic oxides, etc. can be formed by using conventionally known inorganic substances, inorganic oxides, etc., for example, by a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • the metal foil conventionally known metal foils can be used,
  • a curable or non-curing type adhesive can be used, for example, acrylic adhesive, polyester adhesive, polyether adhesive, polyurethane adhesive, epoxy adhesive, rubber adhesive. Examples include adhesives and the like.
  • the printed layer is a layer provided for imparting design properties such as characters, information, patterns, and pictures.
  • the printed layer can be formed using conventionally known coloring agents such as pigments and dyes, and the formation method is not particularly limited.
  • Inorganic pigments such as titanium yellow and chrome; organic pigments such as isoindolinone, Hansa Yellow A, quinacridone, permanent red 4R, phthalocyanine blue, and induslenbly RS; metal pigments made of metal powder such as aluminum and brass; titanium dioxide It can be formed with an ink using a colorant such as a pearlescent pigment made of foil powder such as coated mica or basic lead carbonate; a fluorescent pigment; or the like.
  • the total thickness of the food multilayer sheet of the present embodiment is not particularly limited, and may be determined according to the application of the food multilayer sheet of the present embodiment. It may be in the range of 180-530 ⁇ m, or it may be in the range of 240-430 ⁇ m.
  • the method for producing the food multi-layer sheet of the present embodiment is not particularly limited, and for example, it can be produced by laminating a resin layer-forming material containing polylactic acid on one or both sides of a paper substrate.
  • the resin layer-forming material may contain the above-described nucleating agent in addition to polylactic acid.
  • the other layer described above may be provided on the surface of the paper substrate on which the resin layer is laminated.
  • "on the paper base material” means one surface of the paper base material, both surfaces of the paper base material, surfaces of other layers provided on one side of the paper base material, paper It is intended to include all the surfaces of other layers provided on both sides of the substrate.
  • Methods for laminating the resin layer-forming material on the paper substrate include, for example, a method of melt extruding the resin layer-forming material onto the paper substrate, and a method of applying the resin layer-forming material as a coating liquid onto the paper substrate. Examples thereof include a method of coating and drying, and a method of laminating a resin layer-forming material formed into a sheet on a paper substrate. Among these, the method of melt extruding the resin layer-forming material is preferable from the viewpoint of productivity.
  • melt extruding the resin layer-forming material onto the paper substrate for example, there is a method of extruding the melted resin layer-forming material onto the paper substrate to form a layer using an extruder and a T-die. mentioned.
  • the melt extrusion temperature of the resin layer-forming material is not particularly limited, and may be appropriately set according to the type of resin constituting the resin layer. is 190-240°C. After the resin layer-forming material is melt-extruded, the formed resin layer may be cooled and solidified.
  • a coating liquid obtained by dissolving and dispersing the resin layer-forming material in a solvent is coated on the paper substrate and then dried.
  • the method of applying the coating liquid include roll coating, spin coating, spray coating, bar coating, knife coating, roll knife coating, blade coating, die coating, gravure coating, and the like.
  • a coating liquid of the resin layer-forming material is applied onto the release film in the same manner as described above, and then dried.
  • a method of forming a resin layer on a release film and laminating the resin layer on the release film to a paper substrate can be mentioned.
  • annealing treatment is performed after layer formation of the resin layer-forming material containing polylactic acid.
  • a step of applying to form a resin layer may be included.
  • Annealing treatment can be carried out, for example, by laminating the resin layer-forming material on one or both sides of the paper substrate and then heating.
  • the heating temperature in the annealing treatment is not particularly limited, and is preferably determined according to the type of polylactic acid. It may be 120°C.
  • the heating temperature in the annealing treatment may be determined based on the crystallization temperature of the resin layer before the annealing treatment (hereinafter also simply referred to as the “crystallization temperature”), and is preferably between the crystallization temperature of ⁇ 40° C. and the crystal.
  • the crystallization temperature is +50°C, more preferably crystallization temperature -35°C to crystallization temperature +40°C, more preferably crystallization temperature -30°C to crystallization temperature +30°C.
  • the heating temperature in the annealing treatment When the heating temperature in the annealing treatment is equal to or higher than the above lower limit, the heat of fusion of the resin layer tends to be sufficiently increased. Moreover, when the heating temperature in the annealing treatment is equal to or lower than the above upper limit, it tends to be easy to suppress unintended deterioration of the resin layer due to the annealing treatment.
  • the crystallization temperature of the resin layer before annealing can be measured by the method described in Examples.
  • the heating time in the annealing treatment is not particularly limited, but is preferably 10 seconds to 30 minutes, more preferably 20 seconds to 20 minutes, even more preferably 30 minutes, from the viewpoint of increasing the heat of fusion of the resin layer and from the viewpoint of productivity. seconds to 15 minutes.
  • the food multilayer sheet of the present embodiment is excellent in heat resistance, and is therefore suitable for food packaging materials, food containers, and the like.
  • the food multilayer sheet of the present embodiment is excellent in heat resistance, and is therefore suitable as a packaging material or container for foods heated in a microwave oven.
  • the food packaging material of the present embodiment is a food packaging material formed using the food multilayer sheet of the present embodiment, and the food container of the present embodiment uses the food multilayer sheet of the present embodiment. It is a food container formed by
  • the multi-layered food sheet of the present embodiment is formed into a bag shape, a cup shape, a tray shape, etc., and a material used for packaging food is provided. mentioned. These can be used, for example, when transporting, storing, selling, etc. sweets, lunch boxes, frozen foods, beverages, and the like.
  • One aspect of the food container of the present embodiment includes, for example, a material that is used to store food by molding the multilayer food sheet of the present embodiment into a cup shape, tray shape, dish shape, or the like. . These can be used, for example, when transporting, storing, or selling sweets, lunch boxes, frozen foods, beverages, etc., or disposable containers such as disposable cups and disposable plates. Incidentally, on the side opposite to the resin layer of the paper base material of the food packaging material and the food container, matters related to the contents, various designs, etc. may be applied by printing or the like as appropriate.
  • Food packaging materials and food containers can be produced, for example, by molding the multi-layer food sheet of the present embodiment into a desired shape.
  • Examples of the method for molding the multilayer food sheet of the present embodiment include vacuum molding, air pressure molding, match mold molding, and the like.
  • the food multi-layer sheet of the present embodiment may be heat-sealed and assembled by heat-sealing.
  • MFR Melt flow rate of polylactic acid
  • the MFR of polylactic acid was measured according to JIS K 7210-1:2014 using a descending flow tester (manufactured by Shimadzu Corporation, model number "CFT-100D") at a temperature of 210°C and a load of 2.16 kg. It was measured.
  • the resin layer of the multi-layer food sheet having a thickness of 100 ⁇ m prepared in each example was used as a measurement sample, About 5 mg of the sample is put into an aluminum pan, and a differential scanning calorimeter (DSC) (manufactured by TA Instruments, product name "Q2000") is used to measure the temperature range from -120 to 200 ° C. under a nitrogen atmosphere. , and a temperature increase rate of 10° C./min.
  • DSC differential scanning calorimeter
  • thermomechanical analysis (TMA) device manufactured by Netch Japan Co., Ltd., trade name "TMA 4000SE" was applied to the multi-layer food sheet having a resin layer thickness of 100 ⁇ m prepared in each example so that the measurement surface was the resin layer. ”), using a cylindrical indenter with a tip diameter of 1 mm and a length of 1 mm, from the measurement temperature range of -20 ° C to the indenter penetration completion temperature, in an air atmosphere, at a temperature increase rate of 5 ° C / min.
  • a temperature-displacement curve was obtained.
  • the displacement rate between 0° C. and 140° C. absolute value of displacement at 140° C. ⁇ 100/thickness of resin layer at 0° C.
  • the slope of the curve at each temperature was determined, and the temperature-slope curve was obtained by plotting the slope against the temperature.
  • the number of peaks (number of peaks of displacement slope) from ⁇ 20° C. to the indentation completion temperature was confirmed.
  • the peak was identified as the "maximum displacement slope peak" when two or more peaks were confirmed.
  • the softening point temperature was determined by analysis according to JIS K 7196 (2012), and this was defined as "softening point temperature T(1)".
  • Examples 3-5 A resin layer-forming material composed of polylactic acid described in Table 1 or a resin layer-forming material obtained by mixing polylactic acid and a nucleating agent was treated in the same manner as in Example 1 to obtain a paper base material described in Table 1.
  • the resin layer was cooled and solidified by a water-cooled roll adjusted to a water temperature of 23°C. Thereafter, the sheet was annealed under the conditions shown in Table 1 in an air atmosphere, and then naturally cooled in the air to obtain a multi-layered sheet for food.
  • Table 1 shows the crystallization temperatures of the resin layers before the annealing treatment in Examples 3 to 5.
  • the food multilayer sheets of Examples 1 to 5 of the present embodiment in which the number of peaks of the displacement slope of the resin layer is 2 or less, have a small displacement rate between 0 ° C. and 140 ° C., and are heat resistant. It can be seen that it is superior to On the other hand, the food multilayer sheet of Comparative Example 1, in which the number of peaks of the displacement slope of the resin layer exceeded two, had insufficient heat resistance.

Abstract

The present invention involves a multilayer sheet for food having a paper base material and a resin layer provided on one or both sides of the paper base material, the resin layer containing polylactic acid. In a temperature–displacement curve, from −20°C to the temperature at completion of indenter penetration, of the resin layer obtained by thermomechanical analysis according to JIS K 7196 (2012), the slope of the curve at each temperature is determined, and the number of peaks of a temperature–slope curve obtained by plotting the slope against temperature is two or less. The present invention further involves a manufacturing method for the multilayer sheet for food, and a packaging material for food and a container for food that uses the multilayer sheet for food.

Description

食品用多層シート、食品用包装材料、食品用容器及び食品用多層シートの製造方法Food multilayer sheet, food packaging material, food container, and method for producing food multilayer sheet
 本発明は、食品用多層シート、食品用包装材料、食品用容器及び食品用多層シートの製造方法に関する。 The present invention relates to a multilayer food sheet, a packaging material for food, a container for food, and a method for producing a multilayer food sheet.
 近年、環境問題への意識の高まりから、食品用容器、食品用包装材料等に、再生可能資源である紙類を積極的に使用する取り組みが行われている。
 これらの用途に対しては、例えば、耐水性、耐油性、ガスバリア性等を付与することを目的として、紙類の表面に樹脂層を積層した食品用多層シートが使用されている。
In recent years, due to growing awareness of environmental issues, efforts have been made to positively use paper, which is a renewable resource, for food containers, food packaging materials, and the like.
For these applications, multi-layer food sheets obtained by laminating a resin layer on the surface of paper are used, for example, for the purpose of imparting water resistance, oil resistance, gas barrier properties, and the like.
 また、食品用容器等は、加熱された食品と直接又は間接的に触れる場合があるため耐熱性が要求される。例えば、電子レンジ等によって加熱される食品に用いられる容器には、加熱下においても変形、変質等せずに、所期の機能が保たれることが要求される。そのような背景から、従来、食品用多層シートの樹脂層には、ポリプロピレン等の耐熱性が良好な合成樹脂が使用されてきた。 In addition, food containers, etc. are required to have heat resistance because they may come into direct or indirect contact with heated food. For example, containers used for foods that are heated by a microwave oven or the like are required to maintain their intended functions without being deformed or degraded even under heating. Against this background, synthetic resins with good heat resistance, such as polypropylene, have conventionally been used for the resin layers of multilayer food sheets.
 しかしながら、ポリプロピレン等の合成樹脂は化石資源に由来すると共に、廃棄する際の環境汚染が問題視されている。そのため、食品用多層シートの樹脂層に対しても、より環境負荷が小さい材料を使用する検討が行われている。
 特許文献1には、加熱時の耐油性に優れる樹脂層を有する電子レンジ用紙容器として、紙基材の少なくとも片面にバイオマス樹脂と合成樹脂の混練物からなる樹脂層を有する積層体を用いて成形してなることを特徴とする電子レンジ用紙容器が開示されている。
However, synthetic resins such as polypropylene are derived from fossil resources, and environmental pollution at the time of disposal is regarded as a problem. Therefore, the use of materials with less environmental load for the resin layers of multi-layer sheets for food is being studied.
In Patent Document 1, as a microwave paper container having a resin layer having excellent oil resistance when heated, a laminate having a resin layer made of a kneaded product of biomass resin and synthetic resin on at least one side of a paper substrate is molded. Disclosed is a microwave paper container characterized by:
特開2008-189341号公報JP 2008-189341 A
 しかしながら、特許文献1の技術は、バイオマス樹脂に加えて、環境に影響を及ぼす可能性がある合成樹脂の配合を必須にする技術であるため、環境負荷の低減という課題を十分に解決しているとは言えなかった。そのため、より環境負荷が小さい材料を用いながらも、耐熱性に優れる食品用多層シートが望まれている。 However, the technique of Patent Document 1 is a technique that requires the blending of a synthetic resin that may affect the environment in addition to the biomass resin, so it sufficiently solves the problem of reducing the environmental load. I couldn't say. Therefore, there is a demand for a multi-layer food sheet that uses materials with less environmental impact and that has excellent heat resistance.
 本発明は、上記問題点に鑑みてなされたものであって、環境負荷が小さく、耐熱性に優れる食品用多層シート及びその製造方法、並びに、該食品用多層シートを用いた食品用包装材料及び食品用容器を提供することを目的とする。 The present invention has been made in view of the above problems, and has a small environmental load and excellent heat resistance. The object is to provide a food container.
 本発明者等は、ポリ乳酸を含有し、熱機械分析において特定の挙動を有する樹脂層を食品用多層シートに適用することによって、上記課題を解決し得ることを見出し、本発明を完成するに至った。 The present inventors have found that the above problems can be solved by applying a resin layer containing polylactic acid and exhibiting specific behavior in thermomechanical analysis to a multi-layer food sheet. Arrived.
 すなわち、本発明は、下記[1]~[12]に関する。
[1]紙基材と、該紙基材の一方又は両方の面側に設けられた樹脂層と、を有し、
 前記樹脂層が、ポリ乳酸を含有し、
 JIS K 7196(2012)に従う熱機械分析によって得られる前記樹脂層の-20℃から圧子侵入完了温度までの温度-変位曲線において、各温度における前記曲線の傾きを求め、該傾きを温度に対してプロットして得られる温度-傾き曲線のピークの数が、2個以下である、食品用多層シート。
[2]前記温度-傾き曲線のピークの数が1個である場合は該ピークを、前記温度-傾き曲線のピークの数が2個である場合は、該2個のピークのうち、ピークの高さが大きい方のピークを、変位傾きの最大ピークとした場合、該変位傾きの最大ピークに対応する前記温度-変位曲線から、JIS K 7196(2012)に準拠する解析によって求められる軟化点温度が、140℃以上である、上記[1]に記載の食品用多層シート。
[3]前記樹脂層の融点が、140~180℃である、上記[1]又は[2]に記載の食品用多層シート。
[4]前記樹脂層中における前記ポリ乳酸の含有量が、60~100質量%である、上記[1]~[3]のいずれかに記載の食品用多層シート。
[5]前記樹脂層に含有される全ポリ乳酸中におけるL体由来の構成単位の含有量が、94~100質量%である、上記[1]~[4]のいずれかに記載の食品用多層シート。
[6]前記樹脂層が、さらに、造核剤を含有する、上記[1]~[5]のいずれかに記載の食品用多層シート。
[7]前記紙基材の厚さに対する、前記樹脂層の厚さの比〔樹脂層/紙基材〕が、0.01~1.5である、上記[1]~[6]のいずれかに記載の食品用多層シート。
[8]前記樹脂層の厚さが、1~120μmである、上記[1]~[7]のいずれかに記載の食品用多層シート。
[9]JIS K 7196(2012)に従う熱機械分析で測定される、前記樹脂層の0℃~140℃間における変位率が、20%以下である、上記[1]~[8]のいずれかに記載の食品用多層シート。
[10]上記[1]~[9]のいずれかに記載の食品用多層シートを用いて形成された食品用包装材料。
[11]上記[1]~[9]のいずれかに記載の食品用多層シートを用いて形成された食品用容器。
[12]上記[1]~[9]のいずれかに記載の食品用多層シートを製造する方法であって、
 ポリ乳酸を含有する樹脂層形成材料を層形成した後、アニール処理を施して樹脂層を形成する工程を含む、食品用多層シートの製造方法。
That is, the present invention relates to the following [1] to [12].
[1] having a paper substrate and a resin layer provided on one or both sides of the paper substrate,
The resin layer contains polylactic acid,
In the temperature-displacement curve from -20 ° C. to the indentation completion temperature of the resin layer obtained by thermomechanical analysis according to JIS K 7196 (2012), the slope of the curve at each temperature was obtained, and the slope was measured against the temperature. A multi-layer sheet for foods, wherein the temperature-slope curve obtained by plotting has two or less peaks.
[2] When the number of peaks in the temperature-slope curve is 1, the peak, and when the number of peaks in the temperature-slope curve is 2, the peak among the 2 peaks When the peak with the larger height is the maximum peak of the displacement slope, the softening point temperature obtained by analysis according to JIS K 7196 (2012) from the temperature-displacement curve corresponding to the maximum peak of the displacement slope. is 140° C. or higher, the food multilayer sheet according to [1] above.
[3] The multi-layer sheet for food according to [1] or [2] above, wherein the resin layer has a melting point of 140 to 180°C.
[4] The multi-layer sheet for food according to any one of [1] to [3] above, wherein the polylactic acid content in the resin layer is 60 to 100% by mass.
[5] The food product according to any one of the above [1] to [4], wherein the content of the L-form-derived structural unit in the total polylactic acid contained in the resin layer is 94 to 100% by mass. multilayer sheet.
[6] The food multilayer sheet according to any one of [1] to [5] above, wherein the resin layer further contains a nucleating agent.
[7] Any of the above [1] to [6], wherein the ratio of the thickness of the resin layer to the thickness of the paper base [resin layer/paper base] is 0.01 to 1.5. The multi-layered sheet for foods according to
[8] The multi-layer sheet for food according to any one of [1] to [7] above, wherein the resin layer has a thickness of 1 to 120 μm.
[9] Any one of the above [1] to [8], wherein the displacement rate of the resin layer between 0 ° C. and 140 ° C. measured by thermomechanical analysis according to JIS K 7196 (2012) is 20% or less. 3. The multi-layer sheet for food according to .
[10] A food packaging material formed using the multi-layer food sheet according to any one of [1] to [9] above.
[11] A food container formed using the multi-layer food sheet according to any one of [1] to [9] above.
[12] A method for producing a multilayer food sheet according to any one of [1] to [9] above,
A method for producing a multi-layer sheet for food, comprising a step of forming a resin layer by forming a layer of a resin layer-forming material containing polylactic acid, followed by annealing treatment.
 本発明によると、環境負荷が小さく、耐熱性に優れる食品用多層シート及びその製造方法、並びに、該食品用多層シートを用いた食品用包装材料及び食品用容器を提供することができる。 According to the present invention, it is possible to provide a multi-layer food sheet with low environmental load and excellent heat resistance, a method for producing the same, and a food packaging material and a food container using the multi-layer food sheet.
本実施形態の食品用多層シートの構成の一例を示す断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram which shows an example of a structure of the multi-layered sheet for foodstuffs of this embodiment.
 以下、本発明について、実施形態を用いて詳細に説明する。 Hereinafter, the present invention will be described in detail using embodiments.
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
 本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
In this specification, for preferred numerical ranges (for example, ranges of content etc.), the lower and upper limits described stepwise can be independently combined. For example, from the statement "preferably 10 to 90, more preferably 30 to 60", combining "preferred lower limit (10)" and "more preferred upper limit (60)" to "10 to 60" can also
In the numerical ranges described herein, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
 本明細書中、「バイオマス」とは、再生可能な生物由来の有機性資源であって、化石資源を除いたものを意味する。 As used herein, "biomass" means renewable organic resources derived from living organisms, excluding fossil resources.
 本明細書に記載されている作用機序は推測であって、本発明の効果を奏する機序を限定するものではない。 The mechanism of action described in this specification is speculation and does not limit the mechanism of the effects of the present invention.
[食品用多層シート]
 本実施形態の食品用多層シートは、
 紙基材と、該紙基材の一方又は両方の面側に設けられた樹脂層と、を有し、
 前記樹脂層が、ポリ乳酸を含有し、
 JIS K 7196(2012)に従う熱機械分析によって得られる前記樹脂層の-20℃から圧子侵入完了温度までの温度-変位曲線において、各温度における前記曲線の傾きを求め、該傾きを温度に対してプロットして得られる温度-傾き曲線のピークの数(以下、「変位傾きのピーク数」ともいう)が、2個以下である、食品用多層シートである。
[Multilayer sheet for food]
The food multilayer sheet of the present embodiment is
Having a paper substrate and a resin layer provided on one or both surface sides of the paper substrate,
The resin layer contains polylactic acid,
In the temperature-displacement curve from -20 ° C. to the indentation completion temperature of the resin layer obtained by thermomechanical analysis according to JIS K 7196 (2012), the slope of the curve at each temperature was obtained, and the slope was measured against the temperature. The food multilayer sheet has two or less peaks in a plotted temperature-slope curve (hereinafter also referred to as "the number of peaks of displacement slope").
 図1には、本実施形態の一例である食品用多層シート1の断面模式図が示されている。食品用多層シート1は、紙基材2の一方の面に樹脂層3が直接積層された構成を有する。
 以下、本実施形態の食品用多層シートの各構成部材について、詳細に説明する。
FIG. 1 shows a schematic cross-sectional view of a multilayer food sheet 1 that is an example of the present embodiment. The food multi-layer sheet 1 has a structure in which a resin layer 3 is directly laminated on one surface of a paper substrate 2 .
Each constituent member of the food multilayer sheet of the present embodiment will be described in detail below.
<紙基材>
 本実施形態の食品用多層シートが有する紙基材としては、特に制限はなく、食品用多層シートの用途に応じて適宜選択することができる。
 紙基材としては、例えば、上質紙、クラフト紙、グラシン紙、パーチメント紙、レーヨン紙、グラビア紙、アート紙、コート紙、再生紙、合成紙等が挙げられる。これらの紙基材は、1層を単独で使用してもよく、同種又は異なる紙基材を2層以上積層させて使用してもよい。
<Paper substrate>
The paper base material of the food multilayer sheet of the present embodiment is not particularly limited, and can be appropriately selected according to the use of the food multilayer sheet.
Examples of paper substrates include woodfree paper, kraft paper, glassine paper, parchment paper, rayon paper, gravure paper, art paper, coated paper, recycled paper, and synthetic paper. One layer of these paper substrates may be used alone, or two or more layers of the same or different paper substrates may be laminated for use.
 紙基材は、樹脂層を設ける側の面に対して、接着性を向上させるための表面改質処理を施したものであってもよい。表面改質処理としては、例えば、プライマー層の形成、オゾン処理、コロナ処理、プラズマ処理、紫外線処理等が挙げられる。これらの表面処理は、単独で行ってもよく、複数の処理を組み合わせて行ってもよい。これらの中でも、オゾン処理及びコロナ処理が好ましい。 The paper substrate may be subjected to a surface modification treatment to improve adhesion on the side on which the resin layer is provided. Examples of surface modification treatment include formation of a primer layer, ozone treatment, corona treatment, plasma treatment, and ultraviolet treatment. These surface treatments may be performed singly or in combination. Among these, ozone treatment and corona treatment are preferred.
(紙基材の坪量)
 紙基材の坪量は、特に限定されないが、好ましくは20~400g/m、より好ましくは30~350g/m、さらに好ましくは40~300g/mである。特に、食品用包装材料として用いられる場合は、紙基材の坪量は、好ましくは20~100g/m、より好ましくは30~80g/m、さらに好ましくは40~60g/mである。また、食品用容器として用いられる場合は、紙基材の坪量は、好ましくは100~400g/m、より好ましくは150~350g/m、さらに好ましくは200~300g/mである。紙基材の坪量が上記範囲であると、紙基材の軽量性及び強度のバランスがより良好になる傾向にある。
(Basis weight of paper substrate)
Although the basis weight of the paper base is not particularly limited, it is preferably 20 to 400 g/m 2 , more preferably 30 to 350 g/m 2 , still more preferably 40 to 300 g/m 2 . In particular, when used as a food packaging material, the basis weight of the paper substrate is preferably 20 to 100 g/m 2 , more preferably 30 to 80 g/m 2 , still more preferably 40 to 60 g/m 2 . . When used as a container for food, the basis weight of the paper substrate is preferably 100-400 g/m 2 , more preferably 150-350 g/m 2 , still more preferably 200-300 g/m 2 . When the basis weight of the paper base is within the above range, the balance between lightness and strength of the paper base tends to be better.
(紙基材の厚さ)
 紙基材の厚さは、特に限定されないが、好ましくは20μm~2mm、より好ましくは30μm~1mm、さらに好ましくは40μm~500μmである。特に、食品用包装材料として用いられる場合は、紙基材の厚さは、好ましくは25~110μm、より好ましくは35~90μm、さらに好ましくは45~80μmである。また、食品用容器として用いられる場合は、紙基材の厚さは、好ましくは100~600μm、より好ましくは160~500μm、さらに好ましくは220~400μmである。
 紙基材の厚さが上記下限値以上であると、紙基材の強度が良好になり、意図せず破れたりすることを抑制できる傾向にある。また、紙基材の厚さが上記上限値以下であると、軽量性及び柔軟性がより良好になる傾向にある。
 なお、「紙基材の厚さ」とは、紙基材全体の厚さを意味し、紙基材が複数層からなる基材である場合は、紙基材を構成するすべての層の合計の厚さを意味する。
(Thickness of paper substrate)
The thickness of the paper substrate is not particularly limited, but is preferably 20 μm to 2 mm, more preferably 30 μm to 1 mm, still more preferably 40 μm to 500 μm. In particular, when used as a food packaging material, the thickness of the paper substrate is preferably 25-110 μm, more preferably 35-90 μm, and even more preferably 45-80 μm. When used as a container for food, the thickness of the paper substrate is preferably 100-600 μm, more preferably 160-500 μm, still more preferably 220-400 μm.
When the thickness of the paper substrate is at least the above lower limit, the strength of the paper substrate is improved, and it tends to be possible to suppress unintentional tearing. Further, when the thickness of the paper substrate is equal to or less than the above upper limit, the lightness and flexibility tend to be better.
The "thickness of the paper base material" means the thickness of the entire paper base material, and when the paper base material is a base material consisting of multiple layers, the total means the thickness of
<樹脂層>
 本実施形態の食品用多層シートが有する樹脂層は、ポリ乳酸を含有する。
 樹脂層は、ポリ乳酸のみを含有していてもよいが、必要に応じて、ポリ乳酸以外の成分を含有していてもよい。ポリ乳酸以外の成分としては、例えば、造核剤が挙げられる。
<Resin layer>
The resin layer of the food multi-layer sheet of the present embodiment contains polylactic acid.
The resin layer may contain only polylactic acid, but may contain components other than polylactic acid, if necessary. Examples of components other than polylactic acid include nucleating agents.
(ポリ乳酸)
 ポリ乳酸の原料である乳酸は、植物から抽出したグルコース、スクロース等に乳酸菌を作用させることで生産することができるため再生可能なバイオマス材料である。また、ポリ乳酸は、所定条件下で生分解性を有する樹脂であるため、樹脂層にポリ乳酸を用いる本実施形態の食品用多層シートは、環境負荷が小さいものである。
 なお、本実施形態において、「生分解性」とは、例えば、加水分解、酵素分解、微生物分解等の作用により化学的に分解することが可能な性質を意味する。
(polylactic acid)
Lactic acid, which is a raw material for polylactic acid, is a renewable biomass material because it can be produced by allowing lactic acid bacteria to act on glucose, sucrose, etc. extracted from plants. Moreover, since polylactic acid is a resin that is biodegradable under predetermined conditions, the multi-layered sheet for food according to the present embodiment, in which polylactic acid is used for the resin layer, has a small environmental load.
In addition, in this embodiment, "biodegradability" means a property capable of being chemically decomposed by the action of hydrolysis, enzymatic decomposition, microbial decomposition, or the like.
 ポリ乳酸としては、例えば、L体の単独重合体、D体の単独重合体、L体及びD体の共重合体、L体及びD体からなる群から選択される1種以上と乳酸以外の単量体との共重合体等が挙げられる。
 ポリ乳酸は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of polylactic acid include, for example, one or more selected from the group consisting of L homopolymers, D homopolymers, L and D copolymers, L and D isomers, and poly(lactic acid) other than lactic acid. Examples thereof include copolymers with monomers.
One type of polylactic acid may be used alone, or two or more types may be used in combination.
 ポリ乳酸には、乳酸以外の単量体に由来する構成単位が含有されていてもよいが、環境負荷をより低減するという観点から、乳酸以外の単量体に由来する構成単位の含有量は低いことが好ましい。当該観点から、ポリ乳酸中に含有される乳酸由来の構成単位の含有量は、好ましくは90~100質量%、より好ましくは95~100質量%、さらに好ましくは99~100質量%である。 Polylactic acid may contain structural units derived from monomers other than lactic acid, but from the viewpoint of further reducing the environmental load, the content of structural units derived from monomers other than lactic acid is Low is preferred. From this point of view, the content of lactic acid-derived structural units contained in polylactic acid is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and still more preferably 99 to 100% by mass.
 樹脂層に含有される全ポリ乳酸中のL体由来の構成単位の含有量は、樹脂層の融解熱量を高めて、耐熱性をより向上させるという観点から、全ポリ乳酸(100質量%)に対して、好ましくは94~100質量%、より好ましくは95~100質量%、さらに好ましくは96~99.8質量%である。 From the viewpoint of increasing the heat of fusion of the resin layer and further improving the heat resistance, the content of the structural unit derived from the L-form in the total polylactic acid contained in the resin layer is The content is preferably 94 to 100% by mass, more preferably 95 to 100% by mass, still more preferably 96 to 99.8% by mass.
 ポリ乳酸の質量平均分子量(Mw)は、特に限定されないが、好ましくは10,000~1,000,000、より好ましくは50,000~800,000、さらに好ましくは100,000~600,000である。
 ポリ乳酸の質量平均分子量(Mw)が上記下限値以上であると、耐熱性及び機械特性がより良好になる傾向にある。また、ポリ乳酸の質量平均分子量(Mw)が上記上限値以下であると、成形性がより良好になる傾向にある。
 質量平均分子量(Mw)は、実施例に記載の方法によって測定することができる。
The mass average molecular weight (Mw) of polylactic acid is not particularly limited, but is preferably 10,000 to 1,000,000, more preferably 50,000 to 800,000, and still more preferably 100,000 to 600,000. be.
When the mass-average molecular weight (Mw) of polylactic acid is at least the above lower limit, heat resistance and mechanical properties tend to be better. Further, when the mass average molecular weight (Mw) of polylactic acid is equal to or less than the above upper limit, the moldability tends to be better.
The mass average molecular weight (Mw) can be measured by the method described in Examples.
 ポリ乳酸の、温度210℃、荷重2.16kgにおけるメルトフローレート(MFR)は、特に限定されないが、好ましくは3~20g/10分、より好ましくは4~18g/10分、さらに好ましくは5~15g/10分である。
 ポリ乳酸のメルトフローレート(MFR)が上記下限値以上であると、成形性がより良好になる傾向にある。また、ポリ乳酸のメルトフローレート(MFR)が上記上限値以下であると、耐熱性及び機械特性がより良好になる傾向にある。
 ポリ乳酸のメルトフローレート(MFR)は、実施例に記載の方法によって測定することができる。
The melt flow rate (MFR) of polylactic acid at a temperature of 210° C. and a load of 2.16 kg is not particularly limited, but is preferably 3 to 20 g/10 minutes, more preferably 4 to 18 g/10 minutes, and still more preferably 5 to 18 g/10 minutes. 15 g/10 minutes.
When the melt flow rate (MFR) of polylactic acid is at least the above lower limit, moldability tends to be better. Further, when the melt flow rate (MFR) of polylactic acid is equal to or less than the above upper limit, heat resistance and mechanical properties tend to be better.
The melt flow rate (MFR) of polylactic acid can be measured by the method described in Examples.
 ポリ乳酸は、乳酸を直接重合させてポリマーを得る一段階プロセスによって得られたものであってもよく、環化反応によって得られたラクチドを開環重合させてポリマーを得る二段階プロセスによって得られたものであってもよい。 Polylactic acid may be obtained by a one-step process of directly polymerizing lactic acid to obtain a polymer, or obtained by a two-step process of ring-opening polymerization of lactide obtained by a cyclization reaction to obtain a polymer. It can be anything.
 樹脂層中におけるポリ乳酸の含有量は、特に限定されないが、環境負荷をより低減するという観点から、樹脂層(100質量%)に対して、好ましくは60~100質量%、より好ましくは80~100質量%、さらに好ましくは90~100質量%である。 The content of polylactic acid in the resin layer is not particularly limited, but from the viewpoint of further reducing the environmental load, it is preferably 60 to 100% by mass, more preferably 80 to 100% by mass, based on the resin layer (100% by mass). 100% by mass, more preferably 90 to 100% by mass.
 樹脂層に含有される全樹脂中におけるポリ乳酸の含有量は、特に限定されないが、環境負荷をより低減するという観点から、樹脂層に含有される全樹脂(100質量%)に対して、好ましくは90~100質量%、より好ましくは95~100質量%、さらに好ましくは99~100質量%である。 The content of polylactic acid in all the resins contained in the resin layer is not particularly limited, but from the viewpoint of further reducing the environmental load, it is preferably is 90 to 100% by mass, more preferably 95 to 100% by mass, still more preferably 99 to 100% by mass.
(造核剤)
 樹脂層が、さらに、造核剤を含有することによって、樹脂層の結晶性が高まり、樹脂層の変位傾きのピーク数を2個以下に調整し易くなる傾向にある。
 造核剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Nucleating agent)
When the resin layer further contains a nucleating agent, the crystallinity of the resin layer is enhanced, and the number of peaks of the displacement slope of the resin layer tends to be easily adjusted to two or less.
A nucleating agent may be used individually by 1 type, and may be used in combination of 2 or more type.
 造核剤としては、例えば、クレー、タルク、ベントナイト、シリカ、硫酸カルシウム、炭酸カルシウム、炭酸水素ナトリウム、炭酸水素アンモニウム等の無機系造核剤;カルボン酸金属塩、ソルビトール系化合物、リン酸エステル金属塩等の有機系造核剤;等が挙げられる。 Examples of nucleating agents include inorganic nucleating agents such as clay, talc, bentonite, silica, calcium sulfate, calcium carbonate, sodium hydrogen carbonate, and ammonium hydrogen carbonate; metal carboxylates, sorbitol compounds, metal phosphate organic nucleating agents such as salts;
 樹脂層が造核剤を含有する場合、樹脂層中における造核剤の含有量は、特に限定されないが、樹脂層の融解熱量を高めて、耐熱性をより向上させるという観点から、樹脂層(100質量%)に対して、好ましくは0.1~40質量%、より好ましくは1~25質量%、さらに好ましくは2~10質量%である。 When the resin layer contains a nucleating agent, the content of the nucleating agent in the resin layer is not particularly limited. 100% by mass), preferably 0.1 to 40% by mass, more preferably 1 to 25% by mass, and still more preferably 2 to 10% by mass.
(その他の成分)
 樹脂層は、本発明の効果を損なわない範囲で、上記各成分以外の、その他の成分を含有していてもよく、含有していなくてもよい。
 その他の成分としては、例えば、ポリ乳酸以外の樹脂;酸化防止剤、滑剤、紫外線吸収剤、着色剤、アンチブロッキング剤等の添加剤;等が挙げられる。
 その他の成分は、各々について、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(other ingredients)
The resin layer may or may not contain components other than the components described above as long as the effects of the present invention are not impaired.
Other components include, for example, resins other than polylactic acid; additives such as antioxidants, lubricants, ultraviolet absorbers, colorants, and antiblocking agents; and the like.
For each of the other components, one type may be used alone, or two or more types may be used in combination.
 樹脂層がポリ乳酸以外の樹脂を含有する場合、ポリ乳酸以外の樹脂は、環境負荷をより低減するという観点から、バイオマス由来の樹脂であることが好ましい。
 樹脂層に含有されるバイオマス由来の樹脂(ポリ乳酸も含む。)の含有量は、環境負荷をより低減するという観点から、樹脂層に含有される全樹脂(100質量%)に対して、好ましくは90~100質量%、より好ましくは95~100質量%、さらに好ましくは99~100質量%である。
When the resin layer contains a resin other than polylactic acid, the resin other than polylactic acid is preferably a biomass-derived resin from the viewpoint of further reducing the environmental load.
From the viewpoint of further reducing the environmental load, the content of the biomass-derived resin (including polylactic acid) contained in the resin layer is preferably based on the total resin (100% by mass) contained in the resin layer. is 90 to 100% by mass, more preferably 95 to 100% by mass, still more preferably 99 to 100% by mass.
 樹脂層がその他の成分を含有する場合、その他の成分の含有量は、特に限定されないが、各々について、樹脂層(100質量%)に対して、好ましくは0.0001~40質量%、より好ましくは0.0005~25質量%、さらに好ましくは0.001~10質量%である。 When the resin layer contains other components, the content of the other components is not particularly limited, but each is preferably 0.0001 to 40% by mass, more preferably 0.0001 to 40% by mass, based on the resin layer (100% by mass). is 0.0005 to 25% by mass, more preferably 0.001 to 10% by mass.
(樹脂層の融解熱量)
 JIS K 7122(2012)に従う示差走査熱量測定における樹脂層の融解熱量は、好ましくは36J/g以上、より好ましくは37J/g以上、さらに好ましくは38J/g以上、よりさらに好ましくは39J/g以上である。
 樹脂層の融解熱量が、上記下限値以上であると、本実施形態の食品用多層シートは、耐熱性に優れるものになる。
 樹脂層の融解熱量は、例えば、樹脂層の結晶性を高めることによって上記範囲に調整することができる。樹脂層の結晶性を高める方法としては、例えば、造核剤を配合する方法、樹脂層形成材料を層形成した後、アニール処理を施す方法等が挙げられる。また、樹脂層に含有されるポリ乳酸として、L体の含有量が高いポリ乳酸を選択することも有効である。
(Amount of heat of fusion of resin layer)
The heat of fusion of the resin layer in differential scanning calorimetry according to JIS K 7122 (2012) is preferably 36 J/g or more, more preferably 37 J/g or more, still more preferably 38 J/g or more, and even more preferably 39 J/g or more. is.
When the heat of fusion of the resin layer is equal to or higher than the above lower limit, the multi-layer sheet for food of the present embodiment has excellent heat resistance.
The amount of heat of fusion of the resin layer can be adjusted within the above range, for example, by increasing the crystallinity of the resin layer. Examples of the method for enhancing the crystallinity of the resin layer include a method of adding a nucleating agent, a method of performing an annealing treatment after forming a layer of the resin layer-forming material, and the like. It is also effective to select polylactic acid having a high L-form content as the polylactic acid contained in the resin layer.
 樹脂層の融解熱量の上限値は、特に限定されないが、好ましくは60J/g以下、より好ましくは55J/g以下、さらに好ましくは50J/g以下である。
 樹脂層の融解熱量が、上記上限値以下であると、樹脂層が適度な柔軟性を有し、屈曲、衝撃等によって、樹脂層にクラック、剥離等が生じることが抑制される傾向にある。
 樹脂層の融解熱量は、実施例に記載する方法によって測定することができる。
Although the upper limit of the heat of fusion of the resin layer is not particularly limited, it is preferably 60 J/g or less, more preferably 55 J/g or less, still more preferably 50 J/g or less.
When the heat of fusion of the resin layer is equal to or less than the above upper limit, the resin layer has appropriate flexibility, and the occurrence of cracks, peeling, etc. in the resin layer due to bending, impact, etc. tends to be suppressed.
The heat of fusion of the resin layer can be measured by the method described in Examples.
(樹脂層の融点)
 樹脂層の融点は、特に限定されないが、好ましくは140~180℃、より好ましくは150~175℃、さらに好ましくは160~170℃である。
 樹脂層の融点が、上記下限値以上であると、加熱された食品等に触れる場合でも樹脂層は融解し難くなり、より耐熱性に優れる食品用多層シートが得られる傾向にある。また、樹脂層の融点が、上記上限値以下であると、樹脂層が適度な柔軟性を有し、屈曲、衝撃等によって、樹脂層にクラック、剥離等が生じることが抑制される傾向にある。
 樹脂層の融点は、実施例に記載する方法によって測定することができる。
(Melting point of resin layer)
Although the melting point of the resin layer is not particularly limited, it is preferably 140 to 180°C, more preferably 150 to 175°C, still more preferably 160 to 170°C.
When the melting point of the resin layer is at least the above lower limit, the resin layer is less likely to melt even when it comes into contact with heated food or the like, and there is a tendency to obtain a multi-layered sheet for food with more excellent heat resistance. Further, when the melting point of the resin layer is equal to or lower than the above upper limit, the resin layer has appropriate flexibility, and the resin layer tends to be prevented from cracking, peeling, or the like due to bending, impact, or the like. .
The melting point of the resin layer can be measured by the method described in Examples.
(樹脂層の熱機械物性)
 JIS K 7196(2012)に従う熱機械分析によって得られる樹脂層の-20℃から圧子侵入完了温度までの温度-変位曲線において、各温度における前記曲線の傾きを求め、該傾きを温度に対してプロットして得られる温度-傾き曲線のピークの数は、2個以下である。
 変位傾きのピーク数が2個以下であると、本実施形態の食品用多層シートは、耐熱性に優れるものになる。
 樹脂層の変位傾きのピーク数は、例えば、樹脂層の結晶性を高めることによって上記範囲に調整することができる。樹脂層の結晶性を高める方法としては、例えば、造核剤を配合する方法、樹脂層形成材料を層形成した後、アニール処理を施す方法等が挙げられる。また、樹脂層に含有されるポリ乳酸として、L体の含有量が高いポリ乳酸を選択することも有効である。
 変位傾きのピーク数は、実施例に記載する方法によって測定することができる。
(Thermo-mechanical properties of resin layer)
In the temperature-displacement curve from -20 ° C. to the indentation completion temperature of the resin layer obtained by thermomechanical analysis according to JIS K 7196 (2012), the slope of the curve at each temperature is obtained, and the slope is plotted against the temperature. The number of peaks in the temperature-slope curve obtained by this is two or less.
When the number of peaks of the displacement slope is 2 or less, the multi-layered sheet for food of the present embodiment has excellent heat resistance.
The peak number of the displacement slope of the resin layer can be adjusted to the above range by, for example, increasing the crystallinity of the resin layer. Examples of the method for enhancing the crystallinity of the resin layer include a method of adding a nucleating agent, a method of performing an annealing treatment after forming a layer of the resin layer-forming material, and the like. It is also effective to select polylactic acid having a high L-form content as the polylactic acid contained in the resin layer.
The peak number of the displacement slope can be measured by the method described in the Examples.
 上記変位傾きのピーク数が1個である場合は当該ピークを、上記変位傾きのピーク数が2個である場合は、該2個のピークのうち、ピークの高さが大きい方のピークを「変位傾きの最大ピーク」とした場合、該変位傾きの最大ピークに対応する温度-変位曲線から、JIS K 7196(2012)に準拠する解析によって求められる軟化点温度(以下、「軟化点温度T(1)」ともいう)は、特に限定されないが、好ましくは140℃以上、より好ましくは143℃以上、さらに好ましくは145℃以上である。
 樹脂層の軟化点温度T(1)が、上記下限値以上であると、本実施形態の食品用多層シートは、より耐熱性に優れる傾向にある。
 また、樹脂層の軟化点温度T(1)は、特に限定されないが、好ましくは180℃以下、より好ましくは170℃以下、さらに好ましくは165℃以下である。
 樹脂層の軟化点温度T(1)が、上記上限値以下であると、樹脂層が適度な柔軟性を有し、屈曲、衝撃等によって、樹脂層にクラック、剥離等が生じることが抑制される傾向にある。
 軟化点温度T(1)は、実施例に記載する方法によって測定することができる。
When the number of peaks of the displacement slope is 1, the peak is selected. The maximum peak of the displacement slope", the softening point temperature (hereinafter referred to as "softening point temperature T ( 1)”) is not particularly limited, but is preferably 140° C. or higher, more preferably 143° C. or higher, and still more preferably 145° C. or higher.
When the softening point temperature T(1) of the resin layer is equal to or higher than the above lower limit, the multilayer food sheet of the present embodiment tends to be more excellent in heat resistance.
The softening point temperature T(1) of the resin layer is not particularly limited, but is preferably 180° C. or lower, more preferably 170° C. or lower, and even more preferably 165° C. or lower.
When the softening point temperature T(1) of the resin layer is equal to or lower than the above upper limit, the resin layer has appropriate flexibility, and the occurrence of cracks, peeling, or the like in the resin layer due to bending, impact, or the like is suppressed. tend to
The softening point temperature T(1) can be measured by the method described in Examples.
 JIS K 7196(2012)に従う熱機械分析で測定される樹脂層の0℃~140℃間の変位率(140℃における変位量の絶対値×100/0℃における樹脂層の厚さ)は、特に限定されないが、好ましくは20%以下、より好ましくは15%以下、さらに好ましくは10%以下である。
 樹脂層の0℃~140℃間の変位率が、上記上限値以下であると、本実施形態の食品用多層シートは、より耐熱性に優れる傾向にある。
 樹脂層の0℃~140℃間の変位率は、小さい程好ましく、0%であってもよいが、製造容易性の観点から、1%以上であってもよく、3%以上であってもよい。
 樹脂層の0℃~140℃間の変位率は、実施例に記載する方法によって測定することができる。
The displacement rate between 0 ° C. and 140 ° C. of the resin layer measured by thermomechanical analysis according to JIS K 7196 (2012) (absolute value of displacement at 140 ° C. × 100/thickness of the resin layer at 0 ° C.) Although not limited, it is preferably 20% or less, more preferably 15% or less, and still more preferably 10% or less.
When the displacement rate between 0° C. and 140° C. of the resin layer is equal to or less than the above upper limit, the multilayer food sheet of the present embodiment tends to be more excellent in heat resistance.
The displacement rate between 0° C. and 140° C. of the resin layer is preferably as small as possible, and may be 0%. good.
The displacement rate between 0° C. and 140° C. of the resin layer can be measured by the method described in Examples.
(樹脂層の厚さ)
 樹脂層の厚さは、特に限定されないが、好ましくは1~120μm、より好ましくは5~50μm、さらに好ましくは10~40μmである。
 樹脂層の厚さが上記下限値以上であると、本実施形態の食品用多層シートは、耐水性、耐油性等がより良好になる傾向にある。また、樹脂層の厚さが上記上限値以下であると、より環境負荷を低減できると共に、経済性に優れる傾向にある。
(thickness of resin layer)
Although the thickness of the resin layer is not particularly limited, it is preferably 1 to 120 μm, more preferably 5 to 50 μm, still more preferably 10 to 40 μm.
When the thickness of the resin layer is at least the above lower limit, the multilayer food sheet of the present embodiment tends to have better water resistance, oil resistance, and the like. Further, when the thickness of the resin layer is equal to or less than the above upper limit, the environmental load can be further reduced, and the economic efficiency tends to be excellent.
 紙基材の厚さに対する、樹脂層の厚さの比〔樹脂層/紙基材〕は、特に限定されないが、好ましくは0.01~1.5、より好ましくは0.03~0.8、さらに好ましくは0.05~0.5である。
 厚さの比〔樹脂層/紙基材〕が上記下限値以上であると、本実施形態の食品用多層シートは、耐水性、耐油性等がより良好になる傾向にある。また、厚さの比〔樹脂層/紙基材〕が上記上限値以下であると、より環境負荷が低減されたものになる傾向にある。
The ratio of the thickness of the resin layer to the thickness of the paper base [resin layer/paper base] is not particularly limited, but is preferably 0.01 to 1.5, more preferably 0.03 to 0.8. , more preferably 0.05 to 0.5.
When the thickness ratio [resin layer/paper substrate] is at least the above lower limit, the multi-layered sheet for food of the present embodiment tends to have better water resistance, oil resistance, and the like. Further, when the thickness ratio [resin layer/paper substrate] is equal to or less than the above upper limit, the environmental load tends to be further reduced.
<その他の層>
 本実施形態の食品用多層シートは、紙基材及び樹脂層以外のその他の層を1層以上有していてもよく、有していなくてもよい。
 その他の層は、例えば、紙基材と樹脂層との間、紙基材の樹脂層とは反対側に設けることができ、その他の層を2層以上有する場合は、それぞれが、同一の組成であってもよいし、異なる組成であってもよい。
 その他の層としては、例えば、紙基材と樹脂層との間に設けられるバリア層、いずれかの層間の接着性を向上させるための接着層、紙基材に意匠性等を付与するために設けられる印刷層等が挙げられる。
 本実施形態の食品用多層シートがその他の層を有する場合、その他の層に含有される成分は、環境負荷をより低減するという観点から、バイオマス由来の成分であることが好ましい。
<Other layers>
The food multi-layer sheet of the present embodiment may or may not have one or more layers other than the paper substrate and the resin layer.
Other layers can be provided, for example, between the paper substrate and the resin layer, on the side opposite to the resin layer of the paper substrate, and when there are two or more other layers, each has the same composition or may have different compositions.
Other layers include, for example, a barrier layer provided between the paper substrate and the resin layer, an adhesive layer for improving the adhesion between any of the layers, and a layer for imparting design properties to the paper substrate. The printing layer etc. which are provided are mentioned.
When the multilayer food sheet of the present embodiment has other layers, the components contained in the other layers are preferably biomass-derived components from the viewpoint of further reducing the environmental load.
 バリア層としては、例えば、酸素ガス、水蒸気等の透過を阻止するガスバリア層、可視光、紫外線等の透過を阻止する遮光性を付与する遮光バリア層等が挙げられる。これらは、例えば、無機物、無機酸化物等の蒸着膜;金属箔;等によって形成することができる。
 無機物、無機酸化物等の蒸着膜は、従来公知の無機物、無機酸化物等を用いて、例えば、真空蒸着法、スパッタリング法、イオンプレ-ティング法等により形成することができる。
 金属箔としては、従来公知の金属箔を用いることができるが、ガスバリア性及び遮光性の観点から、アルミニウム箔が好ましい。
The barrier layer includes, for example, a gas barrier layer that blocks permeation of oxygen gas and water vapor, and a light-shielding barrier layer that imparts a light-shielding property that blocks permeation of visible light, ultraviolet light, and the like. These can be formed by, for example, vapor deposition films of inorganic substances, inorganic oxides, etc.; metal foils; and the like.
Vapor-deposited films of inorganic substances, inorganic oxides, etc. can be formed by using conventionally known inorganic substances, inorganic oxides, etc., for example, by a vacuum deposition method, a sputtering method, an ion plating method, or the like.
As the metal foil, conventionally known metal foils can be used, but aluminum foil is preferable from the viewpoint of gas barrier properties and light shielding properties.
 接着層としては、硬化又は非硬化タイプの接着剤を使用することができ、例えば、アクリル系接着剤、ポリエステル系接着剤、ポリエーテル系接着剤、ポリウレタン系接着剤、エポキシ系接着剤、ゴム系接着剤等が挙げられる。 As the adhesive layer, a curable or non-curing type adhesive can be used, for example, acrylic adhesive, polyester adhesive, polyether adhesive, polyurethane adhesive, epoxy adhesive, rubber adhesive. Examples include adhesives and the like.
 印刷層は、例えば、文字、情報、模様、絵柄等の意匠性を付与するために設けられる層である。
 印刷層は、従来公知の顔料、染料等の着色剤を用いて形成することができ、その形成方法は特に限定されず、例えば、チタン白、亜鉛華、弁柄、朱、群青、コバルトブルー、チタン黄、黄鉛等の無機顔料;イソインドリノン、ハンザイエローA、キナクリドン、パーマネントレッド4R、フタロシアニンブルー、インダスレンブリーRS等の有機顔料;アルミニウム、真鍮等の金属粉末からなる金属顔料;二酸化チタン被覆雲母、塩基性炭酸鉛等の箔粉からなる真珠光沢顔料;蛍光顔料;等の着色剤を用いたインキにより形成することができる。
The printed layer is a layer provided for imparting design properties such as characters, information, patterns, and pictures.
The printed layer can be formed using conventionally known coloring agents such as pigments and dyes, and the formation method is not particularly limited. Inorganic pigments such as titanium yellow and chrome; organic pigments such as isoindolinone, Hansa Yellow A, quinacridone, permanent red 4R, phthalocyanine blue, and induslenbly RS; metal pigments made of metal powder such as aluminum and brass; titanium dioxide It can be formed with an ink using a colorant such as a pearlescent pigment made of foil powder such as coated mica or basic lead carbonate; a fluorescent pigment; or the like.
<食品用多層シートの総厚>
 本実施形態の食品用多層シートの総厚は、特に限定されず、本実施形態の食品用多層シートの用途に応じて決定すればよいが、例えば、120~630μmの範囲であってもよく、180~530μmの範囲であってもよく、240~430μmの範囲であってもよい。
<Total thickness of food multilayer sheet>
The total thickness of the food multilayer sheet of the present embodiment is not particularly limited, and may be determined according to the application of the food multilayer sheet of the present embodiment. It may be in the range of 180-530 μm, or it may be in the range of 240-430 μm.
<食品用多層シートの製造方法>
 本実施形態の食品用多層シートの製造方法は、特に限定されず、例えば、ポリ乳酸を含有する樹脂層形成材料を紙基材の一方又は両方の面側に積層する方法によって製造することができる。
 樹脂層形成材料は、樹脂層の融解熱量を高めて、耐熱性をより向上させるという観点から、ポリ乳酸に加えて、上記した造核剤を含有していてもよい。
 また、紙基材の樹脂層を積層する側の面には、上記したその他の層が設けられていてもよい。なお、以下の説明において「紙基材の上」とは、紙基材の一方の表面、紙基材の両方の表面、紙基材の一方の面に設けられたその他の層の表面、紙基材の両方の面に設けられたその他の層の表面上の全てを包含する意である。
<Method for producing multi-layer sheet for food>
The method for producing the food multi-layer sheet of the present embodiment is not particularly limited, and for example, it can be produced by laminating a resin layer-forming material containing polylactic acid on one or both sides of a paper substrate. .
From the viewpoint of increasing the heat of fusion of the resin layer and further improving the heat resistance, the resin layer-forming material may contain the above-described nucleating agent in addition to polylactic acid.
Further, the other layer described above may be provided on the surface of the paper substrate on which the resin layer is laminated. In the following description, "on the paper base material" means one surface of the paper base material, both surfaces of the paper base material, surfaces of other layers provided on one side of the paper base material, paper It is intended to include all the surfaces of other layers provided on both sides of the substrate.
 樹脂層形成材料を紙基材の上に積層する方法としては、例えば、樹脂層形成材料を紙基材の上に溶融押出する方法、塗布液とした樹脂層形成材料を紙基材の上に塗布及び乾燥する方法、シート状に成形した樹脂層形成材料を紙基材の上にラミネートする方法等が挙げられる。これらの中でも、生産性の観点から、樹脂層形成材料を溶融押出する方法が好ましい。 Methods for laminating the resin layer-forming material on the paper substrate include, for example, a method of melt extruding the resin layer-forming material onto the paper substrate, and a method of applying the resin layer-forming material as a coating liquid onto the paper substrate. Examples thereof include a method of coating and drying, and a method of laminating a resin layer-forming material formed into a sheet on a paper substrate. Among these, the method of melt extruding the resin layer-forming material is preferable from the viewpoint of productivity.
 樹脂層形成材料を紙基材の上に溶融押出する方法としては、例えば、押出機及びTダイを使用して、溶融させた樹脂層形成材料を紙基材上に押し出して層形成する方法が挙げられる。
 樹脂層形成材料の溶融押出温度は、特に限定されず、樹脂層を構成する樹脂の種類に応じて適宜設定すればよいが、好ましくは170~300℃、より好ましくは180~260℃、さらに好ましくは190~240℃である。
 樹脂層形成材料を溶融押出した後、形成した樹脂層を冷却して固化させる処理を施してもよい。
As a method of melt extruding the resin layer-forming material onto the paper substrate, for example, there is a method of extruding the melted resin layer-forming material onto the paper substrate to form a layer using an extruder and a T-die. mentioned.
The melt extrusion temperature of the resin layer-forming material is not particularly limited, and may be appropriately set according to the type of resin constituting the resin layer. is 190-240°C.
After the resin layer-forming material is melt-extruded, the formed resin layer may be cooled and solidified.
 塗布液とした樹脂層形成材料を紙基材の上に塗布する方法としては、例えば、樹脂層形成材料を溶媒に溶解及び分散させてなる塗布液を、紙基材上に塗布してから乾燥させる方法が挙げられる。
 塗布液を塗布する方法としては、例えば、ロールコート法、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールナイフコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。
As a method of applying the resin layer-forming material as a coating liquid onto the paper substrate, for example, a coating liquid obtained by dissolving and dispersing the resin layer-forming material in a solvent is coated on the paper substrate and then dried. There is a method to make
Examples of the method of applying the coating liquid include roll coating, spin coating, spray coating, bar coating, knife coating, roll knife coating, blade coating, die coating, gravure coating, and the like. .
 シート状に成形した樹脂層形成材料を紙基材の上にラミネートする方法としては、例えば、上記と同様の方法で、剥離フィルム上に樹脂層形成材料の塗布液を塗布した後、乾燥することによって剥離フィルム上に樹脂層を形成し、該剥離フィルム上の樹脂層を紙基材にラミネートする方法が挙げられる。 As a method for laminating the resin layer-forming material molded into a sheet on a paper substrate, for example, a coating liquid of the resin layer-forming material is applied onto the release film in the same manner as described above, and then dried. A method of forming a resin layer on a release film and laminating the resin layer on the release film to a paper substrate can be mentioned.
 本実施形態の食品用多層シートの製造方法は、樹脂層の融解熱量を高めて、耐熱性をより向上させるという観点から、ポリ乳酸を含有する樹脂層形成材料を層形成した後、アニール処理を施して樹脂層を形成する工程を含んでいてもよい。
 アニール処理は、例えば、樹脂層形成材料を紙基材の一方又は両方の面側に積層した後、加熱する方法によって行うことができる。
In the method for producing a multi-layer sheet for food according to the present embodiment, from the viewpoint of increasing the heat of fusion of the resin layer and further improving the heat resistance, annealing treatment is performed after layer formation of the resin layer-forming material containing polylactic acid. A step of applying to form a resin layer may be included.
Annealing treatment can be carried out, for example, by laminating the resin layer-forming material on one or both sides of the paper substrate and then heating.
 アニール処理における加熱温度は、特に限定されず、ポリ乳酸の種類に応じて決定することが好ましいが、例えば、80~140℃であってもよく、85~130℃であってもよく、90~120℃であってもよい。
 アニール処理における加熱温度は、アニール処理をする前の樹脂層の結晶化温度(以下、単に「結晶化温度」ともいう)を基準に決定してもよく、好ましくは結晶化温度-40℃~結晶化温度+50℃、より好ましくは結晶化温度-35℃~結晶化温度+40℃、さらに好ましくは結晶化温度-30℃~結晶化温度+30℃である。
 アニール処理における加熱温度が上記下限値以上であると、樹脂層の融解熱量を十分に高め易い傾向にある。また、アニール処理における加熱温度が上記上限値以下であると、アニール処理による樹脂層の意図しない変質を抑制し易い傾向にある。
 アニール処理をする前の樹脂層の結晶化温度は、実施例に記載する方法によって測定することができる。
The heating temperature in the annealing treatment is not particularly limited, and is preferably determined according to the type of polylactic acid. It may be 120°C.
The heating temperature in the annealing treatment may be determined based on the crystallization temperature of the resin layer before the annealing treatment (hereinafter also simply referred to as the “crystallization temperature”), and is preferably between the crystallization temperature of −40° C. and the crystal. The crystallization temperature is +50°C, more preferably crystallization temperature -35°C to crystallization temperature +40°C, more preferably crystallization temperature -30°C to crystallization temperature +30°C.
When the heating temperature in the annealing treatment is equal to or higher than the above lower limit, the heat of fusion of the resin layer tends to be sufficiently increased. Moreover, when the heating temperature in the annealing treatment is equal to or lower than the above upper limit, it tends to be easy to suppress unintended deterioration of the resin layer due to the annealing treatment.
The crystallization temperature of the resin layer before annealing can be measured by the method described in Examples.
 アニール処理における加熱時間は、特に限定されないが、樹脂層の融解熱量をより高めるという観点及び生産性の観点から、好ましくは10秒~30分間、より好ましくは20秒~20分間、さらに好ましくは30秒~15分間である。 The heating time in the annealing treatment is not particularly limited, but is preferably 10 seconds to 30 minutes, more preferably 20 seconds to 20 minutes, even more preferably 30 minutes, from the viewpoint of increasing the heat of fusion of the resin layer and from the viewpoint of productivity. seconds to 15 minutes.
<食品用多層シートの用途>
 本実施形態の食品用多層シートは、耐熱性に優れるため、例えば、食品用包装材料、食品用容器等に好適である。また、本実施形態の食品用多層シートは、耐熱性に優れるため、電子レンジによって加熱される食品の包装材料又は容器として好適である。
<Uses of multi-layer sheets for food>
The food multilayer sheet of the present embodiment is excellent in heat resistance, and is therefore suitable for food packaging materials, food containers, and the like. In addition, the food multilayer sheet of the present embodiment is excellent in heat resistance, and is therefore suitable as a packaging material or container for foods heated in a microwave oven.
[食品用包装材料、食品用容器]
 本実施形態の食品用包装材料は、本実施形態の食品用多層シートを用いて形成された食品用包装材料であり、本実施形態の食品用容器は、本実施形態の食品用多層シートを用いて形成された食品用容器である。
[Food packaging materials, food containers]
The food packaging material of the present embodiment is a food packaging material formed using the food multilayer sheet of the present embodiment, and the food container of the present embodiment uses the food multilayer sheet of the present embodiment. It is a food container formed by
 本実施形態の食品用包装材料の一態様としては、例えば、本実施形態の食品用多層シートを、袋状、カップ状、トレイ状等に成形し、食品を包装する用途に供される材料が挙げられる。これらは、例えば、菓子、弁当、冷凍食品、飲料等を輸送、保管、販売等する際に利用され得る。
 本実施形態の食品用容器の一態様としては、例えば、本実施形態の食品用多層シートを、カップ状、トレイ状、皿状等に成形し、食品を入れる用途に供される材料が挙げられる。これらは、例えば、菓子、弁当、冷凍食品、飲料等を輸送、保管、販売等する際、或いは、使い捨てコップ、使い捨て皿等の使い捨て容器に利用され得る。
 なお、食品用包装材料及び食品用容器の紙基材の樹脂層の反対側の面には、適宜、印刷等によって内容物に関する事項、各種意匠等を施しておいてもよい。
As one aspect of the food packaging material of the present embodiment, for example, the multi-layered food sheet of the present embodiment is formed into a bag shape, a cup shape, a tray shape, etc., and a material used for packaging food is provided. mentioned. These can be used, for example, when transporting, storing, selling, etc. sweets, lunch boxes, frozen foods, beverages, and the like.
One aspect of the food container of the present embodiment includes, for example, a material that is used to store food by molding the multilayer food sheet of the present embodiment into a cup shape, tray shape, dish shape, or the like. . These can be used, for example, when transporting, storing, or selling sweets, lunch boxes, frozen foods, beverages, etc., or disposable containers such as disposable cups and disposable plates.
Incidentally, on the side opposite to the resin layer of the paper base material of the food packaging material and the food container, matters related to the contents, various designs, etc. may be applied by printing or the like as appropriate.
 食品用包装材料及び食品用容器は、例えば、本実施形態の食品用多層シートを所望の形状に成形することによって製造することができる。本実施形態の食品用多層シートを成形する方法としては、例えば、真空成形、圧空成形、マッチモールド成形等が挙げられる。また、本実施形態の食品用多層シートにヒートシール性を付与して、ヒートシールによって組み立ててもよい。 Food packaging materials and food containers can be produced, for example, by molding the multi-layer food sheet of the present embodiment into a desired shape. Examples of the method for molding the multilayer food sheet of the present embodiment include vacuum molding, air pressure molding, match mold molding, and the like. Alternatively, the food multi-layer sheet of the present embodiment may be heat-sealed and assembled by heat-sealing.
 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれらの例によって制限されるものではない。各種物性の測定方法及び評価方法は、以下のとおりである。 The present invention will be described in more detail below based on examples, but the present invention is not limited by these examples. Measurement methods and evaluation methods for various physical properties are as follows.
[各層の厚さの測定]
 株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K 6783、Z1702、Z1709に準拠)を用いて測定した。
[Measurement of thickness of each layer]
It was measured using a constant-pressure thickness measuring instrument manufactured by Teclock Co., Ltd. (model number: "PG-02J", standard specifications: JIS K 6783, Z1702, Z1709).
[ポリ乳酸のメルトフローレート(MFR)]
 ポリ乳酸のMFRは、JIS K 7210-1:2014に準じて、降下式フローテスター(株式会社島津製作所製、型番「CFT-100D」)を用いて、温度210℃、荷重2.16kgの条件で測定した。
[Melt flow rate (MFR) of polylactic acid]
The MFR of polylactic acid was measured according to JIS K 7210-1:2014 using a descending flow tester (manufactured by Shimadzu Corporation, model number "CFT-100D") at a temperature of 210°C and a load of 2.16 kg. It was measured.
[樹脂層の融解熱量、結晶化温度、融点の測定]
 樹脂層の結晶化温度及び融点はJIS K 7121(2012)に準拠し、樹脂層の融解熱量はJIS K 7122(2012)に準拠して、以下の手順で測定した。
 各例で作製した樹脂層の厚さが100μmである食品用多層シートの樹脂層(但し、実施例3~5における結晶化温度の測定においては、アニール処理前の樹脂層)を測定試料として、試料約5mgをアルミニウム製のパンに投入し、示差走査熱量計(DSC)(ティー・エイ・インスツルメンツ社製、製品名「Q2000」)を用いて、測定温度範囲-120~200℃、窒素雰囲気下、昇温速度10℃/minの条件にてDSC曲線を取得した。
 得られたDSC曲線をJIS K 7121(2012)に準拠して解析することによって、結晶化温度及び融点を求め、JIS K 7122(2012)に準拠して解析することによって、融解熱量を求めた。
[Measurement of Heat of Fusion, Crystallization Temperature, and Melting Point of Resin Layer]
The crystallization temperature and melting point of the resin layer were measured according to JIS K 7121 (2012), and the heat of fusion of the resin layer was measured according to JIS K 7122 (2012) by the following procedure.
The resin layer of the multi-layer food sheet having a thickness of 100 μm prepared in each example (however, in the measurement of the crystallization temperature in Examples 3 to 5, the resin layer before annealing treatment) was used as a measurement sample, About 5 mg of the sample is put into an aluminum pan, and a differential scanning calorimeter (DSC) (manufactured by TA Instruments, product name "Q2000") is used to measure the temperature range from -120 to 200 ° C. under a nitrogen atmosphere. , and a temperature increase rate of 10° C./min.
The obtained DSC curve was analyzed in accordance with JIS K 7121 (2012) to determine the crystallization temperature and melting point, and the analysis was performed in accordance with JIS K 7122 (2012) to determine the heat of fusion.
[樹脂層の変位率及び軟化点温度の測定]
 樹脂層の変位率及び軟化点温度は、JIS K 7196(2012)に準拠して、以下の手順で測定した。
 各例で作製した樹脂層の厚さが100μmである食品用多層シートを、測定面が樹脂層となるように、熱機械分析(TMA)装置(ネッチ・ジャパン株式会社製、商品名「TMA 4000SE」)に装着し、先端直径が1mm、長さ1mmの円柱状圧子を用いて、測定温度範囲-20℃から圧子侵入完了温度まで、空気雰囲気下、昇温速度5℃/minの条件にて温度-変位曲線を取得した。該温度-変位曲線において、0℃~140℃間の変位率(140℃における変位量の絶対値×100/0℃における樹脂層の厚さ)を確認した。
 さらに、上記で得られた温度-変位曲線において、各温度における前記曲線の傾きを求め、該傾きを温度に対してプロットして得られる温度-傾き曲線を得た。
 得られた温度-傾き曲線において、-20℃から圧子侵入完了温度までのピーク数(変位傾きのピーク数)を確認した。上記の温度範囲において、ピークが1個のみ確認された場合は当該ピークを、ピークが2個以上確認された場合は、ピーク高さが最大であるピークを「変位傾きの最大ピーク」として特定した。該変位傾きの最大ピークに対応する温度-変位曲線から、JIS K 7196(2012)に準拠する解析によって軟化点温度を求め、これを「軟化点温度T(1)」とした。
[Measurement of Displacement Rate and Softening Point Temperature of Resin Layer]
The displacement rate and softening point temperature of the resin layer were measured according to JIS K 7196 (2012) by the following procedure.
A thermomechanical analysis (TMA) device (manufactured by Netch Japan Co., Ltd., trade name "TMA 4000SE") was applied to the multi-layer food sheet having a resin layer thickness of 100 μm prepared in each example so that the measurement surface was the resin layer. ”), using a cylindrical indenter with a tip diameter of 1 mm and a length of 1 mm, from the measurement temperature range of -20 ° C to the indenter penetration completion temperature, in an air atmosphere, at a temperature increase rate of 5 ° C / min. A temperature-displacement curve was obtained. In the temperature-displacement curve, the displacement rate between 0° C. and 140° C. (absolute value of displacement at 140° C.×100/thickness of resin layer at 0° C.) was confirmed.
Furthermore, in the temperature-displacement curve obtained above, the slope of the curve at each temperature was determined, and the temperature-slope curve was obtained by plotting the slope against the temperature.
In the obtained temperature-slope curve, the number of peaks (number of peaks of displacement slope) from −20° C. to the indentation completion temperature was confirmed. In the above temperature range, when only one peak was confirmed, the peak was identified as the "maximum displacement slope peak" when two or more peaks were confirmed. . From the temperature-displacement curve corresponding to the maximum peak of the displacement slope, the softening point temperature was determined by analysis according to JIS K 7196 (2012), and this was defined as "softening point temperature T(1)".
[食品用多層シートの作製]
実施例1~2、比較例1
 表1に記載のポリ乳酸からなる樹脂層形成材料、又はポリ乳酸と造核剤とを混合して得た樹脂層形成材料を、Tダイを用いて、200℃で、表1に記載の紙基材の上に押し出した。その後、水温を23℃に調整した水冷ロールによって樹脂層を冷却及び固化させて食品用多層シートを得た。
 なお、食品用多層シートは、樹脂層の厚さが100μmのものと、20μmのものとの2種類を作製した。以下の実施例3~5においても、上記2種類の厚さの樹脂層を有する食品用多層シートを作製した。
[Preparation of multi-layer sheet for food]
Examples 1 and 2, Comparative Example 1
A resin layer-forming material composed of polylactic acid described in Table 1 or a resin layer-forming material obtained by mixing polylactic acid and a nucleating agent was melted into the paper described in Table 1 at 200 ° C. using a T-die. Extruded onto a substrate. After that, the resin layer was cooled and solidified by a water-cooled roll adjusted to a water temperature of 23° C. to obtain a multi-layer sheet for food.
Two types of multi-layer sheets for food were produced, one having a resin layer thickness of 100 μm and the other having a resin layer thickness of 20 μm. Also in Examples 3 to 5 below, multi-layer sheets for food having resin layers with the above two types of thicknesses were produced.
実施例3~5
 表1に記載のポリ乳酸からなる樹脂層形成材料、又はポリ乳酸と造核剤とを混合して得た樹脂層形成材料を、実施例1と同様の方法で表1に記載の紙基材の上に押し出し、水温を23℃に調整した水冷ロールによって樹脂層を冷却及び固化させた。その後、空気雰囲気下、表1に記載の条件でアニール処理を施してから、空気中で自然冷却して、食品用多層シートを得た。なお、実施例3~5におけるアニール処理前の樹脂層の結晶化温度を表1に示す。
Examples 3-5
A resin layer-forming material composed of polylactic acid described in Table 1 or a resin layer-forming material obtained by mixing polylactic acid and a nucleating agent was treated in the same manner as in Example 1 to obtain a paper base material described in Table 1. The resin layer was cooled and solidified by a water-cooled roll adjusted to a water temperature of 23°C. Thereafter, the sheet was annealed under the conditions shown in Table 1 in an air atmosphere, and then naturally cooled in the air to obtain a multi-layered sheet for food. Table 1 shows the crystallization temperatures of the resin layers before the annealing treatment in Examples 3 to 5.
 表1中、造核剤及び紙基材の詳細は以下の通りである。
<造核剤>
・クレー:株式会社ホージュン製、商品名「エスベンW」
・タルク:カミタルク株式会社製、商品名「タルクKA―9」
<紙基材>
・紙基材1:坪量50g/m、厚さ70μm
・紙基材2:坪量260g/m、厚さ320μm
In Table 1, the details of the nucleating agent and the paper substrate are as follows.
<Nucleating agent>
・ Clay: Hojun Co., Ltd., trade name “Esben W”
・ Talc: manufactured by Kami Talc Co., Ltd., trade name “Talc KA-9”
<Paper substrate>
・Paper base material 1: Basis weight 50 g/m 2 , thickness 70 μm
・Paper base material 2: Basis weight 260 g/m 2 , thickness 320 μm
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、樹脂層の変位傾きのピーク数が2個以下である本実施形態の実施例1~5の食品用多層シートは、0℃~140℃間の変位率が小さく、耐熱性に優れていることが分かる。一方、樹脂層の変位傾きのピーク数が2個を超える比較例1の食品用多層シートは、耐熱性が不十分であった。 From the results of Table 1, the food multilayer sheets of Examples 1 to 5 of the present embodiment, in which the number of peaks of the displacement slope of the resin layer is 2 or less, have a small displacement rate between 0 ° C. and 140 ° C., and are heat resistant. It can be seen that it is superior to On the other hand, the food multilayer sheet of Comparative Example 1, in which the number of peaks of the displacement slope of the resin layer exceeded two, had insufficient heat resistance.
1   食品用多層シート
2   紙基材
3   樹脂層
1 multi-layer sheet for food 2 paper substrate 3 resin layer

Claims (12)

  1.  紙基材と、該紙基材の一方又は両方の面側に設けられた樹脂層と、を有し、
     前記樹脂層が、ポリ乳酸を含有し、
     JIS K 7196(2012)に従う熱機械分析によって得られる前記樹脂層の-20℃から圧子侵入完了温度までの温度-変位曲線において、各温度における前記曲線の傾きを求め、該傾きを温度に対してプロットして得られる温度-傾き曲線のピークの数が、2個以下である、食品用多層シート。
    Having a paper substrate and a resin layer provided on one or both surface sides of the paper substrate,
    The resin layer contains polylactic acid,
    In the temperature-displacement curve from -20 ° C. to the indentation completion temperature of the resin layer obtained by thermomechanical analysis according to JIS K 7196 (2012), the slope of the curve at each temperature was obtained, and the slope was measured against the temperature. A multi-layer sheet for foods, wherein the temperature-slope curve obtained by plotting has two or less peaks.
  2.  前記温度-傾き曲線のピークの数が1個である場合は該ピークを、前記温度-傾き曲線のピークの数が2個である場合は、該2個のピークのうち、ピークの高さが大きい方のピークを、変位傾きの最大ピークとした場合、該変位傾きの最大ピークに対応する前記温度-変位曲線から、JIS K 7196(2012)に準拠する解析によって求められる軟化点温度が、140℃以上である、請求項1に記載の食品用多層シート。 When the number of peaks in the temperature-slope curve is 1, the peak, and when the number of peaks in the temperature-slope curve is 2, the height of the peak among the 2 peaks When the larger peak is the maximum peak of the displacement slope, the softening point temperature obtained from the temperature-displacement curve corresponding to the maximum peak of the displacement slope by analysis according to JIS K 7196 (2012) is 140. ° C. or higher, the multi-layer sheet for food according to claim 1.
  3.  前記樹脂層の融点が、140~180℃である、請求項1又は2に記載の食品用多層シート。 The food multilayer sheet according to claim 1 or 2, wherein the resin layer has a melting point of 140 to 180°C.
  4.  前記樹脂層中における前記ポリ乳酸の含有量が、60~100質量%である、請求項1又は2に記載の食品用多層シート。 The food multilayer sheet according to claim 1 or 2, wherein the polylactic acid content in the resin layer is 60 to 100% by mass.
  5.  前記樹脂層に含有される全ポリ乳酸中におけるL体由来の構成単位の含有量が、94~100質量%である、請求項1又は2に記載の食品用多層シート。 The food multilayer sheet according to claim 1 or 2, wherein the content of the L-form-derived structural unit in the total polylactic acid contained in the resin layer is 94 to 100% by mass.
  6.  前記樹脂層が、さらに、造核剤を含有する、請求項1又は2に記載の食品用多層シート。 The food multilayer sheet according to claim 1 or 2, wherein the resin layer further contains a nucleating agent.
  7.  前記紙基材の厚さに対する、前記樹脂層の厚さの比〔樹脂層/紙基材〕が、0.01~1.5である、請求項1又は2に記載の食品用多層シート。 The food multilayer sheet according to claim 1 or 2, wherein the ratio of the thickness of the resin layer to the thickness of the paper base [resin layer/paper base] is 0.01 to 1.5.
  8.  前記樹脂層の厚さが、1~120μmである、請求項1又は2に記載の食品用多層シート。 The multilayer food sheet according to claim 1 or 2, wherein the resin layer has a thickness of 1 to 120 µm.
  9.  JIS K 7196(2012)に従う熱機械分析で測定される、前記樹脂層の0℃~140℃間における変位率が、20%以下である、請求項1又は2に記載の食品用多層シート。 The multilayer food sheet according to claim 1 or 2, wherein the resin layer has a displacement rate between 0°C and 140°C of 20% or less, as measured by thermomechanical analysis according to JIS K 7196 (2012).
  10.  請求項1又は2に記載の食品用多層シートを用いて形成された食品用包装材料。 A food packaging material formed using the food multilayer sheet according to claim 1 or 2.
  11.  請求項1又は2に記載の食品用多層シートを用いて形成された食品用容器。 A food container formed using the multi-layer food sheet according to claim 1 or 2.
  12.  請求項1又は2に記載の食品用多層シートを製造する方法であって、
     ポリ乳酸を含有する樹脂層形成材料を層形成した後、アニール処理を施して樹脂層を形成する工程を含む、食品用多層シートの製造方法。
    A method for producing the food multilayer sheet according to claim 1 or 2,
    A method for producing a multi-layer sheet for food, comprising a step of forming a resin layer by forming a layer of a resin layer-forming material containing polylactic acid, followed by annealing treatment.
PCT/JP2023/003229 2022-02-07 2023-02-01 Multilayer sheet for food, packaging material for food, container for food, and manufacturing method for multilayer sheet for food WO2023149476A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-017346 2022-02-07
JP2022017346 2022-02-07

Publications (1)

Publication Number Publication Date
WO2023149476A1 true WO2023149476A1 (en) 2023-08-10

Family

ID=87552510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003229 WO2023149476A1 (en) 2022-02-07 2023-02-01 Multilayer sheet for food, packaging material for food, container for food, and manufacturing method for multilayer sheet for food

Country Status (2)

Country Link
TW (1) TW202346166A (en)
WO (1) WO2023149476A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501351A (en) * 1991-08-12 1995-02-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Degradable, liquid-repellent coated articles
JPH08252895A (en) * 1995-03-16 1996-10-01 Mitsubishi Plastics Ind Ltd Decomposable laminated material
JP2004256795A (en) * 2003-02-07 2004-09-16 Toray Ind Inc Polylactic acid film and laminate using it
JP2009143111A (en) * 2007-12-14 2009-07-02 Tohcello Co Ltd Polylactic acid laminate oriented film and decorative paper using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501351A (en) * 1991-08-12 1995-02-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Degradable, liquid-repellent coated articles
JPH08252895A (en) * 1995-03-16 1996-10-01 Mitsubishi Plastics Ind Ltd Decomposable laminated material
JP2004256795A (en) * 2003-02-07 2004-09-16 Toray Ind Inc Polylactic acid film and laminate using it
JP2009143111A (en) * 2007-12-14 2009-07-02 Tohcello Co Ltd Polylactic acid laminate oriented film and decorative paper using it

Also Published As

Publication number Publication date
TW202346166A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
KR20070106679A (en) Biodegradable paper-based cup or package and production method
JP2009107340A (en) Barrier packaging web having metallized non-oriented film
EP1864793A1 (en) Metallized blaxially oriented polypropylene film with high metal adhesion
WO2018225559A1 (en) Biaxially oriented polyester film
US20180147823A1 (en) Method of packaging product in container with blush and chemical resistant polyester film
US20140065315A1 (en) Biaxially oriented bio-based polyolefin film that has been extrusion coated with bio-based sealant for lidding applications
WO2007013657A1 (en) Resin-coated metal plate
CN114728510A (en) High scratch-resistant laminated tube with metallized polyethylene layer decoration
JPWO2020138048A1 (en) Laminated body and packaging using it
JP2017217866A (en) Heat-sealing resin film and manufacturing method thereof, laminate and packaging material
WO2023149476A1 (en) Multilayer sheet for food, packaging material for food, container for food, and manufacturing method for multilayer sheet for food
WO2023149475A1 (en) Multilayer sheet for food, packaging material for food, container for food, and manufacturing method for multilayer sheet for food
JPWO2010084846A1 (en) Concealing film and concealing laminate using the film
JP5076385B2 (en) Resin-coated metal plate for container and resin-coated metal can
JP4826419B2 (en) Resin-coated metal plate for containers
WO2018225558A1 (en) Biaxially oriented polyester film
JP2005060617A (en) Polyester film
JP2019006437A (en) Composite container including outer box and inner bag
JP4799197B2 (en) Laminated film for metal plate lamination molding
JP2022182524A (en) Method for manufacturing laminate, and laminate
US10815347B2 (en) Blush-resistant film including pigments
JP2021031634A (en) Metal sheets lamination-bonding film
JP6715915B2 (en) Film for laminating on metal plate
JP2013199059A (en) Laminated film
JP7442576B2 (en) PET molded container and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578597

Country of ref document: JP

Kind code of ref document: A