JP2018151950A - 情報処理装置、情報処理システム及びプログラム - Google Patents
情報処理装置、情報処理システム及びプログラム Download PDFInfo
- Publication number
- JP2018151950A JP2018151950A JP2017048618A JP2017048618A JP2018151950A JP 2018151950 A JP2018151950 A JP 2018151950A JP 2017048618 A JP2017048618 A JP 2017048618A JP 2017048618 A JP2017048618 A JP 2017048618A JP 2018151950 A JP2018151950 A JP 2018151950A
- Authority
- JP
- Japan
- Prior art keywords
- artificial intelligence
- result
- information processing
- processing apparatus
- character
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010365 information processing Effects 0.000 title claims description 49
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 239
- 238000012545 processing Methods 0.000 claims abstract description 85
- 238000000034 method Methods 0.000 claims abstract description 80
- 230000008569 process Effects 0.000 claims abstract description 48
- 238000004891 communication Methods 0.000 claims description 35
- 230000007246 mechanism Effects 0.000 description 30
- 238000004422 calculation algorithm Methods 0.000 description 24
- 238000010586 diagram Methods 0.000 description 20
- 230000006870 function Effects 0.000 description 17
- 230000035807 sensation Effects 0.000 description 15
- 235000019615 sensations Nutrition 0.000 description 15
- 238000012544 monitoring process Methods 0.000 description 13
- 210000003128 head Anatomy 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 11
- 210000004247 hand Anatomy 0.000 description 7
- 238000013135 deep learning Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000010801 machine learning Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008451 emotion Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008058 pain sensation Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 235000019613 sensory perceptions of taste Nutrition 0.000 description 1
- 230000035923 taste sensation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0423—Input/output
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/008—Artificial life, i.e. computing arrangements simulating life based on physical entities controlled by simulated intelligence so as to replicate intelligent life forms, e.g. based on robots replicating pets or humans in their appearance or behaviour
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
- B25J11/0005—Manipulators having means for high-level communication with users, e.g. speech generator, face recognition means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1615—Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
- B25J9/162—Mobile manipulator, movable base with manipulator arm mounted on it
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/163—Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
- G06N5/043—Distributed expert systems; Blackboards
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/25—Pc structure of the system
- G05B2219/25257—Microcontroller
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39271—Ann artificial neural network, ffw-nn, feedforward neural network
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Robotics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
- Computer And Data Communications (AREA)
Abstract
Description
請求項2に記載の発明は、前記第1の人工知能は、仮想空間上を移動可能な第1のキャラクタに紐付けられており、前記第2の人工知能は、当該仮想空間上を移動可能な第2のキャラクタに紐付けられている、請求項1に記載の情報処理装置である。
請求項3に記載の発明は、端末装置と通信する場合、当該端末装置の表示画面上に、前記第1のキャラクタと前記第2のキャラクタを表示させる、請求項2に記載の情報処理装置である。
請求項4に記載の発明は、前記仮想空間上で前記第1のキャラクタが移動する場合、前記第2のキャラクタも当該第1のキャラクタと共に移動する、請求項3に記載の情報処理装置である。
請求項5に記載の発明は、前記第1の人工知能と前記第2の人工知能は、通信手段を通じて接続された他の情報処理装置に移動する、請求項1に記載の情報処理装置である。
請求項6に記載の発明は、前記第1の人工知能と前記第2の人工知能の移動は、前記第1の人工知能に紐付けられた第1のキャラクタと前記第2の人工知能に紐付けられた第2のキャラクタのうちの一方又は両方に対する端末装置の表示画面上における移動操作に基づいて実行される、請求項5に記載の情報処理装置である。
請求項7に記載の発明は、前記第1の結果と前記第2の結果が異なる場合、当該第2の結果が優先される、請求項1に記載の情報処理装置である。
請求項8に記載の発明は、次に実行する処理の内容についての前記決定は、前記第1の結果の一部と前記第2の結果の一部の比較結果に基づいて行われる、請求項1に記載の情報処理装置である。
請求項9に記載の発明は、前記第1の人工知能と前記第2の人工知能は方式が異なる、請求項1に記載の情報処理装置である。
請求項10に記載の発明は、前記第1の人工知能と前記第2の人工知能は方式が同じであるが学習に関するパラメータが異なる、請求項1に記載の情報処理装置である。
請求項11に記載の発明は、入力情報を処理して第1の結果を出力する第1の人工知能が動作する第1の情報処理装置と、前記入力情報を処理して第2の結果を出力する、前記第1の人工知能とは異なる第2の人工知能が動作する第2の情報処理装置とを有し、前記第1の結果と前記第2の結果の比較結果に基づいて次に実行する処理の内容を決定する、情報処理システムである。
請求項12に記載の発明は、コンピュータに、第1の人工知能から入力情報に対する第1の処理結果を入力する処理と、前記第1の人工知能とは異にする第2の人工知能から前記入力情報に対する第2の処理結果を入力する処理と、前記第1の処理結果と前記第2の処理結果の比較結果に基づいて次に実行する処理の内容を決定する処理とを実行させるためのプログラムである。
請求項2記載の発明によれば、人工知能を仮想空間上のキャラクタとして管理することで実空間と仮想空間のシームレスな連携を実現できる。
請求項3記載の発明によれば、人工知能をキャラクタの表示を通じて視覚的に把握できる。
請求項4記載の発明によれば、2つの人工知能の協働関係をキャラクタの移動を通じて把握できる。
請求項5記載の発明によれば、2つの人工知能を他の情報処理装置に引き継ぐことができる。
請求項6記載の発明によれば、2つの人工知能の移動を仮想空間上のキャラクタに対する移動操作を通じて実現できる。
請求項7記載の発明によれば、2つの結果が一致するまで2つの人工知能の処理を繰り返す場合に比して、決定の遅延を回避できる。
請求項8記載の発明によれば、結果に複数の情報が含まれる場合でも一部の情報に絞り込むことで決定の遅延を回避できる。
請求項9記載の発明によれば、2つの人工知能の方式が異なることで決定に対する信頼性を高めることができる。
請求項10記載の発明によれば、2つの人工知能が使用する学習に関するパラメータが異なることで決定に対する信頼性を高めることができる。
請求項11記載の発明によれば、処理動作を単一の人工知能による処理結果に基づいて決定する場合に比して、処理動作の信頼性を向上できる。
請求項12記載の発明によれば、処理動作を単一の人工知能による処理結果に基づいて決定する場合に比して、処理動作の信頼性を向上できる。
本実施の形態では、人工知能を使用して自律的に動作可能な情報処理装置について説明する。
情報処理装置は、人工知能が使用する計算資源を提供する実空間上の装置として機能する。
計算資源は、コンピュータで実行されるプロセスやジョブが計算のために使用する資源をいい、代表的には情報処理装置がプロセッサを使用する時間の合計(プロセッサ時間)と記憶装置(物理メモリと仮想メモリの両方を含む。)をいう。
人工知能は、情報処理装置を構成するハードウェア資源に対する指示を通じて実空間に影響を与える。
本実施の形態では、人工知能として、個別の領域に特化して能力を発揮するいわゆる特化型の人工知能を想定する。もっとも、人工知能は、個別の領域に制約されず多様で複雑な問題も解決できるいわゆる汎用型の人工知能でもよい。
機械学習型のアルゴリズムを使用する人工知能では、学習に使用される情報の種類、量、学習時間、重みづけの違いが、人工知能の出力結果に影響する。
この意味で、学習に使用した情報の種類や量が異なる人工知能は、学習に関するパラメータが異なる人工知能の一例である。
深層学習型のアルゴリズムには、畳み込みニューラルネットワークを利用する方法、再帰型ニューラルネットワークを利用する方法、ディープビリーフネットワークを利用する方法、ディープボルツマンマシンを利用する方法などがある。ここで、実現方法が異なる人工知能は、学習に関するパラメータが異なる人工知能の一例である。
本実施の形態では、アルゴリズムが異なる人工知能を、アルゴリズムの方式が異なる人工知能として扱う。また、アルゴリズムが異なる人工知能と、学習量や学習に関するパラメータ等が異なる人工知能を総称して、方式が異なる人工知能という。
なお、各人工知能には処理内容に応じた向き不向きがある。
このうち、前述したコミュニケーションロボットは言語を扱う機能の一例である。また、前述したお掃除ロボットは制御を扱う機能の一例である。
本実施の形態において、「自律的」とは、外部からの制御を必要とせず実行される状態であり、換言すると、自己充足的で他に依存しない状態をいう。
続いて、本実施の形態における情報処理装置の具体例について説明する。前述したように、情報処理装置は実空間上に実在している。
図1は、情報処理装置の一例であるロボット10の外観構成を説明する図である。
図1の場合、ロボット10は、ヒト型の人形や玩具の外観を模している。もっとも、ロボット10の外観はヒト型に限らず、犬やネコなどの動物、花や木などの植物、車(電車を含む)や飛行機等の乗り物を模したものでよい。
胴部11には、信号処理のための電子部品が格納されている。胴部11には、表示デバイスや音響機器が搭載されてもよい。
3軸の全てに対して回転可能である必要はなく、1軸のみ又は2軸について回転可能でよい。これらの回転は、不図示のモーターによって実現してもよいが、手動で行ってもよい。もっとも、頭部12が胴部11に対して固定される場合を妨げない。
頭部12には目12A、12Bが設けられている。目12A及び12Bは、装飾的に配置されていてもよいし、撮像装置、投影機、照明等を内蔵してもよい。頭部12には可動式の耳が配置されていてもよい。
なお、腕13及び15を予め定めた角度に折り曲げれば、物の運搬に用いることができる。
手14及び16は、腕13及び15に対して固定でもよい。
足17及び18がジョイント機構を介して胴部11に連結される場合、ジョイント機構は、頭部12と同じく多軸でも単軸でもよい。
また、軸周りの回転は不図示のモーターにより実現してもよいし、手動で実現してもよい。なお、足17及び18は、胴部11に対して固定でもよい。
ロボット10は、装置全体の動きを制御する制御部21と、ロボット周辺の画像を撮像するカメラ22と、会話用の音声、楽曲、効果音を再生するスピーカ23と、音の入力又は取得に用いられるマイク24と、ジョイント機構などの可動機構25と、外部装置との通信に用いられる通信部26と、画像を表示する表示部27と、装置全体を移動させる移動機構28と、各部に電力を供給する電源29と、各部の状態や周辺情報の収集に使用されるセンサ30と、位置情報の取得に用いられる位置検知部31とを有している。これらの各部は、例えばバス32により互いに接続されている。
また、ロボット10は、不図示の機能部を更に搭載してもよい。例えばロボット10は、電源ボタン、記憶装置(ハードディスク装置、半導体メモリ等)、熱源(冷却源を含む。)等を搭載してもよい。
ROMには、CPUにより実行されるプログラムが記憶されている。
CPUは、ROMに記憶されているプログラムを読み出し、RAMを作業エリアに使用してプログラムを実行する。プログラムの実行を通じ、CPUはロボット10を構成する各部の動作を制御する。
ここでのプログラムには、人工知能に対応するアルゴリズムの実現に関連するプログラムが含まれる。制御部21を構成するCPUやRAMは、人工知能が使用する計算資源を提供する。
例えばスピーカ23を通じて音声を出力したり、通信部26を通じてメッセージを送信したり、表示部27を通じて画像を出力してもよい。
これら情報の入出力や可動機構25の動きを通じ、制御部21は、ユーザとの間でコミュニケーションを成立させることができる。コミュニケーションの応用例には、例えば接客や会議の進行なども含まれる。
制御部21は、不明な事態が発生した場合に、インターネット検索や外部のコンピュータとの通信を通じて追加の情報を収集し、検索事象との類似度によって解決策を発見する機能も搭載する。
視覚は、カメラ22で撮像された画像の認識処理を通じて実現される。
聴覚は、マイク24で取得された音の認識処理を通じて実現される。
触覚には、例えば表在感覚(触覚、痛覚、温度覚)、深部覚(圧覚、位置覚、振動覚など)、皮質性感覚(二点識別覚、立体識別能力など)が含まれる。
制御部21は、触覚の違いを分別できる。
触覚、味覚、嗅覚、平衡感覚、温度は、各種のセンサ30による情報の検知を通じて実現される。なお、温度には、周辺温度、内部温度、ヒトや動物の体温なども含まれる。
更に、制御部21が取得する情報には、ヒトや動物の脳波も含み得る。この場合、脳波は、ヒト等に装着された脳波検知デバイスから発信される情報を通信部26で受信すればよい。
表示部27として投影機が用いられる場合、投影機は、例えば目12A及び12B(図1参照)のいずれか一方又は両方に配置することができる。なお、投影機は胴部11や頭部12に配置してもよい。
物の搬送に使用される場合、可動機構25は、腕13、15や手14、16(図1参照)の変形を通じて、例えば物を掴む、抱える、支える等の動作を実現する。
感情の表現に使用される場合、可動機構25は、例えば頭部12、腕13、15、手14、16等(図1参照)の駆動を通じて、頭を傾げる、見上げる、周囲を見回す(キョロキョロする)、万歳する、指さし等の動作を実行する。
ロボット10には、通信先として想定する外部装置で用いられる通信方式の数だけ通信部26が搭載される。
通信方式には、例えば赤外線通信、可視光通信、近接無線通信、WiFi(登録商標)、ブルートゥース(登録商標)、RFID(登録商標)、ZigBee(登録商標)、IEEE802.11a(登録商標)、MulteFire、LPWA(Low Power Wide Area)等がある。
無線通信に使用する帯域には、短波長帯(例えば800MHz〜920MHz)、長波長帯(例えば2.4GHz、5GHz)等がある。
なお、通信部26と外部装置との接続には通信ケーブルを使用してもよい。
表示部27が頭部12に配置される場合、表示部27に表情を表示してもよい。
本実施の形態における電源29には二次電池を使用するが、電力を発生できれば一次電池、燃料電池、太陽電池のいずれを用いてもよい。
また、電源29の代わりに、電源ケーブルを通じて外部から電力の供給を受ける構成を採用してもよい。
位置検知部31には、例えばGPS(Global Positioning System)信号から地点情報を読み取る方式、GPSと同等の信号を用いて屋内の位置を測位するIMES(Indoor Messaging System)方式、WiFiの複数のアクセスポイントから送信された電波の強度や到達時間等から位置を測位するWiFi測位方式、基地局から定期的に発生される信号に対する応答の方角と遅延時間から位置を測位する基地局測位方式、不可聴域の超音波を受信して位置を測位する音波測位方式、ブルートゥース(登録商標)を使ったビーコンからの電波を受信して位置を測位するブルートゥース(登録商標)測位方式、LED(Light Emitting Diode)等の照明光の点滅によって伝達される位置情報を用いて位置を測位する可視光測位方式、加速度センサやジャイロセンサ等を用いて現在位置を測位する自律航法方式等を利用する。
本実施の形態の場合、制御部21が提供する計算資源35は、2つの人工知能と他の制御プログラムの動作に使用される。
ここでは、2つの人工知能を「人工知能1」及び「人工知能2」と表記して区別する。人工知能1は第1の人工知能の一例であり、人工知能2は第2の人工知能の一例である。
例えばアルゴリズムの方式が異なる例には、人工知能1には機械学習型のアルゴリズムを使用し、人工知能2には深層学習型のアルゴリズムを使用する例がある。
アルゴリズムの方式は同じであるが学習に関するパラメータが異なる例には、人工知能1には学習時間が1年の深層学習型のアルゴリズムを使用し、人工知能2には学習時間が2年の深層学習型のアルゴリズムを使用する例がある。
これら以外にも、学習データの重み付け(重要視するデータ)を変更する等が、互いに異なる人工知能の例として考えられる。
本実施の形態では、人工知能1と人工知能2が1つの計算資源を共用しているが、人工知能1が使用する計算資源と人工知能2が使用する計算資源は物理的に異なる計算資源であってもよい。
一方で、人工知能1と人工知能2の処理結果が一致する場合には、多面的な観点から評価した結果が一致することになるので、処理結果の信頼性が一段と高くなる。
人工知能1と人工知能2は、個々のアルゴリズムに基づく処理1及び2を実行し(ステップ102、103)、結果1及び2を得る(ステップ104、105)。
2つの結果1及び2は、制御部21で実行される制御プログラムに与えられ、比較される(ステップ106)。制御プログラムとは、入出力関係の全てが予め記述されている既存のプログラムである。
ここで、2つの結果1及び2が一致する場合、制御プログラムは、予め定めた一方の処理結果(例えば人工知能1の結果1)を出力として決定する。例えば、制御プログラムは、認識された外部環境に応じて移動機構28を制御し、ロボット10を実空間上で移動させる。例えば、制御プログラムは、スピーカ23を通じて認識した音声内容に対応する音を発生させる。例えば、制御プログラムは、可動機構25を通じて腕13、15を駆動し、認識された外部入力に対応する感情などを表現する。
もっとも、制御プログラムは、人工知能1及び2のそれぞれに対して処理の再実行を指示してもよい。この場合、制御プログラムは、入力情報に対して追加の条件を付与する。追加の条件は、入力情報に応じて予め定められている。条件の追加は、人工知能1による処理の結果1の選択肢を狭める方向に作用する。制御プログラムは、2つの結果1及び2が一致するまで処理の再実行を繰り返し指示する。
ロボット10の動作の停止が許される用途もあるが、自動運転の場合のように予め定めた時間内での反応が求められる場合もある。この場合には、予め定めた時間を超えること又は予め定めた繰り返し回数を超えること等を条件に、制御プログラムは、予め定めた一方の結果(例えば人工知能2の結果2)を出力するものとして(すなわち、優先的に取り扱うものとして)、次に実行する処理の内容を決定する。
そこで、制御プログラムには、2つの結果1及び2に含まれる複数の情報のうちの一部に限定して比較する機能を設けてもよい。ここでの一部の情報は、時間上の制約がある制御項目に応じて予め定めておけばよい。これにより、決定に要する時間を短縮することができる。
この場合には、処理の決定にも人工知能が関与するので、状況に応じてどちらの処理結果を採用すればよいかについての学習結果が反映される。その分、図5に示す処理動作は、処理の決定についての信頼性を図4に示す処理動作よりも向上できる。
なお、決定された処理は、人工知能1及び2とは別に動作する制御プログラムに与えられ、予め定められた入出力関係に従ってロボット10の動作が制御される。
以下では、実空間上の存在であるロボット10と端末装置の表示画面(仮想空間)との間の連携動作について説明する。
図6は、実空間と仮想空間との連携動作を説明する図である。
ロボット10と端末装置40は、共に実空間上に物理的に存在し、通信手段を通じて通信できる状態にある。
端末装置40のユーザは、表示画面41上に表示された仮想空間上のキャラクタ42A及び42Bを通じて実空間上のロボット10の動作状況を認識すると共にロボット10に実行させたい動作を指示する。
ここで、キャラクタ42Aは人工知能1に対応し、キャラクタ42Bは人工知能2に対応する。
表示画面41上におけるキャラクタ42A及び42Bの動きが実空間上のロボット10の動きに連動していれば、端末装置40とロボット10の実空間上の距離が離れていても、ユーザはキャラクタ42A及び42Bの動きを通じてロボット10の動作状況をリアルタイムに把握することができる。
図6では、キャラクタ42A及び42Bの図柄を区別なく表現しているが、人工知能1及び2に作業役と監視役の役割が与えられている場合には、表示寸法、表示色、形状等を変えるなどして2つの人工知能の役割を区別できるようにしてもよい。
端末装置40は、装置全体の動きを制御する制御部45と、ユーザの操作入力を受け付ける操作部46と、外部装置(例えばロボット10)との通信に用いられる通信部47と、情報を記憶する記憶部48と、画像を表示する表示部49と、音声、楽曲、効果音を再生するスピーカ50とを有している。これらの各部は、例えばバス51により互いに接続されている。
ここでのプログラムは、ロボット10で動作する2つの人工知能1及び2のそれぞれに対応するキャラクタ42A及び42Bを表示部49に表示する機能を備えている。
通信部47は、無線通信その他の通信手段を通じてロボット10と通信する。
記憶部48は、ハードディスク装置や半導体メモリなどの記憶装置により構成される。
表示部49は、プログラム(オペレーションシステムやファームウェアを含む)の実行を通じて各種の画像を表示するディスプレイ装置である。表示部49は、例えば液晶ディスプレイパネルや有機EL(Electro Luminescence)ディスプレイパネルで構成される。
図8は、表示画面41の表示例を説明する図である。図8には、表示画面41に表示されている仮想空間に対応する装置名41Aと、人工知能1が実行している作業41B及び41Cと、装置名41Aに対応するロボット10が実空間上で位置する場所41Dとが示されている。
図8の例では、装置名41Aとして「ロボットA」で示され、同じ画面内には、ロボットAの処理を実行する人工知能1及び2に紐付けられたキャラクタ42A及び42Bも示されている。
この表示画面41を見たユーザは、遠隔地で動作しているロボット10(ロボットA)が周辺画像の収集(作業1)と移動(作業2)を実行中であることを理解することができる。
図8では、人工知能1(キャラクタ42A)が作業役として動作し、人工知能2(キャラクタ42B)が監視役として動作していることも示されている。
作業空間56は周辺画像の収集動作を表しており、作業空間57は画像の処理動作を表しており、作業空間58は移動動作を表しており、作業空間59はコミュニケーションを表している。
図10の場合、人工知能1(キャラクタ42A)及び人工知能2(キャラクタ42B)は、作業空間56(周辺画像の収集動作)と作業空間57(画像の処理)の2つの作業を実行していることを表している。
図11の表示画面41の場合、人工知能1及び2が多くの処理を並列に実行していても、キャラクタ42A及び42Bの表示数の増加を抑制でき、作業内容の確認が容易になる。
キャラクタ42A及び42Bの仮想空間上における移動は、実空間上に位置するロボット10(ロボットA)の動作を表現しており、ユーザはロボット10(ロボットA)における動作状況を仮想空間上の動きを通じて把握することができる。
また、図12に示すように、作業役としての人工知能1(キャラクタ42A)と監視役としての人工知能2(キャラクタ42B)は仮想空間上で一緒に移動することで、2つの人工知能1及び2の協働関係が視覚的に把握される。
前述の説明では、人工知能1及び2がロボット10に対応する仮想空間内で移動する場合について説明したが、人工知能1及び2はロボット10と通信手段を通じて接続された他の装置に移動することもできる。
この移動は、ロボット10とサーバ70との間の通信を通じて実現される。具体的には、人工知能1のアルゴリズムを実現するデータ一式(プログラム、学習データ、パラメータなど)がロボット10からサーバ70に送信される。一般に、サーバ70の提供する計算資源71の方が、ロボット10の提供する計算資源35より広いため、サーバ70に移動した人工知能1の動作は高速化される。
図16は、人工知能1及び2の移動が完了した段階に対応する表示画面41の表示例を示す図である。図16では、監視役の人工知能2に対応するキャラクタ42Bの活動領域41EもロボットAからサーバ70に移動している。
なお、これらの処理機能がロボットAからサーバ70に移動しても、その処理の結果は通信手段を通じてロボットAに与えられる。ロボットAの計算資源35では、予め定めた規則に応じて動作する制御プログラムが実行されているのでロボットAの動作は継続される。
前述の説明では、作業役の人工知能1と監視役の人工知能2の両方が1つのロボット10内で実行されている場合について説明したが、2つの人工知能1及び2は物理的に異なる装置内で実行されてもよい。
図17は、作業役の人工知能1と監視役の人工知能2が別々の装置で動作する例を説明する図である。図17の場合、作業役の人工知能1はロボット10の計算資源35上で動作し、監視役の人工知能2はサーバ70の計算資源71上で動作している。この例の場合、人工知能1が計算資源35を占有する割合が低減し、処理効率の向上が期待される。
例えばロボット10側の人工知能1には、ロボット10の利用者に属する個人情報をそのまま入力情報として与える一方で、サーバ70側の人工知能2には、統計処理用に秘匿化された情報をロボット10から入力情報として与える。換言すると、人工知能1は個人情報を入力情報として処理し、人工知能2は個人を特定できないように秘匿化された情報を入力情報として処理する。また、処理結果についても個人を特定できる情報が含まれる場合には、秘匿化処理した後の情報を、ロボット10からサーバ70に送信する。
また、秘匿性が高い情報を扱う別の方法には、秘匿性の高い情報を扱う人工知能(専用の人工知能)の処理と秘匿性が高くない情報を扱う人工知能(汎用の人工知能)の処理を切り替える方法も考えられる。例えば処理対象とする情報のうち秘匿性の高い情報については、汎用の人工知能とは方式が異なる1つ又は複数の専用の人工知能が判断し、その判断の終了を待って、汎用の人工知能が判断を引き継ぐ手法も考えられる。この方法の場合、秘匿性が高い情報の漏洩を防いだり、様々な用途で使用される汎用性の高い人工知能に秘匿性の高い情報が学習データとして蓄積されることを防いだりできる。
図19は、人工知能1及び2が別々の装置で動作する場合の表示画面41の表示例を示す図である。図19より、ユーザは、作業役の人工知能1(キャラクタ42A)がロボットAで動作し、監視役の人工知能2(キャラクタ42B)がサーバ70で動作していることを知ることができる。
前述の実施の形態では、人工知能1及び2の実空間上での移動に連動して、対応するキャラクタ42A及び42Bが仮想空間上で移動する場合について説明したが、表示画面41上におけるキャラクタ42A及び42Bに対する移動操作を通じて人工知能1及び2の実行先を移動させてもよい。
図20では、2つの人工知能1及び2に対応するキャラクタ42A及び42Bのうち人工知能2に対応するキャラクタ42Bが表示画面41上でロボットAからサーバ70に移動されている。この移動操作の内容は、端末装置40からロボットAに送信される。
ロボットAは、受信した移動指示に従い、人工知能2を実現するデータ一式(プログラム、学習データ、パラメータなど)を指定されたサーバへ送信し、実空間上での人工知能2の移動を完了する。
以上、本発明の実施の形態について説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、種々の変更又は改良を加えたものも、本発明の技術的範囲に含まれることは、特許請求の範囲の記載から明らかである。
この場合も、いずれか1つの人工知能を作業用として使用し、他の人工知能を監視用として使用してもよい。3つ以上の人工知能は、互いに方式が異なることが望ましい。方式の異なる人工知能を使用することにより、多面的な観点からの評価が可能となり、処理結果の信頼性を一段と高めることができる。
なお、3つ以上の人工知能で処理結果を比較する場合、どれか1つの人工知能の結果を他の人工知能の結果よりも優先的に取り扱うようにしたり(重要視したり)、同一の結果が多い方の内容を正しい結果と判断する多数決の判定を導入したりしても良い。多数決の判定手法を採用する場合、処理結果の正しさの精度が向上し、高度な問題を扱う処理への応用も可能になる。
また、ロボット10の表示部27にも、端末装置40の表示部49と同様に、人工知能に紐付けられたキャラクタを表示してもよい。人工知能が実行されている機器(ロボット10に限らない)においてもキャラクタ表示を採用することにより、各機器において実行されている人工知能の数や役割等を視覚的に確認することができる。
Claims (12)
- 入力情報を処理して第1の結果を出力する第1の人工知能と、
前記入力情報を処理して第2の結果を出力する、前記第1の人工知能とは異なる第2の人工知能と
を有し、
前記第1の結果と前記第2の結果の比較結果に基づいて次に実行する処理の内容を決定する、情報処理装置。 - 前記第1の人工知能は、仮想空間上を移動可能な第1のキャラクタに紐付けられており、前記第2の人工知能は、当該仮想空間上を移動可能な第2のキャラクタに紐付けられている、請求項1に記載の情報処理装置。
- 端末装置と通信する場合、当該端末装置の表示画面上に、前記第1のキャラクタと前記第2のキャラクタを表示させる、請求項2に記載の情報処理装置。
- 前記仮想空間上で前記第1のキャラクタが移動する場合、前記第2のキャラクタも当該第1のキャラクタと共に移動する、請求項3に記載の情報処理装置。
- 前記第1の人工知能と前記第2の人工知能は、通信手段を通じて接続された他の情報処理装置に移動する、請求項1に記載の情報処理装置。
- 前記第1の人工知能と前記第2の人工知能の移動は、前記第1の人工知能に紐付けられた第1のキャラクタと前記第2の人工知能に紐付けられた第2のキャラクタのうちの一方又は両方に対する端末装置の表示画面上における移動操作に基づいて実行される、請求項5に記載の情報処理装置。
- 前記第1の結果と前記第2の結果が異なる場合、当該第2の結果が優先される、請求項1に記載の情報処理装置。
- 次に実行する処理の内容についての前記決定は、前記第1の結果の一部と前記第2の結果の一部の比較結果に基づいて行われる、請求項1に記載の情報処理装置。
- 前記第1の人工知能と前記第2の人工知能は方式が異なる、請求項1に記載の情報処理装置。
- 前記第1の人工知能と前記第2の人工知能は方式が同じであるが学習に関するパラメータが異なる、請求項1に記載の情報処理装置。
- 入力情報を処理して第1の結果を出力する第1の人工知能が動作する第1の情報処理装置と、
前記入力情報を処理して第2の結果を出力する、前記第1の人工知能とは異なる第2の人工知能が動作する第2の情報処理装置と
を有し、
前記第1の結果と前記第2の結果の比較結果に基づいて次に実行する処理の内容を決定する、情報処理システム。 - コンピュータに、
第1の人工知能から入力情報に対する第1の処理結果を入力する処理と、
前記第1の人工知能とは異にする第2の人工知能から前記入力情報に対する第2の処理結果を入力する処理と、
前記第1の処理結果と前記第2の処理結果の比較結果に基づいて次に実行する処理の内容を決定する処理と
を実行させるためのプログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017048618A JP6938980B2 (ja) | 2017-03-14 | 2017-03-14 | 情報処理装置、情報処理方法及びプログラム |
US15/698,972 US20180268280A1 (en) | 2017-03-14 | 2017-09-08 | Information processing apparatus, information processing system, and non-transitory computer readable medium |
CN201710904677.1A CN108572586B (zh) | 2017-03-14 | 2017-09-29 | 信息处理装置和信息处理系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017048618A JP6938980B2 (ja) | 2017-03-14 | 2017-03-14 | 情報処理装置、情報処理方法及びプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018151950A true JP2018151950A (ja) | 2018-09-27 |
JP6938980B2 JP6938980B2 (ja) | 2021-09-22 |
Family
ID=63519516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017048618A Active JP6938980B2 (ja) | 2017-03-14 | 2017-03-14 | 情報処理装置、情報処理方法及びプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20180268280A1 (ja) |
JP (1) | JP6938980B2 (ja) |
CN (1) | CN108572586B (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021070136A (ja) * | 2019-11-01 | 2021-05-06 | 株式会社東芝 | 制御装置、制御方法およびプログラム |
JP7471408B2 (ja) | 2019-11-14 | 2024-04-19 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 機械学習技術における予測精度を向上させるための最適な重みの特定 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190106944A (ko) * | 2019-08-30 | 2019-09-18 | 엘지전자 주식회사 | 지능형 냉장고 및 그 제어 방법 |
US11687778B2 (en) | 2020-01-06 | 2023-06-27 | The Research Foundation For The State University Of New York | Fakecatcher: detection of synthetic portrait videos using biological signals |
CN114201278B (zh) * | 2021-12-07 | 2023-12-15 | 北京百度网讯科技有限公司 | 任务处理方法、任务处理装置、电子设备以及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002055754A (ja) * | 2000-08-14 | 2002-02-20 | Nippon Telegraph & Telephone East Corp | ソフトウェアの制御方法およびそのプログラムが記録されたコンピュータ読み取り可能な記録媒体、並びにソフトウェア制御用データが記録されたコンピュータ読み取り可能な記録媒体 |
JP2003323389A (ja) * | 2002-05-02 | 2003-11-14 | Tsubasa System Co Ltd | コミュニケーションエージェントシステム |
JP5816224B2 (ja) * | 2013-06-04 | 2015-11-18 | 株式会社コナミデジタルエンタテインメント | ゲーム装置及びプログラム |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040189702A1 (en) * | 2002-09-09 | 2004-09-30 | Michal Hlavac | Artificial intelligence platform |
CN101187990A (zh) * | 2007-12-14 | 2008-05-28 | 华南理工大学 | 一种会话机器人系统 |
CN101470421B (zh) * | 2007-12-28 | 2012-01-11 | 中国科学院沈阳应用生态研究所 | 一种基于人工智能技术的植物生长室及其控制系统 |
CN101488026B (zh) * | 2009-02-26 | 2011-01-12 | 福州欣创摩尔电子科技有限公司 | 分布式数据采集控制平台系统 |
US20150161662A1 (en) * | 2013-12-10 | 2015-06-11 | Acquisio | System and Method for Directing Online Advertising Across Multiple Channels |
WO2016025941A1 (en) * | 2014-08-15 | 2016-02-18 | University Of Central Florida Research Foundation, Inc. | Control interface for robotic humanoid avatar system and related methods |
-
2017
- 2017-03-14 JP JP2017048618A patent/JP6938980B2/ja active Active
- 2017-09-08 US US15/698,972 patent/US20180268280A1/en not_active Abandoned
- 2017-09-29 CN CN201710904677.1A patent/CN108572586B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002055754A (ja) * | 2000-08-14 | 2002-02-20 | Nippon Telegraph & Telephone East Corp | ソフトウェアの制御方法およびそのプログラムが記録されたコンピュータ読み取り可能な記録媒体、並びにソフトウェア制御用データが記録されたコンピュータ読み取り可能な記録媒体 |
JP2003323389A (ja) * | 2002-05-02 | 2003-11-14 | Tsubasa System Co Ltd | コミュニケーションエージェントシステム |
JP5816224B2 (ja) * | 2013-06-04 | 2015-11-18 | 株式会社コナミデジタルエンタテインメント | ゲーム装置及びプログラム |
Non-Patent Citations (4)
Title |
---|
吉田裕昭、外3名: "ゲート−モジュール型強化学習アルゴリズム", 第75回(平成25年)全国大会講演論文集(2), JPN6021002088, 6 March 2013 (2013-03-06), pages 2 - 241, ISSN: 0004504028 * |
尾前侑佑: "多様なメンバーを集めれば、間違いの少ないチームになる", 日経クロステック [ONLINE], JPN6021002089, 12 May 2015 (2015-05-12), ISSN: 0004504029 * |
波部斉: "ランダムフォレスト", SLIDESHARE [ONLINE], JPN6021002090, 27 February 2016 (2016-02-27), ISSN: 0004504030 * |
穴吹まほろ、外2名: "擬人化エージェントを利用した複合現実空間でのインタラクション", インタラクション2000予稿集 [ONLINE], JPN6021002091, February 2000 (2000-02-01), ISSN: 0004504031 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021070136A (ja) * | 2019-11-01 | 2021-05-06 | 株式会社東芝 | 制御装置、制御方法およびプログラム |
JP7273692B2 (ja) | 2019-11-01 | 2023-05-15 | 株式会社東芝 | 制御装置、制御方法およびプログラム |
JP7471408B2 (ja) | 2019-11-14 | 2024-04-19 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 機械学習技術における予測精度を向上させるための最適な重みの特定 |
Also Published As
Publication number | Publication date |
---|---|
JP6938980B2 (ja) | 2021-09-22 |
US20180268280A1 (en) | 2018-09-20 |
CN108572586A (zh) | 2018-09-25 |
CN108572586B (zh) | 2022-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tsarouchi et al. | Human–robot interaction review and challenges on task planning and programming | |
JP6938980B2 (ja) | 情報処理装置、情報処理方法及びプログラム | |
Wang et al. | Symbiotic human-robot collaborative assembly | |
Fernandez et al. | Natural user interfaces for human-drone multi-modal interaction | |
US20170076194A1 (en) | Apparatuses, methods and systems for defining hardware-agnostic brains for autonomous robots | |
US11559902B2 (en) | Robot system and control method of the same | |
JP6950192B2 (ja) | 情報処理装置、情報処理システム及びプログラム | |
Hendrich et al. | Architecture and software design for a service robot in an elderly-care scenario | |
CN102402290A (zh) | 一种肢体姿势识别方法及系统 | |
US20190354178A1 (en) | Artificial intelligence device capable of being controlled according to user action and method of operating the same | |
CN109153122A (zh) | 基于视觉的机器人控制系统 | |
CN111515970B (zh) | 一种互动方法、拟态机器人和相关装置 | |
US11618164B2 (en) | Robot and method of controlling same | |
Udgata et al. | Advances in sensor technology and IOT framework to mitigate COVID-19 challenges | |
Tresa et al. | A study on internet of things: overview, automation, wireless technology, robotics | |
US11478925B2 (en) | Robot and method for controlling same | |
WO2020166373A1 (ja) | 情報処理装置および情報処理方法 | |
JP7238796B2 (ja) | 動物型の自律移動体、動物型の自律移動体の動作方法、およびプログラム | |
Sylari et al. | Hand gesture-based on-line programming of industrial robot manipulators | |
Tang et al. | Informationally Structured Space for Life Log Monitoring in Elderly Care | |
JP6809267B2 (ja) | 情報処理装置、情報処理システム及びプログラム | |
Bischoff | System reliability and safety concepts of the humanoid service robot hermes | |
Tang | The development of a human-robot interface for industrial collaborative system | |
JP7196894B2 (ja) | 情報処理装置、情報処理システム及びプログラム | |
Sayeed et al. | Navigation and Cognitive Techniques for Humanoid Robots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210518 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210816 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6938980 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |