JP2018148103A - Powder for magnetic core and production method thereof, dust core and magnetic film - Google Patents

Powder for magnetic core and production method thereof, dust core and magnetic film Download PDF

Info

Publication number
JP2018148103A
JP2018148103A JP2017043370A JP2017043370A JP2018148103A JP 2018148103 A JP2018148103 A JP 2018148103A JP 2017043370 A JP2017043370 A JP 2017043370A JP 2017043370 A JP2017043370 A JP 2017043370A JP 2018148103 A JP2018148103 A JP 2018148103A
Authority
JP
Japan
Prior art keywords
particles
powder
magnetic
ferrite
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017043370A
Other languages
Japanese (ja)
Other versions
JP6520972B2 (en
Inventor
矢次 健一
Kenichi Yatsugi
健一 矢次
敏孝 石崎
Toshitaka Ishizaki
敏孝 石崎
明渡 邦夫
Kunio Aketo
邦夫 明渡
ジョンハン ファン
Jonhan Fan
ジョンハン ファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017043370A priority Critical patent/JP6520972B2/en
Publication of JP2018148103A publication Critical patent/JP2018148103A/en
Application granted granted Critical
Publication of JP6520972B2 publication Critical patent/JP6520972B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide powder for magnetic core composed of soft magnetic particles of nano size where ferrite is produced uniformly on the surface.SOLUTION: Powder for magnetic core is composed of particles for magnetic core including soft magnetic particles composed of Fe and Ni and having granularity of 5-400 nm, magnetite on the surface thereof, and spinel-type ferrite on the surface of the soft magnetic particles having magnetite. Such a soft magnetic is obtained by performing ferrite plating of the oxide particles, where magnetite is generated on the surface of the soft magnetic particles, in an alkaline aqueous solution. Since the isoelectric point of magnetite exists on the weak acidic side, the oxide particles in the alkaline aqueous solution are in a state charged with negative charges, adsorbs cations becoming the raw material of ferrite strongly, and are not aggregated but dispersed. Powder for magnetic core composed of soft magnetic particles of nano size, where uniform ferrite coating is formed, is thus obtained.SELECTED DRAWING: Figure 2A

Description

本発明は、スピネル型フェライト(単に「フェライト」ともいう。)を表面に有する軟磁性粒子からなる磁心用粉末等に関する。   The present invention relates to a powder for a magnetic core made of soft magnetic particles having spinel ferrite (also simply referred to as “ferrite”) on its surface.

変圧器(トランス)、電動機(モータ)、発電機、スピーカ、誘導加熱器、各種アクチュエータ等、我々の周囲には電磁気を利用した製品が多々ある。これらの製品は交番磁界を利用したものが多く、局所的に大きな交番磁界を効率的に得るために、通常、磁心(軟磁石)をその交番磁界中に設けている。   There are many products that use electromagnetism around us, such as transformers, motors, generators, speakers, induction heaters, and various actuators. Many of these products use an alternating magnetic field. In order to efficiently obtain a large alternating magnetic field locally, a magnetic core (soft magnet) is usually provided in the alternating magnetic field.

磁心には、交番磁界中における高磁気的特性のみならず、交番磁界中で使用したときの高周波損失(以下、磁心の材質に拘らず単に「鉄損」という。)が少ないことが求められる。鉄損には、渦電流損失、ヒステリシス損失および残留損失があり、中でも交番磁界の周波数の2乗に比例して高くなる渦電流損失の低減が重要である。   The magnetic core is required to have not only high magnetic characteristics in an alternating magnetic field but also a small amount of high-frequency loss (hereinafter simply referred to as “iron loss” regardless of the material of the magnetic core) when used in an alternating magnetic field. The iron loss includes eddy current loss, hysteresis loss, and residual loss. In particular, it is important to reduce eddy current loss that increases in proportion to the square of the frequency of the alternating magnetic field.

このような磁心として、絶縁性膜で被覆された軟磁性粒子(磁心用粉末の各粒子)を加圧成形した圧粉磁心がある。圧粉磁心は、渦電流損失が小さくて形状自由度が高いため種々の電磁機器に利用される。もっとも、その絶縁性膜を非磁性なシリコン系樹脂やリン酸塩等で形成すると、圧粉磁心の(飽和)磁束密度等が低下し得る。そこで絶縁性膜としてフェライトを用いることが提案されており、下記の特許文献1に関連する記載がある。   As such a magnetic core, there is a powder magnetic core obtained by press-molding soft magnetic particles (each particle of magnetic core powder) covered with an insulating film. The dust core is used in various electromagnetic devices because of its low eddy current loss and high shape freedom. However, if the insulating film is formed of nonmagnetic silicon-based resin, phosphate, or the like, the (saturated) magnetic flux density of the dust core can be reduced. Therefore, it has been proposed to use ferrite as the insulating film, and there is a description related to Patent Document 1 below.

なお、磁心として磁性フィルムもある。磁性フィルムは、軟磁性微粒子に溶媒を添加して混練したペーストを、基板等に印刷して形成した磁性体である。磁性フィルムに関連する記載は下記の非特許文献1にある。但し、非特許文献1では、絶縁材に非磁性な樹脂が用いられており、磁性フィルムの(飽和)磁束密度の向上は望めない。   There is also a magnetic film as a magnetic core. The magnetic film is a magnetic body formed by printing a paste obtained by adding a solvent to soft magnetic fine particles and kneading them on a substrate or the like. The description related to the magnetic film is in Non-Patent Document 1 below. However, in Non-Patent Document 1, a nonmagnetic resin is used for the insulating material, and improvement in the (saturated) magnetic flux density of the magnetic film cannot be expected.

WO2003/015109号公報WO2003 / 015109

Y. Shirakata, et al, IEEE. Trans. Magn., 2008, 44, 2100.Y. Shirakata, et al, IEEE. Trans. Magn., 2008, 44, 2100.

特許文献1では、例えば、平均粒径が70nmの非常に微細なナノ粒子(カルボニル鉄粉粒子)の表面に、平均厚さ15nmのNiZnフェライト被膜を設けた磁性体微粒子に関する記載がある。また、その粒子からなる成形体の高周波比透磁率は、2GHz下で実数部が10超となる旨も記載されている(特許文献1の実施例3)。   Patent Document 1 describes, for example, magnetic fine particles in which a NiZn ferrite film having an average thickness of 15 nm is provided on the surface of very fine nanoparticles (carbonyl iron powder particles) having an average particle diameter of 70 nm. Further, it is also described that the high-frequency relative permeability of the molded body made of the particles has a real part exceeding 10 under 2 GHz (Example 3 of Patent Document 1).

しかし、その成形体の電気的特性(比抵抗等)については何ら記載されていない。本発明者の研究によれば、特許文献1に記載されたような方法では、ナノサイズの微細な純鉄粒子の表面に均一的なフェライト被膜を形成することはできなかった。   However, there is no description about the electrical characteristics (specific resistance, etc.) of the molded body. According to the research of the present inventor, the method as described in Patent Document 1 cannot form a uniform ferrite film on the surface of nano-sized fine pure iron particles.

本発明はこのような事情に鑑みて為されたものであり、ナノサイズの微細な軟磁性粒子の表面にフェライトが均一的に存在する磁心用粒子(粉末)等を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide magnetic core particles (powder) or the like in which ferrite is uniformly present on the surface of nano-sized fine soft magnetic particles. .

本発明者はこの課題を解決すべく鋭意研究した結果、軟磁性粒子とフェライトの間にマグネタイト(Fe)を介在させることにより、微細な軟磁性粒子の表面にもフェライトを均一的に存在させることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research to solve this problem, the present inventor has made magnetite (Fe 3 O 4 ) intervene between the soft magnetic particles and the ferrite so that the ferrite can be evenly distributed on the surface of the fine soft magnetic particles. I succeeded in making it exist. By developing this result, the present invention described below has been completed.

《磁心用粉末》
(1)本発明の磁心用粉末は、FeとNiからなり粒度が5〜400nmである軟磁性粒子と、該軟磁性粒子の表面にあるマグネタイトと、該マグネタイトを有する軟磁性粒子の表面にあるスピネル型フェライトと、を備えた磁心用粒子からなる。
<Magnetic core powder>
(1) The magnetic core powder of the present invention is composed of Fe and Ni, a soft magnetic particle having a particle size of 5 to 400 nm, a magnetite on the surface of the soft magnetic particle, and a surface of the soft magnetic particle having the magnetite. And magnetic core particles including spinel ferrite.

(2)本発明の磁心用粉末を用いれば、磁気特性(透磁率や飽和磁化等)および電気特性(比抵抗等)に優れた圧粉磁心(軟磁性コア)が得られる。特に本発明の磁心用粉末は、高周波数下で使用される圧粉磁心に好適である。この理由は次のように考えられる。 (2) By using the magnetic core powder of the present invention, a powder magnetic core (soft magnetic core) excellent in magnetic characteristics (permeability, saturation magnetization, etc.) and electrical characteristics (specific resistance, etc.) can be obtained. In particular, the magnetic core powder of the present invention is suitable for a dust core used at a high frequency. The reason is considered as follows.

先ず、本発明の磁心用粉末は、FeとNiからなる軟磁性粒子(単に「Fe−Ni粒子」ともいう。)からなる。Fe−Ni粒子は、純Fe粒子等よりも磁気特性(透磁率等)に優れる(図5参照)。次に、Fe−Ni粒子は、非常に微細であると共に絶縁性の(スピネル型)フェライト(MFe)を表面に有するため、Fe−Ni粒子の表面には高周波数下でも渦電流等が流れ難い。従って、フェライトを表面に有する微細なFe−Ni粒子からなる圧粉磁心は、磁気特性および電気特性に優れたものとなる。 First, the magnetic core powder of the present invention is composed of soft magnetic particles composed of Fe and Ni (also simply referred to as “Fe—Ni particles”). Fe-Ni particles have better magnetic properties (such as magnetic permeability) than pure Fe particles or the like (see FIG. 5). Next, since the Fe—Ni particles are very fine and have insulating (spinel) ferrite (MFe 2 O 4 ) on the surface, the surface of the Fe—Ni particles has eddy currents even under a high frequency. Is difficult to flow. Therefore, the dust core made of fine Fe—Ni particles having ferrite on the surface is excellent in magnetic characteristics and electrical characteristics.

《磁心用粉末の製造方法》
(1)本発明は、磁心用粉末としてのみならず、その製造方法としても把握できる。すなわち本発明は、FeとNiからなり粒度が5〜400nmである軟磁性粒子を酸化させて、該軟磁性粒子の表面にマグネタイトを生成させた酸化粒子を得る酸化工程と、アルカリ性水溶液中で該酸化粒子の表面にスピネル型フェライトを生成させた磁心用粒子を得るフェライト生成工程と、を備える磁心用粉末の製造方法でもよい。
<Method for producing magnetic core powder>
(1) The present invention can be grasped not only as a magnetic core powder but also as a production method thereof. That is, the present invention comprises an oxidation step in which soft magnetic particles comprising Fe and Ni and having a particle size of 5 to 400 nm are oxidized to obtain oxidized particles that generate magnetite on the surface of the soft magnetic particles; And a ferrite generation step of obtaining magnetic core particles in which spinel ferrite is generated on the surface of the oxidized particles.

(2)本発明の製造方法によれば、微細なFe−Ni粒子の表面にフェライトが均一的に分布した磁心用粉末を得ることができるようになる。この理由は次のように考えられる。 (2) According to the production method of the present invention, a magnetic core powder in which ferrite is uniformly distributed on the surface of fine Fe—Ni particles can be obtained. The reason is considered as follows.

本発明では、軟磁性粒子の表面にフェライトを生成させる前に、その軟磁性粒子の表面に予めマグネタイトを生成させている。ここでマグネタイトは、表面電位(ゼータ電位)が零となるpH(等電点)が6.5と弱酸性側にある(図4参照:出典「きちんと知りたい粒子表面と分散技術」日刊工業新聞社、図4(下):「ゼータ電位の測定」ぶんせき 5,251,(2004))。   In the present invention, before ferrite is generated on the surface of the soft magnetic particles, magnetite is previously generated on the surface of the soft magnetic particles. Here, the magnetite has a pH (isoelectric point) at which the surface potential (zeta potential) becomes zero and is on the slightly acidic side (see Fig. 4). Fig. 4 (bottom): "Measurement of zeta potential", Bunkeki 5,251, (2004)).

このため表面にマグネタイトを有する軟磁性粒子(酸化粒子)は、アルカリ性水溶液中で、表面が負電荷に帯電した状態となる。この結果、酸化粒子の表面には、アルカリ性水溶液中に存在する正電荷に帯電した粒子、つまり陽イオン(M2+、Fe2+等)がクーロン力により強力に吸着される。 For this reason, the soft magnetic particles (oxidized particles) having magnetite on the surface are in a state in which the surface is charged to a negative charge in an alkaline aqueous solution. As a result, positively charged particles existing in the alkaline aqueous solution, that is, cations (M 2+ , Fe 2+, etc.) are strongly adsorbed by the Coulomb force on the surface of the oxidized particles.

また、通常、粒径がナノスケールの微細な各粒子は、表面エネルギーが大きくて凝集し易い。このため従来は、ナノサイズの微細な軟磁性粒子の表面毎に、フェライトを均一的に生成させることが困難であった。しかし、本発明の微細な各酸化粒子同士は、同符号の表面電荷に帯電しているため、アルカリ性水溶液中で反発し、凝集することなく分散した状態となり易い。   Moreover, normally, each fine particle having a nanoscale particle size has a large surface energy and easily aggregates. For this reason, conventionally, it has been difficult to generate ferrite uniformly for each surface of nano-sized fine soft magnetic particles. However, since the fine oxidized particles of the present invention are charged with surface charges having the same sign, they are repelled in an alkaline aqueous solution and are likely to be dispersed without agglomeration.

このように本発明に係る酸化粒子は、アルカリ性水溶液中において、分散性とフェライトの原料となる陽イオンの吸着性とに優れ、これらが相乗的に作用することにより、フェライト生成処理(いわゆる「フェライトめっき」)後に、各粒子表面にはフェライトが均一的に生成されるようになったと考えられる。   As described above, the oxidized particles according to the present invention are excellent in dispersibility and adsorptivity of a cation serving as a raw material of ferrite in an alkaline aqueous solution. It is considered that ferrite was uniformly formed on the surface of each particle after “plating”).

ちなみに、図4から明らかなように、微細な純Ni粒子は、その表面に形成される酸化物(NiO)の等電点が(強)アルカリ性側にある。このためNiOを有する粒子は、アルカリ性水溶液中で、上述したような吸着性や分散性を発揮し得ない。同様に、微細な純Fe粒子も、その表面に主に形成される酸化物(Fe)の等電点がアルカリ性側にある。このためFeを主に有する粒子も、アルカリ性水溶液中では、上述したような吸着性や分散性を発揮し得ない。 Incidentally, as is apparent from FIG. 4, fine pure Ni particles have an (electrically strong) alkaline side of the isoelectric point of oxide (NiO) formed on the surface thereof. For this reason, the particle | grains which have NiO cannot exhibit the adsorptivity and dispersibility which were mentioned above in alkaline aqueous solution. Similarly, fine pure Fe particles also have an isoelectric point of an oxide (Fe 2 O 3 ) mainly formed on the surface thereof on the alkaline side. For this reason, particles mainly containing Fe 2 O 3 cannot exhibit the adsorptivity and dispersibility as described above in an alkaline aqueous solution.

なお、アルカリ性水溶液中で凝集し易い軟磁性粒子であっても、酸性水溶液中では分散性に優れる場合もある。しかし、図4から明らかなように、そのような軟磁性粒子は正電荷に帯電した状態となるため、フェライトの原料となる陽イオンの吸着性に劣る。このため、そのような粒子表面にフェライトを均一的に生成することは難しい。   Even soft magnetic particles that easily aggregate in an alkaline aqueous solution may have excellent dispersibility in an acidic aqueous solution. However, as apparent from FIG. 4, such soft magnetic particles are in a state of being charged to a positive charge, so that the adsorptivity of the cation serving as a raw material for ferrite is inferior. For this reason, it is difficult to uniformly generate ferrite on the surface of such particles.

《圧粉磁心》
本発明は、上述した磁心用粉末としてのみならず、それを加圧成形して得られる圧粉磁心としても把握し得る。その圧粉磁心は、用途や使用環境を問わないが、磁気特性および電気特性に非常に優れるため、高周波数域(例えば、0.1〜1000MHzさらには1〜100MHz)の交番磁界中で使用される軟磁性コアに適している。
<Dust core>
The present invention can be grasped not only as the above-described magnetic core powder, but also as a powder magnetic core obtained by pressure molding it. The dust core is used in an alternating magnetic field in a high frequency range (for example, 0.1 to 1000 MHz or 1 to 100 MHz) because it has excellent magnetic characteristics and electrical characteristics, regardless of use or usage environment. Suitable for soft magnetic cores.

《その他》
特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。
<Others>
Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

酸化処理したFe−Ni粒子(試料1)のX線回折(XRD)パターン図である。It is a X-ray-diffraction (XRD) pattern figure of the Fe-Ni particle | grains (sample 1) oxidized. フェライトめっき処理したFe−Ni粒子(試料1)のXRDパターン図である。It is a XRD pattern figure of the Fe-Ni particle (sample 1) which carried out the ferrite plating process. 酸化処理後にフェライトめっきしたFe−Ni粒子(試料1)の表面を走査型透過電子顕微鏡(STEM)で観察した写真(STEM像)とエネルギー分散型X線分光装置(STEM−EDX)による元素マッピング像である。A photograph (STEM image) of the surface of Fe-Ni particles (sample 1) plated with ferrite after oxidation treatment observed with a scanning transmission electron microscope (STEM) and an element mapping image using an energy dispersive X-ray spectrometer (STEM-EDX) It is. 酸化処理せずにフェライトめっきしたFe−Ni粒子(試料C1)の表面を観察して得られたSTEM像と元素マッピング像である。It is the STEM image and element mapping image which were obtained by observing the surface of the Fe-Ni particle (sample C1) plated with ferrite without oxidation treatment. 酸化処理後にフェライトめっきしたFe粒子(試料C2)の表面を観察して得られたSTEM像と元素マッピング像である。It is a STEM image and an element mapping image obtained by observing the surface of Fe particles (sample C2) plated with ferrite after oxidation treatment. フェライトめっきしたNi粒子(試料C3)の表面を観察して得られたSTEM像と元素マッピング像である。It is the STEM image and element mapping image which were obtained by observing the surface of Ni particle (sample C3) plated with ferrite. pHとゼータ電位または粒径との関係を示す図と、各物質と等電点の関係を示す一覧表である。It is the table | surface which shows the relationship between pH, a zeta potential, or a particle size, and the relationship between each substance and an isoelectric point. Fe−Ni合金に係る成分組成と初透磁率の関係を示す図である。It is a figure which shows the relationship between the component composition and initial permeability which concern on a Fe-Ni alloy.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の磁心用粉末のみならず、その製造方法やそれを用いた圧粉磁心にも適宜該当し得る。方法に関する内容も、物に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. The contents described in the present specification can be appropriately applied not only to the magnetic core powder of the present invention but also to the production method thereof and the dust core using the same. The content related to the method can also be a component related to the object. Which embodiment is the best depends on the target, required performance, and the like.

《磁心用粒子/磁心用粉末》
(1)軟磁性粒子(軟磁性粉末)
本発明に係る軟磁性粒子は、FeとNiの合金からなる。軟磁性粒子全体(100原子%)に対して、Niを30〜90原子%さらには40〜85原子%含み、残部がFeであると好ましい。Niが過少でも過多でも磁気特性(特に透磁率)が低下して、高磁気特性な圧粉磁心(コア)が得られない(図5参照:出典「日本金属学会 講座・現在の金属学 材料編5 非鉄材料」)。
《Core particles / Core powder》
(1) Soft magnetic particles (soft magnetic powder)
The soft magnetic particles according to the present invention are made of an alloy of Fe and Ni. It is preferable that 30 to 90 atomic%, further 40 to 85 atomic% of Ni is included with respect to the entire soft magnetic particles (100 atomic%), and the balance is Fe. Even if Ni is too little or too much, magnetic properties (especially magnetic permeability) will be lowered, and high magnetic properties of the dust core (core) will not be obtained (see Fig. 5). 5 Non-ferrous materials ").

なお、軟磁性粒子は、不純物以外に、磁気特性を向上させ得る改質元素を合計で6原子%以下さらには1原子%以下含んでもよい。このような改質元素として、例えば、Mo、Cu、Cr等がある。   In addition to the impurities, the soft magnetic particles may contain a total of 6 atomic% or less, further 1 atomic% or less of modifying elements that can improve magnetic properties. Examples of such modifying elements include Mo, Cu, and Cr.

軟磁性粒子は、粒度が5〜400nm、10〜300nmさらには20〜200nmであると好ましい。粒度が過大になると、圧粉磁心の渦電流損失等が高周波域で増加して好ましくない。粒度が過小な軟磁性粒子は、磁束密度の低下やヒステリシス損失の増加等を招き、また入手性や取扱性も低下して好ましくない。   The soft magnetic particles preferably have a particle size of 5 to 400 nm, 10 to 300 nm, and more preferably 20 to 200 nm. An excessively large particle size is not preferable because eddy current loss of the dust core increases in a high frequency range. Soft magnetic particles having an excessively small particle size are undesirable because they lead to a decrease in magnetic flux density, an increase in hysteresis loss, and a decrease in availability and handleability.

なお、本明細書でいう「粒度」とは、軟磁性粒子の直径を指標する値であり、STEMまたはTEM象において10〜100個程度の粒子について測定した最大直径の平均値から測定される。   The “particle size” as used herein is a value indicating the diameter of soft magnetic particles, and is measured from the average value of the maximum diameters measured for about 10 to 100 particles in a STEM or TEM image.

軟磁性粉末の製造方法として、例えば、機械的粉砕法、アトマイズ法、還元法等がある。粒度が非常に小さい粉末は、例えば、機械的粉砕法により得られる。
略球状の粒子からなるアトマイズ粉は、粒子相互間の攻撃性が低く、圧粉磁心の成形時におけるフェライト被膜の破壊等による比抵抗の低下が抑制される。なお、後述する酸化処理前の粉末は、非酸化雰囲気中で調製されたものであると好ましい。
Examples of the method for producing the soft magnetic powder include a mechanical pulverization method, an atomization method, and a reduction method. A powder having a very small particle size can be obtained, for example, by a mechanical grinding method.
Atomized powder composed of substantially spherical particles has low aggression between particles, and a decrease in specific resistance due to destruction of a ferrite coating or the like during molding of a dust core is suppressed. In addition, it is preferable that the powder before the oxidation treatment described later is prepared in a non-oxidizing atmosphere.

(2)マグネタイト
マグネタイト(Fe)により軟磁性粒子の表面全体が均一的に被覆されていると好ましいが、軟磁性粒子の少なくとも一部の表面に存在するだけでもよい。本発明に係るマグネタイトは、アルカリ性水溶液中で、軟磁性粒子の表面を負電荷に帯電した状態とする程度あれば十分である。
(2) Magnetite Although it is preferable that the entire surface of the soft magnetic particles is uniformly coated with magnetite (Fe 3 O 4 ), it may be present only on at least a part of the surface of the soft magnetic particles. The magnetite according to the present invention is sufficient if the surface of the soft magnetic particles is charged to a negative charge in an alkaline aqueous solution.

また、軟磁性粒子の表面に存在する酸化物が全てマグネタイトである必要はなく、それ以外の酸化鉄(ヘマタイト(Fe)、ウスタイト(FeO)等)や酸化ニッケル(NiO等)が混在していてもよい。但し、マグネタイトは、軟磁性粒子の防錆効果もあるため、軟磁性粒子の表面に薄く均一的に存在するほど好ましい。 Further, it is not necessary that all oxides present on the surface of the soft magnetic particles are magnetite, and other iron oxides (hematite (Fe 2 O 3 ), wustite (FeO), etc.) and nickel oxide (NiO, etc.) are mixed. You may do it. However, since magnetite also has a rust-preventing effect on soft magnetic particles, it is more preferable that it is present thinly and uniformly on the surface of soft magnetic particles.

マグネタイト自体は透磁率が低いため、その膜厚は、フェライトの膜厚以下であって、5nmさらには3nm以下であると好ましい。なお、本明細書でいう「膜厚」は、例えば、次のようにして特定される。STEMとその元素マッピングで測定する。フェライトの構成元素(M,Fe)の分布直径から、軟磁性粒子(コア)の構成元素であるNiの分布直径を差し引いたものが膜厚となる。この測定を、1つの粒子につき、任意に抽出した2つの測定位置(90°回転した位置)で行う。同様の操作を、粉末中から任意に抽出した合計3つの粒子についても行う。こうして得られた合計6つの膜厚の相加平均値を求め、フェライトの「膜厚」とすればよい。これは、フェライトの膜厚特定についても同様である。   Since magnetite itself has a low magnetic permeability, its film thickness is preferably not more than the film thickness of ferrite, preferably 5 nm or even 3 nm or less. The “film thickness” in the present specification is specified as follows, for example. Measure with STEM and element mapping. The film thickness is obtained by subtracting the distribution diameter of Ni, which is a constituent element of soft magnetic particles (core), from the distribution diameter of constituent elements (M, Fe) of ferrite. This measurement is performed at two arbitrarily selected measurement positions (positions rotated by 90 °) for each particle. The same operation is performed on a total of three particles arbitrarily extracted from the powder. The arithmetic average value of the total six film thicknesses thus obtained may be obtained and used as the “film thickness” of ferrite. The same applies to the determination of the thickness of the ferrite.

(3)スピネル型フェライト
フェライトは、絶縁性を有する磁性材であり、例えば、MFe(M:2価の陽イオンとなる金属元素)で表される立方晶系の化合物である。Mは、具体的にいうと、Fe、Mn、Ni、Zn、Cu、Mg、Sr等の一種または二種以上からなる。Mは、少なくともMnを含んでいると好ましい。Mn(さらにはZn)を含むフェライトは、他のM元素を含むフェライトよりも、比抵抗および磁気モーメント(飽和磁化)が大きいため、電気特性(比抵抗等)と磁気特性(磁束密度等)を高次元で両立できる。
(3) Spinel-type ferrite Ferrite is a magnetic material having insulating properties, and is, for example, a cubic compound represented by MFe 2 O 4 (M: a metal element that becomes a divalent cation). Specifically, M is composed of one or more of Fe, Mn, Ni, Zn, Cu, Mg, Sr and the like. M preferably contains at least Mn. Since ferrite containing Mn (and Zn) has a larger specific resistance and magnetic moment (saturation magnetization) than ferrite containing other M elements, it has electrical characteristics (such as resistivity) and magnetic characteristics (such as magnetic flux density). Can be compatible at a high level.

フェライトは、軟磁性粒子(酸化粒子)の表面に均一的に分布しているほど好ましい。但し、圧粉磁心の比抵抗を確保できる限り、その表面全体を必ずしも均一的に被覆していなくてもよい。またフェライトも、上述したM、FeおよびO以外に、改質元素または不可避不純物を含み得る。   Ferrite is more preferable as it is uniformly distributed on the surface of soft magnetic particles (oxidized particles). However, as long as the specific resistance of the dust core can be ensured, the entire surface may not necessarily be uniformly coated. Ferrite can also contain a modifying element or an inevitable impurity in addition to M, Fe and O described above.

フェライト(被膜)は、軟磁性粒子の粒度にも依るが、膜厚が5〜100nmさらには10〜50nmであると好ましい。膜厚が過小では圧粉磁心の電気特性(比抵抗)が低下する。フェライトは軟磁性粒子(Fe−Ni粒子)よりも飽和磁化が小さいため、その膜厚が過大になると、圧粉磁心の磁気特性が低下して好ましくない。   The ferrite (coating) is preferably 5 to 100 nm, more preferably 10 to 50 nm, although it depends on the particle size of the soft magnetic particles. If the film thickness is too small, the electrical characteristics (specific resistance) of the dust core will be reduced. Since ferrite has a saturation magnetization smaller than that of soft magnetic particles (Fe—Ni particles), if the film thickness is excessive, the magnetic properties of the powder magnetic core deteriorate, which is not preferable.

《製造方法》
(1)酸化工程
軟磁性粒子(Fe−Ni粒子)の表面に生成するマグネタイトは、酸化処理により得られる。Fe−Ni粒子の表面に生成されるマグネタイトは、薄くても十分であり、Fe等の生成を抑制する観点からも、酸化条件は緩やかで足る。そこで、例えば、軟磁性粒子を50〜200℃さらには80〜150℃の酸化雰囲気中(例えば、大気雰囲気中)で、1〜20時間さらには5〜10時間加熱する酸化工程を行うとよい。
"Production method"
(1) Oxidation process The magnetite produced | generated on the surface of a soft-magnetic particle (Fe-Ni particle) is obtained by oxidation treatment. The magnetite produced on the surface of the Fe—Ni particles is sufficient even if it is thin, and the oxidizing conditions are sufficient from the viewpoint of suppressing the production of Fe 2 O 3 and the like. Therefore, for example, an oxidation process may be performed in which the soft magnetic particles are heated in an oxidizing atmosphere (for example, in an air atmosphere) at 50 to 200 ° C. or 80 to 150 ° C. for 1 to 20 hours or further 5 to 10 hours.

ちなみに、常温の大気雰囲気中でもFe−Ni粒子の表面にマグネタイトを形成することは可能である。但し、そのような方法では、長時間を要するため効率的ではなく、また、各粒子の表面毎にマグネタイトを確実に生成させることも容易ではない。   Incidentally, it is possible to form magnetite on the surface of Fe-Ni particles even in a normal atmosphere. However, such a method is not efficient because it takes a long time, and it is not easy to reliably generate magnetite for each particle surface.

(2)フェライト生成工程(フェライトめっき工程)
フェライトめっき方法には、種々あり、被処理粉末を反応液に浸漬する水溶液法(参照文献:特開2013−191839号公報)、被処理粉末に反応液を噴霧する噴霧法(参照文献:特開2014−183199号公報)、尿素を含む反応液を用いる一液法(参照文献:特開2016−127042号公報)等がある。いずれの方法によっても、本発明に係るフェライトを生成することは可能である。
(2) Ferrite generation process (ferrite plating process)
There are various ferrite plating methods. An aqueous solution method in which a powder to be treated is immersed in a reaction solution (reference document: Japanese Patent Application Laid-Open No. 2013-191839), and a spray method in which the reaction solution is sprayed on the powder to be processed (reference document: Japanese Patent Application Laid-Open No. 2000-260688) No. 2014-183199), a one-part method using a reaction solution containing urea (reference document: JP-A-2006-127042), and the like. It is possible to produce the ferrite according to the present invention by any method.

もっとも本発明の製造方法では、等電点が弱酸性側になる酸化粒子がアルカリ性水溶液中で負電荷となることを利用して、その粒子表面にフェライトを均一的に生成させている。従って本発明の場合、水溶液法、特に反応液とpH調整液を用いる二液法が好ましい。   However, in the production method of the present invention, the oxidized particles whose isoelectric point is slightly acidic are negatively charged in the alkaline aqueous solution, and ferrite is uniformly generated on the particle surface. Therefore, in the case of the present invention, an aqueous solution method, particularly a two-component method using a reaction solution and a pH adjusting solution is preferable.

具体的にいうと、本発明に係るフェライト生成工程は、酸化粒子が分散している水中または水溶液中へ、MとFeを含む反応液を加える第1処理工程と、第1処理工程後の水溶液へpH調整液を加える第2処理工程と、を有すると好適である。なお、第1処理工程中の水溶液のpHは3〜6とし、第2処理工程中の水溶液のpHは7〜12さらには8〜10とすると好ましい。   Specifically, the ferrite generation step according to the present invention includes a first treatment step of adding a reaction liquid containing M and Fe into water or an aqueous solution in which oxidized particles are dispersed, and an aqueous solution after the first treatment step. It is preferable to have a second treatment step of adding a pH adjusting solution to the solution. In addition, it is preferable when the pH of the aqueous solution in a 1st process process shall be 3-6, and the pH of the aqueous solution in a 2nd process process shall be 7-12 and also 8-10.

第1処理工程および第2処理工程は、所望するフェライトの膜厚等に応じて繰り返してなされてもよい。また、フェライト生成工程後、不要物を除去する洗浄工程を行うと好ましい。洗浄工程は、例えば、水洗後にエタノール洗いしてなされる。洗浄される不要物は、Fe−Ni粒子の被覆に寄与しなかったフェライト粒子、処理液(反応液、pH調整液)に含まれていた塩素やナトリウム、硫酸イオン等である。   The first treatment process and the second treatment process may be repeated depending on the desired film thickness of the ferrite and the like. Moreover, it is preferable to perform a washing process for removing unnecessary substances after the ferrite production process. The washing step is performed, for example, by washing with ethanol after washing with water. Unnecessary items to be washed are ferrite particles that have not contributed to the coating of Fe—Ni particles, chlorine, sodium, sulfate ions, etc. contained in the treatment liquid (reaction liquid, pH adjustment liquid).

さらに、洗浄工程後に濾過等した粉末を乾燥させると好ましい。乾燥工程は自然乾燥でもよいが、加熱乾燥または真空乾燥を行うことにより、効率的に磁心用粉末を製造できる。   Furthermore, it is preferable to dry the filtered powder after the washing step. The drying process may be natural drying, but by performing heat drying or vacuum drying, the magnetic core powder can be produced efficiently.

《用途》
本発明の磁心用粉末は、高周波数動作を要求される電力変換回路(インバータやコンバーター)に用いられる軟磁性コア(圧粉磁心)、その他、高周波数域で使用される各種のアクチュエータの構成部材等に用いられると好ましい。
<Application>
The magnetic core powder of the present invention is a soft magnetic core (powder magnetic core) used in power conversion circuits (inverters and converters) that require high-frequency operation, and other components of various actuators used in the high-frequency range. It is preferable to be used for such as.

本発明の圧粉磁心は、磁心用粉末の加圧成形後に、適宜、ヒステリシスの要因となる加工歪み等を除去する熱処理(焼鈍等)が施されると好ましい。   The powder magnetic core of the present invention is preferably subjected to heat treatment (annealing or the like) for removing processing distortion or the like that causes hysteresis as appropriate after the pressure forming of the magnetic core powder.

種々のナノ粒子粉末に対してフェライトめっきした処理粉末を製造し、それぞれの粒子表面を観察した。このような実施例に基づいて、以下に本発明をより具体的に説明する。   Treated powders obtained by subjecting various nanoparticle powders to ferrite plating were manufactured, and the surface of each particle was observed. Based on such an example, the present invention will be described more specifically below.

《試料の製造》
(1)軟磁性粉末と酸化粉末
原料粉末(軟磁性粉末)として、Fe−50at%Niからなる微粉末(Sigma-Aldrich Co. LLC.製 677426/単に「Fe−Ni粉末」という。)を用意した。このFe−Ni粉末の粒度は50nmであった。
<Production of sample>
(1) Soft magnetic powder and oxidized powder As a raw material powder (soft magnetic powder), a fine powder composed of Fe-50 at% Ni (manufactured by Sigma-Aldrich Co. LLC. 676426 / simply referred to as “Fe-Ni powder”) is prepared. did. The particle size of this Fe—Ni powder was 50 nm.

Fe−Ni粉末を加熱炉内に入れて、大気雰囲気中で100℃×6時間加熱した。こうしてFe−Ni粉末を酸化処理した酸化粉末を得た(酸化工程)。   The Fe—Ni powder was placed in a heating furnace and heated in an air atmosphere at 100 ° C. for 6 hours. Thus, an oxidized powder obtained by oxidizing the Fe—Ni powder was obtained (oxidation step).

(2)反応液とpH調整液
フェライトめっきに用いる反応液として、FeSO・7HOとMnSO・5HO(モル比3:2)をイオン交換水に溶解させた水溶液(反応液)を調製した。この反応液の濃度は、反応液250mlに関して、33mmol/Lであった。
(2) Reaction solution and pH adjusting solution As a reaction solution used for ferrite plating, an aqueous solution (reaction solution) in which FeSO 4 · 7H 2 O and MnSO 4 · 5H 2 O (molar ratio 3: 2) are dissolved in ion-exchanged water. Was prepared. The concentration of this reaction solution was 33 mmol / L with respect to 250 ml of the reaction solution.

pH調整液として、NaOH水溶液(2.5mol/L)も調製した。   A NaOH aqueous solution (2.5 mol / L) was also prepared as a pH adjusting solution.

(3)前処理
イオン交換水(500ml)をフラスコに入れ、窒素バブリングを行った。これによりFe2+を酸化させる溶存酸素を予め除去した。この処理後のイオン交換水中へ、上述した酸化粉末(0.5g)を投入し、超音波ホーンで加振して分散させた。超音波ホーンによる撹拌は、フェライトめっき処理が完了するまで継続した。これにより酸化粉末の分散性を高めることができる。
(3) Pretreatment Ion exchange water (500 ml) was placed in a flask and nitrogen bubbling was performed. Thus, dissolved oxygen that oxidizes Fe 2+ was removed in advance. The above-mentioned oxidized powder (0.5 g) was put into the ion-exchanged water after this treatment, and was dispersed by being vibrated with an ultrasonic horn. Stirring with an ultrasonic horn was continued until the ferrite plating process was completed. Thereby, the dispersibility of oxidation powder can be improved.

(4)フェライトめっき処理(フェライト生成工程)
酸化粉末を分散させた水中へ、マイクロポンプを用いて、流量:3.1ml/minの割合で反応液を導入した(第1処理工程)。この水溶液へ、さらにpH調整液を導入した。pH調整液の導入量を制御して、水溶液のpHを8とした(第2処理工程)。なお、処理中の水温は70〜90℃とした。
(4) Ferrite plating treatment (ferrite production process)
The reaction liquid was introduced into the water in which the oxidized powder was dispersed using a micro pump at a flow rate of 3.1 ml / min (first treatment step). A pH adjusting solution was further introduced into this aqueous solution. The pH of the aqueous solution was set to 8 (second treatment step) by controlling the amount of pH adjusting solution introduced. The water temperature during the treatment was 70 to 90 ° C.

フェライトめっき処理の終了後、濾別した粉末を水洗し、さらにエタノールで洗い、Cl等や残渣等を除去した(洗浄工程)。洗浄した粉末を大気雰囲気中で真空乾燥(室温)に加熱して乾燥させた(乾燥工程)。こうしてフェライトめっき処理した軟磁性粒子からなる磁心用粉末を得た(試料1)。   After completion of the ferrite plating treatment, the filtered powder was washed with water and further washed with ethanol to remove Cl and the residue (washing step). The washed powder was dried by drying in vacuum (room temperature) in the air (drying process). In this way, a magnetic core powder made of soft magnetic particles subjected to ferrite plating was obtained (Sample 1).

《比較試料》
(1)酸化未処理粉末
上述した酸化処理を施さないで、入手したままのFe−Ni粉末(単に「酸化未処理粉末」という。)に、同様なフェライトめっき処理を施した粉末も製造した(試料C1)。
<Comparative sample>
(1) Oxidation-untreated powder A powder obtained by applying the same ferrite plating treatment to an as-obtained Fe-Ni powder (simply referred to as "oxidation-untreated powder") without the above-described oxidation treatment was also produced ( Sample C1).

(2)純Fe粉末
純Fe粉末(Quantum sphere Inc.製 QSI-Nano Iron/粒度:50nm)に、上述した酸化処理およびフェライトめっき処理を同様に施した粉末も製造した(試料C2)。
(2) Pure Fe powder A powder obtained by subjecting pure Fe powder (QSI-Nano Iron / particle size: 50 nm, manufactured by Quantum sphere Inc.) to the oxidation treatment and ferrite plating treatment described above was also manufactured (Sample C2).

(3)純Ni粉末
純Ni粉末(大研化学工業株式会社製 Ni−60/粒度:60nm)に、フェライトめっき処理を施した粉末も製造した(試料C3)。フェライトめっき処理は、M元素をFeとして行った。つまり、マグネタイト(スピネル型フェライトの一種)を粒子表面に生成することを狙った。なお、フェライトめっき処理前の粒子表面には、NiOが存在していた。
(3) Pure Ni powder A powder obtained by subjecting pure Ni powder (Ni-60 / particle size: 60 nm, manufactured by Daiken Chemical Industry Co., Ltd.) to ferrite plating was also manufactured (Sample C3). The ferrite plating process was performed using M element as Fe. In other words, we aimed to generate magnetite (a kind of spinel ferrite) on the particle surface. NiO was present on the surface of the particles before the ferrite plating treatment.

《観察》
(1)XRD
試料1に係るフェライトめっき処理前の粒子(酸化粒子)と、そのフェライトめっき処理後の粒子(磁心用粒子)とについて、表面近傍をXRDで観察した。それらの結果をそれぞれ、図1Aと図1B(両者を併せて単に「図1」という。)に示した。
<< Observation >>
(1) XRD
The vicinity of the surface of the particles before the ferrite plating treatment (oxidized particles) according to Sample 1 and the particles after the ferrite plating treatment (particles for magnetic core) were observed by XRD. The results are shown in FIGS. 1A and 1B (both are simply referred to as “FIG. 1”).

(2)STEMとSTEM−EDX
試料1〜C3に係るフェライトめっき処理後の粒子表面を、STEMおよびSTEM−EDXで観察した。こうして得られた各試料に係るSTEM像と各元素のマッピング像とを、それぞれ、図2A、図2B、図3Aおよび図3Bに示した。
(2) STEM and STEM-EDX
The particle surfaces after the ferrite plating treatment according to Samples 1 to C3 were observed with STEM and STEM-EDX. The STEM image and the mapping image of each element relating to each sample thus obtained are shown in FIGS. 2A, 2B, 3A, and 3B, respectively.

《評価》
(1)XRD
図1Aから明らかなように、酸化粒子の表面には、マグネタイト(Fe)が生成されていることが確認できた。また、図1Bから明らかなように、その酸化粒子にフェライトめっき処理を施すことにより、その表面にはスピネル型フェライトが生成されることも確認できた。
<Evaluation>
(1) XRD
As is apparent from FIG. 1A, it was confirmed that magnetite (Fe 3 O 4 ) was generated on the surface of the oxidized particles. Further, as apparent from FIG. 1B, it was also confirmed that spinel ferrite was generated on the surface of the oxidized particles by subjecting them to ferrite plating.

(2)STEM−EDX
図2Aから明らかなように、試料1に係る粒子表面には、FeおよびNiに加えて、Mn(M元素)が均一的に分布した状態となっていることが明らかとなった。このことから、その粒子表面は、スピネル型フェライト(MnFe)で均一的に被覆されているといえる。
(2) STEM-EDX
As is clear from FIG. 2A, it was revealed that Mn (M element) was uniformly distributed on the particle surface according to Sample 1 in addition to Fe and Ni. From this, it can be said that the particle surface is uniformly coated with spinel ferrite (MnFe 2 O 4 ).

図2Bから明らかなように、試料C1に係る粒子表面からは、Mnが実質的に検出されなかった。従って、酸化処理しない粒子表面には、フェライト(MnFe)が生成されていないこともわかった。 As is clear from FIG. 2B, Mn was not substantially detected from the particle surface of the sample C1. Therefore, it was also found that ferrite (MnFe 2 O 4 ) was not generated on the particle surface that was not oxidized.

図3Aから明らかなように、試料C2に係る粒子表面からもMnが実質的に検出されなかった。純Feからなる粒子表面には、フェライト(MnFe)が生成されていないこともわかった。この理由は次のように推察される。 As apparent from FIG. 3A, Mn was not substantially detected also from the particle surface according to Sample C2. It was also found that ferrite (MnFe 2 O 4 ) was not generated on the surface of particles made of pure Fe. The reason is presumed as follows.

純Fe粒子の表面には、等電点がアルカリ性側であるヘマタイト(Fe)が形成され易い。このため純Fe粒子は、酸化処理後であっても、アルカリ性水溶液中における陽イオンの吸着性や分散性が劣る。その結果、その粒子表面にはフェライトが実質的に生成されなかったと考えられる。 Hematite (Fe 2 O 3 ) having an isoelectric point on the alkaline side is easily formed on the surface of the pure Fe particles. For this reason, pure Fe particles are inferior in cation adsorption and dispersibility in an alkaline aqueous solution even after oxidation treatment. As a result, it is considered that ferrite was not substantially generated on the particle surface.

図3Bから明らかなように、試料C3についても試料C2と同様なことがいえる。すなわち、純Ni粒子の表面にあるNiOも、その等電点がアルカリ性側にある。このため、その純Ni粒子も、アルカリ性水溶液中における吸着性や分散性が劣り、その表面にフェライト(Fe/M=Fe)が実質的に生成されなかったと考えられる。 As is clear from FIG. 3B, the same can be said for the sample C3 as for the sample C2. That is, NiO on the surface of pure Ni particles also has an isoelectric point on the alkaline side. For this reason, it is considered that the pure Ni particles also have poor adsorptivity and dispersibility in an alkaline aqueous solution, and ferrite (Fe 3 O 4 / M = Fe) was not substantially generated on the surface thereof.

以上から、Fe−Ni粉末を酸化処理した酸化粉末にフェライトめっき処理を施した場合のみ、ナノスケールの微細なFe−Ni粒子の各表面にも、均一的なフェライト被膜が生成され得ることがわかった。   From the above, it can be seen that a uniform ferrite film can be formed on each surface of nanoscale fine Fe-Ni particles only when the oxidized powder obtained by oxidizing Fe-Ni powder is subjected to ferrite plating treatment. It was.

Claims (9)

FeとNiからなり粒度が5〜400nmである軟磁性粒子と、
該軟磁性粒子の表面にあるマグネタイトと、
該マグネタイトを有する軟磁性粒子の表面にあるスピネル型フェライト(MFe , M:2価の陽イオンとなる金属元素)と、
を備えた磁心用粒子からなる磁心用粉末。
Soft magnetic particles made of Fe and Ni and having a particle size of 5 to 400 nm,
Magnetite on the surface of the soft magnetic particles;
Spinel-type ferrite (MFe 2 O 4 , M: metal element that becomes a divalent cation) on the surface of the soft magnetic particles having the magnetite;
Magnetic core powder comprising particles for a magnetic core provided with
前記軟磁性粒子は、該軟磁性粒子全体に対してNiを40〜90原子%含み、残部がFeである請求項1に記載の磁心用粉末。   The magnetic core powder according to claim 1, wherein the soft magnetic particles contain 40 to 90 atomic% of Ni with respect to the entire soft magnetic particles, and the balance is Fe. 前記Mは、少なくともMnを含む請求項1または2に記載の磁心用粉末。   The magnetic core powder according to claim 1, wherein M contains at least Mn. FeとNiからなり粒度が5〜400nmである軟磁性粒子を酸化させて、該軟磁性粒子の表面にマグネタイトを生成させた酸化粒子を得る酸化工程と、
アルカリ性水溶液中で該酸化粒子の表面にスピネル型フェライトを生成させた磁心用粒子を得るフェライト生成工程と、
を備える磁心用粉末の製造方法。
An oxidation step of oxidizing oxidized soft magnetic particles composed of Fe and Ni and having a particle size of 5 to 400 nm to obtain oxidized particles that generate magnetite on the surface of the soft magnetic particles;
A ferrite generating step of obtaining particles for a magnetic core in which spinel ferrite is generated on the surface of the oxidized particles in an alkaline aqueous solution;
The manufacturing method of the powder for magnetic cores provided with this.
前記酸化工程は、前記軟磁性粒子を50〜200℃の酸化雰囲気中で1〜20時間加熱する工程である請求項4に記載の磁心用粉末の製造方法。   The said oxidation process is a process of heating the said soft-magnetic particle in 50-200 degreeC oxidizing atmosphere for 1 to 20 hours, The manufacturing method of the powder for magnetic cores of Claim 4. 前記フェライト生成工程は、前記酸化粒子が分散している水中または水溶液中へ、MとFeを含む反応液を加える第1処理工程と、
該第1処理工程後の水溶液へpH調整液を加える第2処理工程と、
を有する請求項4または5に記載の磁心用粉末の製造方法。
The ferrite generation step includes a first treatment step of adding a reaction liquid containing M and Fe into water or an aqueous solution in which the oxidized particles are dispersed;
A second treatment step of adding a pH adjusting solution to the aqueous solution after the first treatment step;
The manufacturing method of the powder for magnetic cores of Claim 4 or 5 which has these.
請求項1〜3のいずれかに記載した磁心用粉末からなる圧粉磁心。   The powder magnetic core which consists of the powder for magnetic cores in any one of Claims 1-3. 0.1MHz以上の交番磁界中で使用される請求項7に記載の圧粉磁心。   The dust core according to claim 7, which is used in an alternating magnetic field of 0.1 MHz or higher. 請求項1〜3のいずれかに記載した磁心用粉末からなる磁性フィルム。   A magnetic film comprising the magnetic core powder according to claim 1.
JP2017043370A 2017-03-08 2017-03-08 Powder for magnetic core and method for producing the same, dust core and magnetic film Expired - Fee Related JP6520972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017043370A JP6520972B2 (en) 2017-03-08 2017-03-08 Powder for magnetic core and method for producing the same, dust core and magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017043370A JP6520972B2 (en) 2017-03-08 2017-03-08 Powder for magnetic core and method for producing the same, dust core and magnetic film

Publications (2)

Publication Number Publication Date
JP2018148103A true JP2018148103A (en) 2018-09-20
JP6520972B2 JP6520972B2 (en) 2019-05-29

Family

ID=63590025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017043370A Expired - Fee Related JP6520972B2 (en) 2017-03-08 2017-03-08 Powder for magnetic core and method for producing the same, dust core and magnetic film

Country Status (1)

Country Link
JP (1) JP6520972B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7387528B2 (en) 2020-04-28 2023-11-28 株式会社豊田中央研究所 Powder magnetic core and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250702A (en) * 1990-02-28 1991-11-08 Hitachi Maxell Ltd Manufacture of metallic magnetic powder
JP2001237115A (en) * 2000-02-24 2001-08-31 Sony Corp Magnetic metallic powder and magnetic recording medium
JP2001288368A (en) * 2000-04-05 2001-10-16 Tokin Corp Electromagnetic wave-shielding clothing and method for producing the shield sheet
JP2006077294A (en) * 2004-09-09 2006-03-23 Fuji Electric Holdings Co Ltd Composite magnetic material and magnetic part
JP2007067219A (en) * 2005-08-31 2007-03-15 Fuji Electric Holdings Co Ltd Composite magnetic material, magnetic component and its manufacturing method
JP2013191839A (en) * 2012-02-17 2013-09-26 Toyota Central R&D Labs Inc Dust core and powder for magnetic core used therefor
JP2013546162A (en) * 2010-09-29 2013-12-26 清華大学 Composite soft magnetic powder, composite soft magnetic powder core and method for producing them

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250702A (en) * 1990-02-28 1991-11-08 Hitachi Maxell Ltd Manufacture of metallic magnetic powder
JP2001237115A (en) * 2000-02-24 2001-08-31 Sony Corp Magnetic metallic powder and magnetic recording medium
JP2001288368A (en) * 2000-04-05 2001-10-16 Tokin Corp Electromagnetic wave-shielding clothing and method for producing the shield sheet
JP2006077294A (en) * 2004-09-09 2006-03-23 Fuji Electric Holdings Co Ltd Composite magnetic material and magnetic part
JP2007067219A (en) * 2005-08-31 2007-03-15 Fuji Electric Holdings Co Ltd Composite magnetic material, magnetic component and its manufacturing method
JP2013546162A (en) * 2010-09-29 2013-12-26 清華大学 Composite soft magnetic powder, composite soft magnetic powder core and method for producing them
JP2013191839A (en) * 2012-02-17 2013-09-26 Toyota Central R&D Labs Inc Dust core and powder for magnetic core used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7387528B2 (en) 2020-04-28 2023-11-28 株式会社豊田中央研究所 Powder magnetic core and its manufacturing method

Also Published As

Publication number Publication date
JP6520972B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP5986010B2 (en) Powder magnetic core and magnetic core powder used therefor
JPWO2003015109A1 (en) Ferrite-coated fine metal particle compression molded composite magnetic material and method for producing the same
WO2006112197A1 (en) Soft magnetic material and dust core
JP6107804B2 (en) Coating liquid, dust core, powder for magnetic core and method for producing the same
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
CN110853910B (en) Preparation method of high-permeability low-loss soft magnetic composite material and magnetic ring thereof
JP2006287004A (en) Magnetic core for high frequency and inductance component using it
JP6296997B2 (en) Method for producing magnetic particles
CN109887698A (en) A kind of composite magnetic powder core and preparation method thereof
US9800095B2 (en) Core shell superparamagnetic iron cobalt alloy nanoparticles with functional metal silicate core shell interface and a magnetic core containing the nanoparticles
US20170186521A1 (en) Method for manufacturing magnetic particles, magnetic particles, and magnetic body
US20150357102A1 (en) Core shell superparamagnetic iron oxide nanoparticles with functional metal silicate core shell interface and a magnetic core containing the nanoparticles
JP2022008547A (en) Si-CONTAINING Fe-BASED ALLOY POWDER PROVIDED WITH SiO2-CONTAINING COATING FILM AND MANUFACTURING METHOD THEREOF
JP5920261B2 (en) Powder for magnetic core and method for producing the same
JP6520972B2 (en) Powder for magnetic core and method for producing the same, dust core and magnetic film
WO2021103467A1 (en) Method for preparing high-performance soft magnetic composite material and magnetic ring thereof
JP2005213621A (en) Soft magnetic material and powder magnetic core
JP2019075566A (en) Powder magnetic core, powder for magnetic core and method for manufacturing the same
KR101963265B1 (en) Inductor component
JP4328885B2 (en) Ferrite-plated sendust fine particles and method for producing the same
JP6466741B2 (en) Iron-cobalt ternary alloy nanoparticles with silica shell and metal silicate interface
JP6427061B2 (en) Method of preparing core-shell-shell FeCo / SiO2 / MnBi nanoparticles, and core-shell-shell FeCo / SiO2 / MnBi nanoparticles
JP6556780B2 (en) Powder magnetic core, powder for magnetic core, and production method thereof
JP2008143720A (en) Magnetite-iron composite powder, its manufacturing method and dust core
JP7474561B2 (en) Coating treatment solution, its manufacturing method, and coating material manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees