JP2006077294A - Composite magnetic material and magnetic part - Google Patents

Composite magnetic material and magnetic part Download PDF

Info

Publication number
JP2006077294A
JP2006077294A JP2004262867A JP2004262867A JP2006077294A JP 2006077294 A JP2006077294 A JP 2006077294A JP 2004262867 A JP2004262867 A JP 2004262867A JP 2004262867 A JP2004262867 A JP 2004262867A JP 2006077294 A JP2006077294 A JP 2006077294A
Authority
JP
Japan
Prior art keywords
magnetic material
oxide
heat treatment
treatment temperature
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004262867A
Other languages
Japanese (ja)
Other versions
JP4507176B2 (en
Inventor
Takayuki Hirose
隆之 広瀬
Shinji Uchida
真治 内田
Sanehiro Okuda
修弘 奥田
Masaharu Edo
雅晴 江戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004262867A priority Critical patent/JP4507176B2/en
Publication of JP2006077294A publication Critical patent/JP2006077294A/en
Application granted granted Critical
Publication of JP4507176B2 publication Critical patent/JP4507176B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite magnetic material and a magnetic part obtained by compression-forming the above material with which a frequency characteristic is not deteriorated even with a heat treatment. <P>SOLUTION: The composite magnetic material is obtained by lamination interposing the covered layer (C1) composed of an oxide magnetic material (c1) between a covered layer (A) composed of a material (a) and a material (b) in powder of the grains of a metallic magnetic material (b), and either requirement of the following (1) and (2), is satisfied. (1) Equilibrium dissociation pressure in the heat treatment temperature of the high resistant oxide magnetic material (a) is a value at not higher than the equilibrium dissociation pressure in the heat treatment temperature of oxide with one oxidation state higher than the oxide magnetic material (c1). (2) The oxide magnetic material (c1) is in the highest oxidation state which can be taken in the heat treatment temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スイッチング電源などに搭載されるトランスやリアクトルなどに用いる複合磁性材料および磁気部品に関する。   The present invention relates to a composite magnetic material and a magnetic component used for a transformer or a reactor mounted on a switching power supply or the like.

近年、各種電子機器は小型・軽量化されてきており、なおかつ低消費電力化が求められている。これに伴い電子機器に搭載される電源として小型のスイッチング電源に対する要求が高まっている。特にノート型パソコンや携帯電話等の小型携帯機器、薄型CRT、テレビのフラットパネルディスプレイに用いられるスイッチング電源では、小型・薄型化が強く求められている。   In recent years, various electronic devices have been reduced in size and weight, and there has been a demand for lower power consumption. Accordingly, there is an increasing demand for a small switching power supply as a power supply mounted on an electronic device. In particular, switching power supplies used for small portable devices such as notebook computers and mobile phones, thin CRTs, and flat panel displays for televisions are strongly required to be small and thin.

しかしながら、従来のスイッチング電源では、その主要な構成部品であるトランスやリアクトルなどの磁気部品が大きな体積を占めており、これら磁気部品の体積を縮小しない限り、スイッチング電源を小型・薄型化することは困難となっていた。   However, in conventional switching power supplies, magnetic components such as transformers and reactors, which are the main components, occupy a large volume. Unless the volume of these magnetic parts is reduced, switching power supplies can be made smaller and thinner. It was difficult.

従来、このようなスイッチング電源に使用されているトランスやリアクトルなどの磁気部品には、センダストやパーマロイ等の金属磁性材料や、フェライトなどの酸化物磁性材料が使用されていた。金属磁性材料は、一般に高い飽和磁束密度と透磁率を有するが、電気抵抗率が低いため、特に高周波数領域では渦電流損失が大きくなってしまう。近年、電源回路を高周波駆動して必要なインダクタンス値を下げることにより磁気部品を小型化する傾向にあるが、渦電流損失の影響から金属磁性材料を高周波で使用することはできない。一方、酸化物磁性材料は、金属磁性材料に比べ電気抵抗率が高いため、高周波数領域でも発生する渦電流損失が小さい。しかしながら、飽和磁束密度が小さいため、その体積を小さくすることができなかった。つまり、いずれの場合でも磁性材料の体積がインダクタンス値を決定付ける一番大きな要因となっていて、磁性材料自体の磁気特性を向上させない限り、小型・薄型化が困難となっていた。   Conventionally, metal magnetic materials such as Sendust and Permalloy and oxide magnetic materials such as ferrite have been used for magnetic parts such as transformers and reactors used in such switching power supplies. Metallic magnetic materials generally have a high saturation magnetic flux density and magnetic permeability, but have low electrical resistivity, so that eddy current loss is particularly large in the high frequency region. In recent years, magnetic components tend to be miniaturized by reducing the required inductance value by driving the power supply circuit at a high frequency, but metal magnetic materials cannot be used at a high frequency due to the influence of eddy current loss. On the other hand, an oxide magnetic material has a higher electrical resistivity than a metal magnetic material, and hence eddy current loss that occurs even in a high frequency region is small. However, since the saturation magnetic flux density is small, the volume cannot be reduced. That is, in any case, the volume of the magnetic material is the largest factor determining the inductance value, and it has been difficult to reduce the size and thickness unless the magnetic properties of the magnetic material itself are improved.

このように、従来の磁気部品では、小型化に限界があり、電子機器の小型・薄型化の要求に充分に応えられるものではなかった。   As described above, the conventional magnetic parts have a limit in miniaturization, and cannot fully meet the demand for miniaturization and thinning of electronic devices.

ところが最近、金属磁性材料および酸化物磁性材料の両者の長所を有する磁性材料として、飽和磁束密度および透磁率が高い金属磁性材料の表面に、電気抵抗率の高い酸化物磁性材料の被膜を形成した磁性材料が提案されている。例えば、金属磁性材料の粉末の表面に高透磁率金属酸化物の被膜を形成した高透磁率材料が提案されている(特許文献1参照)。また、1〜10μmの粒子からなる金属磁性材の表面をM−Fe(但しM=Ni、Mn、Zn、x≦2)で表されるスピネル組成の金属酸化物磁性材で被覆してなる高密度焼結磁性体が提案されている(特許文献2参照)。さらに、表面がフェライト層で被覆された金属または金属間化合物の強磁性体微粒子粉末が圧縮成形され、上記フェライト層を介して上記強誘電体粒子粉末の粒子間に磁路を形成するものであることを特徴とする複合磁性材料が提案されている(特許文献3参照)。これによれば、表面をフェライト層により被覆された金属または金属間化合物の強磁性体微粒子粉末にフェライト超微粒子粉末が混合されて圧縮成形され、複合体を形成している(同特許文献、請求項7参照)。また、発明の実施の形態として、表面がフェライト層で被覆された金属または金属間化合物強磁性体微粒子が粒度分布をもって配合されており、大きい粒子が充填されて生じた粒子の隙間を小さい粒子が順次埋めていくことにより、粒子の充填率を高めた構造が模式的に示されている。 However, recently, as a magnetic material having the advantages of both metal magnetic material and oxide magnetic material, a film of oxide magnetic material with high electrical resistivity is formed on the surface of metal magnetic material with high saturation magnetic flux density and high magnetic permeability. Magnetic materials have been proposed. For example, a high-permeability material in which a high-permeability metal oxide film is formed on the surface of a metal magnetic material powder has been proposed (see Patent Document 1). Further, the surface of the metallic magnetic material consisting of 1~10μm particles coated with M-Fe x O 4 (where M = Ni, Mn, Zn, x ≦ 2) metal oxide magnetic material of the spinel composition represented by A high-density sintered magnetic body is proposed (see Patent Document 2). Further, a ferromagnetic fine particle powder of a metal or intermetallic compound whose surface is coated with a ferrite layer is compression-molded to form a magnetic path between the particles of the ferroelectric particle powder through the ferrite layer. A composite magnetic material characterized by this has been proposed (see Patent Document 3). According to this, the ferrite ultrafine particle powder is mixed with the ferromagnetic fine particle powder of the metal or intermetallic compound whose surface is covered with the ferrite layer and is compression-molded to form a composite (see Patent Document, Claim). Item 7). Further, as an embodiment of the invention, metal or intermetallic ferromagnetic fine particles coated with a ferrite layer on the surface are blended with a particle size distribution, and small particles are formed in the gaps between particles formed by filling large particles. A structure in which the filling rate of particles is increased by burying sequentially is schematically shown.

特開昭53−91397号公報JP-A-53-91397 特開昭56−38402号公報JP-A-56-38402 国際公開第03/015,109号パンフレットInternational Publication No. 03 / 015,109 Pamphlet 腐食防食協会編 「金属材料の高温酸化と高温腐食」、丸善、1982年7月、p.21以下(2 金属の高温酸化)Corrosion and Corrosion Protection Association, “High-temperature oxidation and high-temperature corrosion of metal materials”, Maruzen, July 1982, p.21 or less (2 High-temperature oxidation of metals)

フェライト等の高抵抗酸化物磁性材料で被覆した金属磁性粒子を圧縮成形して作製した複合磁性材料の透磁率は、熱処理によって大きく向上するが、周波数特性が悪化してしまう。これは、高抵抗酸化物磁性材料の高い抵抗率が熱処理によって低下するためである。抵抗率が低下する主な原因は、熱処理によって金属磁性粒子内に含まれる鉄(Fe)が高抵抗酸化物磁性材料内に拡散し、高抵抗酸化物磁性材料の還元による抵抗率の低下、およびより抵抗率の低いFe酸化物が生成するためである。   The magnetic permeability of a composite magnetic material produced by compression molding metal magnetic particles coated with a high-resistance oxide magnetic material such as ferrite is greatly improved by heat treatment, but the frequency characteristics are deteriorated. This is because the high resistivity of the high resistance oxide magnetic material is lowered by the heat treatment. The main cause of the decrease in resistivity is that iron (Fe) contained in the metal magnetic particles is diffused into the high-resistance oxide magnetic material by the heat treatment, and the decrease in resistivity due to reduction of the high-resistance oxide magnetic material, and This is because Fe oxide having a lower resistivity is generated.

従って、本発明は、熱処理によっても周波数特性が悪化しない複合磁性材料およびこれを圧縮成形した磁気部品を提供することを課題とする。   Accordingly, an object of the present invention is to provide a composite magnetic material whose frequency characteristics are not deteriorated even by heat treatment and a magnetic component obtained by compression molding the composite magnetic material.

本発明の複合磁性材料は、高抵抗酸化物磁性材料(a)により金属磁性材料(b)の粒子が被覆された粉末において、材料(a)からなる被覆層(A)と材料(b)の粒子の間に、酸化物磁性材料(c1)からなる被覆層(C1)を介在させた積層された複合磁性材料であって、以下の(1)、(2)のいずれかの要件を充たすことを特徴とする。
(1)高抵抗酸化物磁性材料(a)の、熱処理温度における平衡解離圧が、該酸化物磁性材料(c1)より酸化状態が一つ高い酸化物の、熱処理温度における平衡解離圧以下の値であること。
(2)該酸化物磁性材料(c1)が、熱処理温度において採りうる最も高い酸化状態にあること。
The composite magnetic material of the present invention comprises a coating layer (A) composed of a material (a) and a material (b) in a powder in which particles of a metal magnetic material (b) are coated with a high resistance oxide magnetic material (a). A laminated composite magnetic material in which a coating layer (C1) made of an oxide magnetic material (c1) is interposed between particles, and satisfies any of the following requirements (1) and (2) It is characterized by.
(1) A value equal to or lower than the equilibrium dissociation pressure at the heat treatment temperature of the oxide having a higher oxidation state than that of the oxide magnetic material (c1). Be.
(2) The oxide magnetic material (c1) is in the highest oxidation state that can be taken at the heat treatment temperature.

また、本発明の複合磁性材料は、高抵抗酸化物磁性材料(a)により金属磁性材料(b)の粒子が被覆された粉末において、材料(a)からなる被覆層(A)と材料(b)の粒子の間に、酸化物磁性材料(c1)からなる被覆層(C1)を介在させた積層された複合磁性材料であって、高抵抗酸化物磁性材料(a)の、熱処理温度より200℃高い温度における平衡解離圧が、該酸化物磁性材料(c1)より酸化状態が一つ高い酸化物の、熱処理温度より200℃高い温度における平衡解離圧の100倍以下の値であるとの要件(8)を充たすことを特徴とする。   In addition, the composite magnetic material of the present invention comprises a coating layer (A) made of a material (a) and a material (b) in a powder in which particles of a metal magnetic material (b) are coated with a high resistance oxide magnetic material (a). ) Between the particles of the oxide magnetic material (c1) and the laminated composite magnetic material, which is 200 from the heat treatment temperature of the high resistance oxide magnetic material (a). Requirement that the equilibrium dissociation pressure at a temperature higher by 1 ° C. is not more than 100 times the equilibrium dissociation pressure at a temperature higher by 200 ° C. than the heat treatment temperature of the oxide having one higher oxidation state than the oxide magnetic material (c1). (8) is satisfied.

また、本発明の複合磁性材料は、高抵抗酸化物磁性材料(a)により金属磁性材料(b)の粒子が被覆された粉末において、材料(a)からなる被覆層(A)と材料(b)の粒子の間に、酸化物磁性材料(c3)からなる被覆層(C3)を介在させた積層された複合磁性材料であって、酸化物磁性材料(c3)が、マグネタイト(Fe)およびγ−Feからなる群から選択される少なくとも1種以上の酸化物磁性材料を含むことを特徴とする。 In addition, the composite magnetic material of the present invention comprises a coating layer (A) made of a material (a) and a material (b) in a powder in which particles of a metal magnetic material (b) are coated with a high resistance oxide magnetic material (a). ) Between the particles of the composite magnetic material in which the coating layer (C3) made of the oxide magnetic material (c3) is interposed. The oxide magnetic material (c3) is magnetite (Fe 3 O 4). And at least one oxide magnetic material selected from the group consisting of γ-Fe 2 O 3 .

さらに、本発明の磁気部品は、上記の複合磁性材料の粉末が、圧縮成形されていることを特徴とする。   Furthermore, the magnetic component of the present invention is characterized in that the composite magnetic material powder is compression-molded.

本発明によれば、熱処理によるフェライト等の高抵抗酸化物磁性材料被膜の抵抗率を低下させることが無く、高透磁率で10MHz以上の高周波帯域で使用可能な磁気部品を作製することができる。これにより、ノート型パソコン・小型携帯機器・薄型ディスプレイなどのスイッチング電源に向けた、高機能でかつ小型・薄型の磁気部品を作ることが可能となる。   According to the present invention, it is possible to produce a magnetic component that can be used in a high-frequency band of 10 MHz or more with high permeability without reducing the resistivity of a high-resistance oxide magnetic material film such as ferrite by heat treatment. This makes it possible to produce highly functional, small and thin magnetic components for switching power supplies such as notebook computers, small portable devices, and thin displays.

A.本発明は、高抵抗酸化物磁性材料(a)により金属磁性材料(b)の粒子が被覆された粉末において、材料(a)からなる被覆層(A)と材料(b)の粒子の間に、酸化物磁性材料(c1)からなる被覆層(C1)を介在させた積層された複合磁性材料であって、以下の(1)、(2)のいずれかの要件を充たすことを特徴とする複合磁性材料を提供する。
(1)高抵抗酸化物磁性材料(a)の、熱処理温度における平衡解離圧が、該酸化物磁性材料(c1)より酸化状態が一つ高い酸化物の、熱処理温度における平衡解離圧以下の値であること。
(2)該酸化物磁性材料(c1)が、熱処理温度において採りうる最も高い酸化状態にあること。
A. The present invention relates to a powder in which particles of a metal magnetic material (b) are coated with a high resistance oxide magnetic material (a), and between the coating layer (A) made of the material (a) and the particles of the material (b). A laminated composite magnetic material with a coating layer (C1) made of an oxide magnetic material (c1) interposed therebetween, characterized by satisfying any of the following requirements (1) and (2) A composite magnetic material is provided.
(1) A value equal to or lower than the equilibrium dissociation pressure at the heat treatment temperature of the oxide having a higher oxidation state than that of the oxide magnetic material (c1). Be.
(2) The oxide magnetic material (c1) is in the highest oxidation state that can be taken at the heat treatment temperature.

1.高抵抗酸化物磁性材料(a)
本発明の高抵抗酸化物磁性材料(a)とは、電気抵抗率が10Ω・cm以上の酸化物磁性材料のことをいう。好ましくは絶縁性酸化物磁性材料、その中でも高絶縁性フェライトが挙げられ、より好ましくはNi−Znフェライトである。
1. High resistance oxide magnetic material (a)
The high resistance oxide magnetic material (a) of the present invention refers to an oxide magnetic material having an electrical resistivity of 10 4 Ω · cm or more. An insulating oxide magnetic material is preferable, and a high insulating ferrite among them is preferable, and Ni-Zn ferrite is more preferable.

2.金属磁性材料(b)
本発明の金属磁性材料(b)としては、好ましくはNi−Fe合金やセンダスト等のFeを主成分とした磁性材料、Co磁性元素を含む磁性材料が挙げられる。また、本発明の金属磁性材料(b)は、粒子として用いられる。
2. Metallic magnetic material (b)
The metal magnetic material (b) of the present invention is preferably a magnetic material mainly composed of Fe, such as a Ni—Fe alloy or Sendust, or a magnetic material containing a Co magnetic element. The metal magnetic material (b) of the present invention is used as particles.

3.酸化物磁性材料(c1)
本発明の酸化物磁性材料(c1)とは、以下の(1)、(2)のいずれかの要件を充たす酸化物磁性材料である。
(1)高抵抗酸化物磁性材料(a)の、熱処理温度における平衡解離圧が、該酸化物磁性材料(c1)より酸化状態が一つ高い酸化物の、熱処理温度における平衡解離圧以下の値であること。
(2)該酸化物磁性材料(c1)が、熱処理温度において採りうる最も高い酸化状態にあること。
3. Oxide magnetic material (c1)
The oxide magnetic material (c1) of the present invention is an oxide magnetic material that satisfies any of the following requirements (1) and (2).
(1) A value equal to or lower than the equilibrium dissociation pressure at the heat treatment temperature of the oxide having a higher oxidation state than that of the oxide magnetic material (c1). Be.
(2) The oxide magnetic material (c1) is in the highest oxidation state that can be taken at the heat treatment temperature.

該材料(c1)は、上記(1)、(2)のいずれかの要件を充たすことで、熱処理温度において、高抵抗酸化物磁性材料(a)の還元を抑制する性質を有する。また、高抵抗酸化物磁性材料(a)とは異なり、必ずしも高抵抗である必要はない。もっとも、かかる酸化物磁性材料(c1)は、透磁率向上のために磁性体でなければならず、好ましくはマグネタイトFeおよびγ−Feからなる群から選択される少なくとも1種以上の酸化物磁性材料を用いることができる。要件(1)を充たし得るものとしてマグネタイトFeを挙げることができる。また、要件(2)を充たし得るものとして、γ−Feを挙げることができる。 The material (c1) has the property of suppressing the reduction of the high-resistance oxide magnetic material (a) at the heat treatment temperature by satisfying any of the requirements (1) and (2). Further, unlike the high resistance oxide magnetic material (a), it is not always necessary to have a high resistance. However, the oxide magnetic material (c1) must be a magnetic material for improving the magnetic permeability, and is preferably at least one selected from the group consisting of magnetite Fe 3 O 4 and γ-Fe 2 O 3. The above oxide magnetic materials can be used. Can be exemplified magnetite Fe 3 O 4 as capable satisfies the requirements (1). Further, as capable satisfies the requirement (2), mention may be made of γ-Fe 2 O 3.

ここで、要件(1)の「高抵抗酸化物磁性材料(a)の、熱処理温度における平衡解離圧」とは、高抵抗酸化物磁性材料(a)が、該高抵抗酸化物磁性材料(a)より一つ低い酸化状態の物質(酸化物または金属)と、酸素一分子に解離する際の、熱処理温度における平衡定数(単位atm)のことをいい、これはかかる解離平衡における酸素の分圧に等しくなる。熱処理温度とは、複合磁性材料の透磁率を向上させるために熱処理する温度のことをいい、該温度としては、500〜800℃、より好ましくは600℃前後の温度が挙げられる。そして、上記「一つ低い酸化状態の物質」とは、高抵抗酸化物磁性材料(a)が還元された場合に、まず最初に採りうる可能性のある酸化状態の物質をいう。例えば、高抵抗酸化物磁性材料(a)としてNi−Znフェライトを例にとると、Ni−Znフェライトは、NiO、ZnO、Feの固溶体であり、これらについての一つ低い酸化状態の物質は、それぞれNi、Zn、Feとなる。 Here, the requirement (1) “equilibrium dissociation pressure of the high resistance oxide magnetic material (a) at the heat treatment temperature” means that the high resistance oxide magnetic material (a) is the high resistance oxide magnetic material (a ) This is the equilibrium constant (unit: atm) at the heat treatment temperature when dissociating into a lower oxidation state substance (oxide or metal) and one molecule of oxygen, and this is the partial pressure of oxygen in this dissociation equilibrium. Is equal to The heat treatment temperature refers to a temperature at which heat treatment is performed to improve the magnetic permeability of the composite magnetic material. Examples of the temperature include a temperature of 500 to 800 ° C., more preferably around 600 ° C. The “one substance in a low oxidation state” refers to a substance in an oxidation state that may first be taken when the high-resistance oxide magnetic material (a) is reduced. For example, when Ni—Zn ferrite is taken as an example of the high-resistance oxide magnetic material (a), Ni—Zn ferrite is a solid solution of NiO, ZnO, and Fe 2 O 3 , and one of these is in a low oxidation state. The materials are Ni, Zn, and Fe 3 O 4 , respectively.

同様に、「該酸化物磁性材料(c1)より酸化状態が一つ高い酸化物の、熱処理温度での平衡解離圧」とは、酸化物磁性材料(c1)より酸化状態が一つ高い酸化物が、該酸化物磁性材料(c1)と、酸素一分子に解離する際の、熱処理温度における平衡定数(単位atm)のことをいい、これはかかる解離平衡における酸素の分圧に等しくなる。   Similarly, “an equilibrium dissociation pressure at a heat treatment temperature of an oxide that is one higher in oxidation state than the oxide magnetic material (c1)” means an oxide that has one oxidation state higher than that in the oxide magnetic material (c1). Is the equilibrium constant (unit: atm) at the heat treatment temperature when dissociating from the oxide magnetic material (c1) and one oxygen molecule, and this is equal to the partial pressure of oxygen in the dissociation equilibrium.

また、要件(1)の「酸化物磁性材料(c1)より酸化状態が一つ高い酸化物」とは、該酸化物磁性材料(c1)が酸化された場合に、まず最初に採りうる可能性のある酸化状態の酸化物をいう。例えば、酸化物磁性材料(c1)としてFeを例に採ると、Feが一つ高い酸化状態の酸化物である。 The requirement (1) “an oxide having an oxidation state one higher than that of the oxide magnetic material (c1)” may be taken first when the oxide magnetic material (c1) is oxidized. An oxide in an oxidized state. For example, when Fe 3 O 4 is taken as an example of the oxide magnetic material (c1), Fe 2 O 3 is an oxide in a higher oxidation state.

代表的な酸化物の平衡解離圧のデータを表1に示す。かかる平衡解離圧は、酸化還元平衡図から求めることができる(非特許文献1参照)。   Table 1 shows the data of the equilibrium dissociation pressure of typical oxides. Such equilibrium dissociation pressure can be obtained from an oxidation-reduction equilibrium diagram (see Non-Patent Document 1).

Figure 2006077294
Figure 2006077294

また、要件(2)の「最も高い酸化状態」とは、該酸化物磁性材料(c1)中の金属酸化物につき、熱処理温度において採りうることの知られている最も高い酸化状態にあることをいう。たとえば、酸化鉄については、Feがこれに相当する。最も高い酸化状態にあるため、自らがさらに酸化されると同時に高抵抗酸化物磁性材料(a)を還元するということが考えられないからである。 In addition, the “highest oxidation state” of requirement (2) means that the metal oxide in the oxide magnetic material (c1) is in the highest oxidation state known to be able to be taken at the heat treatment temperature. Say. For example, for iron oxide, Fe 2 O 3 corresponds to this. This is because it is impossible to reduce the high-resistance oxide magnetic material (a) at the same time as it is further oxidized because it is in the highest oxidation state.

なお、高抵抗酸化物磁性材料(a)、酸化物磁性材料(c1)が、それぞれ複数の成分を含む場合の要件(1)、(2)のいずれかの要件を充たすか否かについては、以下の(I)、(II)ように決定すればよい。もっとも、(I)、(II)における決定に際しては、高抵抗酸化物磁性材料(a)、酸化物磁性材料(c1)いずれにおいても、含有量の少ない順に累積加算して合計5重量%に達するまでの軽微な成分群は存在しないものとして決定してよいとする。   In addition, whether the high resistance oxide magnetic material (a) and the oxide magnetic material (c1) satisfy any of the requirements (1) and (2) in the case where each includes a plurality of components, What is necessary is just to determine as follows (I) and (II). However, in the determination in (I) and (II), in both the high-resistance oxide magnetic material (a) and the oxide magnetic material (c1), cumulative addition is performed in the order of decreasing content to reach a total of 5% by weight. It may be determined that the minor component groups up to are not present.

(I)酸化物磁性材料(c1)の複数の成分のうち、要件(2)を充たす成分は除外し、残りの酸化物成分(以下、「c1残余成分」と略す。)につき、次の(II)の検討に進む。もっとも、該材料(c1)中のすべての酸化物成分が要件(2)を充たせば、該材料(c1)は要件(2)を充たすと判断し、以下の(II)についての検討は不要である。   (I) Among the plurality of components of the oxide magnetic material (c1), the component satisfying the requirement (2) is excluded, and the remaining oxide component (hereinafter abbreviated as “c1 residual component”) is Proceed to II). However, if all oxide components in the material (c1) satisfy the requirement (2), it is judged that the material (c1) satisfies the requirement (2), and the following (II) is not required to be examined. It is.

(II)上記(I)のc1残余成分につき、要件(1)を充たすか否かを検討する。すなわち、高抵抗酸化物磁性材料(a)の各酸化物成分のうち、最大の平衡解離圧をもつ成分についての平衡解離圧の値が、c1残余成分の各酸化物成分に対応する酸化状態が一つ高い各酸化物のうち最少の平衡解離圧をもつ酸化物についての平衡解離圧以下であれば、要件(1)を充たし、逆により大きければ要件(1)を充たさない。   (II) Consider whether the requirement (1) is satisfied for the c1 residual component of (I) above. That is, among the oxide components of the high-resistance oxide magnetic material (a), the value of the equilibrium dissociation pressure for the component having the maximum equilibrium dissociation pressure is the oxidation state corresponding to each oxide component of the c1 residual component. If it is below the equilibrium dissociation pressure for the oxide having the lowest equilibrium dissociation pressure among the one higher oxide, the requirement (1) is satisfied, and if it is larger, the requirement (1) is not satisfied.

4.被覆層(C1)
かかる酸化物材料の平衡解離圧が高いと、該酸化物材料は不安定であり、平衡解離圧のより低い別の酸化物に対応する、酸化状態の一つ低い物質が共存すると、該酸化物材料は還元されるとともに、該物質(金属や酸化物)は酸化されてしまう。すなわち、酸化物同士または酸化物と金属が接した場合の酸化還元反応の起り易さが、酸化物の平衡解離圧によって決定される。このことから、FeはNi−Znフェライトに含まれるFeとNiOを還元し、自身はFeOに酸化され、さらにFeOが酸化されてFeに変化してしまう。また、NiもFeを還元し、自身はNiOに酸化される。このため、たとえば金属磁性材料(b)がNi−Fe合金の粒子であり、これに高抵抗酸化物磁性材料(a)としてNi−Znフェライト被膜が直接接している場合、金属磁性材料(b)中のNiとFeはNi−Znフェライトを還元してしまい、抵抗率の低いFeやFeOを生成しやすい状態になる。
4). Coating layer (C1)
When the equilibrium dissociation pressure of such an oxide material is high, the oxide material is unstable. When a substance having a lower oxidation state corresponding to another oxide having a lower equilibrium dissociation pressure coexists, the oxide material The material is reduced and the substance (metal or oxide) is oxidized. That is, the ease of the redox reaction when the oxides contact each other or the metal and the oxide are determined by the equilibrium dissociation pressure of the oxide. For this reason, Fe reduces Fe 2 O 3 and NiO contained in the Ni—Zn ferrite, and itself is oxidized to FeO, and further FeO is oxidized to change to Fe 3 O 4 . Ni also reduces Fe 2 O 3 and oxidizes itself to NiO. For this reason, for example, when the metal magnetic material (b) is a particle of Ni—Fe alloy, and the Ni—Zn ferrite film is directly in contact as the high resistance oxide magnetic material (a), the metal magnetic material (b) Ni and Fe in the inside reduce Ni—Zn ferrite, and are likely to generate Fe 3 O 4 and FeO having low resistivity.

そこで、かかる還元反応を抑えるため、本発明では、上記要件(1)、(2)のいずれかの要件を充たすことによって、高抵抗酸化物磁性材料(a)の還元を抑制する性質を有する酸化物磁性材料(c1)からなる被覆層(C1)を、被覆層(A)と金属磁性材料(b)粒子の間に介在させて積層構造を形成させる。たとえば、金属磁性材料(b)粒子を該酸化物磁性材料(c1)で被覆した後、さらに高抵抗酸化物磁性材料(a)により被覆する。また、被覆方法としては、当該技術分野において公知の被覆手段を用いることができるが、好ましくは超音波励起めっき法(特許文献3参照)を用いることができる。   Therefore, in order to suppress such a reduction reaction, in the present invention, an oxidation having the property of suppressing the reduction of the high-resistance oxide magnetic material (a) by satisfying any of the requirements (1) and (2). A coating layer (C1) made of the magnetic material (c1) is interposed between the coating layer (A) and the metal magnetic material (b) particles to form a laminated structure. For example, the metal magnetic material (b) particles are coated with the oxide magnetic material (c1), and then further coated with the high resistance oxide magnetic material (a). In addition, as a coating method, a coating means known in the technical field can be used, but preferably an ultrasonic excitation plating method (see Patent Document 3) can be used.

上記被覆によって得られた材料(c1)からなる被覆層(C1)には、二種以上の酸化物磁性材料(c1)を用いることができる。また、被覆層(C1)は単一層のみならず、複数の積層とすることもできる。たとえば、酸化物磁性材料(c1)であるFeを含む被覆層(C1)と別の酸化物磁性材料(c1)であるγ−Feを含む被覆層(C1’)とを積層した被膜に高抵抗酸化物磁性材料(a)であるフェライトを含む被覆層(A)の被膜を形成した3層構造にしてもよい。さらに、本発明の効果を損なわない範囲で、Fe等の材料(c1)以外の成分、たとえば、高絶縁性フェライト等の高抵抗酸化物磁性材料(a)も含めることができ、その配合量は好ましくは材料(c1)に対して30重量%未満である。 Two or more kinds of oxide magnetic materials (c1) can be used for the coating layer (C1) made of the material (c1) obtained by the coating. Further, the coating layer (C1) can be not only a single layer but also a plurality of laminated layers. For example, a coating layer (C1) containing Fe 3 O 4 which is an oxide magnetic material (c1) and a coating layer (C1 ′) containing γ-Fe 2 O 3 which is another oxide magnetic material (c1). A three-layer structure in which a coating of a coating layer (A) containing ferrite, which is a high-resistance oxide magnetic material (a), is formed on the laminated coating. Furthermore, components other than the material (c1) such as Fe 3 O 4 , for example, a high-resistance oxide magnetic material (a) such as high-insulating ferrite can be included as long as the effects of the present invention are not impaired. The amount is preferably less than 30% by weight based on the material (c1).

5.被覆層(A)
上記被覆によって得られた材料(a)からなる被覆層(A)には、二種以上の高抵抗酸化物磁性材料(a)を用いることができる。また、被覆層(A)は単一層のみならず、複数の積層とすることもできる。
5. Coating layer (A)
Two or more types of high-resistance oxide magnetic materials (a) can be used for the coating layer (A) made of the material (a) obtained by the coating. Moreover, the coating layer (A) can be not only a single layer but also a plurality of laminated layers.

B.本発明は、上記A.に記載される複合磁性材料において、さらに、酸化物磁性材料(c1)の平衡解離圧が、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての熱処理温度における平衡解離圧以下の値であるとの要件(3)をも充たす、より好ましい複合磁性材料を提供する。 B. In the composite magnetic material described in A. above, the present invention further provides that the equilibrium dissociation pressure of the oxide magnetic material (c1) is the most oxidized state among the oxides corresponding to the metal in the metal magnetic material (b). A more preferable composite magnetic material satisfying the requirement (3) that the value is equal to or lower than the equilibrium dissociation pressure at the heat treatment temperature for the low-oxide is provided.

該材料(c1)は、上記のように、高抵抗酸化物磁性材料(a)の還元を抑制する性質を有するが、これに加えて上記要件(3)を充たすことによって、金属磁性材料(b)による還元をも抑制する性質も有する。酸化物磁性材料(c1)としては、好ましくは、上記要件(1)の要件を充たす該材料(c1)を用いることができる。例えば、マグネタイトFeを好適なものとして挙げることができる。 The material (c1) has the property of suppressing the reduction of the high-resistance oxide magnetic material (a) as described above, but in addition to satisfying the requirement (3), the metal magnetic material (b It also has the property of suppressing the reduction due to. As the oxide magnetic material (c1), it is preferable to use the material (c1) that satisfies the requirement (1). For example, a magnetite Fe 3 O 4 as preferred.

ここで、「酸化物磁性材料(c1)の平衡解離圧」とは、酸化物磁性材料(c1)が、該高抵抗酸化物磁性材料(a)より一つ低い酸化状態の物質(酸化物または金属)と、酸素一分子に解離する際の平衡定数(単位atm)のことをいい、これはかかる解離平衡における酸素の分圧に等しくなる。また、「金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物」とは、該金属を酸化した場合に、まず最初に採りうる可能性のある酸化状態の酸化物をいう。例えば、Niに対応する酸化物のうち最も酸化状態の低い酸化物はNiOであり、Feに対応する酸化物のうち最も酸化状態の低い酸化物はFeOである。さらに、該「酸化物についての熱処理温度における平衡解離圧」とは、該酸化物が、これより一つ低い酸化状態の物質、すなわち金属と、酸素一分子に解離する際の、熱処理温度における平衡定数(単位atm)のことをいい、これはかかる解離平衡における酸素の分圧に等しくなる。熱処理温度とは、複合磁性材料の透磁率を向上させるために熱処理する温度のことをいい、該温度としては、500〜800℃、より好ましくは600℃前後の温度が好ましく用いられる。   Here, the “equilibrium dissociation pressure of the oxide magnetic material (c1)” means that the oxide magnetic material (c1) has a lower oxidation state than the high-resistance oxide magnetic material (a) (oxide or Metal) and the equilibrium constant (unit atm) when dissociating into one oxygen molecule, which is equal to the partial pressure of oxygen in this dissociation equilibrium. In addition, “the oxide in the lowest oxidation state among the oxides corresponding to the metal in the metal magnetic material (b)” means an oxidation state that may be taken first when the metal is oxidized. Refers to oxide. For example, the oxide with the lowest oxidation state among the oxides corresponding to Ni is NiO, and the oxide with the lowest oxidation state among the oxides corresponding to Fe is FeO. Further, the “equilibrium dissociation pressure at the heat treatment temperature for the oxide” means the equilibrium at the heat treatment temperature when the oxide dissociates into a single oxidation molecule, ie, a metal having a lower oxidation state. This is a constant (unit: atm), which is equal to the partial pressure of oxygen in such dissociation equilibrium. The heat treatment temperature refers to a temperature at which heat treatment is performed to improve the magnetic permeability of the composite magnetic material. As the temperature, a temperature of 500 to 800 ° C., more preferably around 600 ° C. is preferably used.

なお、酸化物磁性材料(c1)、金属磁性材料(b)が、それぞれ複数の成分を含む場合、(3)の要件である酸化物磁性材料(c1)の平衡解離圧が、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての平衡解離圧以下の値であるか否かの決定においては、該酸化物磁性材料(c1)の各酸化物成分のうち、最大の平衡解離圧をもつ酸化物成分についての平衡解離圧の値が、金属磁性材料(b)中の各金属成分に対応する酸化物のうち最も酸化状態の低い各酸化物のうち、最少の平衡解離圧をもつ酸化物についての平衡解離圧の値以下であれば、要件(3)を充たし、逆により大きければ要件(3)を充たさない。もっとも、上記要件(3)の決定に際しては、酸化物磁性材料(c1)、金属磁性材料(b)のいずれにおいても、含有量の少ない順に累積加算して合計5重量%に達するまでの軽微成分は存在しないものとして決定してよいものとする。   When the oxide magnetic material (c1) and the metal magnetic material (b) each include a plurality of components, the equilibrium dissociation pressure of the oxide magnetic material (c1), which is a requirement of (3), is reduced to the metal magnetic material ( b) In determining whether or not the value is equal to or lower than the equilibrium dissociation pressure for the oxide in the lowest oxidation state among the oxides corresponding to the metal in the oxide, each oxide component of the oxide magnetic material (c1) Among the oxides having the lowest equilibrium state, the value of the equilibrium dissociation pressure for the oxide component having the maximum equilibrium dissociation pressure is the lowest among the oxides corresponding to the metal components in the metal magnetic material (b). If the value is equal to or less than the value of the equilibrium dissociation pressure of the oxide having the minimum equilibrium dissociation pressure, the requirement (3) is satisfied, and if the value is larger, the requirement (3) is not satisfied. However, in determining the requirement (3), in both the oxide magnetic material (c1) and the metal magnetic material (b), the minor components until the total amount reaches 5% by weight in the order of increasing content. May be determined as not present.

たとえば、高抵抗酸化物磁性材料(a)としてNi−Feフェライト(NiO、ZnO、Feの固溶体)を用い、金属磁性材料(b)としてNi−Fe合金を用い、酸化物磁性材料(c1)としてFeの組み合わせを採用することができる。すなわち、酸化物磁性材料(c1)であるFeは、高抵抗酸化物磁性材料(a)であるNi−Feフェライトを還元せず、またNi−Feフェライトにより還元されない。また、酸化物磁性材料(c1)であるFeは、金属磁性材料(b)中のFeにより還元はされるものの、600℃の熱処理では平衡状態になり、600℃より高い温度でも平衡解離圧が比較的近く、Feの還元は抑制される。また、Niにより還元されることはない。 For example, Ni—Fe ferrite (solid solution of NiO, ZnO, Fe 2 O 3 ) is used as the high resistance oxide magnetic material (a), Ni—Fe alloy is used as the metal magnetic material (b), and the oxide magnetic material ( A combination of Fe 3 O 4 can be employed as c1). That is, Fe 3 O 4 that is the oxide magnetic material (c1) does not reduce the Ni—Fe ferrite that is the high resistance oxide magnetic material (a), and is not reduced by the Ni—Fe ferrite. In addition, Fe 3 O 4 which is the oxide magnetic material (c1) is reduced by Fe in the metal magnetic material (b), but is brought into an equilibrium state by heat treatment at 600 ° C., and even at a temperature higher than 600 ° C. The dissociation pressure is relatively close, and the reduction of Fe 3 O 4 is suppressed. Moreover, it is not reduced by Ni.

C.本発明は、上記A.に記載される複合磁性材料において、 さらに以下の要件(4)〜(7)のいずれも充たすことを特徴とするより好ましい複合磁性材料を提供する。
(4)酸化物磁性材料(c1)の、熱処理温度における平衡解離圧が、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての、熱処理温度における平衡解離圧より大きい値であること。
(5)酸化物磁性材料(c1)は、熱処理温度において、金属磁性材料(b)により還元されて酸化物磁性材料(c2)を生成するものであること。
(6)高抵抗酸化物磁性材料(a)の、熱処理温度における平衡解離圧が、生成した酸化物磁性材料(c2)より酸化状態が一つ高い酸化物の、熱処理温度における平衡解離圧以下の値であること。
(7)生成した酸化物磁性材料(c2)の、熱処理温度における平衡解離圧が、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての、熱処理温度における平衡解離圧以下の値であること。
C. The present invention provides a more preferable composite magnetic material characterized in that, in the composite magnetic material described in A. above, all of the following requirements (4) to (7) are satisfied.
(4) The equilibrium at the heat treatment temperature of the oxide having the lowest oxidation state among the oxides corresponding to the metal in the metal magnetic material (b) having an equilibrium dissociation pressure at the heat treatment temperature of the oxide magnetic material (c1). The value is larger than the dissociation pressure.
(5) The oxide magnetic material (c1) is reduced by the metal magnetic material (b) at the heat treatment temperature to produce the oxide magnetic material (c2).
(6) The high-resistance oxide magnetic material (a) has an equilibrium dissociation pressure at a heat treatment temperature equal to or lower than the equilibrium dissociation pressure at the heat treatment temperature of an oxide having a higher oxidation state than the generated oxide magnetic material (c2). Value.
(7) The heat treatment temperature of the oxide having the lowest oxidation state among the oxides corresponding to the metal in the metal magnetic material (b) having an equilibrium dissociation pressure at the heat treatment temperature of the produced oxide magnetic material (c2) The value should be equal to or less than the equilibrium dissociation pressure.

該材料(c1)は、上記A.において説明したように、熱処理温度において、高抵抗酸化物磁性材料(a)の還元を抑制する性質を有するが、これに加えて、仮に該材料(c1)が、熱処理温度において、金属磁性材料(b)によって還元されても、生成する材料(c2)も酸化物磁性材料であり、該材料(c2)も、高抵抗酸化物磁性材料(a)の還元を抑制するとともに、すでに還元された後の物質であるため、金属磁性材料(b)による還元も抑制するという性質を有する。   The material (c1) is composed of the above-mentioned A. As described above, in the heat treatment temperature, it has the property of suppressing the reduction of the high-resistance oxide magnetic material (a). In addition to this, the material (c1) is supposed to be a metal magnetic material ( Even if reduced by b), the generated material (c2) is also an oxide magnetic material, and this material (c2) also suppresses the reduction of the high-resistance oxide magnetic material (a) and is already reduced. Therefore, the metal magnetic material (b) has a property of suppressing reduction.

酸化物磁性材料(c1)としては、好ましくは上記A.に記載される(2)の要件を充たす該材料(c1)が用いられる。例えば、γ−Feを好適なものとして挙げることができる。 The oxide magnetic material (c1) is preferably A. The material (c1) that satisfies the requirement (2) described in 1) is used. For example, γ-Fe 2 O 3 can be mentioned as a suitable one.

ここで、上記要件(4)は、上記B.に記載される要件(3)を充たさない場合、すなわち、酸化物磁性材料(c1)が、金属磁性材料(b)により還元されることを意味する。また、要件(5)は、酸化物磁性材料(c1)が還元されて生成した材料も酸化物磁性材料であることを意味する。要件(6)、(7)はそれぞれ、上記A.の要件(1)および上記要件B.の要件(3)において、酸化物磁性材料(c1)を酸化物磁性材料(c2)に置き換えたものに相当し、生成した酸化物磁性材料(c2)が、高抵抗酸化物磁性材料(a)の還元を抑制するとともに、金属磁性材料(b)による還元も抑制することを意味する。   Here, the requirement (4) satisfies the above-mentioned B.1. Means that the oxide magnetic material (c1) is reduced by the metal magnetic material (b). The requirement (5) means that the material produced by reducing the oxide magnetic material (c1) is also an oxide magnetic material. The requirements (6) and (7) are obtained by replacing the oxide magnetic material (c1) with the oxide magnetic material (c2) in the requirement (1) of the above A. and the requirement (3) of the above requirement B. This means that the produced oxide magnetic material (c2) suppresses reduction of the high-resistance oxide magnetic material (a) and also suppresses reduction by the metal magnetic material (b).

例えば、高抵抗酸化物磁性材料(a)としてNi−Feフェライトを用い、金属磁性材料(b)としてNi−Fe合金を用い、酸化物磁性材料(c1)としてγ−Feを採用した場合、酸化物磁性材料(c1)であるγ−Feは、高抵抗酸化物磁性材料(a)であるNi−Feフェライトを還元せず、またNi−Feフェライトにより還元されない。また、酸化物磁性材料(c1)であるγ−Feは、金属磁性材料(b)中のFe、Niにより還元はされるものの、生成した酸化物磁性材料(c2)は、上記酸化物磁性材料(c1)であるFeになるので、上記A.で記載した発明と同様、依然として、高抵抗酸化物磁性材料(a)の還元を抑制する性質を維持すると共に、以後、熱処理温度(〜600℃)において、金属磁性材料(b)による還元を抑制する性質も有するようになる。 For example, Ni—Fe ferrite was used as the high resistance oxide magnetic material (a), Ni—Fe alloy was used as the metal magnetic material (b), and γ-Fe 2 O 3 was used as the oxide magnetic material (c1). In this case, γ-Fe 2 O 3 that is the oxide magnetic material (c1) does not reduce the Ni—Fe ferrite that is the high resistance oxide magnetic material (a), and is not reduced by the Ni—Fe ferrite. Moreover, although γ-Fe 2 O 3 which is the oxide magnetic material (c1) is reduced by Fe and Ni in the metal magnetic material (b), the generated oxide magnetic material (c2) is oxidized as described above. Since it becomes Fe 3 O 4 which is a magnetic material (c1), the above A. As in the invention described in (1), the property of suppressing the reduction of the high-resistance oxide magnetic material (a) is still maintained, and thereafter the reduction by the metal magnetic material (b) is suppressed at the heat treatment temperature (˜600 ° C.). It also has the property to do.

D.本発明は、高抵抗酸化物磁性材料(a)により金属磁性材料(b)の粒子が被覆された粉末において、材料(a)からなる被覆層(A)と材料(b)の粒子の間に、酸化物磁性材料(c1)からなる被覆層(C1)を介在させた積層された複合磁性材料であって、高抵抗酸化物磁性材料(a)の、熱処理温度より200℃高い温度における平衡解離圧が、該酸化物磁性材料(c1)より酸化状態が一つ高い酸化物の、熱処理温度より200℃高い温度における平衡解離圧の100倍以下の値であるとの要件(8)を充たすことを特徴とする複合磁性材料を提供する。 D. The present invention relates to a powder in which particles of a metal magnetic material (b) are coated with a high resistance oxide magnetic material (a), and between the coating layer (A) made of the material (a) and the particles of the material (b). An equilibrium dissociation of a high-resistance oxide magnetic material (a) at a temperature 200 ° C. higher than the heat treatment temperature, which is a laminated composite magnetic material with a coating layer (C1) made of the oxide magnetic material (c1) interposed Satisfying the requirement (8) that the pressure is not more than 100 times the equilibrium dissociation pressure at a temperature 200 ° C. higher than the heat treatment temperature of the oxide having one higher oxidation state than the oxide magnetic material (c1). A composite magnetic material is provided.

本発明は、上記A.に記載される複合磁性材料において、平衡解離圧の基準となる温度を「熱処理温度」ではなく、「熱処理温度より200℃高い温度」に置き換え、かつ平衡解離圧の大小関係の基準として、酸化物磁性材料(c1)より酸化状態が一つ高い酸化物の平衡解離圧を1倍ではなく100倍としたものである。上記A.に記載される複合磁性材料を別の表現で規定し直したものである。   The present invention provides the above-described A. In the composite magnetic material described in 1), the reference temperature of the equilibrium dissociation pressure is replaced by “a temperature higher by 200 ° C. than the heat treatment temperature” instead of the “heat treatment temperature”, and the oxide is used as a reference for the magnitude relationship of the equilibrium dissociation pressure. The equilibrium dissociation pressure of the oxide having one higher oxidation state than that of the magnetic material (c1) is not 100% but 100 times. A. above. The composite magnetic material described in is redefined in another expression.

好ましくは上記A.の要件(1)も充たすことが好ましく、高抵抗酸化物磁性材料(a)としてNi−Feフェライト、酸化物磁性材料(c1)としてFeの組み合わせは両要件を充たす。 Preferably the A. above. The requirement (1) is preferably satisfied, and the combination of Ni—Fe ferrite as the high resistance oxide magnetic material (a) and Fe 3 O 4 as the oxide magnetic material (c1) satisfies both requirements.

E.本発明は、上記D.に記載される複合磁性材料において、さらに酸化物磁性材料(c1)の、熱処理温度より200℃高い温度における平衡解離圧が、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての、熱処理温度より200℃高い温度における平衡解離圧の100倍以下の値であるとの要件(9)を充たすことを特徴とするより好ましい複合磁性材料を提供する。 E. According to the present invention, in the composite magnetic material described in the above D., the equilibrium dissociation pressure of the oxide magnetic material (c1) at a temperature 200 ° C. higher than the heat treatment temperature corresponds to the metal in the metal magnetic material (b). More preferable composite characterized by satisfying the requirement (9) that the value is 100 times or less the equilibrium dissociation pressure at a temperature 200 ° C. higher than the heat treatment temperature for the oxide in the lowest oxidation state among the oxides to be oxidized Provide a magnetic material.

本発明は、上記B.に記載される複合磁性材料において、平衡解離圧の基準となる温度を「熱処理温度」ではなく、「熱処理温度より200℃高い温度」に置き換え、かつ平衡解離圧の大小関係の基準として、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての平衡解離圧を1倍ではなく100倍としたものである。上記B.に記載される複合磁性材料を別の表現で規定し直したものである。   The present invention provides the above-described B. In the composite magnetic material described in 1), the temperature used as the reference for the equilibrium dissociation pressure is replaced with “temperature higher by 200 ° C. than the heat treatment temperature” instead of “heat treatment temperature”, and metal magnetism is used as a reference for the magnitude relationship of the equilibrium dissociation pressure Among the oxides corresponding to the metal in the material (b), the equilibrium dissociation pressure for the oxide in the lowest oxidation state is 100 times instead of 1 time. B. above. The composite magnetic material described in is redefined in another expression.

例えば、酸化物磁性材料(c1)としてFeを採用し、金属磁性材料(b)として、Feを採用した場合、熱処理温度を600℃とした場合に、600℃の平衡解離圧は、酸化物磁性材料(c1)および金属磁性材料(b)に対応する酸化物のうち最も酸化状態の低い酸化物(FeO)ともに1.3×10−25atmで同じであり要件(3)を充たすが、該熱処理温度より200℃高い800℃においては、酸化物磁性材料(c1)は6.3×10−18atm、金属磁性材料(b)に対応する酸化物のうち最も酸化状態の低い酸化物(FeO)は9.5×10−20atmであり、上記要件(9)も充たす。 For example, when Fe 3 O 4 is employed as the oxide magnetic material (c1) and Fe is employed as the metal magnetic material (b), when the heat treatment temperature is 600 ° C., the equilibrium dissociation pressure of 600 ° C. is Among oxides corresponding to the oxide magnetic material (c1) and the metal magnetic material (b), the oxide (FeO) having the lowest oxidation state is the same at 1.3 × 10 −25 atm and satisfies the requirement (3). However, at 800 ° C., which is 200 ° C. higher than the heat treatment temperature, the oxide magnetic material (c1) is 6.3 × 10 −18 atm, and the oxide having the lowest oxidation state among the oxides corresponding to the metal magnetic material (b). The product (FeO) is 9.5 × 10 −20 atm and satisfies the requirement (9).

好ましくは上記B.の要件(3)も充たすことが好ましく、酸化物磁性材料(c1)としてFe、金属磁性材料(b)としてFeやNiの組み合わせは両要件を充たす。 Preferably the above B.I. It is preferable to satisfy the requirement (3), and the combination of Fe 3 O 4 as the oxide magnetic material (c1) and Fe or Ni as the metal magnetic material (b) satisfies both requirements.

F.本発明は、上記D.に記載される複合磁性材料において、さらに以下の要件(10)〜(13)のいずれも充たすことを特徴とするより好ましい複合磁性材料を提供する。
(10)酸化物磁性材料(c1)の、熱処理温度における平衡解離圧が、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての、熱処理温度における平衡解離圧より大きい値であること。
(11)酸化物磁性材料(c1)は、熱処理温度において、金属磁性材料(b)により還元されて酸化物磁性材料(c2)を生成するものであること。
(12)高抵抗酸化物磁性材料(a)の、熱処理温度より200℃高い温度における平衡解離圧が、生成した酸化物磁性材料(c2)より酸化状態が一つ高い酸化物の、熱処理温度より200℃高い温度における平衡解離圧の100倍以下の値であること。
F. The present invention provides a more preferable composite magnetic material characterized in that, in the composite magnetic material described in the above D., all of the following requirements (10) to (13) are satisfied.
(10) The equilibrium at the heat treatment temperature of the oxide having the lowest oxidation state among the oxides corresponding to the metal in the metal magnetic material (b) having an equilibrium dissociation pressure at the heat treatment temperature of the oxide magnetic material (c1). The value is larger than the dissociation pressure.
(11) The oxide magnetic material (c1) is reduced by the metal magnetic material (b) at the heat treatment temperature to produce the oxide magnetic material (c2).
(12) The high-resistance oxide magnetic material (a) has an equilibrium dissociation pressure at a temperature 200 ° C. higher than the heat treatment temperature, higher than the heat treatment temperature of the oxide whose oxidation state is one higher than that of the generated oxide magnetic material (c2). The value should be 100 times or less of the equilibrium dissociation pressure at a temperature 200 ° C higher.

(13)生成した酸化物磁性材料(c2)の、熱処理温度より200℃高い温度における平衡解離圧が、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての、熱処理温度より200℃高い温度における平衡解離圧の100倍以下の値であること。   (13) The oxide having the lowest oxidation state among the oxides corresponding to the metal in the metal magnetic material (b) having an equilibrium dissociation pressure at 200 ° C. higher than the heat treatment temperature of the generated oxide magnetic material (c2) The value is equal to or less than 100 times the equilibrium dissociation pressure at a temperature 200 ° C. higher than the heat treatment temperature.

本発明は、上記C.に記載される複合磁性材料において、平衡解離圧の基準となる温度を「熱処理温度」ではなく、「熱処理温度より200℃高い温度」に置き換え(但し、要件(10)、(11)は除く。)、かつ平衡解離圧の大小関係の基準として、「金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての平衡解離圧」および「酸化物磁性材料(c2)より酸化状態が一つ高い酸化物の平衡解離圧」を1倍ではなく100倍としたものである。上記C.に記載される複合磁性材料を別の表現で規定し直したものである。   The present invention provides the C.I. In the composite magnetic material described in (1), the temperature serving as the reference for the equilibrium dissociation pressure is replaced with “temperature higher by 200 ° C. than the heat treatment temperature” instead of the “heat treatment temperature” (however, the requirements (10) and (11) are excluded). ) And the equilibrium dissociation pressure as a criterion, the “equilibrium dissociation pressure for the oxide in the lowest oxidation state among oxides corresponding to the metal in the metal magnetic material (b)” and “the oxide magnetic material ( c2) “Equilibrium dissociation pressure of oxide having one higher oxidation state” is not 100% but 100 times. C. above. The composite magnetic material described in is redefined in another expression.

好ましくは上記C.の要件(6)、(7)も充たすことが好ましく、高抵抗酸化物磁性材料(a)としてNi−Feフェライト、酸化物磁性材料(c1)としてγ−Fe、金属磁性材料(b)としてFeやNiの組み合わせはこれらの要件も充たす。 Preferably said C.I. It is also preferable to satisfy the requirements (6) and (7), Ni-Fe ferrite as the high resistance oxide magnetic material (a), γ-Fe 2 O 3 as the oxide magnetic material (c1), and metal magnetic material (b The combination of Fe and Ni also satisfies these requirements.

G.本発明はまた、高抵抗酸化物磁性材料(a)により金属磁性材料(b)の粒子が被覆された粉末において、材料(a)からなる被覆層(A)と材料(b)粒子の間に、酸化物磁性材料(c3)からなる被覆層(C3)を介在させた積層された複合磁性材料であって、酸化物磁性材料(c3)が、マグネタイト(Fe)およびγ−Feからなる群から選択される少なくとも1種以上の酸化物磁性材料を含むことを特徴とする複合磁性材料を提供する。
1.高抵抗酸化物磁性材料(a)、金属磁性材料(b)、被覆層(A)
上記A.1.、2.、5.と同様である。
2.酸化物磁性材料(c3)
酸化物磁性材料(c3)とは、マグネタイト(Fe)およびγ−Feからなる群から選択される少なくとも1種以上の酸化物磁性材料である。かかる酸化物磁性材料(c3)は、透磁率向上のために磁性体である。
G. In the powder in which the particles of the metal magnetic material (b) are coated with the high-resistance oxide magnetic material (a), the present invention is also provided between the coating layer (A) made of the material (a) and the material (b) particles. And a laminated composite magnetic material with a covering layer (C3) made of an oxide magnetic material (c3) interposed therebetween, wherein the oxide magnetic material (c3) is magnetite (Fe 3 O 4 ) and γ-Fe 2. A composite magnetic material comprising at least one oxide magnetic material selected from the group consisting of O 3 is provided.
1. High resistance oxide magnetic material (a), metal magnetic material (b), coating layer (A)
A. above. 1. 2. 5. It is the same.
2. Oxide magnetic material (c3)
The oxide magnetic material (c3) is at least one oxide magnetic material selected from the group consisting of magnetite (Fe 3 O 4 ) and γ-Fe 2 O 3 . The oxide magnetic material (c3) is a magnetic material for improving the magnetic permeability.

酸化物磁性材料(c3)であるFeは、例えば高抵抗酸化物磁性材料(a)であるNi−Feフェライトを還元せず、Ni−Feフェライトに還元されない。また、金属磁性材料(b)中のFeには還元されるが、600℃以下の熱処理では平衡状態になり、600℃以上でも平衡解離圧が比較的近く、Feの還元は抑制される。また、金属磁性材料(b)中のNi(やCo)に還元されることは無い。 Fe 3 O 4 that is the oxide magnetic material (c3) does not reduce, for example, Ni—Fe ferrite that is the high-resistance oxide magnetic material (a), and is not reduced to Ni—Fe ferrite. Further, although it is reduced to Fe in the metal magnetic material (b), it is in an equilibrium state by heat treatment at 600 ° C. or lower, and the equilibrium dissociation pressure is relatively close even at 600 ° C. or higher, and the reduction of Fe 3 O 4 is suppressed. The Further, it is not reduced to Ni (or Co) in the metal magnetic material (b).

酸化物磁性材料(c3)であるγ−Feは、例えば高抵抗酸化物磁性材料(a)であるNi−Feフェライトを還元せず、またNi−Feフェライトに還元されない。また、金属磁性粒子によるFe、Ni(他にCo)に還元されるが、Feになるので特に問題は無い。 Γ-Fe 2 O 3 that is an oxide magnetic material (c3) does not reduce, for example, Ni—Fe ferrite that is a high-resistance oxide magnetic material (a), and is not reduced to Ni—Fe ferrite. Further, Fe with metal magnetic particles, but is reduced to Ni (other Co), there is no particular problem since the Fe 3 O 4.

また、酸化物磁性材料(c3)として、Feとγ−Feの混合物を用いることもでき、それぞれを単独で用いた場合と同様の効果を得ることができる。 Further, as the oxide magnetic material (c3), a mixture of Fe 3 O 4 and γ-Fe 2 O 3 can be used, and the same effect as when each of them is used alone can be obtained.

3.被覆層(C3)
本発明では、該酸化物磁性材料(c3)からなる被覆層(C3)を、被覆層(A)と金属磁性材料(b)粒子の間に介在させる。たとえば、金属磁性材料(b)粒子を該酸化物磁性材料(c3)で被覆した後、さらに絶縁性酸化物磁性材料(a)により被覆する。被覆方法としては、当該技術分野において公知の被覆手段を用いることができるが、好ましくは超音波励起めっき法(特許文献3参照)が挙げられる。
3. Coating layer (C3)
In the present invention, the coating layer (C3) made of the oxide magnetic material (c3) is interposed between the coating layer (A) and the metal magnetic material (b) particles. For example, the metal magnetic material (b) particles are coated with the oxide magnetic material (c3) and then further coated with the insulating oxide magnetic material (a). As a coating method, a coating means known in the technical field can be used, and an ultrasonic excitation plating method (see Patent Document 3) is preferable.

上記被覆によって得られた材料(c3)からなる被覆層(C3)には、二種以上の酸化物磁性材料(c3)を用いることができる。また、被覆層(C3)は単一層のみならず、複数の積層とすることもできる。たとえば、Feを含む被覆層とγ−Feを含む被覆層とを積層した被膜に絶縁性酸化物磁性材料(a)であるフェライトを含む被覆層(A)の被膜を形成した3層構造にしてもよい。さらに、本発明の効果を損なわない範囲で、材料(c3)以外の成分、たとえば高絶縁性フェライト等の絶縁性酸化物磁性材料(a)も含めることができ、その配合量は好ましくは材料(c3)に対して30重量%未満である。 Two or more kinds of oxide magnetic materials (c3) can be used for the coating layer (C3) made of the material (c3) obtained by the coating. Further, the coating layer (C3) can be not only a single layer but also a plurality of laminated layers. For example, a coating layer (A) containing ferrite, which is an insulating oxide magnetic material (a), is formed on a coating film obtained by laminating a coating layer containing Fe 3 O 4 and a coating layer containing γ-Fe 2 O 3. A three-layer structure may be used. Furthermore, components other than the material (c3), for example, an insulating oxide magnetic material (a) such as highly insulating ferrite, can be included within the range not impairing the effects of the present invention. It is less than 30% by weight based on c3).

H.本発明はまた、上記A.〜G.に記載された積層された複合磁性材料の粉末が、圧縮成形されていることを特徴とする磁気部品を提供する。
圧縮成形としては、当該技術分野において公知の方法を用いることができる。
H. The present invention also provides A. ~ G. A magnetic component is provided in which the powder of the laminated composite magnetic material described in (1) is compression molded.
As compression molding, a method known in the technical field can be used.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

フェライト被覆金属粒子粉末の作製は、超音波励起フェライトめっき法により、次のように行った。   The production of the ferrite-coated metal particle powder was performed by the ultrasonic excitation ferrite plating method as follows.

金属磁性材料の粒子としては、水アトマイズ法により作製したNi78Mo5Fe粒子(Ni78重量%、Mo5重量%、Fe17重量%;平均粒子径8μm)を10g用いた。フェライトめっきの前処理として、これらの粒子をHOとHSOとHClの混合溶液中(液温70℃)に入れて、5分間超音波を印加した。 As particles of the metal magnetic material, 10 g of Ni78Mo5Fe particles (Ni 78 wt%, Mo 5 wt%, Fe 17 wt%; average particle diameter 8 μm) prepared by a water atomization method were used. As a pretreatment for ferrite plating, these particles were placed in a mixed solution of H 2 O, H 2 SO 4 and HCl (liquid temperature 70 ° C.), and ultrasonic waves were applied for 5 minutes.

その後、純水を入れたガラス製の反応容器中にNi78Mo5Fe粒子を移し替え、19.5kHzの超音波を印加した。この反応容器に反応液(HO+FeCl・4HO)および酸化液(HO+NaNO)を供給しながら、適宜アンモニア水を滴下した。このめっき処理を15分間行った。めっき処理後、粒子を分級・乾燥させた。以上の処理により、金属磁性粒子の表面に約30nmのFe被膜が形成された。 Thereafter, Ni78Mo5Fe particles were transferred into a glass reaction vessel containing pure water, and 19.5 kHz ultrasonic waves were applied. While supplying the reaction solution (H 2 O + FeCl 2 .4H 2 O) and the oxidation solution (H 2 O + NaNO 2 ) to this reaction vessel, ammonia water was appropriately added dropwise. This plating process was performed for 15 minutes. After the plating treatment, the particles were classified and dried. As a result of the above treatment, an Fe 3 O 4 film having a thickness of about 30 nm was formed on the surface of the metal magnetic particles.

引き続き、Ni−Zn系フェライト被膜を以下のように形成した。
純水を入れたガラス製の反応容器中にFe被膜したNi78Mo5Fe粒子を移し替え、19.5kHzの超音波を印加した。この反応容器に反応液(HO+FeCl・4HO+NiCl・6HO+ZnCl)および酸化液(HO+NaNO)を供給しながら、適宜アンモニア水を滴下した。このめっき処理を30分間行った。めっき処理後、粒子を分級・乾燥させた。以上の処理により、金属磁性粒子の表面に約100nmのNi−Zn系フェライト被膜が形成された。
Subsequently, a Ni—Zn-based ferrite film was formed as follows.
Ni78Mo5Fe particles coated with Fe 3 O 4 were transferred into a glass reaction vessel containing pure water, and 19.5 kHz ultrasonic waves were applied. While supplying the reaction solution (H 2 O + FeCl 2 .4H 2 O + NiCl 2 .6H 2 O + ZnCl 2 ) and the oxidation solution (H 2 O + NaNO 2 ) to this reaction vessel, aqueous ammonia was appropriately added dropwise. This plating process was performed for 30 minutes. After the plating treatment, the particles were classified and dried. By the above treatment, a Ni—Zn ferrite film having a thickness of about 100 nm was formed on the surface of the metal magnetic particles.

このようにして得られた積層被覆Ni78Mo5Fe粒子(図1)の粉末を超硬合金製の金型に充填し、980MPa(10トン重/cm)の一軸プレスにより内径3mmφ、外径8mmφ、高さ約8mmのリングコア形状に成型した。その後、成形体を空気中で600℃で焼成した。 The powder of the laminated coated Ni78Mo5Fe particles (FIG. 1) thus obtained was filled into a cemented carbide mold, and the inner diameter was 3 mmφ, the outer diameter was 8 mmφ, and the high diameter was uniaxially pressed at 980 MPa (10 ton weight / cm 2 ). It was molded into a ring core shape of about 8 mm. Thereafter, the molded body was fired at 600 ° C. in the air.

このリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて複素透磁率μ=μ’+iμ”を10kHz〜10MHzの周波数領域で測定した。図3のデータRは、複素透磁率の実部μ’の周波数依存性を示したものであり、データIは複素透磁率の虚部μ”の周波数依存性を示したものである。また、同図のデータR”およびデータI”はそれぞれ熱処理前の複素透磁率の実部μ’および虚部μ”の周波数依存性を示したものである。   The primary and secondary windings were wound around this ring core for 5 turns, respectively, and the complex permeability μ = μ ′ + iμ ”was measured with a BH analyzer in a frequency range of 10 kHz to 10 MHz. Data R in FIG. The frequency dependence of the real part μ ′ of the complex permeability is shown, and the data I shows the frequency dependence of the imaginary part μ ″ of the complex permeability. Further, data R "and data I" in the figure show the frequency dependence of the real part .mu. 'And imaginary part .mu.' 'Of the complex permeability before heat treatment, respectively.

(比較例)
比較用のデータとして、フェライト被膜のみのNi78Mo5Fe粒子を実施例に記したのと同様の条件でフェライトめっきし(図2)、実施例と同様に圧縮成型した後に熱処理したものの複素透磁率を測定した。その実部μ’および虚部μ”の周波数依存性をそれぞれ図3のデータR’とI’に示す。
(Comparative example)
As comparison data, Ni78Mo5Fe particles containing only a ferrite film were ferrite-plated under the same conditions as described in the example (FIG. 2), and the complex permeability of the heat-treated product after compression molding as in the example was measured. . The frequency dependence of the real part μ ′ and imaginary part μ ″ is shown in the data R ′ and I ′ of FIG. 3, respectively.

熱処理によって実施例、比較例ともに透磁率は大きく向上した。ただし、比較例は実施例よりも低周波側での透磁率は高いが周波数特性は悪く、被膜の絶縁性が悪化しているのが分かる。一方、実施例では10MHzまで良好な周波数特性を示し、被膜の絶縁性が保たれているのがわかる。
本実施例では中間層としてFeを用いたが、γ−Feを用いても良い。
The magnetic permeability was greatly improved by heat treatment in both Examples and Comparative Examples. However, it can be seen that the comparative example has a higher permeability on the low frequency side than the examples, but the frequency characteristics are poor, and the insulating properties of the coating are deteriorated. On the other hand, in the examples, good frequency characteristics up to 10 MHz are shown, and it can be seen that the insulation of the film is maintained.
In this embodiment, Fe 3 O 4 is used as the intermediate layer, but γ-Fe 2 O 3 may be used.

本発明の実施例である二層被膜Ni78Mo5Fe粒子を示した図である。It is the figure which showed the double layer coating Ni78Mo5Fe particle | grains which is an Example of this invention. 本発明の比較例であるフェライト被覆のみのNi78Mo5Fe粒子を示した図である。It is the figure which showed the Ni78Mo5Fe particle | grains of the ferrite coating only which is a comparative example of this invention. 本発明の実施例と比較例の透磁率の周波数特性を示した図である。It is the figure which showed the frequency characteristic of the magnetic permeability of the Example and comparative example of this invention.

符号の説明Explanation of symbols

1 金属磁性粒子
2 フェライト被膜
3 Fe被膜
1 Metal magnetic particles 2 Ferrite coating 3 Fe 3 O 4 coating

Claims (9)

高抵抗酸化物磁性材料(a)により金属磁性材料(b)の粒子が被覆された粉末において、材料(a)からなる被覆層(A)と材料(b)の粒子の間に、酸化物磁性材料(c1)からなる被覆層(C1)を介在させた積層された複合磁性材料であって、以下の(1)、(2)のいずれかの要件を充たすことを特徴とする複合磁性材料。
(1)高抵抗酸化物磁性材料(a)の、熱処理温度における平衡解離圧が、該酸化物磁性材料(c1)より酸化状態が一つ高い酸化物の、熱処理温度における平衡解離圧以下の値であること。
(2)該酸化物磁性材料(c1)が、熱処理温度において採りうる最も高い酸化状態にあること。
In the powder in which the particles of the metal magnetic material (b) are coated with the high resistance oxide magnetic material (a), the oxide magnetism is interposed between the coating layer (A) made of the material (a) and the particles of the material (b). A composite magnetic material laminated with a covering layer (C1) made of the material (c1), wherein the composite magnetic material satisfies one of the following requirements (1) and (2):
(1) A value equal to or lower than the equilibrium dissociation pressure at the heat treatment temperature of the oxide having a higher oxidation state than that of the oxide magnetic material (c1). Be.
(2) The oxide magnetic material (c1) is in the highest oxidation state that can be taken at the heat treatment temperature.
さらに、酸化物磁性材料(c1)の、熱処理温度における平衡解離圧が、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての、熱処理温度における平衡解離圧以下の値であるとの要件(3)を充たすことを特徴とする請求項1記載の複合磁性材料。   Further, the equilibrium dissociation at the heat treatment temperature of the oxide having the lowest oxidation state among the oxides corresponding to the metal in the metal magnetic material (b) has an equilibrium dissociation pressure at the heat treatment temperature of the oxide magnetic material (c1). The composite magnetic material according to claim 1, wherein the requirement (3) is a value equal to or lower than the pressure. さらに以下の要件(4)〜(7)のいずれも充たすことを特徴とする請求項1記載の複合磁性材料。
(4)酸化物磁性材料(c1)の、熱処理温度における平衡解離圧が、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての、熱処理温度における平衡解離圧より大きい値であること。
(5)酸化物磁性材料(c1)は、熱処理温度において、金属磁性材料(b)により還元されて酸化物磁性材料(c2)を生成するものであること。
(6)高抵抗酸化物磁性材料(a)の、熱処理温度における平衡解離圧が、生成した酸化物磁性材料(c2)より酸化状態が一つ高い酸化物の、熱処理温度における平衡解離圧以下の値であること。
(7)生成した酸化物磁性材料(c2)の、熱処理温度における平衡解離圧が、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての、熱処理温度における平衡解離圧以下の値であること。
The composite magnetic material according to claim 1, further satisfying any of the following requirements (4) to (7).
(4) The equilibrium at the heat treatment temperature of the oxide having the lowest oxidation state among the oxides corresponding to the metal in the metal magnetic material (b) having an equilibrium dissociation pressure at the heat treatment temperature of the oxide magnetic material (c1). The value is larger than the dissociation pressure.
(5) The oxide magnetic material (c1) is reduced by the metal magnetic material (b) at the heat treatment temperature to produce the oxide magnetic material (c2).
(6) The high-resistance oxide magnetic material (a) has an equilibrium dissociation pressure at a heat treatment temperature equal to or lower than the equilibrium dissociation pressure at the heat treatment temperature of an oxide having a higher oxidation state than the generated oxide magnetic material (c2). Value.
(7) The heat treatment temperature of the oxide having the lowest oxidation state among the oxides corresponding to the metal in the metal magnetic material (b) having an equilibrium dissociation pressure at the heat treatment temperature of the produced oxide magnetic material (c2) The value should be equal to or less than the equilibrium dissociation pressure.
高抵抗酸化物磁性材料(a)により金属磁性材料(b)の粒子が被覆された粉末において、材料(a)からなる被覆層(A)と材料(b)の粒子の間に、酸化物磁性材料(c1)からなる被覆層(C1)を介在させた積層された複合磁性材料であって、高抵抗酸化物磁性材料(a)の、熱処理温度より200℃高い温度における平衡解離圧が、該酸化物磁性材料(c1)より酸化状態が一つ高い酸化物の、熱処理温度より200℃高い温度における平衡解離圧の100倍以下の値であるとの要件(8)を充たすことを特徴とする複合磁性材料。   In the powder in which the particles of the metal magnetic material (b) are coated with the high resistance oxide magnetic material (a), the oxide magnetism is interposed between the coating layer (A) made of the material (a) and the particles of the material (b). A composite magnetic material laminated with a coating layer (C1) made of the material (c1), and the equilibrium dissociation pressure of the high resistance oxide magnetic material (a) at a temperature 200 ° C. higher than the heat treatment temperature is It satisfies the requirement (8) that the oxide has one higher oxidation state than the magnetic oxide material (c1) and has a value equal to or less than 100 times the equilibrium dissociation pressure at a temperature 200 ° C. higher than the heat treatment temperature. Composite magnetic material. さらに、酸化物磁性材料(c1)の、熱処理温度より200℃高い温度における平衡解離圧が、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての、熱処理温度より200℃高い温度における平衡解離圧の100倍以下の値であるとの要件(9)を充たすことを特徴とする請求項1乃至4のいずれかに記載の複合磁性材料。   Furthermore, the oxide dissociation pressure at a temperature 200 ° C. higher than the heat treatment temperature of the oxide magnetic material (c1) is the oxide with the lowest oxidation state among the oxides corresponding to the metal in the metal magnetic material (b). 5. The composite magnetic material according to claim 1, wherein the requirement (9) is 100 or less of the equilibrium dissociation pressure at a temperature 200 ° C. higher than the heat treatment temperature. さらに以下の要件(10)〜(13)のいずれも充たすことを特徴とする請求項4記載の複合磁性材料。
(10)酸化物磁性材料(c1)の、熱処理温度における平衡解離圧が、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての、熱処理温度における平衡解離圧より大きい値であること。
(11)酸化物磁性材料(c1)は、熱処理温度において、金属磁性材料(b)により還元されて酸化物磁性材料(c2)を与えるものであること。
(12)高抵抗酸化物磁性材料(a)の、熱処理温度より200℃高い温度における平衡解離圧が、生成した酸化物磁性材料(c2)より酸化状態が一つ高い酸化物の、熱処理温度より200℃高い温度における平衡解離圧の100倍以下の値であること。
(13)生成した酸化物磁性材料(c2)の、熱処理温度より200℃高い温度における平衡解離圧が、金属磁性材料(b)中の金属に対応する酸化物のうち最も酸化状態の低い酸化物についての、熱処理温度より200℃高い温度における平衡解離圧の100倍以下の値であること。
Furthermore, all the following requirements (10)-(13) are satisfy | filled, The composite magnetic material of Claim 4 characterized by the above-mentioned.
(10) The equilibrium at the heat treatment temperature of the oxide having the lowest oxidation state among the oxides corresponding to the metal in the metal magnetic material (b) having an equilibrium dissociation pressure at the heat treatment temperature of the oxide magnetic material (c1). The value is larger than the dissociation pressure.
(11) The oxide magnetic material (c1) is reduced by the metal magnetic material (b) at the heat treatment temperature to give the oxide magnetic material (c2).
(12) The high-resistance oxide magnetic material (a) has an equilibrium dissociation pressure at a temperature 200 ° C. higher than the heat treatment temperature, higher than the heat treatment temperature of the oxide whose oxidation state is one higher than that of the generated oxide magnetic material (c2). The value should be 100 times or less of the equilibrium dissociation pressure at a temperature 200 ° C higher.
(13) The oxide having the lowest oxidation state among the oxides corresponding to the metal in the metal magnetic material (b) having an equilibrium dissociation pressure at 200 ° C. higher than the heat treatment temperature of the generated oxide magnetic material (c2) The value is equal to or less than 100 times the equilibrium dissociation pressure at a temperature 200 ° C. higher than the heat treatment temperature.
高抵抗酸化物磁性材料(a)により金属磁性材料(b)の粒子が被覆された粉末において、材料(a)からなる被覆層(A)と材料(b)の粒子の間に、酸化物磁性材料(c3)からなる被覆層(C3)を介在させた積層された複合磁性材料であって、酸化物磁性材料(c3)が、マグネタイト(Fe)およびγ−Feからなる群から選択される少なくとも1種以上の酸化物磁性材料を含むことを特徴とする複合磁性材料。 In the powder in which the particles of the metal magnetic material (b) are coated with the high resistance oxide magnetic material (a), the oxide magnetism is interposed between the coating layer (A) made of the material (a) and the particles of the material (b). A laminated composite magnetic material with a coating layer (C3) made of material (c3) interposed therebetween, wherein the oxide magnetic material (c3) is composed of magnetite (Fe 3 O 4 ) and γ-Fe 2 O 3 A composite magnetic material comprising at least one oxide magnetic material selected from the group. 高抵抗酸化物磁性材料(a)が、高絶縁性フェライトであることを特徴とする請求項1乃至7のいずれかに記載の積層された複合磁性材料。   The laminated composite magnetic material according to any one of claims 1 to 7, wherein the high-resistance oxide magnetic material (a) is a highly insulating ferrite. 請求項1乃至8のいずれかに記載の積層された複合磁性材料の粉末が、圧縮成形されていることを特徴とする磁気部品。
9. A magnetic component, wherein the laminated composite magnetic material powder according to claim 1 is compression-molded.
JP2004262867A 2004-09-09 2004-09-09 Composite magnetic materials and magnetic components Expired - Fee Related JP4507176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004262867A JP4507176B2 (en) 2004-09-09 2004-09-09 Composite magnetic materials and magnetic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004262867A JP4507176B2 (en) 2004-09-09 2004-09-09 Composite magnetic materials and magnetic components

Publications (2)

Publication Number Publication Date
JP2006077294A true JP2006077294A (en) 2006-03-23
JP4507176B2 JP4507176B2 (en) 2010-07-21

Family

ID=36156989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262867A Expired - Fee Related JP4507176B2 (en) 2004-09-09 2004-09-09 Composite magnetic materials and magnetic components

Country Status (1)

Country Link
JP (1) JP4507176B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008056809A1 (en) * 2006-11-10 2010-02-25 独立行政法人科学技術振興機構 Electromagnetic stirring device
WO2013054700A1 (en) * 2011-10-14 2013-04-18 株式会社村田製作所 Metal powder and electronic component
JP2014022710A (en) * 2012-07-20 2014-02-03 Hiroshi Kobayashi Manufacturing magnetic powder with insulated surface and manufacturing method
WO2016017941A1 (en) * 2014-07-29 2016-02-04 주식회사 이엠따블유 Composite magnetic particles for wireless charging and method for manufacturing same
WO2018043943A1 (en) * 2016-08-31 2018-03-08 주식회사 이엠따블유 Composite magnetic particles and method for manufacturing same
JP2018148103A (en) * 2017-03-08 2018-09-20 株式会社豊田中央研究所 Powder for magnetic core and production method thereof, dust core and magnetic film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297036A (en) * 2002-12-04 2004-10-21 Mitsubishi Materials Corp Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297036A (en) * 2002-12-04 2004-10-21 Mitsubishi Materials Corp Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008056809A1 (en) * 2006-11-10 2010-02-25 独立行政法人科学技術振興機構 Electromagnetic stirring device
JP5352236B2 (en) * 2006-11-10 2013-11-27 独立行政法人科学技術振興機構 Electromagnetic stirring device
WO2013054700A1 (en) * 2011-10-14 2013-04-18 株式会社村田製作所 Metal powder and electronic component
CN103563016A (en) * 2011-10-14 2014-02-05 株式会社村田制作所 Metal powder and electronic component
KR101538877B1 (en) * 2011-10-14 2015-07-22 가부시키가이샤 무라타 세이사쿠쇼 Metal powder and electronic component
US9257216B2 (en) 2011-10-14 2016-02-09 Murata Manufacturing Co., Ltd. Metal powder and electronic component
CN103563016B (en) * 2011-10-14 2016-08-17 株式会社村田制作所 Metal dust and electronic unit
JP2014022710A (en) * 2012-07-20 2014-02-03 Hiroshi Kobayashi Manufacturing magnetic powder with insulated surface and manufacturing method
WO2016017941A1 (en) * 2014-07-29 2016-02-04 주식회사 이엠따블유 Composite magnetic particles for wireless charging and method for manufacturing same
WO2018043943A1 (en) * 2016-08-31 2018-03-08 주식회사 이엠따블유 Composite magnetic particles and method for manufacturing same
JP2018148103A (en) * 2017-03-08 2018-09-20 株式会社豊田中央研究所 Powder for magnetic core and production method thereof, dust core and magnetic film

Also Published As

Publication number Publication date
JP4507176B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4872833B2 (en) Powder magnetic core and manufacturing method thereof
JP2008270368A (en) Dust core and method of manufacturing the same
JP5058031B2 (en) Core-shell magnetic particles, high-frequency magnetic material, and magnetic sheet
JP2013033966A (en) Metal magnetic powder, magnetic layer material comprising metal magnetic powder, and multilayered chip components comprising magnetic layer using magnetic layer material
KR20160052130A (en) Soft Magnetism Metal Complex
WO2005072894A1 (en) Soft magnetic material and dust core
JP2009164401A (en) Manufacturing method of dust core
JP4888784B2 (en) Soft magnetic metal particles with insulating oxide coating
JP2009158802A (en) Manufacturing method of dust core
JP2007035826A (en) Composite magnetic material, and dust core and magnetic element using the same
JP2005150257A (en) Compound magnetic particle and compound magnetic material
JP4507176B2 (en) Composite magnetic materials and magnetic components
JP2005317679A (en) Magnetic device and its manufacturing method
JP4115612B2 (en) Composite magnetic material and method for producing the same
JP2005068526A (en) Method of producing composite magnetic particle powder molded body
JP2009054709A (en) Dust core and manufacturing method therefor
JP2009295613A (en) Method of manufacturing dust core
JP2005167097A (en) Magnetic component and method for manufacturing the same
JP2006080166A (en) Dust core
JP2007173384A (en) Flat magnetic element
JP2011017057A (en) Composite sintered compact of aluminum oxide and iron and method for producing the same
JP2007067219A (en) Composite magnetic material, magnetic component and its manufacturing method
JP2010073967A (en) Dust core
JP2005085967A (en) Composite magnetic particle and composite magnetic material
JP2010092989A (en) Dust core, and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4507176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees