JP2018146459A - Failure detection circuit - Google Patents

Failure detection circuit Download PDF

Info

Publication number
JP2018146459A
JP2018146459A JP2017043413A JP2017043413A JP2018146459A JP 2018146459 A JP2018146459 A JP 2018146459A JP 2017043413 A JP2017043413 A JP 2017043413A JP 2017043413 A JP2017043413 A JP 2017043413A JP 2018146459 A JP2018146459 A JP 2018146459A
Authority
JP
Japan
Prior art keywords
temperature
voltage
temperature sensor
divided
divided voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017043413A
Other languages
Japanese (ja)
Inventor
新太 中島
Arata Nakajima
新太 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2017043413A priority Critical patent/JP2018146459A/en
Publication of JP2018146459A publication Critical patent/JP2018146459A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To increase the accuracy of failure detection by a failure detection circuit.SOLUTION: A failure detection circuit 10 includes: an A/D converter 12 for converting a voltage to voltage digital values VAD and VBD; a first pressure divider 21A in which a first divided pressure VA, which is divided by a first temperature sensor 22A and a first resistor 23A, is acquired by the A/D converter 12; a second pressure divider 21B in which a second divided pressure VB, divided by a second temperature sensor 22B and a second resistor 23B, is acquired by the A/D converter 12; a temperature converter 14A for converting the values of the first divided pressure VA and the second divided pressure VB to the values of temperatures of a first temperature TA and a second temperature TB; and a failure detector 14B for detecting a failure when the difference between the first temperature TA and the second temperature TB is not smaller than a predetermined level. The first divided pressure VA is inclined to the temperature of the first temperature sensor 22A converted by the temperature converter 14A at a first inclination while the second divided pressure VB is inclined to the temperature of the second temperature sensor 22B at a second inclination, and the first and second inclinations are of opposite signs.SELECTED DRAWING: Figure 1

Description

本明細書では、故障検出回路に関する技術を開示する。   The present specification discloses a technique related to a failure detection circuit.

従来、複数の温度センサからの信号に基づいて故障を検出する技術が知られている。下記特許文献1の短絡故障装置は、基準電源に一端側が接続された第1の抵抗の他端側が第1のサーミスタを介して接地されている。また、基準電源に一端側が接続された第2の抵抗の他端側が第2のサーミスタを介して接地されている。第1の抵抗と第1のサーミスタとで分圧された第1の電圧と、第2の抵抗と第2のサーミスタとで分圧された第2の電圧とは、MPUに入力されており、MPUは、第1の電圧と第2の電圧との差を所定電圧と比較することで、短絡故障を検出するようになっている。   Conventionally, a technique for detecting a failure based on signals from a plurality of temperature sensors is known. In the short-circuit fault device disclosed in Patent Document 1 below, the other end of the first resistor whose one end is connected to the reference power source is grounded via the first thermistor. The other end of the second resistor, which is connected to the reference power supply at one end, is grounded through the second thermistor. The first voltage divided by the first resistor and the first thermistor and the second voltage divided by the second resistor and the second thermistor are input to the MPU. The MPU detects a short-circuit failure by comparing the difference between the first voltage and the second voltage with a predetermined voltage.

特開2008−164469号公報JP 2008-164469 A

ところで、上記構成のように抵抗とサーミスタで分圧される電圧はアナログ信号であるため、MPUの内部で処理可能なデジタル信号に変換するためには、MPUの内部又は外部に、A/D変換するための構成が必要となる。特許文献1の構成では、サーミスタの短絡故障を検出することができるが、A/D変換するためのA/D変換部の異常やサーミスタ自体の異常等に起因した故障を検出することができないため、精度の高い故障検出ができないという問題がある。
本明細書に記載された技術は、上記のような事情に基づいて完成されたものであって、故障検出の精度を高めることを目的とする。
By the way, since the voltage divided by the resistor and the thermistor as in the above configuration is an analog signal, A / D conversion is performed inside or outside the MPU in order to convert it into a digital signal that can be processed inside the MPU. The structure for doing this is required. In the configuration of Patent Document 1, a short-circuit failure of the thermistor can be detected, but a failure caused by an abnormality of the A / D conversion unit for A / D conversion or an abnormality of the thermistor itself cannot be detected. There is a problem that failure detection with high accuracy cannot be performed.
The technique described in the present specification has been completed based on the above-described circumstances, and aims to increase the accuracy of failure detection.

本明細書に記載された故障検出回路は、電圧を取得し、この電圧をデジタル信号に変換するA/D変換部と、第1の温度センサと第1の抵抗とを有し、前記第1の温度センサと前記第1の抵抗とで分圧された第1分圧電圧が前記A/D変換部に取得される第1分圧部と、第2の温度センサと第2の抵抗とを有し、前記第2の温度センサと前記第2の抵抗とで分圧された第2分圧電圧が前記A/D変換部に取得される第2分圧部と、前記デジタル信号に変換された前記第1分圧電圧及び前記第2分圧電圧の値を第1温度及び第2温度からなる温度の値に換算する温度換算部と、前記第1温度と前記第2温度との差が所定以上のときに故障を検知する故障検知部と、を備え、前記温度換算部で換算される前記第1の温度センサの温度に対する前記第1分圧電圧の傾きと、前記第2の温度センサの温度に対する前記第2分圧電圧の傾きとは、正負が反対の傾きとされている。   The failure detection circuit described in the present specification includes an A / D conversion unit that acquires a voltage and converts the voltage into a digital signal, a first temperature sensor, and a first resistor. A first voltage dividing unit obtained by the A / D converter by the first divided voltage divided by the temperature sensor and the first resistor, a second temperature sensor, and a second resistor. A second divided voltage obtained by the A / D converter and converted into the digital signal by the second divided voltage divided by the second temperature sensor and the second resistor; A temperature conversion unit that converts the values of the first divided voltage and the second divided voltage into a temperature value composed of a first temperature and a second temperature; and a difference between the first temperature and the second temperature. A failure detection unit that detects a failure when the temperature is equal to or greater than a predetermined value, and the temperature with respect to the temperature of the first temperature sensor converted by the temperature conversion unit The inclination of 1 minute voltage, wherein the inclination of said second divided voltage with respect to temperature of the second temperature sensor, positive and negative are opposite slope.

本構成によれば、温度換算部で換算される第1の温度センサの温度に対する第1分圧電圧の傾きと、温度換算部で換算される第2の温度センサの温度に対する第1分圧電圧の傾きとは、正負が反対の傾きとされているため、各分圧電圧の傾きの正負が同じ場合と比較して、A/D変換部や温度センサ等の故障時における第1温度や第2温度の値の増加や減少に応じて第1温度と第2温度との温度差を大きくすることが可能になる。第1温度と第2温度との温度差が大きくなると、故障検知部により温度差を使用した故障の検知がされやすくなるため、故障検出の精度を高めることが可能になる。   According to this configuration, the slope of the first divided voltage with respect to the temperature of the first temperature sensor converted by the temperature conversion unit and the first divided voltage with respect to the temperature of the second temperature sensor converted by the temperature conversion unit. Since the positive and negative slopes are opposite to each other, the first voltage and the first temperature at the time of failure of the A / D converter and the temperature sensor are compared with the case where the slopes of the divided voltage voltages are the same. The temperature difference between the first temperature and the second temperature can be increased in accordance with the increase or decrease in the value of the two temperatures. When the temperature difference between the first temperature and the second temperature is increased, the failure detection unit can easily detect a failure using the temperature difference, so that the accuracy of failure detection can be increased.

本明細書に記載された技術の実施態様としては以下の態様が好ましい。
電源側電圧と接地との間に直列に接続された前記第1の温度センサと前記第1の抵抗との配置と、前記電源側電圧と前記接地との間に直列に接続された前記第2の温度センサと前記第2の抵抗との配置とは、抵抗に対する温度センサの配置が逆に構成されている。
このようにすれば、複数の温度センサを分散して配置することが容易になるため、回路構成を簡素化することが可能になる。
The following embodiments are preferable as the embodiments of the technology described in this specification.
Arrangement of the first temperature sensor and the first resistor connected in series between the power supply side voltage and the ground, and the second connected in series between the power supply side voltage and the ground. The arrangement of the temperature sensor and the second resistor is opposite to the arrangement of the temperature sensor with respect to the resistance.
In this way, it becomes easy to disperse and arrange a plurality of temperature sensors, so that the circuit configuration can be simplified.

前記温度換算部は、前記デジタル信号に変換された前記第1分圧電圧及び前記第2分圧電圧の値の増減に共通の変化が生じたときには、前記第1温度と前記第2温度との差が大きくなるように換算する。
このようにすれば、A/D変換部にA/Dドリフト故障が生じ、A/D変換部が変換した第1分圧電圧及び第2分圧電圧の値の増減に共通の変化が生じたときには、第1温度と第2温度との差が大きくなって故障検知部による故障の検知がされやすくなるため、より一層、故障検出の精度を高めることが可能になる。
When the common change occurs in the increase / decrease in the values of the first divided voltage and the second divided voltage converted into the digital signal, the temperature conversion unit calculates the difference between the first temperature and the second temperature. Convert so that the difference is large.
In this way, an A / D drift failure occurs in the A / D converter, and a common change occurs in the increase and decrease of the values of the first divided voltage and the second divided voltage converted by the A / D converter. In some cases, the difference between the first temperature and the second temperature becomes large, and the failure detection unit can easily detect the failure, so that the accuracy of failure detection can be further improved.

前記第1の温度センサと前記第2の温度センサとは車両の電源から負荷に至る経路に搭載された電気接続箱に配されている。
このようにすれば、第1の温度センサと第2の温度センサとが共に電気接続箱に配されることで、通常は第1の温度センサと第2の温度センサとが検出する温度に大きな温度差が生じにくい環境において、温度差が生じた場合に故障を検知できるため、故障検出の精度を高めることができる。
The first temperature sensor and the second temperature sensor are arranged in an electrical junction box mounted on a path from a vehicle power source to a load.
In this way, the first temperature sensor and the second temperature sensor are both arranged in the electrical junction box, so that the temperature detected by the first temperature sensor and the second temperature sensor is usually large. Since the failure can be detected when the temperature difference occurs in an environment in which the temperature difference is unlikely to occur, the accuracy of failure detection can be improved.

本明細書に記載された技術によれば、故障検出の精度を高めることが可能になる。   According to the technique described in this specification, it is possible to improve the accuracy of failure detection.

実施形態の故障検出回路を示す図The figure which shows the failure detection circuit of embodiment 温度センサの温度−分圧電圧(電圧デジタル値)特性を示す図The figure which shows the temperature-divided voltage (voltage digital value) characteristic of the temperature sensor 分圧電圧の電圧デジタル値と温度との対応関係のテーブルを示す図The figure which shows the table of the correspondence of the voltage digital value of a divided voltage, and temperature. A/D変換部にADドリフト故障が生じた際の電圧デジタル値と温度の組の移動を示す図The figure which shows the movement of the set of the voltage digital value and temperature when AD drift failure arises in the A / D conversion part マイコンの処理を示すフローチャートFlowchart showing microcomputer processing

<実施形態>
本実施形態の故障検出回路10について、図1〜図5を参照しつつ説明する。
故障検出回路10は、例えば自動車等の車両に搭載される電気接続箱30に設けることができる。電気接続箱30は、バッテリ等の電線からモータや電装品等の負荷に至る経路に配されて負荷に供給する電力の変換や制御等を行うものである。
<Embodiment>
The failure detection circuit 10 of this embodiment will be described with reference to FIGS.
The failure detection circuit 10 can be provided in an electrical connection box 30 mounted on a vehicle such as an automobile. The electrical junction box 30 is arranged on a path from an electric wire such as a battery to a load such as a motor or an electrical component, and performs conversion or control of power supplied to the load.

故障検出回路10は、図1に示すように、マイコン11と、電源側電圧Vcc(例えば12[V])を分圧してマイコン11に出力する第1分圧部21Aと、第1分圧部21Aと並列に接続され、電源側電圧Vccを分圧してマイコン11に出力する第2分圧部21Bとを有する。   As shown in FIG. 1, the failure detection circuit 10 includes a microcomputer 11, a first voltage dividing unit 21 </ b> A that divides a power supply side voltage Vcc (for example, 12 [V]) and outputs the divided voltage to the microcomputer 11, and a first voltage dividing unit. 21A, and a second voltage dividing unit 21B that divides the power supply side voltage Vcc and outputs the divided voltage to the microcomputer 11.

第1分圧部21Aは、一端側が電源側電圧Vccに接続された第1の抵抗23Aと、一端側が第1の抵抗23Aに接続され、他端側が接地された第1の温度センサ22Aと、を備える。第1の温度センサ22Aと第1の抵抗23Aとで分圧された第1分圧電圧VAは、マイコン11に出力される。第2分圧部21Bは、一端側が電源側電圧Vccに接続された第2の温度センサ22Bと、一端側が第2の温度センサ22Bに接続され、他端側が接地された第2の抵抗23Bと、を備える。第2の温度センサ22Bと第2の抵抗23Bとで分圧された第2分圧電圧VBは、マイコン11に出力される。   The first voltage dividing unit 21A includes a first resistor 23A having one end connected to the power supply side voltage Vcc, a first temperature sensor 22A having one end connected to the first resistor 23A, and the other end grounded. Is provided. The first divided voltage VA divided by the first temperature sensor 22A and the first resistor 23A is output to the microcomputer 11. The second voltage dividing unit 21B includes a second temperature sensor 22B having one end connected to the power supply side voltage Vcc, a second resistor 23B having one end connected to the second temperature sensor 22B and the other end grounded. . The second divided voltage VB divided by the second temperature sensor 22B and the second resistor 23B is output to the microcomputer 11.

温度センサ22A,22Bは、共に、温度が上がると抵抗が減少するNTC(Negative Temperature Coefficient)サーミスタが用いられている。これにより、図2に示すように、第1の温度センサ22Aの温度に対する第1分圧電圧VAの傾きは、右下がりの負の傾きとされ、第2の温度センサ22Bの温度に対する第2分圧電圧VBの傾きは、右上がりの正の傾きとされている。また、本実施形態では第1分圧電圧VAの傾きと第2分圧電圧VBの傾きとは、絶対値がほぼ等しくされるとともに、第1分圧電圧VAと、第2分圧電圧VBとは、基準温度(例えば常温)としての25℃で交差するように設定されている。   The temperature sensors 22A and 22B are both NTC (Negative Temperature Coefficient) thermistors whose resistance decreases as the temperature rises. As a result, as shown in FIG. 2, the slope of the first divided voltage VA with respect to the temperature of the first temperature sensor 22A is a negative slope that falls to the right, and the second portion of the temperature with respect to the temperature of the second temperature sensor 22B. The slope of the voltage VB is a positive slope that rises to the right. In the present embodiment, the slope of the first divided voltage VA and the slope of the second divided voltage VB are substantially equal in absolute value, and the first divided voltage VA and the second divided voltage VB are Are set to intersect at 25 ° C. as a reference temperature (for example, normal temperature).

マイコン11は、図1に示すように、A/D変換部12と、制御部14と、記憶部13と、を備える。A/D変換部12は、アナログ信号である第1分圧電圧VA及び第2分圧電圧VBが入力され、デジタル信号である電圧デジタル値VAD,VBDに変換して制御部14に出力する。制御部14は、電圧デジタル値VADと電圧デジタル値VBDとの値を第1温度TAと第2温度TBとからなる温度の値に換算する温度換算部14Aと、第1温度TAと第2温度TBとの差が所定温度以上のときに故障を検知する故障検知部14Bとを備える。   As shown in FIG. 1, the microcomputer 11 includes an A / D conversion unit 12, a control unit 14, and a storage unit 13. The A / D converter 12 receives the first divided voltage VA and the second divided voltage VB, which are analog signals, converts them into voltage digital values VAD, VBD, which are digital signals, and outputs them to the controller 14. The control unit 14 includes a temperature conversion unit 14A that converts the values of the voltage digital value VAD and the voltage digital value VBD into a temperature value including the first temperature TA and the second temperature TB, and the first temperature TA and the second temperature. A failure detection unit 14B that detects a failure when the difference from TB is equal to or higher than a predetermined temperature.

記憶部13には、第1温度TAと第2温度TBとの温度差TCと比較して故障と判定するための基準温度差が記憶されている。基準温度差は、外部環境等に応じて種々の値に設定することができるが、本実施形態では10℃に設定されている。また、記憶部13には、図3に示すように、電圧デジタル値VADと第1温度TAが対応付けられるとともに、電圧デジタル値VBDと第2温度TBが対応付けられたテーブルが記憶されている。このテーブルでは、図4に示すように、A/D変換部12のドリフト故障等により電圧デジタル値VADと電圧デジタル値VBDとが共に増加又は減少した(共通の変化が生じた)ときには(図4ではドリフト故障により電圧デジタル値が2047→2400に増加)、第1温度TAと第2温度TBとの差が大きくなるように、電圧デジタル値VAD,VBDに応じた温度TA,TBの増減が互いに逆向きになっている。   The storage unit 13 stores a reference temperature difference for determining failure as compared with the temperature difference TC between the first temperature TA and the second temperature TB. The reference temperature difference can be set to various values according to the external environment or the like, but is set to 10 ° C. in the present embodiment. As shown in FIG. 3, the storage unit 13 stores a table in which the voltage digital value VAD and the first temperature TA are associated with each other, and the voltage digital value VBD and the second temperature TB are associated with each other. . In this table, as shown in FIG. 4, when the voltage digital value VAD and the voltage digital value VBD both increase or decrease (a common change occurs) due to a drift failure or the like of the A / D converter 12 (FIG. 4). In this case, the voltage digital value increases from 2047 to 2400 due to drift failure), and the temperature TA and TB increase and decrease according to the voltage digital values VAD and VBD so that the difference between the first temperature TA and the second temperature TB increases. The direction is reversed.

次に、マイコン11の処理について図5を参照して説明する。
第1分圧電圧VA及び第2分圧電圧VBがA/D変換部12に入力されると、図5に示すように、A/D変換部12は第1分圧電圧VA及び第2分圧電圧VBを電圧デジタル値VAD,VBDに変換する(S1)。次に、温度換算部14Aは、記憶部13に記憶されたテーブル(図3)を読み出し、このテーブルにより電圧デジタル値VADを第1温度TAに換算するとともに、電圧デジタル値VBDを第2温度TBに換算する(S2)。
Next, the processing of the microcomputer 11 will be described with reference to FIG.
When the first divided voltage VA and the second divided voltage VB are input to the A / D converter 12, as shown in FIG. 5, the A / D converter 12 has the first divided voltage VA and the second divided voltage VA. The voltage VB is converted into voltage digital values VAD and VBD (S1). Next, the temperature conversion unit 14A reads the table (FIG. 3) stored in the storage unit 13, converts the voltage digital value VAD to the first temperature TA using this table, and converts the voltage digital value VBD to the second temperature TB. (S2).

次に、故障検知部14Bは第1温度TAと第2温度TBとの温度差TCを演算する(S3)。例えば第1温度TA=45℃,第2温度TB=5℃である場合には、温度差TC=30℃となる。次に、温度差TCが記憶部13に記憶されている基準温度差=10℃よりも大きいか否かを判断する(S4)。温度差TC=30℃の場合には、基準温度差=10℃よりも大きいため(S4で「YES」)、温度センサ22A,22Bに異常が生じている、又は、A/D変換部12にドリフト故障が生じている可能性があるため、故障検知部14Bは、故障を検知してフェールセーフ処理を実行する(S5)。フェールセーフ処理では、例えば、電源から車載電装品等の負荷に至る経路のスイッチをオフして負荷への電力供給を遮断したり、エンジンを始動できないように制御する等により、車両の運行等に故障による不具合が生じないようにする。
一方、温度差TCが基準温度差以下(10℃以下)である場合には(S4で「NO」)、正常である(故障が検出されていない)ため、故障検知部14Bは何もせず、処理を終了する。
Next, the failure detection unit 14B calculates a temperature difference TC between the first temperature TA and the second temperature TB (S3). For example, when the first temperature TA = 45 ° C. and the second temperature TB = 5 ° C., the temperature difference TC = 30 ° C. Next, it is determined whether or not the temperature difference TC is larger than the reference temperature difference stored in the storage unit 13 = 10 ° C. (S4). When the temperature difference TC = 30 ° C., the temperature difference is larger than the reference temperature difference = 10 ° C. (“YES” in S4), so that an abnormality has occurred in the temperature sensors 22A, 22B, or the A / D conversion unit 12 Since there is a possibility that a drift failure has occurred, the failure detection unit 14B detects the failure and executes fail-safe processing (S5). In fail-safe processing, for example, by turning off the switch from the power source to the load such as in-vehicle electrical components to cut off the power supply to the load or controlling the engine so that it cannot be started, Make sure there are no malfunctions.
On the other hand, when the temperature difference TC is equal to or less than the reference temperature difference (10 ° C. or less) (“NO” in S4), it is normal (no failure is detected), so the failure detection unit 14B does nothing, The process ends.

本実施形態によれば、以下の作用、効果を奏する。
故障検出回路10は、電圧を取得し、この電圧を電圧デジタル値VAD,VBD(デジタル信号)に変換するA/D変換部12と、第1の温度センサ22Aと第1の抵抗23Aとを有し、第1の温度センサ22Aと第1の抵抗23Aとで分圧された第1分圧電圧VAがA/D変換部12に取得される第1分圧部21Aと、第2の温度センサ22Bと第2の抵抗23Bとを有し、第2の温度センサ22Bと第2の抵抗23Bとで分圧された第2分圧電圧VBがA/D変換部12に取得される第2分圧部21Bと、電圧デジタル値VAD,VBDに変換された第1分圧電圧VA及び第2分圧電圧VBの値を第1温度TA及び第2温度TBからなる温度の値に換算する温度換算部14Aと、第1温度TAと第2温度TBとの差が10℃以上(所定以上)のときに故障を検知する故障検知部14Bと、を備え、温度換算部14Aで換算される第1の温度センサ22Aの温度に対する第1分圧電圧VAの傾き(第1分圧部21Aについて温度センサ22Aの温度−分圧電圧特性の傾き)と、第2の温度センサ22Bの温度に対する第2分圧電圧VBの傾き(第2分圧部21Bについて温度センサ22Bの温度−分圧電圧特性の傾き)とは、正負が反対の傾きとされている。
According to this embodiment, the following operations and effects are achieved.
The failure detection circuit 10 has an A / D conversion unit 12 that acquires a voltage and converts the voltage into voltage digital values VAD and VBD (digital signals), a first temperature sensor 22A, and a first resistor 23A. The first voltage dividing unit 21A from which the first divided voltage VA divided by the first temperature sensor 22A and the first resistor 23A is acquired by the A / D conversion unit 12, and the second temperature sensor A second divided voltage VB obtained by the A / D converter 12 having a second divided voltage VB divided by the second temperature sensor 22B and the second resistor 23B. The pressure conversion unit 21B converts the values of the first divided voltage VA and the second divided voltage VB converted into the voltage digital values VAD and VBD into a temperature value composed of the first temperature TA and the second temperature TB. 14A and the difference between the first temperature TA and the second temperature TB is 10 ° C. or more (predetermined ), A slope of the first divided voltage VA with respect to the temperature of the first temperature sensor 22A converted by the temperature conversion unit 14A (about the first voltage division unit 21A). The slope of the temperature-divided voltage characteristic of the temperature sensor 22A) and the slope of the second divided voltage VB with respect to the temperature of the second temperature sensor 22B (the temperature-divided voltage characteristic of the temperature sensor 22B for the second voltage dividing section 21B). The slope of () is a slope opposite to positive and negative.

このようにすれば、第1の温度センサ22Aの温度に対する第1分圧電圧VAの傾きと、第2の温度センサ22Bの温度に対する第1分圧電圧VAの傾きとは、正負が反対の傾きとされているため、各分圧電圧22A,22Bの傾きの正負が同じ場合と比較して、A/D変換部12や温度センサ22A,22B等の異常が生じたときの第1分圧電圧VA及び第2分圧電圧VBの増加に応じて第1温度TAと第2温度TBとの温度差TCを大きくすることができる。第1温度TAと第2温度TBとの温度差TCが大きくなると、故障検知部14Bにより温度差TCを使用した故障の検知がされやすくなるため、故障検出の精度を高めることが可能になる。   In this way, the slope of the first divided voltage VA with respect to the temperature of the first temperature sensor 22A and the slope of the first divided voltage VA with respect to the temperature of the second temperature sensor 22B are opposite to each other. Therefore, compared with the case where the slopes of the divided voltages 22A and 22B are the same, the first divided voltage when an abnormality occurs in the A / D converter 12 and the temperature sensors 22A and 22B, etc. The temperature difference TC between the first temperature TA and the second temperature TB can be increased in accordance with the increase in VA and the second divided voltage VB. When the temperature difference TC between the first temperature TA and the second temperature TB increases, the failure detection unit 14B can easily detect a failure using the temperature difference TC, so that the accuracy of failure detection can be increased.

また、電源側電圧Vccと接地との間に直列に接続された第1の抵抗23Aと第1の温度センサ22Aとの配置と、電源側電圧Vccと接地との間に直列に接続された第2の温度センサ22Bと第2の抵抗23Bとの配置とは、抵抗に対する温度センサの配置が逆に構成されている。
このようにすれば、複数の温度センサ22A,22Bを分散して配置することが容易になるため、回路構成を簡素化することが可能になる。
The first resistor 23A and the first temperature sensor 22A connected in series between the power supply side voltage Vcc and the ground, and the first resistor connected in series between the power supply side voltage Vcc and the ground. The arrangement of the temperature sensor 22B and the second resistor 23B is opposite to the arrangement of the temperature sensor with respect to the resistance.
In this way, it becomes easy to disperse and arrange the plurality of temperature sensors 22A and 22B, so that the circuit configuration can be simplified.

また、温度換算部14Aは、電圧デジタル値VAD,VBDに変換された第1分圧電圧VA及び第2分圧電圧VBの値の増減に共通の変化が生じたときには、第1温度TAと第2温度TBとの差が大きくなるように換算する。
このようにすれば、A/D変換部12にA/Dドリフト故障が生じ、A/D変換部12が変換した第1分圧電圧VA及び第2分圧電圧VBの値の増減に共通の変化が生じたときには、第1温度TAと第2温度TBとの差が大きくなって故障検知部14Bによる故障の検知がされすくなるため、より一層、故障検出の精度を高めることが可能になる。
Further, the temperature conversion unit 14A determines that the first temperature TA and the first temperature TA when the common change occurs in the increase / decrease in the values of the first divided voltage VA and the second divided voltage VB converted into the voltage digital values VAD and VBD. Conversion is performed so that the difference from 2 temperature TB becomes large.
In this way, an A / D drift failure occurs in the A / D converter 12, and it is common to increase / decrease in the values of the first divided voltage VA and the second divided voltage VB converted by the A / D converter 12. When a change occurs, the difference between the first temperature TA and the second temperature TB becomes large and the failure detection unit 14B is less likely to detect a failure. Therefore, it is possible to further improve the accuracy of failure detection. .

第1の温度センサ22Aと第2の温度センサ22Bとは車両の電源から負荷に至る経路に搭載された電気接続箱30に配されている。
このようにすれば、A第1の温度センサ22Aと第2の温度センサ22Bとが共に電気接続箱30に配されることで、通常は第1の温度センサ22Aと第2の温度センサ22Bとが検出する温度に大きな温度差が生じにくい環境において、温度差TCが生じた場合に故障を検知できるため、故障検出の精度を高めることができる。
The first temperature sensor 22A and the second temperature sensor 22B are arranged in an electrical junction box 30 mounted on a path from the power source of the vehicle to the load.
In this way, the first temperature sensor 22A and the second temperature sensor 22B are usually arranged by arranging the first temperature sensor 22A and the second temperature sensor 22B together in the electrical junction box 30. In an environment in which a large temperature difference is unlikely to occur in the temperature detected by, a failure can be detected when the temperature difference TC occurs, so that the accuracy of failure detection can be improved.

<他の実施形態>
本明細書に記載された技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本明細書に記載された技術の技術的範囲に含まれる。
(1)上記実施形態の温度センサ22A,22Bは、NTCサーミスタとしたが、これに限られず、他の温度センサを用いてもよい。例えば、温度の増加に応じて抵抗値が増加するPTC(Positive Temperature Coefficient)サーミスタを用いてもよい。また、PTCサーミスタとNTCサーミスタとの双方を用いてもよく、この場合、PTCサーミスタとNTCサーミスタを抵抗に対して同じ側(例えば共に接地側)に接続すればよい。また、第1分圧電圧VAの傾きと、第1分圧電圧VAの傾きとは、図2の傾きに限られず、異なる傾きの温度センサを用いることができる。
<Other embodiments>
The technology described in the present specification is not limited to the embodiments described with reference to the above description and the drawings. For example, the following embodiments are also included in the technical scope of the technology described in the present specification.
(1) Although temperature sensor 22A, 22B of the said embodiment was used as the NTC thermistor, it is not restricted to this, You may use another temperature sensor. For example, a PTC (Positive Temperature Coefficient) thermistor whose resistance value increases as the temperature increases may be used. Further, both a PTC thermistor and an NTC thermistor may be used. In this case, the PTC thermistor and the NTC thermistor may be connected to the same side (for example, both grounded) with respect to the resistor. Further, the slope of the first divided voltage VA and the slope of the first divided voltage VA are not limited to those shown in FIG. 2, and temperature sensors having different slopes can be used.

(2)第1の温度センサ22Aの温度に対する第1分圧電圧VAの傾きと、第2の温度センサ22Bの温度に対する第2分圧電圧VBの傾きとが交差する点は、25℃としたが、これに限られず、他の温度としてもよい。   (2) The point where the slope of the first divided voltage VA with respect to the temperature of the first temperature sensor 22A and the slope of the second divided voltage VB with respect to the temperature of the second temperature sensor 22B intersect is 25 ° C. However, the temperature is not limited to this, and other temperatures may be used.

(3)第1分圧電圧VAの傾きは、全体が正の傾きとされ、第2分圧電圧VBの傾きは、全体が負の傾きとされたが、これに限られず、例えば、所定の温度の範囲で正の傾きや負の傾きを有するようにしてもよい。所定の温度の範囲は、例えば、基準温度(25℃)を含めるように設定することができる。   (3) The first divided voltage VA has a positive slope as a whole, and the second divided voltage VB has a negative slope as a whole. However, the slope is not limited to this. It may have a positive slope or a negative slope in the temperature range. The predetermined temperature range can be set to include a reference temperature (25 ° C.), for example.

(4)温度換算部14Aは、記憶部13に記憶されたテーブルを用いて温度を換算することとしたが、これに限られない。例えば、テーブルを用いることなく、近似式により、電圧デジタル値VAD,VBDに対応付けられた温度TA,TBを換算するようにしてもよい。   (4) Although the temperature conversion unit 14A converts the temperature using the table stored in the storage unit 13, the temperature conversion unit 14A is not limited thereto. For example, the temperatures TA and TB associated with the voltage digital values VAD and VBD may be converted by an approximate expression without using a table.

(5)故障検出回路10は、電気接続箱30に備えられる構成としたが、これに限られず、故障検出回路10の一部又は全部の構成が電気接続箱30以外に備えられる構成としてもよい。例えば、温度センサ22A,22Bは、電池に備えられて電池の温度を検知する構成としてもよい。   (5) The failure detection circuit 10 is configured to be provided in the electrical connection box 30, but is not limited thereto, and a configuration in which a part or all of the failure detection circuit 10 is provided in addition to the electrical connection box 30 may be employed. . For example, the temperature sensors 22A and 22B may be configured to be provided in the battery and detect the temperature of the battery.

10: 故障検出回路
11: マイコン
12: A/D変換部
13: 記憶部
14: 制御部
14A: 温度換算部
14B: 故障検知部
21A: 第1分圧部
21B: 第2分圧部
22A: 第1の温度センサ
22B: 第2の温度センサ
23A: 第1の抵抗
23B: 第2の抵抗
30: 電気接続箱
TA: 第1温度
TB: 第2温度
TC: 温度差
VA: 第1分圧電圧
VAD:電圧デジタル値(デジタル信号に変換された第1分圧電圧)
VB: 第2分圧電圧
VBD:電圧デジタル値(デジタル信号に変換された第2分圧電圧)
Vcc:電源側電圧
10: Failure detection circuit 11: Microcomputer 12: A / D conversion unit 13: Storage unit 14: Control unit 14A: Temperature conversion unit 14B: Failure detection unit 21A: First voltage dividing unit 21B: Second voltage dividing unit 22A: First 1st temperature sensor 22B: 2nd temperature sensor 23A: 1st resistance 23B: 2nd resistance 30: Electrical junction box TA: 1st temperature TB: 2nd temperature TC: Temperature difference VA: 1st divided voltage VAD : Voltage digital value (first divided voltage converted to digital signal)
VB: second divided voltage VBD: voltage digital value (second divided voltage converted into a digital signal)
Vcc: Power supply side voltage

Claims (4)

電圧を取得し、この電圧をデジタル信号に変換するA/D変換部と、
第1の温度センサと第1の抵抗とを有し、前記第1の温度センサと前記第1の抵抗とで分圧された第1分圧電圧が前記A/D変換部に取得される第1分圧部と、
第2の温度センサと第2の抵抗とを有し、前記第2の温度センサと前記第2の抵抗とで分圧された第2分圧電圧が前記A/D変換部に取得される第2分圧部と、
前記デジタル信号に変換された前記第1分圧電圧及び前記第2分圧電圧の値を第1温度及び第2温度からなる温度の値に換算する温度換算部と、
前記第1温度と前記第2温度との差が所定以上のときに故障を検知する故障検知部と、を備え、
前記温度換算部で換算される前記第1の温度センサの温度に対する前記第1分圧電圧の傾きと、前記第2の温度センサの温度に対する前記第2分圧電圧の傾きとは、正負が反対の傾きとされている、故障検出回路。
An A / D converter that obtains a voltage and converts the voltage into a digital signal;
A first temperature sensor and a first resistor, and a first divided voltage divided by the first temperature sensor and the first resistor is acquired by the A / D converter; 1 partial pressure section,
A second temperature sensor and a second resistor, and a second divided voltage divided by the second temperature sensor and the second resistor is acquired by the A / D converter; Two voltage dividers;
A temperature conversion unit that converts values of the first divided voltage and the second divided voltage converted into the digital signal into a temperature value composed of a first temperature and a second temperature;
A failure detection unit that detects a failure when a difference between the first temperature and the second temperature is equal to or greater than a predetermined value;
The inclination of the first divided voltage with respect to the temperature of the first temperature sensor converted by the temperature conversion unit is opposite to the inclination of the second divided voltage with respect to the temperature of the second temperature sensor. A fault detection circuit with a slope of.
電源側電圧と接地との間に直列に接続された前記第1の温度センサと前記第1の抵抗との配置と、前記電源側電圧と前記接地との間に直列に接続された前記第2の温度センサと前記第2の抵抗との配置とは、抵抗に対する温度センサの配置が逆に構成されている請求項1に記載の故障検出回路。 Arrangement of the first temperature sensor and the first resistor connected in series between the power supply side voltage and the ground, and the second connected in series between the power supply side voltage and the ground. 2. The failure detection circuit according to claim 1, wherein the arrangement of the temperature sensor and the second resistor is opposite to the arrangement of the temperature sensor with respect to the resistance. 前記温度換算部は、前記デジタル信号に変換された前記第1分圧電圧及び前記第2分圧電圧の値の増減に共通の変化が生じたときには、前記第1温度と前記第2温度との差が大きくなるように換算する請求項1又は請求項2に記載の故障検出回路。 When the common change occurs in the increase / decrease in the values of the first divided voltage and the second divided voltage converted into the digital signal, the temperature conversion unit calculates the difference between the first temperature and the second temperature. The failure detection circuit according to claim 1, wherein the conversion is performed so that the difference becomes large. 前記第1の温度センサと前記第2の温度センサとは車両の電源から負荷に至る経路に搭載された電気接続箱に配されている請求項1から請求項3のいずれか一項に記載の故障検出回路。 The said 1st temperature sensor and the said 2nd temperature sensor are distribute | arranged to the electrical junction box mounted in the path | route from the power supply of a vehicle to a load. Fault detection circuit.
JP2017043413A 2017-03-08 2017-03-08 Failure detection circuit Pending JP2018146459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017043413A JP2018146459A (en) 2017-03-08 2017-03-08 Failure detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017043413A JP2018146459A (en) 2017-03-08 2017-03-08 Failure detection circuit

Publications (1)

Publication Number Publication Date
JP2018146459A true JP2018146459A (en) 2018-09-20

Family

ID=63591189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017043413A Pending JP2018146459A (en) 2017-03-08 2017-03-08 Failure detection circuit

Country Status (1)

Country Link
JP (1) JP2018146459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217248A (en) * 2017-07-05 2019-01-15 台达电子企业管理(上海)有限公司 A kind of fault handling method and system of connector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217248A (en) * 2017-07-05 2019-01-15 台达电子企业管理(上海)有限公司 A kind of fault handling method and system of connector
US10998683B2 (en) 2017-07-05 2021-05-04 Delta Electronics (Shanghai) Co., Ltd Connector protection method and system
CN109217248B (en) * 2017-07-05 2021-11-05 台达电子企业管理(上海)有限公司 Fault processing method and system for connector

Similar Documents

Publication Publication Date Title
JP5806159B2 (en) Electronic control unit
US10309841B2 (en) Temperature detecting apparatus
JP5776705B2 (en) Temperature detection device
US20160131690A1 (en) Power source voltage detection apparatus
KR102410938B1 (en) Apparatus for managing power of vehicle and method for controlling the same
JP5686146B2 (en) Voltage measuring device with temperature abnormality detection function and power conversion device
JP6314845B2 (en) Electrical junction box
JP4924700B2 (en) Physical quantity detection device
JP2009250613A (en) Temperature detection apparatus
JP2018146459A (en) Failure detection circuit
JP6714860B2 (en) Measurement module
JP6342100B1 (en) Analog input unit and reference voltage stabilization circuit
JP6448077B2 (en) Voltage detector
JP6313150B2 (en) Semiconductor device, battery monitoring system, and battery monitoring method
US10514307B2 (en) Fault detection apparatus
JP6941280B2 (en) In-vehicle temperature detection circuit
KR20150026292A (en) Temperature measuring apparatus using negative temperature coefficient thermistor
JP5582116B2 (en) Electronic control unit
JP6897441B2 (en) Power supply voltage detector
JP2016191575A (en) Current detection circuit and vehicular electronic control device including the same
WO2016166901A1 (en) Temperature measurement device
KR102040323B1 (en) Protection circuit for a gender that supports charging between connectors with homogeneous or heterogeneous interfaces
JP2011191235A (en) Voltage abnormality detection circuit
JP5468164B2 (en) Gas alarm
JP2017101951A (en) Input circuit to oxygen concentration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211005