JP2018146118A - Air Conditioning System - Google Patents

Air Conditioning System Download PDF

Info

Publication number
JP2018146118A
JP2018146118A JP2017037888A JP2017037888A JP2018146118A JP 2018146118 A JP2018146118 A JP 2018146118A JP 2017037888 A JP2017037888 A JP 2017037888A JP 2017037888 A JP2017037888 A JP 2017037888A JP 2018146118 A JP2018146118 A JP 2018146118A
Authority
JP
Japan
Prior art keywords
air
water
heat exchanger
conditioning
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017037888A
Other languages
Japanese (ja)
Other versions
JP6425750B2 (en
Inventor
木村 恵一
Keiichi Kimura
恵一 木村
森田 満津雄
Matsuo Morita
満津雄 森田
貴之 石田
Takayuki Ishida
貴之 石田
後藤 和也
Kazuya Goto
和也 後藤
英数 佐藤
Hidekazu Sato
英数 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Kohki Co Ltd
Original Assignee
Kimura Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Kohki Co Ltd filed Critical Kimura Kohki Co Ltd
Priority to JP2017037888A priority Critical patent/JP6425750B2/en
Priority to CA2995017A priority patent/CA2995017C/en
Priority to ES18158280T priority patent/ES2891649T3/en
Priority to EP18158280.0A priority patent/EP3370001B1/en
Priority to CN201820275084.3U priority patent/CN208012005U/en
Priority to CN201810164896.5A priority patent/CN108534319B/en
Priority to US15/908,595 priority patent/US10502449B2/en
Priority to AU2018201508A priority patent/AU2018201508B2/en
Publication of JP2018146118A publication Critical patent/JP2018146118A/en
Application granted granted Critical
Publication of JP6425750B2 publication Critical patent/JP6425750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning system enabling simplification of instrumentation work while saving energy and easily maintained and managed.SOLUTION: An air conditioning system includes: an air conditioner (1) for supplying air-conditioning air to an air-conditioned space (S) for cooling or heating; an air conditioner control device (2) for controlling the air conditioner (1) to adjust the air-conditioning air to an air state suitable for cooling or heating; a heat source machine (5) for adjusting a supply water temperature of circulation water to be supplied to the air conditioner (1) to adjust the air state of the air-conditioning air; and a heat source machine control device (7) that is a control device independent of the air conditioner control device (2) and automatically variably adjusts the supply water temperature of the circulation water in accordance with fluctuation of outside air load.SELECTED DRAWING: Figure 1

Description

本発明は空気調和システムに関するものである。   The present invention relates to an air conditioning system.

熱交換用の循環水を空調エネルギーとして用いる空気調和システムは、循環水の温度を調整する熱源機と、循環水が流れる熱交換器で空調用空気の給気温度を調整して被空調空間の空調を行う空調機と、空調機および熱源機に循環水を循環させる水循環機器などで構成している。空調機の熱交換器で空調用空気に対して吸熱または放熱して設定水温から外れた循環水は、熱源機によって冷却または加熱することで設定水温に調整している。そして、被空調空間の空調負荷に応じて熱源機の供給水温を変動させる中央制御方式で熱源機の省エネを図っている。   An air conditioning system that uses circulating water for heat exchange as air conditioning energy is a heat source that adjusts the temperature of the circulating water and a heat exchanger through which the circulating water flows to adjust the supply temperature of the air conditioning air and It consists of an air conditioner that performs air conditioning and a water circulation device that circulates circulating water through the air conditioner and heat source. Circulating water that has absorbed or radiated heat from the air-conditioning air by the heat exchanger of the air conditioner and deviated from the set water temperature is adjusted to the set water temperature by being cooled or heated by the heat source device. And the energy-saving of the heat source machine is aimed at by the central control system which fluctuates the supply water temperature of a heat source machine according to the air-conditioning load of the air-conditioned space.

特開2016−85013号公報Japanese Patent Laying-Open No. 2006-85013

このような中央制御方式では、被空調空間の空調負荷を計測するためのセンサ類や、熱源機の制御装置と空調機の制御装置との通信機器が必要で、制御が複雑となり計装工事などの設備コストが高くなる。また、空調機は外気と還気を混合した後、熱交換器で冷却や除湿、加熱などを行っている。このような方式の空調機では、例えば夏期の冷房運転の場合、冷却除湿後に再熱しなければ給気の湿度制御ができない。そのため、再熱するエネルギーが必要なうえに、冷水と温水を同時に流す4管式の設備が必要となり設備コストと運転コストが高くなる。また、冬期でも冷房運転を必要とする場合、4管式の設備が必要となり設備コストと運転コストが高くなる問題がある。   Such a central control system requires sensors for measuring the air-conditioning load in the air-conditioned space and communication equipment between the control device for the heat source unit and the control unit for the air-conditioner, making the control complicated and instrumentation work, etc. The equipment cost is high. In addition, the air conditioner mixes outside air and return air, and then performs cooling, dehumidification, heating, and the like with a heat exchanger. In such an air conditioner, for example, in the case of a cooling operation in summer, the humidity of the supply air cannot be controlled unless it is reheated after cooling and dehumidification. For this reason, energy for reheating is required, and a four-pipe type facility that allows cold water and hot water to flow at the same time is required, resulting in an increase in equipment cost and operation cost. Further, when cooling operation is required even in winter, there is a problem that a four-pipe type equipment is required, and the equipment cost and the operation cost are increased.

本発明は上記課題を解決するため、空調用空気を被空調空間に供給して冷房又は暖房する空調機と、前記空調機を制御して前記空調用空気を前記冷房又は前記暖房に適した空気状態に調整する空調機制御装置と、前記空調用空気の空気状態の調整のために前記空調機に供給される循環水の供給水温を調整する熱源機と、前記空調機制御装置から独立した制御装置であって前記循環水の前記供給水温を外気負荷の変動に応じて自動的に可変調整する熱源機制御装置と、を備えたことを最も主要な特徴とする。   In order to solve the above-described problems, the present invention supplies an air-conditioning air to an air-conditioned space for cooling or heating, and controls the air-conditioning apparatus so that the air-conditioning air is suitable for the cooling or heating. An air conditioner control device that adjusts the air conditioner, a heat source device that adjusts the temperature of the circulating water supplied to the air conditioner for adjusting the air condition of the air conditioning air, and a control independent of the air conditioner control device The main feature is that the apparatus includes a heat source device control device that automatically variably adjusts the supply water temperature of the circulating water in accordance with a change in an outside air load.

請求項1の発明によれば、通常、外気負荷である屋外の温度と湿度に比例して被空調空間の空調負荷は変動するので、外気負荷が少ないと被空調空間の空調負荷も少ないと予測できる。それを利用して、空調機への循環水の供給水温を、夏期は上げて冬期は下げれば、熱源機の消費エネルギーが減って省エネを図れる。複雑でコストの掛かる中央制御方式を用いずに、制御を空調機側と熱源機側に完全分離し独立させているため、計装工事が簡略化され保守管理が楽となる。   According to the first aspect of the present invention, the air conditioning load in the air-conditioned space usually fluctuates in proportion to the outdoor temperature and humidity, which is the outside air load. Therefore, it is predicted that the air conditioning load in the air-conditioned space is small when the outside air load is small. it can. Using this, if the temperature of the circulating water supplied to the air conditioner is raised in the summer and lowered in the winter, the energy consumed by the heat source machine can be reduced and energy can be saved. Since the control is completely separated and independent from the air conditioner side and the heat source side without using a complicated and costly central control system, the instrumentation work is simplified and maintenance management is facilitated.

請求項2の発明によれば、循環水の供給水温を細かく可変調整するので熱源機と空調機を含めた空調システム全体の省エネ効率が高くなる。   According to the invention of claim 2, since the supply water temperature of the circulating water is finely variably adjusted, the energy saving efficiency of the entire air conditioning system including the heat source device and the air conditioner is increased.

請求項3の発明によれば、空調機による熱交換で生じた循環水の水温差が、予め設定した水温差の範囲内を外れると、空調機に供給する循環水のエネルギーに過不足がでていることになる。それを利用して、予め設定した水温差の範囲を超えた場合は循環水の水速を上げ、水温差の範囲に満たない場合は循環水の水速を下げることで熱源機出力の過不足を補える。制御を空調機側と熱源機側に完全分離し独立させていても、熱源機から空調機へのエネルギー供給が安定し、快適性の維持と省エネを図れる。   According to the invention of claim 3, when the water temperature difference generated by the heat exchange by the air conditioner is out of the preset water temperature difference range, the energy of the circulating water supplied to the air conditioner is excessive or insufficient. Will be. Utilizing this, if the temperature difference range set in advance is exceeded, the water speed of the circulating water is increased, and if it is less than the water temperature difference range, the water speed of the circulating water is decreased to reduce or exceed the heat source output. Can be compensated. Even if the control is completely separated and independent from the air conditioner side and the heat source machine side, the energy supply from the heat source machine to the air conditioner can be stabilized, maintaining comfort and saving energy.

請求項4の発明によれば、被空調空間の排気熱を利用して空調機に供給される空調用空気を予冷又は予熱するので、空調機で処理する空調負荷が減って省エネとなる。外調機がヒートポンプ式なのでエネルギー消費効率が高く省エネとなる。   According to the invention of claim 4, since the air-conditioning air supplied to the air conditioner is pre-cooled or pre-heated using the exhaust heat of the air-conditioned space, the air-conditioning load processed by the air-conditioner is reduced and energy is saved. Since the external air conditioner is a heat pump type, energy consumption efficiency is high and energy saving.

請求項5の発明によれば、空調用空気である外気を第1熱交換器で冷却除湿し、空調用空気である還気を第2熱交換器で除湿せずに冷却すれば、2管式で外気負荷(潜熱)と室内負荷(顕熱)を個別に処理して再熱効果を得られ、再熱エネルギー分が省エネとなる。2管式なので熱源機や循環水の配管設備が簡略化されて省エネ、省コストとなる。第1熱交換器の第1処理後の循環水で第2熱交換器の第2処理を行って循環水の水温差を拡大しているので、熱源機の運転効率が良くなり省エネとなる。第1水路とバイパス水路を構成する配管長と、第1水量調整弁及び第2水量調整弁の数を最小限に抑えて空調システムを簡略化し、コストダウンできる。   According to the invention of claim 5, if the outside air that is air-conditioning air is cooled and dehumidified by the first heat exchanger, and the return air that is air-conditioning air is cooled without being dehumidified by the second heat exchanger, two pipes The reheat effect can be obtained by processing the outdoor air load (latent heat) and the indoor load (sensible heat) separately, and the reheat energy is saved. Since it is a two-pipe type, heat source equipment and circulating water piping facilities are simplified, saving energy and cost. Since the water temperature difference of the circulating water is expanded by performing the second treatment of the second heat exchanger with the circulating water after the first treatment of the first heat exchanger, the operating efficiency of the heat source machine is improved and the energy is saved. The air conditioning system can be simplified and the cost can be reduced by minimizing the lengths of the pipes constituting the first water channel and the bypass water channel, and the number of the first water amount adjusting valves and the second water amount adjusting valves.

請求項6の発明によれば、被空調空間の空調負荷が大きければ第1処理と第2処理を両方行う運転とし、小さければ第1処理及び第2処理の一方のみを行う運転とすることで、空調用空気を冷房又は暖房に適した空気状態に調整する制御範囲が広がる。したがって、被空調空間の空調負荷と外気負荷がアンバランスになって熱源機から空調機へのエネルギー供給に過不足がでても、被空調空間に対して安定した空調が行える。   According to the invention of claim 6, if the air-conditioning load in the air-conditioned space is large, the operation is to perform both the first process and the second process, and if it is small, the operation is to perform only one of the first process and the second process. The control range for adjusting the air for air conditioning to an air state suitable for cooling or heating is expanded. Therefore, even if the air conditioning load and the outside air load in the air-conditioned space are unbalanced and the energy supply from the heat source device to the air conditioner is excessive or insufficient, stable air conditioning can be performed on the air-conditioned space.

請求項7の発明によれば、2つの気化式加湿器で加湿するので加湿不足とならず快適な環境となる。循環水の流通量を増やさずに2つの気化式加湿器の気化冷却を利用して冷やせるので省エネとなる。   According to the invention of claim 7, since humidification is performed by two vaporizing humidifiers, humidification is not insufficient and a comfortable environment is obtained. It is energy saving because it can be cooled by using the vaporization cooling of the two vaporizing humidifiers without increasing the circulation of circulating water.

請求項8と11の発明によれば、冬期に被空調空間の方角などによって寒暖差が生じても、2管式で暖房と外気冷房を自由に切換して快適性の向上を図れる。2管式なので熱源機や循環水の配管設備が簡略化されて省エネ、省コストとなる。蒸気式加湿器で加湿するので加湿不足とならず快適な環境となる。   According to the eighth and eleventh aspects of the present invention, even if a temperature difference occurs due to the direction of the air-conditioned space in winter, the two-pipe system can be freely switched between heating and outdoor air cooling to improve comfort. Since it is a two-pipe type, heat source equipment and circulating water piping facilities are simplified, saving energy and cost. Since it is humidified with a steam humidifier, it becomes a comfortable environment without dampening.

請求項9の発明によれば、空調用空気の冷却又は加熱に要するエンタルピーが小さい方の処理の風量を多くして空調負荷を減らすことで省エネを図れる。したがって、被空調空間の空調負荷と外気負荷がアンバランスになって熱源機から空調機へのエネルギー供給に過不足がでても、被空調空間に対して安定した空調が行える。   According to the ninth aspect of the present invention, it is possible to save energy by increasing the air volume of the process having the smaller enthalpy required for cooling or heating the air conditioning air and reducing the air conditioning load. Therefore, even if the air conditioning load and the outside air load in the air-conditioned space are unbalanced and the energy supply from the heat source device to the air conditioner is excessive or insufficient, stable air conditioning can be performed on the air-conditioned space.

請求項10の発明によれば、空調用空気である外気を第3熱交換器で冷却除湿し、空調用空気である還気を第4熱交換器で除湿せずに冷却すれば、2管式で外気負荷(潜熱)と室内負荷(顕熱)を個別に処理して再熱効果を得られ、再熱エネルギー分が省エネとなる。2管式なので熱源機や循環水の配管設備が簡略化されて省エネ、省コストとなる。第2水路と第3水路を構成する配管長と、第3水量調整弁の数を最小限に抑えて空調システムを簡略化し、コストダウンできる。被空調空間の方角などによって寒暖差が生じても、循環水の温度にかかわらず第2ヒートポンプで暖房と冷房を自由に切換して空調でき快適性の向上を図れる。   According to the invention of claim 10, if the outside air that is air-conditioning air is cooled and dehumidified by the third heat exchanger, and the return air that is air-conditioning air is cooled without being dehumidified by the fourth heat exchanger, two pipes The reheat effect can be obtained by processing the outdoor air load (latent heat) and the indoor load (sensible heat) separately, and the reheat energy is saved. Since it is a two-pipe type, heat source equipment and circulating water piping facilities are simplified, saving energy and cost. The air conditioning system can be simplified and the cost can be reduced by minimizing the length of the pipes constituting the second water channel and the third water channel and the number of the third water amount adjusting valves. Even if there is a difference in temperature depending on the direction of the air-conditioned space, the second heat pump can freely switch between heating and cooling regardless of the temperature of the circulating water, so that air conditioning can be improved.

図1〜図7は本発明の空気調和システムを示し、この空気調和システムは、空調機1、空調機制御装置2、外調機3、外調機制御装置4、熱源機5、水循環機器6及び熱源機制御装置7を備えている。建物の室内やホールなどの被空調空間Sと、屋外と、空調機1と、外調機3と、は図示省略のダクトで連結され、給気(SA)、外気(OA)、還気(RA)及び排気(EA)が相互に送風される。各図において実線の太い矢印は気流方向を示す。   1 to 7 show an air conditioning system according to the present invention. The air conditioning system includes an air conditioner 1, an air conditioner control device 2, an external air conditioner 3, an external air conditioner control device 4, a heat source device 5, and a water circulation device 6. And a heat source machine control device 7. The air-conditioned space S such as the interior of a building or a hall, the outdoors, the air conditioner 1 and the external air conditioner 3 are connected by a duct (not shown) to supply air (SA), outside air (OA), and return air ( RA) and exhaust (EA) are blown together. In each figure, the solid arrows indicate the airflow direction.

空調機1は、空調用空気の給気を被空調空間Sへ供給して冷房又は暖房するように構成する。外調機3は、外気を予冷又は予熱して空調機1へ供給し、被空調空間Sの空気を屋外に排気するように構成する。空調機制御装置2は、被空調空間Sの空調負荷の変動に応じて空調機1を制御して空調用空気を冷房又は暖房に適した空気状態(温度及び湿度)に調整するように構成する。   The air conditioner 1 is configured to supply air-conditioning air to the air-conditioned space S for cooling or heating. The external air conditioner 3 is configured to precool or preheat the outside air and supply the air to the air conditioner 1 and exhaust the air in the air-conditioned space S to the outside. The air conditioner control device 2 is configured to control the air conditioner 1 in accordance with a change in the air conditioning load of the air-conditioned space S so as to adjust the air conditioning air to an air state (temperature and humidity) suitable for cooling or heating. .

熱源機5は、空調用空気の空気状態の調整のために空調機1に供給される循環水の供給水温を調整するように構成する。水循環機器6は、循環水を熱源機5と空調機1に対して循環させるように構成した水循環配管8と、水循環配管8の循環水の水速や送水量を可変できる機能を有する送水ポンプ9と、を備えている。熱源機制御装置7は、空調機制御装置2から独立した制御装置であって循環水の供給水温を外気負荷の変動に応じて自動的に可変調整するように構成する。   The heat source device 5 is configured to adjust the supply water temperature of the circulating water supplied to the air conditioner 1 in order to adjust the air state of the air for air conditioning. The water circulation device 6 includes a water circulation pipe 8 configured to circulate the circulating water with respect to the heat source unit 5 and the air conditioner 1, and a water feed pump 9 having a function of changing a water speed and a water supply amount of the circulating water in the water circulation pipe 8. And. The heat source device control device 7 is a control device that is independent from the air conditioner control device 2 and is configured to automatically variably adjust the supply water temperature of the circulating water in accordance with fluctuations in the outside air load.

熱源機制御装置7は、外気の温度及び湿度を検出する外気温湿度検出器10と、空調機1への循環水の供給水温を検出する供給水温検出器11と、空調機1から熱源機5に戻ってきた循環水の戻り水温を検出する戻り水温検出器12と、水循環配管8の水速や送水量を検出する送水検出器13と、送水制御部14と、供給水温制御部15と、熱源機出力補償部16と、を備えている。熱源機制御装置7はマイクロプロセッサ、各種センサー、その他の制御機器で構成する。   The heat source device control device 7 includes an outside air temperature / humidity detector 10 that detects the temperature and humidity of the outside air, a supply water temperature detector 11 that detects the supply water temperature of the circulating water to the air conditioner 1, and the heat source device 5 from the air conditioner 1. A return water temperature detector 12 that detects the return water temperature of the circulating water that has returned to, a water supply detector 13 that detects the water speed and amount of water in the water circulation pipe 8, a water supply control unit 14, a supply water temperature control unit 15, And a heat source device output compensation unit 16. The heat source machine control device 7 includes a microprocessor, various sensors, and other control devices.

送水制御部14は、送水ポンプ9の回転数を制御して水速や送水量を調整するように構成する。供給水温制御部15は、予め設定した外気温度及び外気湿度と、外気温湿度検出器10で検出された外気温度及び外気湿度と、を比較する。その結果に応じて、被空調空間Sの冷房時には、自動的に可変調整する循環水の供給水温を、予め設定した外気温度及び外気湿度に対して、外気が高温高湿のときは6〜7℃に設定し、外気が低温高湿のときは7〜8℃に設定し、外気が高温低湿のときは8〜9℃に設定し、外気が低温低湿のときは9〜10℃に設定する。この場合の予め設定した外気温度及び外気湿度は、例えば乾球温度28℃で絶対湿度が0.011kg/kg(DA)とする。   The water supply control unit 14 is configured to control the rotation speed of the water supply pump 9 to adjust the water speed and the water supply amount. The supply water temperature control unit 15 compares the preset outside air temperature and outside air humidity with the outside air temperature and outside air humidity detected by the outside air temperature / humidity detector 10. Depending on the result, when the air-conditioned space S is cooled, the supply water temperature of the circulating water that is automatically variably adjusted is 6-7 when the outside air is hot and humid with respect to the preset outside air temperature and outside air humidity. Set to 7 ° C when the outside air is low temperature and high humidity, set to 8 to 9 ° C when the outside air is high temperature and low humidity, and set to 9 to 10 ° C when the outside air is low temperature and low humidity . In this case, the preset outside air temperature and outside air humidity are, for example, a dry bulb temperature of 28 ° C. and an absolute humidity of 0.011 kg / kg (DA).

供給水温制御部15は、被空調空間Sの暖房時には、自動的に可変調整する循環水の供給水温を、予め設定した外気温度に対して、外気が高温のときは34〜36℃に設定し、外気が低温のときは39〜41℃に設定する。この場合の予め設定した外気温度は、例えば乾球温度13℃とする。なお、上述の供給水温と予め設定した外気温度及び外気湿度は一例で、これに限定されるものではなく設定変更は自由である。   The supply water temperature control unit 15 sets the supply water temperature of the circulating water that is automatically variably adjusted during heating of the air-conditioned space S to 34 to 36 ° C. when the outside air is hot relative to the preset outside air temperature. When the outside air is cold, the temperature is set to 39 to 41 ° C. In this case, the preset outside air temperature is, for example, a dry bulb temperature of 13 ° C. The above-mentioned supply water temperature and the preset outside air temperature and outside air humidity are merely examples, and the present invention is not limited to this, and the setting can be changed freely.

熱源機出力補償部16は、空調機1への供給で生じる循環水の水温差(熱源機5から空調機1に供給された循環水と空調機1から熱源機5に戻ってきた循環水の水温差)が予め設定した水温差の範囲(例えば6〜10℃)内を外れると水循環機器6を制御して循環水の水速を調整することで熱源機出力の過不足を補償するように構成する。循環水の水温差は、供給水温検出器11と戻り水温検出器12で検出された水温から演算して、予め設定した水温差の範囲と比較する。予め設定した水温差の範囲を超えた場合は循環水の水速や送水量を上げ、水温差の範囲に満たない場合は循環水の水速や送水量を下げるように構成する。   The heat source unit output compensation unit 16 is configured to provide a water temperature difference between the circulating water generated by the supply to the air conditioner 1 (the circulating water supplied from the heat source unit 5 to the air conditioner 1 and the circulating water returned from the air conditioner 1 to the heat source unit 5). When the water temperature difference falls outside the preset water temperature difference range (for example, 6 to 10 ° C.), the water circulation device 6 is controlled to adjust the water speed of the circulating water so as to compensate for excess or deficiency of the heat source machine output. Configure. The water temperature difference of the circulating water is calculated from the water temperatures detected by the supply water temperature detector 11 and the return water temperature detector 12, and compared with a preset water temperature difference range. When the range of the preset water temperature difference is exceeded, the water speed and the water supply amount of the circulating water are increased, and when the water temperature difference is less than the range, the water speed and the water supply amount of the circulating water are decreased.

図2に示すように、外調機3は、第1ヒートポンプ20、加湿器21、一対の送風機22、混合ダンパ23及びケーシング24を備えている。第1ヒートポンプ20は、空調用空気の外気と被空調空間Sの空気とを熱交換させることで外気を予冷(冷却)又は予熱(加熱)する。送風機22は、外気を空調機1に給気し、被空調空間Sの空気を屋外に排気する。混合ダンパ23は、第1ヒートポンプ20で冷却又は加熱される前の外気に被空調空間Sの空気を混合させて予冷又は予熱するように構成する。   As shown in FIG. 2, the external air conditioner 3 includes a first heat pump 20, a humidifier 21, a pair of blowers 22, a mixing damper 23, and a casing 24. The first heat pump 20 precools (cools) or preheats (heats) the outside air by exchanging heat between the outside air of the air-conditioning air and the air of the air-conditioned space S. The blower 22 supplies outside air to the air conditioner 1 and exhausts the air in the air-conditioned space S to the outside. The mixing damper 23 is configured to mix the air in the air-conditioned space S with the outside air before being cooled or heated by the first heat pump 20 and precool or preheat.

第1ヒートポンプ20は、循環冷媒に対して圧縮・凝縮・膨張・蒸発の工程順を繰返し、この循環冷媒と熱交換する外気と排気に対して冷媒蒸発工程で吸熱を冷媒凝縮工程で放熱を各々行うもので、循環冷媒の蒸発工程と凝縮工程であって互いに異なる工程を担う第7熱交換器25及び第8熱交換器27と、圧縮機27と、循環冷媒を膨張させる膨張弁等の減圧機構28と、第7熱交換器25及び第8熱交換器27の蒸発工程と凝縮工程を切換えるバルブ等の切換機構29と、を少なくとも備え、これらを冷媒が循環するように配管接続して構成する。   The first heat pump 20 repeats the order of compression / condensation / expansion / evaporation with respect to the circulating refrigerant, and absorbs heat in the refrigerant evaporating process for the outside air and exhaust gas heat exchanged with the circulating refrigerant, and releases heat in the refrigerant condensing process. Depressurization of the seventh heat exchanger 25 and the eighth heat exchanger 27, the compressor 27, an expansion valve for expanding the circulating refrigerant, and the like, which are carried out and are different processes in the circulating refrigerant evaporation process and the condensation process. It comprises at least a mechanism 28 and a switching mechanism 29 such as a valve for switching the evaporation process and the condensation process of the seventh heat exchanger 25 and the eighth heat exchanger 27, and these are connected by piping so that the refrigerant circulates. To do.

第1ヒートポンプ20は排気(被空調空間Sの空気)を空気熱源とする空冷ヒートポンプで、送風機22によって第8熱交換器27に排気を送り冷媒と熱交換する。第1ヒートポンプ20は、いわゆる室内外一体形で天井内に設置する。図例では第1ヒートポンプ20、加湿器21及び送風機22をケーシング24内に設けているが、混合ダンパ23もケーシング24内に設けてもよい。   The first heat pump 20 is an air-cooled heat pump that uses exhaust (air in the air-conditioned space S) as an air heat source. The first heat pump 20 sends exhaust to the eighth heat exchanger 27 by the blower 22 and exchanges heat with the refrigerant. The first heat pump 20 is installed in the ceiling in a so-called indoor / outdoor integrated form. In the illustrated example, the first heat pump 20, the humidifier 21 and the blower 22 are provided in the casing 24, but the mixing damper 23 may also be provided in the casing 24.

外調機制御装置4aは、少なくとも風量制御部30、加湿制御部31及び圧縮機制御部32を備えている。外調機制御装置4aはマイクロプロセッサ、各種センサー、その他の制御機器で構成する。風量制御部30は、送風機22の回転数と、混合ダンパ23のダンパ開度と、を制御して外気、還気及び排気の風量を調整するように構成する。加湿制御部31は、加湿器21を制御して外気への加湿量を調整するように構成する。圧縮機制御部32は、圧縮機27の回転数を制御して冷却又は加熱する能力を調整するように構成する。   The external air conditioner control device 4a includes at least an air volume control unit 30, a humidification control unit 31, and a compressor control unit 32. The external air conditioner control device 4a includes a microprocessor, various sensors, and other control devices. The air volume control unit 30 is configured to control the rotation speed of the blower 22 and the damper opening degree of the mixing damper 23 to adjust the air volume of outside air, return air, and exhaust. The humidification control unit 31 is configured to control the humidifier 21 to adjust the humidification amount to the outside air. The compressor control unit 32 is configured to control the rotation speed of the compressor 27 to adjust the cooling or heating ability.

図3は複数の空調機1のうちの第1の空調機1aを示している。この第1の空調機1aは、第1熱交換器35、第2熱交換器36、第1水路37、バイパス水路38、第1水量調整弁39、第2水量調整弁40、第1加湿器41、第2加湿器42、第1ダンパ43、第2ダンパ44、第3ダンパ45、第1送風機46及びケーシング47を備えている。図例では第1熱交換器35、第2熱交換器36、第1加湿器41、第2加湿器42及び第1送風機46をケーシング47内に設けているが、空調機制御装置2a、第1水路37、バイパス水路38、第1水量調整弁39、第2水量調整弁40、第1ダンパ43、第2ダンパ44及び第3ダンパ45もケーシング47内に設けてもよい。   FIG. 3 shows a first air conditioner 1 a among the plurality of air conditioners 1. The first air conditioner 1a includes a first heat exchanger 35, a second heat exchanger 36, a first water passage 37, a bypass water passage 38, a first water amount adjustment valve 39, a second water amount adjustment valve 40, and a first humidifier. 41, the 2nd humidifier 42, the 1st damper 43, the 2nd damper 44, the 3rd damper 45, the 1st air blower 46, and the casing 47 are provided. In the illustrated example, the first heat exchanger 35, the second heat exchanger 36, the first humidifier 41, the second humidifier 42, and the first blower 46 are provided in the casing 47, but the air conditioner control device 2a, second The first water passage 37, the bypass water passage 38, the first water amount adjustment valve 39, the second water amount adjustment valve 40, the first damper 43, the second damper 44, and the third damper 45 may also be provided in the casing 47.

第1熱交換器35は、循環水の流通で空調用空気の外気を冷却又は加熱する第1処理を行うように構成する。第2熱交換器36は、循環水の流通で空調用空気の還気を冷却又は加熱する第2処理を行うように構成する。第1水路37は、循環水を第1熱交換器35に流通させてから第2熱交換器36に流通させるように水配管を設けて構成する。バイパス水路38は、第1水路37から分岐して第1処理後の循環水を第2熱交換器36を通さずに迂回させるように水配管を設けて構成する。   The 1st heat exchanger 35 is comprised so that the 1st process which cools or heats the external air of the air for air conditioning by distribution | circulation of circulating water may be performed. The second heat exchanger 36 is configured to perform a second process of cooling or heating the return air of the air-conditioning air by circulating the circulating water. The first water channel 37 is configured by providing a water pipe so that the circulating water flows through the first heat exchanger 35 and then flows through the second heat exchanger 36. The bypass water channel 38 is configured by providing a water pipe so as to branch off from the first water channel 37 and bypass the first treated circulating water without passing through the second heat exchanger 36.

第1水量調整弁39は、第1処理前の循環水の流通量を変動させて第1熱交換器35の第1処理の能力を調整するように水量比例変動方式の二方弁で構成する。第2水量調整弁40は、第1水路37とバイパス水路38の循環水の流通量の配分を変動させて第2熱交換器36の第2処理の能力を調整するように水量比例変動方式の三方弁で構成する。この第2水量調整弁40は、第1水路37とバイパス水路38の一方に全量流れて他方は流れないように切換える三方弁で構成してもよい。   The first water amount adjustment valve 39 is constituted by a water amount proportional variation type two-way valve so as to adjust the capacity of the first treatment of the first heat exchanger 35 by changing the circulation amount of the circulating water before the first treatment. . The second water amount adjustment valve 40 is of a water amount proportional variation method so as to adjust the second treatment capacity of the second heat exchanger 36 by changing the distribution of the circulation amount of the circulating water in the first water passage 37 and the bypass water passage 38. Consists of a three-way valve. The second water amount adjusting valve 40 may be a three-way valve that switches so that the entire amount flows in one of the first water channel 37 and the bypass water channel 38 and the other does not flow.

第1加湿器41は、第1熱交換器35の風下で空調用空気の外気を水の気化蒸発で加湿する気化式とする。第2加湿器42は、第2熱交換器36の風下で空調用空気の還気を水の気化蒸発で加湿する気化式とする。第1ダンパ43は、第1の空調機1aに取入れる空調用空気の外気量を増減調整する。第2ダンパ44と第3ダンパ45は、第1の空調機1aに取入れる空調用空気の還気量を増減調整する。第1送風機46は、被空調空間Sへの空調用空気の給気量を増減調整する。第1送風機46によって、第1ダンパ43から取入れられた外気と第3ダンパ45から取入れられた還気は第1熱交換器35を通り、かつ、第2ダンパ44から取入れられた還気は第2熱交換器36を通って、互いに混ざり合って被空調空間Sへ送られる。第1ダンパ43から取入れられる外気量は、被空調空間Sの二酸化炭素濃度が予め設定された範囲になるように調整される。   The first humidifier 41 is a vaporization type that humidifies the outside air of the air-conditioning air by vaporization and evaporation of water under the first heat exchanger 35. The second humidifier 42 is a vaporization type in which the return air of the air-conditioning air is humidified by vaporization and evaporation of water under the second heat exchanger 36. The first damper 43 increases or decreases the outside air amount of the air-conditioning air taken into the first air conditioner 1a. The second damper 44 and the third damper 45 increase / decrease the amount of return air of the air-conditioning air taken into the first air conditioner 1a. The first blower 46 increases or decreases the amount of air-conditioning air supplied to the air-conditioned space S. The outside air taken in from the first damper 43 and the return air taken in from the third damper 45 by the first blower 46 pass through the first heat exchanger 35, and the return air taken in from the second damper 44 is the first air The two heat exchangers 36 are mixed with each other and sent to the air-conditioned space S. The amount of outside air taken in from the first damper 43 is adjusted so that the carbon dioxide concentration in the air-conditioned space S falls within a preset range.

図4に示すように、第1熱交換器35は、一般的なプレートフィンコイルと同様に伝熱板18の群に伝熱管19の群を挿着して構成する。伝熱管19の内部に循環水を流し、伝熱管19及び伝熱板18に空調用空気を接触させることで、空調用空気と循環水を熱交換する。第2熱交換器36、第7熱交換器25及び第8熱交換器27も第1熱交換器35と同様に構成するが、第7熱交換器25及び第8熱交換器27は、伝熱管19の内部に冷媒を流して空調用空気と熱交換する。これにより空調用空気は冷風又は温風となり空調機1及び被空調空間Sに供給される。   As shown in FIG. 4, the first heat exchanger 35 is configured by inserting a group of heat transfer tubes 19 into a group of heat transfer plates 18 in the same manner as a general plate fin coil. Circulating water is caused to flow inside the heat transfer tube 19, and air conditioning air is brought into contact with the heat transfer tube 19 and the heat transfer plate 18 to exchange heat between the air conditioning air and the circulating water. Although the 2nd heat exchanger 36, the 7th heat exchanger 25, and the 8th heat exchanger 27 are constituted similarly to the 1st heat exchanger 35, the 7th heat exchanger 25 and the 8th heat exchanger 27 are the same. The refrigerant flows through the heat pipe 19 to exchange heat with air-conditioning air. Thereby, the air for air conditioning becomes cold air or warm air and is supplied to the air conditioner 1 and the air-conditioned space S.

図3に示すように、第1の空調機1aの空調機制御装置2aは、外気の温度及び湿度を検出する外気温湿度検出器50、還気の温度及び湿度を検出する還気温湿度検出器51、空調機1aの給気の温度及び湿度を検出する給気温湿度検出器52、風量制御部53、水量制御部54、加湿制御部55、第1外気冷房運転部56、第1冷房能力補償部57、第1空調能力補償部58及び第1空調能力制御部59を備えている。空調機制御装置2aはマイクロプロセッサ、各種センサー、その他の制御機器で構成する。   As shown in FIG. 3, the air conditioner control device 2a of the first air conditioner 1a includes an outside air temperature / humidity detector 50 that detects the temperature and humidity of the outside air, and a return air temperature / humidity detector that detects the temperature and humidity of the return air. 51, an air temperature / humidity detector 52 for detecting the temperature and humidity of the air supply of the air conditioner 1a, an air volume control unit 53, a water volume control unit 54, a humidification control unit 55, a first outside air cooling operation unit 56, and a first cooling capacity compensation Unit 57, first air conditioning capability compensation unit 58, and first air conditioning capability control unit 59. The air conditioner control device 2a includes a microprocessor, various sensors, and other control devices.

風量制御部53は、空調機1aの第1送風機46の回転数と、第1ダンパ43のダンパ開度と、第2ダンパ44のダンパ開度と、第3ダンパ45のダンパ開度と、を制御して外気、還気及び給気の各風量を調整するように構成する。水量制御部54は、第1水量調整弁39と、第2水量調整弁40と、を制御して第1熱交換器35及び第2熱交換器36の循環水の各流通量を調整するように構成する。加湿制御部55は、第1加湿器41と第2加湿器42の加湿水量を制御して外気及び還気への各加湿量を調整するように構成する。   The air volume control unit 53 determines the rotation speed of the first blower 46 of the air conditioner 1a, the damper opening of the first damper 43, the damper opening of the second damper 44, and the damper opening of the third damper 45. It controls and adjusts each air volume of outside air, return air, and supply air. The water amount control unit 54 controls the first water amount adjustment valve 39 and the second water amount adjustment valve 40 so as to adjust each circulation amount of the circulating water in the first heat exchanger 35 and the second heat exchanger 36. Configure. The humidification control unit 55 is configured to control the humidification water amounts of the first humidifier 41 and the second humidifier 42 to adjust the humidification amounts to the outside air and the return air.

第1外気冷房運転部56は、外気温湿度検出器50で検出された第1処理前の空調用空気と第2処理前の空調用空気の一方又は両方の温度が還気温湿度検出器51で検出された被空調空間Sの温度より低い場合に、空調用空気を利用して被空調空間Sを冷房するように構成する。この場合、第1加湿器41と第2加湿器42の一方又は両方で空調用空気を気化冷却して冷房負荷を減らすこともできる。第1冷房能力補償部57は、除湿を伴わない冷却の第1処理後に、第2加湿器42で還気を加湿することで気化冷却して、第1の空調機1aの冷房負荷を下げるように構成する。   The first outside air cooling operation unit 56 uses the return air temperature / humidity detector 51 to detect the temperature of one or both of the air before the first process and the air before the second process detected by the outside air temperature / humidity detector 50. When the temperature of the air-conditioned space S detected is lower than the detected air-conditioned space S, the air-conditioned air space S is used to cool the air-conditioned space S. In this case, the air-conditioning air can be vaporized and cooled by one or both of the first humidifier 41 and the second humidifier 42 to reduce the cooling load. The first cooling capacity compensator 57 performs evaporative cooling by humidifying the return air with the second humidifier 42 after the first cooling process without dehumidification so as to reduce the cooling load of the first air conditioner 1a. Configure.

第1空調能力補償部58は、第1処理に要する第1処理時エンタルピーと第2処理に要する第2処理時エンタルピーとを比較して前記エンタルピーが小さい処理の空調用空気の風量を多くして第1の空調機1aの空調負荷を下げるように構成する。ここで、第1処理時エンタルピーは、第1処理前の外気を予め設定された給気温度まで冷却又は加熱するのに要するエンタルピーであり、第2処理時エンタルピーは、第2処理前の還気を予め設定された給気温度まで冷却又は加熱するのに要するエンタルピーである。   The first air conditioning capability compensator 58 compares the first processing enthalpy required for the first processing with the second processing enthalpy required for the second processing, and increases the air volume of the air conditioning air for the processing with a small enthalpy. The first air conditioner 1a is configured to reduce the air conditioning load. Here, the first treatment enthalpy is the enthalpy required to cool or heat the outside air before the first treatment to a preset supply air temperature, and the second treatment enthalpy is the return air before the second treatment. Is the enthalpy required to cool or heat to a preset air supply temperature.

例えば、冷房運転時、第1処理時エンタルピーが第2処理時エンタルピーよりも小さい場合、空調機1aに取入れる空調用空気の外気の風量を増加させて空調(冷房)負荷を下げる。第1処理時エンタルピーと第2処理時エンタルピーは、外気温湿度検出器50、還気温湿度検出器51及び給気温湿度検出器52で検出された温度及び湿度から演算して比較する。その結果、第1処理時エンタルピーが第2処理時エンタルピーより小さい場合は、空調用空気の外気の風量が増加するように第1送風機46の回転数、第1ダンパ43のダンパ開度及び第2ダンパ44のダンパ開度を適宜調整する。   For example, during the cooling operation, if the enthalpy during the first process is smaller than the enthalpy during the second process, the air volume of the air for the air conditioning taken into the air conditioner 1a is increased to reduce the air conditioning (cooling) load. The first processing enthalpy and the second processing enthalpy are calculated and compared from the temperatures and humidity detected by the outside air temperature / humidity detector 50, the return air temperature / humidity detector 51, and the supply air temperature / humidity detector 52. As a result, when the first processing enthalpy is smaller than the second processing enthalpy, the rotational speed of the first blower 46, the damper opening degree of the first damper 43, and the second so that the air volume of the outside air of the air-conditioning air increases. The damper opening degree of the damper 44 is adjusted as appropriate.

第1空調能力制御部59は、被空調空間Sの空調負荷の大小に応じて第1処理と第2処理を両方行う運転と第1処理及び第2処理の一方のみを行う運転を切換えて被空調空間Sを冷房又は暖房する能力を調整するように構成する。被空調空間Sの空調負荷が大きければ第1処理と第2処理を両方行う運転とし、小さければ第1処理及び第2処理の一方のみを行う運転とする。例えば、第1処理のみ行っても被空調空間Sを冷房又は暖房する能力が不足する場合は、第2処理を併用して能力不足を補う。   The first air conditioning capability control unit 59 switches between an operation for performing both the first process and the second process and an operation for performing only one of the first process and the second process according to the size of the air conditioning load of the air-conditioned space S. The air conditioning space S is configured to adjust the capacity to cool or heat. If the air-conditioning load in the air-conditioned space S is large, the operation is to perform both the first process and the second process, and if it is small, the operation is to perform only one of the first process and the second process. For example, if the ability to cool or heat the air-conditioned space S is insufficient even when only the first process is performed, the lack of capacity is compensated by using the second process together.

この空調機1aで夏期に除湿が必要な冷房運転をする場合、外調機3の第1ヒートポンプ20の第7熱交換器25と第8熱交換器27によって外気と排気を熱交換させて予冷した外気を、空調機1aへ供給する。空調機1aでは、外気を第1熱交換器35で冷却除湿して、第2熱交換器36で除湿せずに冷却した還気と混合することで生じる再熱効果で、目標の給気温度及び給気湿度に制御する。これにより、被空調空間Sを予め設定された温度及び湿度に空調する。外気の除湿を伴わない冷房運転時には、第1加湿器41と第2加湿器42の一方又は両方で空調用空気を気化冷却して省エネを図りながら冷房運転する。   When the air conditioner 1a performs a cooling operation that requires dehumidification in the summer, the seventh heat exchanger 25 and the eighth heat exchanger 27 of the first heat pump 20 of the external air conditioner 3 exchange heat between the outside air and the exhaust air and perform precooling. The outside air is supplied to the air conditioner 1a. In the air conditioner 1a, a target supply air temperature is obtained by a reheat effect generated by cooling and dehumidifying the outside air with the first heat exchanger 35 and mixing with the return air cooled without being dehumidified with the second heat exchanger 36. And control to supply air humidity. Thereby, the air-conditioned space S is air-conditioned at a preset temperature and humidity. During the cooling operation without dehumidification of the outside air, the cooling operation is performed while evaporating and cooling the air-conditioning air by one or both of the first humidifier 41 and the second humidifier 42 to save energy.

冬期に暖房運転する場合、外調機3の第1ヒートポンプ20の第7熱交換器25と第8熱交換器27によって外気と排気を熱交換させて予熱した外気を、空調機1aへ供給する。空調機1aでは、外気を第1熱交換器35で加熱し、還気を第2熱交換器36で加熱し、第1加湿器41及び第2加湿器42で加湿して、混合することで給気の温度及び湿度を制御する。状況に応じて上述の冷房運転及び暖房運転時に、外調機3の混合ダンパ23で、第1ヒートポンプ20で冷却又は加熱される前の外気に被空調空間Sの空気を混合させて予冷又は予熱する。なお、外調機3で外気を予冷又は予熱せずに空調機1aで冷房運転又は暖房運転してもよい。   When heating operation is performed in the winter season, preheated outside air is supplied to the air conditioner 1a by exchanging heat between the outside air and the exhaust by the seventh heat exchanger 25 and the eighth heat exchanger 27 of the first heat pump 20 of the external air conditioner 3. . In the air conditioner 1a, the outside air is heated by the first heat exchanger 35, the return air is heated by the second heat exchanger 36, humidified by the first humidifier 41 and the second humidifier 42, and mixed. Control the temperature and humidity of the supply air. Precooling or preheating by mixing the air in the air-conditioned space S with the outside air before being cooled or heated by the first heat pump 20 by the mixing damper 23 of the external air conditioner 3 during the above-described cooling operation and heating operation. To do. Note that the air conditioner 1a may perform the cooling operation or the heating operation without precooling or preheating the outside air with the external air conditioner 3.

冬期に循環水が温水で冷房運転する場合、被空調空間Sの温度より低温の外気を外調機3から空調機1aに供給する。この外気を第1熱交換器35で冷房に適した温度まで加熱し、還気は第2熱交換器36で加熱して又は加熱せずにそのまま、第1加湿器41と第2加湿器42の一方又は両方で加湿して、被空調空間Sに供給する。   When the circulating water is cooled with warm water during the winter season, outside air having a temperature lower than the temperature of the air-conditioned space S is supplied from the external air conditioner 3 to the air conditioner 1a. The outside air is heated to a temperature suitable for cooling by the first heat exchanger 35, and the return air is heated by the second heat exchanger 36 or not, and the first humidifier 41 and the second humidifier 42 are left as they are. Is supplied to the air-conditioned space S.

図5は図3の空調機1aの他の実施例を示している。この空調機1aは、第1熱交換器35と第2熱交換器36の一方又は両方(図例では第1熱交換器35)の風下で空調用空気を蒸気で加湿する蒸気式の第3加湿器48を、備えている。第1の空調機制御装置2aは、外気温湿度検出器50で検出された第1処理前の空調用空気と第2処理前の空調用空気の一方又は両方の温度が還気温湿度検出器51で検出された被空調空間Sの温度より低い場合に空調用空気を利用して被空調空間Sを冷房する第2外気冷房運転部60を、備えている。その他の構成は図3の実施例と同様であるので説明は省略する。   FIG. 5 shows another embodiment of the air conditioner 1a of FIG. This air conditioner 1a is a steam-type third that humidifies air-conditioning air with steam under one or both of the first heat exchanger 35 and the second heat exchanger 36 (first heat exchanger 35 in the illustrated example). A humidifier 48 is provided. The first air conditioner control device 2a is configured so that the temperature of one or both of the air before the first treatment and the air before the second treatment detected by the outside air temperature / humidity detector 50 is the return air temperature / humidity detector 51. When the temperature of the air-conditioned space S is lower than the temperature of the air-conditioned space S detected in step 2, the air-conditioning air is used to cool the air-conditioned space S. The other configuration is the same as that of the embodiment of FIG.

この空調機1aで冬期に冷房運転する場合、被空調空間Sの温度より低温の外気を外調機3から空調機1aに供給する。この外気を第1熱交換器35で冷房に適した温度まで加熱して第3加湿器48で蒸気加湿し、還気は第2熱交換器36で加熱して又は加熱せずにそのまま被空調空間Sに供給する。   When this air conditioner 1a performs a cooling operation in winter, outside air having a temperature lower than the temperature of the air-conditioned space S is supplied from the external air conditioner 3 to the air conditioner 1a. The outside air is heated to a temperature suitable for cooling by the first heat exchanger 35 and steam humidified by the third humidifier 48, and the return air is heated by the second heat exchanger 36 or without being heated. Supply to space S.

図6は複数の空調機1のうちの第2の空調機1bを示している。この第2の空調機1bは、第3熱交換器62、第4熱交換器63と第5熱交換器64を有する第2ヒートポンプ65、第2水路66、第3水路67、第3水量調整弁68、第4加湿器69、第4ダンパ71、第5ダンパ72、第6ダンパ73、第2送風機74及びケーシング75を備えている。図例では第3熱交換器62、第2ヒートポンプ65、第4加湿器69、第5加湿器97及び第2送風機74をケーシング75内に設けているが、空調機制御装置2b、第2水路66、第3水路67、第3水量調整弁68、第4ダンパ71、第5ダンパ72及び第6ダンパ73もケーシング75内に設けてもよい。   FIG. 6 shows a second air conditioner 1 b among the plurality of air conditioners 1. The second air conditioner 1b includes a third heat exchanger 62, a second heat pump 65 having a fourth heat exchanger 63 and a fifth heat exchanger 64, a second water channel 66, a third water channel 67, and a third water amount adjustment. The valve 68, the 4th humidifier 69, the 4th damper 71, the 5th damper 72, the 6th damper 73, the 2nd air blower 74, and the casing 75 are provided. In the illustrated example, the third heat exchanger 62, the second heat pump 65, the fourth humidifier 69, the fifth humidifier 97, and the second blower 74 are provided in the casing 75, but the air conditioner control device 2b, the second water channel 66, the third water channel 67, the third water amount adjusting valve 68, the fourth damper 71, the fifth damper 72, and the sixth damper 73 may also be provided in the casing 75.

第2ヒートポンプ65は、循環冷媒に対して圧縮・凝縮・膨張・蒸発の工程順を繰返し、この循環冷媒と熱交換する還気と循環水に対して冷媒蒸発工程で吸熱を冷媒凝縮工程で放熱を各々行うもので、循環冷媒の蒸発工程と凝縮工程であって互いに異なる工程を担う第4熱交換器63及び第5熱交換器64と、圧縮機76と、循環冷媒を膨張させる膨張弁等の減圧機構77と、第4熱交換器63及び第5熱交換器64の蒸発工程と凝縮工程を切換えるバルブ等の切換機構78と、を少なくとも備え、これらを冷媒が循環するように配管接続して構成する。   The second heat pump 65 repeats the order of compression / condensation / expansion / evaporation for the circulating refrigerant, and dissipates heat in the refrigerant condensing process for the return air and the circulating water to exchange heat with the circulating refrigerant in the refrigerant condensing process. The fourth heat exchanger 63 and the fifth heat exchanger 64, which are different from each other in the circulating refrigerant evaporation step and the condensing step, the compressor 76, an expansion valve for expanding the circulating refrigerant, etc. And a switching mechanism 78 such as a valve for switching between the evaporation process and the condensation process of the fourth heat exchanger 63 and the fifth heat exchanger 64, and these are connected by piping so that the refrigerant circulates. Configure.

第3熱交換器62は、循環水の流通で空調用空気の外気を冷却又は加熱する第3処理を行うように構成する。第4熱交換器63は、冷媒の流通で空調用空気の還気を冷却又は加熱する第4処理を行うように構成する。第2水路66は、第3処理前の循環水を第3熱交換器62に流通させるように構成する。第3水路67は、第2水路66から分岐して第3処理前の循環水を第5熱交換器64に流通させるように構成する。   The 3rd heat exchanger 62 is comprised so that the 3rd process which cools or heats the external air of air-conditioning air by circulation of circulating water may be performed. The fourth heat exchanger 63 is configured to perform a fourth process of cooling or heating the return air of the air-conditioning air by circulating the refrigerant. The second water channel 66 is configured to distribute the circulating water before the third treatment to the third heat exchanger 62. The third water channel 67 is configured to branch from the second water channel 66 and distribute the circulating water before the third treatment to the fifth heat exchanger 64.

第3水量調整弁68は、第2水路66と第3水路67の循環水の流通量の配分を変動させて第3熱交換器62の第3処理の能力を調整するように水量比例変動方式の三方弁で構成する。この第3水量調整弁68は、第2水路66と第3水路67の一方に全量流れて他方は流れないように切換える三方弁で構成してもよい。   The third water amount adjustment valve 68 is a water amount proportional variation method so as to adjust the third processing capability of the third heat exchanger 62 by changing the distribution of the circulation amount of the circulating water in the second water channel 66 and the third water channel 67. It consists of a three-way valve. The third water amount adjusting valve 68 may be a three-way valve that switches so that the entire amount flows in one of the second water channel 66 and the third water channel 67 and the other does not flow.

第4加湿器69は、第3熱交換器62の風下で蒸気で加湿する蒸気式とする。第4ダンパ71は、第2の空調機1bに取入れる空調用空気の外気量を増減調整する。第5ダンパ72と第6ダンパ73は、第2の空調機1bに取入れる空調用空気の還気量を増減調整する。第2送風機74は、被空調空間Sへの空調用空気の給気量を増減調整する。第2送風機74によって、第4ダンパ71から取入れられた外気と第6ダンパ73から取入れられた還気は第3熱交換器62を通り、かつ、第5ダンパ72から取入れられた還気は第4熱交換器63を通って、互いに混ざり合って被空調空間Sへ送られる。第4ダンパ71から取入れられる外気量は、被空調空間Sの二酸化炭素濃度が予め設定された範囲になるように調整される。   The fourth humidifier 69 is a steam type that humidifies with steam in the lee of the third heat exchanger 62. The fourth damper 71 increases or decreases the outside air amount of the air conditioning air taken into the second air conditioner 1b. The fifth damper 72 and the sixth damper 73 increase or decrease the amount of return air of the air-conditioning air taken into the second air conditioner 1b. The second blower 74 adjusts to increase or decrease the amount of air-conditioning air supplied to the air-conditioned space S. The outside air taken in from the fourth damper 71 and the return air taken in from the sixth damper 73 by the second blower 74 pass through the third heat exchanger 62 and the return air taken in from the fifth damper 72 is The four heat exchangers 63 are mixed with each other and sent to the air-conditioned space S. The amount of outside air taken in from the fourth damper 71 is adjusted so that the carbon dioxide concentration in the air-conditioned space S falls within a preset range.

第3熱交換器62は上述の第1熱交換器35と同様に構成する。第4熱交換器63は上述の第7熱交換器25と同様に構成する。第5熱交換器64は、一般的なプレート式熱交換器と同様に内部を伝熱板で区画して構成し、この伝熱板と伝熱板の間に循環水と冷媒を交互に流し、伝熱板を介して、循環水と冷媒を熱交換する。   The third heat exchanger 62 is configured in the same manner as the first heat exchanger 35 described above. The fourth heat exchanger 63 is configured in the same manner as the seventh heat exchanger 25 described above. The fifth heat exchanger 64 is configured by partitioning the inside with a heat transfer plate in the same way as a general plate heat exchanger, and circulating water and refrigerant are alternately flowed between the heat transfer plate and the heat transfer plate to transfer the heat. Heat is exchanged between the circulating water and the refrigerant through the hot plate.

第2の空調機1bの空調機制御装置2bは、外気の温度及び湿度を検出する外気温湿度検出器81、還気の温度及び湿度を検出する還気温湿度検出器82、空調機1bの給気の温度及び湿度を検出する給気温湿度検出器83、風量制御部84、水量制御部85、加湿制御部86及び圧縮機制御部87を備えている。空調機制御装置2bはマイクロプロセッサ、各種センサー、その他の制御機器で構成する。   The air conditioner control device 2b of the second air conditioner 1b includes an outside air temperature / humidity detector 81 that detects the temperature and humidity of the outside air, a return air temperature / humidity detector 82 that detects the temperature and humidity of the return air, and a supply of the air conditioner 1b. A temperature / humidity detector 83 for detecting the temperature and humidity of the air, an air volume control unit 84, a water volume control unit 85, a humidification control unit 86, and a compressor control unit 87 are provided. The air conditioner control device 2b includes a microprocessor, various sensors, and other control devices.

風量制御部84は、空調機1bの第2送風機74の回転数と、第4ダンパ71のダンパ開度と、第5ダンパ72のダンパ開度と、第6ダンパ73のダンパ開度と、を制御して外気、還気及び給気の各風量を調整するように構成する。水量制御部85は、第3水量調整弁68を制御して第3熱交換器62及び第5熱交換器64の循環水の各流通量を調整するように構成する。加湿制御部86は、第4加湿器69の蒸気発生量を制御して空調用空気への加湿量を調整するように構成する。圧縮機制御部87は、圧縮機76の回転数を制御して冷却又は加熱する能力を調整するように構成する。   The air volume control unit 84 sets the rotation speed of the second blower 74 of the air conditioner 1b, the damper opening of the fourth damper 71, the damper opening of the fifth damper 72, and the damper opening of the sixth damper 73. It controls and adjusts each air volume of outside air, return air, and supply air. The water amount control unit 85 is configured to control the third water amount adjustment valve 68 to adjust each circulation amount of the circulating water in the third heat exchanger 62 and the fifth heat exchanger 64. The humidification control unit 86 is configured to control the amount of steam generated by the fourth humidifier 69 and adjust the amount of humidification to the air for air conditioning. The compressor control unit 87 is configured to control the number of revolutions of the compressor 76 to adjust the cooling or heating ability.

この空調機1bで夏期に除湿が必要な冷房運転をする場合、外調機3の第1ヒートポンプ20の第7熱交換器25と第8熱交換器27によって外気と排気を熱交換させて予冷した外気を、空調機1bへ供給する。空調機1bでは、外気を第3熱交換器62で冷却除湿して、第4熱交換器63で除湿せずに冷却した還気と混合することで生じる再熱効果で、目標の給気温度及び給気湿度に制御する。これにより、被空調空間Sを予め設定された温度及び湿度に空調する。   When this air conditioner 1b performs a cooling operation that requires dehumidification in the summer, the air is preheated by exchanging heat between the outside air and the exhaust by the seventh heat exchanger 25 and the eighth heat exchanger 27 of the first heat pump 20 of the external air conditioner 3. The supplied outside air is supplied to the air conditioner 1b. In the air conditioner 1b, a target supply air temperature is obtained by a reheat effect generated by cooling and dehumidifying the outside air with the third heat exchanger 62 and mixing with the return air cooled without being dehumidified with the fourth heat exchanger 63. And control to supply air humidity. Thereby, the air-conditioned space S is air-conditioned at a preset temperature and humidity.

冬期に暖房運転する場合、外調機3の第1ヒートポンプ20の第7熱交換器25と第8熱交換器27によって外気と排気を熱交換させて予熱した外気を、空調機1bへ供給する。空調機1bでは、外気を第3熱交換器62で加熱して第4加湿器69で加湿し、還気を第4熱交換器63で加熱して、混合することで給気の温度及び湿度を制御する。状況に応じて上述の冷房運転及び暖房運転時に、外調機3の混合ダンパ23で、第1ヒートポンプ20で冷却又は加熱される前の外気に被空調空間Sの空気を混合させて予冷又は予熱する。なお、外調機3で外気を予冷又は予熱せずに空調機1bで冷房運転又は暖房運転してもよい。   When heating operation is performed in the winter season, preheated outside air is supplied to the air conditioner 1b by exchanging heat between the outside air and the exhaust by the seventh heat exchanger 25 and the eighth heat exchanger 27 of the first heat pump 20 of the external air conditioner 3. . In the air conditioner 1b, the outside air is heated by the third heat exchanger 62 and humidified by the fourth humidifier 69, and the return air is heated by the fourth heat exchanger 63 and mixed, whereby the temperature and humidity of the supply air are mixed. To control. Precooling or preheating by mixing the air in the air-conditioned space S with the outside air before being cooled or heated by the first heat pump 20 by the mixing damper 23 of the external air conditioner 3 during the above-described cooling operation and heating operation. To do. Note that the air conditioner 1b may be used for cooling operation or heating operation without precooling or preheating the outside air with the external air conditioner 3.

冬期に循環水が温水で冷房運転する場合、外調機3から空調機1bへ供給された外気を、第3熱交換器62で冷房に適した温度まで加熱して第4加湿器69で蒸気加湿する。還気は第2ヒートポンプ65の第4熱交換器63で冷房に適した温度まで冷却又は加熱して、被空調空間Sに供給する。   In the winter season, when the circulating water is cooled with warm water, the outside air supplied from the external air conditioner 3 to the air conditioner 1b is heated to a temperature suitable for cooling by the third heat exchanger 62 and steamed by the fourth humidifier 69. Humidify. The return air is cooled or heated to a temperature suitable for cooling by the fourth heat exchanger 63 of the second heat pump 65 and supplied to the air-conditioned space S.

図7は複数の空調機1のうち第3の空調機1cを示している。この第3の空調機1cは、第6熱交換器94、第4水路95、第4水量調整弁96、第5加湿器97、第7ダンパ98、第8ダンパ99、第3送風機100及びケーシング101を備えている。図例では第6熱交換器94、第5加湿器97及び第3送風機100をケーシング101内に設けているが、空調機制御装置2c、第4水路95、第4水量調整弁96、第7ダンパ98及び第8ダンパ99もケーシング101内に設けてもよい。   FIG. 7 shows a third air conditioner 1 c among the plurality of air conditioners 1. The third air conditioner 1c includes a sixth heat exchanger 94, a fourth water channel 95, a fourth water amount adjusting valve 96, a fifth humidifier 97, a seventh damper 98, an eighth damper 99, a third blower 100, and a casing. 101. In the illustrated example, the sixth heat exchanger 94, the fifth humidifier 97, and the third blower 100 are provided in the casing 101. However, the air conditioner control device 2c, the fourth water channel 95, the fourth water amount adjusting valve 96, the seventh The damper 98 and the eighth damper 99 may also be provided in the casing 101.

第6熱交換器94は、循環水の流通で空調用空気の外気と還気を冷却又は加熱する第5処理を行うように構成する。第4水路95は、循環水を第6熱交換器94に流通させるように水配管を設けて構成する。第4水量調整弁96は、循環水の流通量を変動させて第6熱交換器94の冷却又は加熱する能力を調整するように水量比例変動方式の二方弁で構成する。   The sixth heat exchanger 94 is configured to perform a fifth process for cooling or heating the outside air and the return air of the air-conditioning air through circulation of the circulating water. The fourth water channel 95 is configured by providing a water pipe so that the circulating water flows to the sixth heat exchanger 94. The fourth water amount adjustment valve 96 is a water-proportional two-way valve that adjusts the ability to cool or heat the sixth heat exchanger 94 by changing the circulation amount of the circulating water.

第5加湿器97は、第6熱交換器94の風下で空調用空気を蒸気で加湿する蒸気式とする。第7ダンパ98は、第3の空調機1cに取入れる空調用空気の外気量を増減調整する。第8ダンパ99は、第3の空調機1cに取入れる空調用空気の還気量を増減調整する。第3送風機100は、被空調空間Sへの空調用空気の給気量を増減調整する。第3送風機100によって、第7ダンパ98から取入れられた外気と第8ダンパ99から取入れられた還気は互いに混ざり合って第6熱交換器94を通って被空調空間Sへ送られる。第7ダンパ98から取入れられる外気量は、被空調空間Sの二酸化炭素濃度が予め設定された範囲になるように調整される。   The fifth humidifier 97 is a steam type that humidifies the air-conditioning air with steam under the sixth heat exchanger 94. The seventh damper 98 increases or decreases the amount of outside air of the air-conditioning air taken into the third air conditioner 1c. The eighth damper 99 increases or decreases the return air amount of the air-conditioning air taken into the third air conditioner 1c. The third blower 100 adjusts to increase or decrease the amount of air-conditioning air supplied to the air-conditioned space S. The third blower 100 mixes the outside air taken in from the seventh damper 98 and the return air taken in from the eighth damper 99 and is sent to the air-conditioned space S through the sixth heat exchanger 94. The amount of outside air taken in from the seventh damper 98 is adjusted so that the carbon dioxide concentration in the air-conditioned space S falls within a preset range.

第3の空調機1cの空調機制御装置2cは、外気の温度及び湿度を検出する外気温湿度検出器102、還気の温度及び湿度を検出する還気温湿度検出器103、空調機1cの給気の温度及び湿度を検出する給気温湿度検出器104、風量制御部105、水量制御部106、加湿制御部107及び第5外気冷房運転部108を備えている。空調機制御装置2cはマイクロプロセッサ、各種センサー、その他の制御機器で構成する。   The air conditioner control device 2c of the third air conditioner 1c includes an outside air temperature / humidity detector 102 that detects the temperature and humidity of the outside air, a return air temperature / humidity detector 103 that detects the temperature and humidity of the return air, and a supply of the air conditioner 1c. A temperature-and-air-humidity detector 104 that detects the temperature and humidity of the air, an air volume control unit 105, a water volume control unit 106, a humidification control unit 107, and a fifth outside air cooling operation unit 108 are provided. The air conditioner control device 2c includes a microprocessor, various sensors, and other control devices.

風量制御部105は、空調機1cの第3送風機100の回転数と、第7ダンパ98のダンパ開度と、第8ダンパ99のダンパ開度と、を制御して外気、還気及び給気の各風量を調整するように構成する。水量制御部106は、第4水量調整弁96の弁開度を制御して第6熱交換器94の循環水の流通量を調整するように構成する。加湿制御部107は、第5加湿器97の蒸気発生量を制御して外気及び還気への加湿量を調整するように構成する。   The air volume control unit 105 controls the rotational speed of the third blower 100 of the air conditioner 1c, the damper opening degree of the seventh damper 98, and the damper opening degree of the eighth damper 99 to control the outside air, return air, and supply air It is configured to adjust each air volume. The water amount control unit 106 is configured to control the valve opening degree of the fourth water amount adjustment valve 96 to adjust the circulation amount of the circulating water in the sixth heat exchanger 94. The humidification control unit 107 is configured to control the amount of steam generated by the fifth humidifier 97 and adjust the amount of humidification to the outside air and the return air.

第5外気冷房運転部108は、外気温湿度検出器102で検出された第5処理前の空調用空気の温度が還気温湿度検出器103で検出された被空調空間Sの温度より低い場合に空調用空気を利用して被空調空間Sを冷房するように構成する。冬期に循環水が温水で冷房運転する場合、被空調空間Sの温度より低温の外気を外調機3から空調機1aに供給する。この外気と還気を第6熱交換器94で加熱して冷房に適した温度にし、第5加湿器97で蒸気加湿して、被空調空間Sに供給する。   The fifth outside air cooling operation unit 108 detects the temperature of the air-conditioning air before the fifth process detected by the outside air temperature / humidity detector 102 is lower than the temperature of the air-conditioned space S detected by the return air temperature / humidity detector 103. The air-conditioned space S is cooled using the air for air conditioning. When the circulating water is cooled with warm water during the winter season, outside air having a temperature lower than the temperature of the air-conditioned space S is supplied from the external air conditioner 3 to the air conditioner 1a. The outside air and the return air are heated by the sixth heat exchanger 94 to a temperature suitable for cooling, steam humidified by the fifth humidifier 97, and supplied to the air-conditioned space S.

なお、本発明は上述の実施例に限定されない。熱源機5は、ヒートポンプ式チラーや吸収式など各種のものが適用可能である。外調機3、混合ダンパ23、第3ダンパ45、第6ダンパ73は省略してもよい。第1水量調整弁39、第2水量調整弁40、第3水量調整弁68及び第4水量調整弁96は二方弁や三方弁以外でもよい。上述の実施例の説明において空調用空気の外気を還気と、還気を外気と、各々読替えて構成したものとするも自由である。   In addition, this invention is not limited to the above-mentioned Example. As the heat source unit 5, various types such as a heat pump chiller and an absorption type can be applied. The external air conditioner 3, the mixing damper 23, the third damper 45, and the sixth damper 73 may be omitted. The first water amount adjusting valve 39, the second water amount adjusting valve 40, the third water amount adjusting valve 68, and the fourth water amount adjusting valve 96 may be other than the two-way valve or the three-way valve. In the description of the above-described embodiment, the outside air of the air-conditioning air may be replaced with return air, and the return air may be replaced with outside air.

また、第1加湿器41、第2加湿器42、第3加湿器48、第4加湿器69及び第5加湿器97の一部又は全部を、気化式加湿器と蒸気式加湿器を両方有するもので構成してもよい。たとえば、空調用空気に対して、先ずエネルギー消費の少ない気化式加湿器で加湿し、気化式加湿器で加湿不足となる場合には、その不足分のみを蒸気加湿器で最低限加湿することで、加湿精度向上と消費エネルギー削減の両立を図れる。水循環配管8はダイレクトレターン方式、リバースレターン方式やこれらの併用方式など各種の方式に変更自由である。   In addition, some or all of the first humidifier 41, the second humidifier 42, the third humidifier 48, the fourth humidifier 69, and the fifth humidifier 97 have both a vaporizing humidifier and a steam humidifier. You may comprise. For example, air conditioning air is first humidified with a vaporizing humidifier that consumes less energy, and when the vaporizing humidifier is insufficiently humidified, the steam humidifier only humidifies only the shortage. It is possible to achieve both improvement in humidification accuracy and reduction in energy consumption. The water circulation pipe 8 can be freely changed to various methods such as a direct return method, a reverse return method, and a combination thereof.

本発明の空気調和システムの全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the air conditioning system of this invention. 外調機の内部構成を示す簡略説明図である。It is a simplified explanatory drawing which shows the internal structure of an external air handler. 第1の空調機の内部構成を示す簡略説明図である。It is a simplified explanatory view showing the internal configuration of the first air conditioner. 熱交換器の簡略説明図である。It is a simplified explanatory view of a heat exchanger. 第1の空調機の他の実施例を示す簡略説明図である。It is a simplified explanatory view showing another example of the first air conditioner. 第2の空調機の内部構成を示す簡略説明図である。It is a simplified explanatory view showing the internal configuration of the second air conditioner. 第3の空調機の内部構成を示す簡略説明図である。It is a simplified explanatory view showing the internal configuration of the third air conditioner.

1 空調機
2 空調機制御装置
3 外調機
5 熱源機
6 水循環機器
7 熱源機制御装置
16 熱源機出力補償部
20 第1ヒートポンプ
35 第1熱交換器
36 第2熱交換器
37 第1水路
38 バイパス水路
39 第1水量調整弁
40 第2水量調整弁
41 第1加湿器
42 第2加湿器
46 第1送風機
48 第3加湿器
56 第1外気冷房運転部
57 第1冷房能力補償部
58 第1空調能力補償部
59 第1空調能力制御部
60 第2外気冷房運転部
62 第3熱交換器
63 第4熱交換器
64 第5熱交換器
65 第2ヒートポンプ
66 第2水路
67 第3水路
68 第3水量調整弁
69 第4加湿器
74 第2送風機
76 圧縮機
94 第6熱交換器
95 第4水路
96 第4水量調整弁
97 第5加湿器
100 第3送風機
108 第5外気冷房運転部
S 被空調空間
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Air conditioner control apparatus 3 External air conditioner 5 Heat source machine 6 Water circulation apparatus 7 Heat source machine control apparatus 16 Heat source machine output compensation part 20 1st heat pump 35 1st heat exchanger 36 2nd heat exchanger 37 1st water path 38 Bypass channel 39 First water amount adjustment valve 40 Second water amount adjustment valve 41 First humidifier 42 Second humidifier 46 First blower 48 Third humidifier 56 First outside air cooling operation unit 57 First cooling capacity compensation unit 58 First Air conditioning capability compensation unit 59 First air conditioning capability control unit 60 Second outside air cooling operation unit 62 Third heat exchanger 63 Fourth heat exchanger 64 Fifth heat exchanger 65 Second heat pump 66 Second water channel 67 Third water channel 68 First 3 Water quantity adjustment valve 69 4th humidifier 74 2nd air blower 76 Compressor 94 6th heat exchanger 95 4th water channel 96 4th water quantity adjustment valve 97 5th humidifier 100 3rd air blower 108 5th outside air cooling operation Department S the air-conditioned space

また、空調用空気である外気を第1熱交換器で冷却除湿し、空調用空気である還気を第2熱交換器で除湿せずに冷却すれば、2管式で外気負荷(潜熱)と室内負荷(顕熱)を個別に処理して再熱効果を得られ、再熱エネルギー分が省エネとなる。2管式なので熱源機や循環水の配管設備が簡略化されて省エネ、省コストとなる。第1熱交換器の第1処理後の循環水で第2熱交換器の第2処理を行って循環水の水温差を拡大しているので、熱源機の運転効率が良くなり省エネとなる。第1水路とバイパス水路を構成する配管長と、第1水量調整弁及び第2水量調整弁の数を最小限に抑えて空調システムを簡略化し、コストダウンできる。被空調空間の空調負荷が大きければ第1処理と第2処理を両方行う運転とし、小さければ第1処理のみを行う運転とすることで、空調用空気を冷房又は暖房に適した空気状態に調整する制御範囲が広がる。したがって、被空調空間の空調負荷と外気負荷がアンバランスになって熱源機から空調機へのエネルギー供給に過不足がでても、被空調空間に対して安定した空調が行える。If the outside air, which is air for air conditioning, is cooled and dehumidified by the first heat exchanger, and the return air, which is air for air conditioning, is cooled without being dehumidified by the second heat exchanger, the outside air load (latent heat) is two-pipe. And the indoor load (sensible heat) can be processed individually to obtain a reheat effect, and the reheat energy is saved. Since it is a two-pipe type, heat source equipment and circulating water piping facilities are simplified, saving energy and cost. Since the water temperature difference of the circulating water is expanded by performing the second treatment of the second heat exchanger with the circulating water after the first treatment of the first heat exchanger, the operating efficiency of the heat source machine is improved and the energy is saved. The air conditioning system can be simplified and the cost can be reduced by minimizing the lengths of the pipes constituting the first water channel and the bypass water channel, and the number of the first water amount adjusting valves and the second water amount adjusting valves. The air conditioning air is adjusted to an air condition suitable for cooling or heating by setting the operation to perform both the first process and the second process if the air-conditioning load of the air-conditioned space is large and setting the operation to perform only the first process if it is small. The control range to be expanded. Therefore, even if the air conditioning load and the outside air load in the air-conditioned space are unbalanced and the energy supply from the heat source device to the air conditioner is excessive or insufficient, stable air conditioning can be performed on the air-conditioned space.

請求項の発明によれば、空調機による熱交換で生じた循環水の水温差が、予め設定した水温差の範囲内を外れると、空調機に供給する循環水のエネルギーに過不足がでていることになる。それを利用して、予め設定した水温差の範囲を超えた場合は循環水の水速を上げ、水温差の範囲に満たない場合は循環水の水速を下げることで熱源機出力の過不足を補える。制御を空調機側と熱源機側に完全分離し独立させていても、熱源機から空調機へのエネルギー供給が安定し、快適性の維持と省エネを図れる。 According to the invention of claim 2 , when the water temperature difference caused by the heat exchange by the air conditioner is out of the preset water temperature difference range, the energy of the circulating water supplied to the air conditioner is excessive or insufficient. Will be. Utilizing this, if the temperature difference range set in advance is exceeded, the water speed of the circulating water is increased, and if it is less than the water temperature difference range, the water speed of the circulating water is decreased to reduce or exceed the heat source output. Can be compensated. Even if the control is completely separated and independent from the air conditioner side and the heat source machine side, the energy supply from the heat source machine to the air conditioner can be stabilized, maintaining comfort and saving energy.

請求項の発明によれば、被空調空間の排気熱を利用して空調機に供給される空調用空気を予冷又は予熱するので、空調機で処理する空調負荷が減って省エネとなる。外調機がヒートポンプ式なのでエネルギー消費効率が高く省エネとなる。 According to the invention of claim 3 , since the air-conditioning air supplied to the air conditioner is pre-cooled or pre-heated using the exhaust heat of the air-conditioned space, the air-conditioning load processed by the air-conditioner is reduced and energy is saved. Since the external air conditioner is a heat pump type, energy consumption efficiency is high and energy saving.

請求項の発明によれば、2つの気化式加湿器で加湿するので加湿不足とならず快適な環境となる。循環水の流通量を増やさずに2つの気化式加湿器の気化冷却を利用して冷やせるので省エネとなる。 According to invention of Claim 4 , since it humidifies with two vaporization type humidifiers, it becomes a comfortable environment without becoming insufficient humidification. It is energy saving because it can be cooled by using the vaporization cooling of the two vaporizing humidifiers without increasing the circulation of circulating water.

請求項の発明によれば、冬期に被空調空間の方角などによって寒暖差が生じても、2管式で暖房と外気冷房を自由に切換して快適性の向上を図れる。2管式なので熱源機や循環水の配管設備が簡略化されて省エネ、省コストとなる。蒸気式加湿器で加湿するので加湿不足とならず快適な環境となる。 According to the invention of claim 5 , even if a temperature difference occurs due to the direction of the air-conditioned space in winter, the comfort can be improved by freely switching between heating and outdoor air cooling with a two-pipe type. Since it is a two-pipe type, heat source equipment and circulating water piping facilities are simplified, saving energy and cost. Since it is humidified with a steam humidifier, it becomes a comfortable environment without dampening.

請求項の発明によれば、空調用空気の冷却又は加熱に要するエンタルピーが小さい方の処理の風量を多くして空調負荷を減らすことで省エネを図れる。したがって、被空調空間の空調負荷と外気負荷がアンバランスになって熱源機から空調機へのエネルギー供給に過不足がでても、被空調空間に対して安定した空調が行える。 According to the invention of claim 6 , it is possible to save energy by increasing the air volume of the process having the smaller enthalpy required for cooling or heating the air conditioning air and reducing the air conditioning load. Therefore, even if the air conditioning load and the outside air load in the air-conditioned space are unbalanced and the energy supply from the heat source device to the air conditioner is excessive or insufficient, stable air conditioning can be performed on the air-conditioned space.

請求項の発明によれば、空調用空気である外気を第3熱交換器で冷却除湿し、空調用空気である還気を第4熱交換器で除湿せずに冷却すれば、2管式で外気負荷(潜熱)と室内負荷(顕熱)を個別に処理して再熱効果を得られ、再熱エネルギー分が省エネとなる。2管式なので熱源機や循環水の配管設備が簡略化されて省エネ、省コストとなる。第2水路と第3水路を構成する配管長と、第3水量調整弁の数を最小限に抑えて空調システムを簡略化し、コストダウンできる。被空調空間の方角などによって寒暖差が生じても、循環水の温度にかかわらず第2ヒートポンプで暖房と冷房を自由に切換して空調でき快適性の向上を図れる。 According to the invention of claim 7 , if the outside air as air conditioning air is cooled and dehumidified by the third heat exchanger, and the return air as air conditioning air is cooled without being dehumidified by the fourth heat exchanger, two pipes The reheat effect can be obtained by processing the outdoor air load (latent heat) and the indoor load (sensible heat) separately, and the reheat energy is saved. Since it is a two-pipe type, heat source equipment and circulating water piping facilities are simplified, saving energy and cost. The air conditioning system can be simplified and the cost can be reduced by minimizing the length of the pipes constituting the second water channel and the third water channel and the number of the third water amount adjusting valves. Even if there is a difference in temperature depending on the direction of the air-conditioned space, the second heat pump can freely switch between heating and cooling regardless of the temperature of the circulating water, so that air conditioning can be improved.

熱源機5は、空調用空気の空気状態の調整のために空調機1に供給される循環水の供給水温を調整するように構成する。水循環機器6は、循環水を熱源機5と空調機1に対して循環させるように構成した水循環配管8と、水循環配管8の循環水の水速や送水量を可変できる機能を有する送水ポンプ9と、を備えている。熱源機制御装置7は、空調機制御装置2から独立した制御装置であって熱源機5を制御して循環水を外気負荷の状態に応じた供給水温に切換えるように構成する。 The heat source device 5 is configured to adjust the supply water temperature of the circulating water supplied to the air conditioner 1 in order to adjust the air state of the air for air conditioning. The water circulation device 6 includes a water circulation pipe 8 configured to circulate the circulating water with respect to the heat source unit 5 and the air conditioner 1, and a water feed pump 9 having a function of changing a water speed and a water supply amount of the circulating water in the water circulation pipe 8. And. The heat source device control device 7 is a control device that is independent from the air conditioner control device 2 and is configured to control the heat source device 5 to switch the circulating water to the supply water temperature according to the state of the outside air load .

送水制御部14は、送水ポンプ9の回転数を制御して水速や送水量を調整するように構成する。供給水温制御部15は、予め設定した外気温度及び外気湿度と、外気温湿度検出器10で検出された外気温度及び外気湿度と、を比較する。その結果に応じて、循環水の供給水温を切換える。具体的には、被空調空間Sの冷房時において予め設定した外気温度及び外気湿度に対して外気が高温高湿、低温高湿、高温低湿又は低温低湿のいずれかの場合に供給水温を高温高湿のときは6〜7℃に、低温高湿のときは7〜8℃に、高温低湿のときは8〜9℃に、低温低湿のときは9〜10℃に、それぞれ切換えると共に、被空調空間Sの暖房時において予め設定した外気温度に対して外気が高温又は低温の場合に供給水温を高温のときは34〜36℃に、低温のときは39〜41℃に、それぞれ切換える。 The water supply control unit 14 is configured to control the rotation speed of the water supply pump 9 to adjust the water speed and the water supply amount. The supply water temperature control unit 15 compares the preset outside air temperature and outside air humidity with the outside air temperature and outside air humidity detected by the outside air temperature / humidity detector 10. The supply water temperature of the circulating water is switched according to the result . Specifically, the supply water temperature is increased when the outside air is at a high temperature and high humidity, a low temperature and high humidity, a high temperature and low humidity, or a low temperature and low humidity with respect to the outside temperature and humidity set in advance during the cooling of the air-conditioned space S. Switch to 6 to 7 ° C for humidity, 7 to 8 ° C for low temperature and high humidity, 8 to 9 ° C for high temperature and low humidity, and 9 to 10 ° C for low temperature and low humidity. When the outside air is at a high temperature or a low temperature with respect to the preset outside air temperature during the heating of the space S, the supply water temperature is switched to 34 to 36 ° C. when the temperature is high and to 39 to 41 ° C. when the temperature is low.

被空調空間Sの冷房時の予め設定した外気温度及び外気湿度は、例えば乾球温度28℃で絶対湿度が0.011kg/kg(DA)とする。被空調空間Sの暖房時の予め設定した外気温度は、例えば乾球温度13℃とする。なお、上述の供給水温と予め設定した外気温度及び外気湿度は一例で、これに限定されるものではなく設定変更は自由である。 The preset outside air temperature and outside air humidity during cooling of the air-conditioned space S are, for example, a dry bulb temperature of 28 ° C. and an absolute humidity of 0.011 kg / kg (DA). The preset outside air temperature during heating of the air-conditioned space S is, for example, a dry bulb temperature of 13 ° C. The above-mentioned supply water temperature and the preset outside air temperature and outside air humidity are merely examples, and the present invention is not limited to this, and the setting can be changed freely.

第1空調能力制御部59は、被空調空間Sの空調負荷が大きければ第1処理と第2処理を両方行う運転に、被空調空間Sの空調負荷が小さければ第1処理のみを行う運転に、切換えて被空調空間Sを冷房又は暖房する能力を制御するように構成する。例えば、第1処理のみ行っても被空調空間Sを冷房又は暖房する能力が不足する場合は、第2処理を併用して能力不足を補う。 The first air-conditioning capacity control unit 59 performs an operation for performing both the first process and the second process if the air-conditioning load in the air-conditioned space S is large, and performs an operation for performing only the first process if the air-conditioning load in the air-conditioned space S is small. The ability to cool or heat the air-conditioned space S by switching is controlled. For example, if the ability to cool or heat the air-conditioned space S is insufficient even when only the first process is performed, the lack of capacity is compensated by using the second process together.

Claims (11)

空調用空気を被空調空間(S)に供給して冷房又は暖房する空調機(1)と、前記空調機(1)を制御して前記空調用空気を前記冷房又は前記暖房に適した空気状態に調整する空調機制御装置(2)と、前記空調用空気の空気状態の調整のために前記空調機(1)に供給される循環水の供給水温を調整する熱源機(5)と、前記空調機制御装置(2)から独立した制御装置であって前記循環水の前記供給水温を外気負荷の変動に応じて自動的に可変調整する熱源機制御装置(7)と、を備えたことを特徴とする空気調和システム。   An air conditioner (1) for supplying air to the air-conditioned space (S) for cooling or heating, and an air condition suitable for the cooling or heating by controlling the air conditioner (1). An air conditioner control device (2) for adjusting the air conditioner, a heat source device (5) for adjusting the supply water temperature of the circulating water supplied to the air conditioner (1) for adjusting the air condition of the air conditioning air, A control device independent of the air conditioner control device (2), the heat source device control device (7) automatically and variably adjusting the supply water temperature of the circulating water according to fluctuations in the outside air load. A characteristic air conditioning system. 被空調空間(S)の冷房時には、熱源機制御装置(7)で自動的に可変調整する循環水の供給水温を、予め設定した外気温度及び外気湿度に対して、外気が高温高湿のときは6〜7℃に設定し、前記外気が低温高湿のときは7〜8℃に設定し、前記外気が高温低湿のときは8〜9℃に設定し、前記外気が低温低湿のときは9〜10℃に設定し、前記被空調空間(S)の暖房時には、前記熱源機制御装置(7)で自動的に可変調整する前記循環水の前記供給水温を、予め設定した外気温度に対して、前記外気が高温のときは34〜36℃に設定し、前記外気が低温のときは39〜41℃に設定した請求項1に記載の空気調和システム。   When cooling the air-conditioned space (S), when the outside air is hot and humid with respect to the preset outside temperature and outside humidity, the supply water temperature of the circulating water automatically variably adjusted by the heat source device control device (7) Is set to 6-7 ° C, 7-8 ° C when the outside air is low temperature and high humidity, 8-9 ° C when the outside air is high temperature and low humidity, and when the outside air is low temperature and low humidity When the air-conditioned space (S) is heated to 9 to 10 ° C., the supply water temperature of the circulating water that is automatically variably adjusted by the heat source controller (7) is set to a preset outside air temperature. The air conditioning system according to claim 1, wherein the air conditioning system is set to 34 to 36 ° C when the outside air is high temperature and 39 to 41 ° C when the outside air is low temperature. 循環水を循環させる水循環機器(6)を備え、熱源機制御装置(7)が、空調機(1)への供給で生じる循環水の水温差が予め設定した水温差の範囲内を外れると前記水循環機器(6)を制御して前記循環水の水速を調整することで熱源機出力の過不足を補償する熱源機出力補償部(16)を、備えた請求項1又は2に記載の空気調和システム。   A water circulation device (6) for circulating the circulating water is provided, and the heat source device control device (7) is configured such that when the water temperature difference of the circulating water generated by the supply to the air conditioner (1) is out of the preset water temperature difference range. The air according to claim 1 or 2, further comprising a heat source unit output compensation unit (16) that compensates for excess or deficiency of the heat source unit output by controlling a water circulation device (6) and adjusting a water speed of the circulating water. Harmony system. 第1ヒートポンプ(20)を有すると共に空調用空気と被空調空間(S)の空気とを前記第1ヒートポンプ(20)で熱交換させることで前記空調用空気を予冷又は予熱して空調機(1)へ供給する外調機(3)を、備えた請求項1から3のいずれかに記載の空気調和システム。   An air conditioner (1) having a first heat pump (20) and pre-cooling or pre-heating the air-conditioning air by exchanging heat between the air-conditioning air and the air in the air-conditioned space (S) by the first heat pump (20). The air conditioning system according to any one of claims 1 to 3, further comprising an external air conditioner (3) supplied to the air conditioner. 第1の空調機(1a)が、循環水の流通で空調用空気を冷却又は加熱する第1処理を行う第1熱交換器(35)と、前記循環水の流通で前記空調用空気を冷却又は加熱する第2処理を行う第2熱交換器(36)と、前記第1処理後の前記空調用空気と前記第2処理後の前記空調用空気を被空調空間(S)へ供給する第1送風機(46)と、前記循環水を前記第1熱交換器(35)に流通させてから前記第2熱交換器(36)に流通させる第1水路(37)と、前記第1水路(37)から分岐して前記第1処理後の前記循環水を前記第2熱交換器(36)を通さずに迂回させるバイパス水路(38)と、前記循環水の流通量を変動させて前記第1熱交換器(35)の前記第1処理の能力を調整する第1水量調整弁(39)と、前記第2熱交換器(36)と前記バイパス水路(38)の前記循環水の流通量の配分を変動させて前記第2熱交換器(36)の前記第2処理の能力を調整する第2水量調整弁(40)と、を備えた請求項1から4のいずれかに記載の空気調和システム。   The first air conditioner (1a) cools the air conditioning air by the first heat exchanger (35) for performing a first process of cooling or heating the air conditioning air by circulation of the circulating water, and the circulation of the circulating water. Or the 2nd heat exchanger (36) which performs the 2nd process to heat, and the air for the air conditioning after the 1st processing and the air for the air conditioning after the 2nd processing are supplied to the air-conditioned space (S) 1 blower (46), a first water channel (37) for circulating the circulating water to the first heat exchanger (35) and then to the second heat exchanger (36), and the first water channel ( 37) and a bypass water channel (38) for diverting the circulating water after the first treatment without passing through the second heat exchanger (36), and changing the circulation amount of the circulating water to change the circulating water. A first water amount adjustment valve (39) for adjusting the capacity of the first treatment of one heat exchanger (35), and the second heat exchanger. 36) and a second water amount adjustment valve (40) for adjusting the second processing capacity of the second heat exchanger (36) by changing the distribution of the circulation amount of the circulating water in the bypass channel (38). The air conditioning system according to any one of claims 1 to 4, further comprising: 第1の空調機制御装置(2a)が、被空調空間(S)の空調負荷の大小に応じて第1処理と第2処理を両方行う運転と第1処理及び第2処理の一方のみを行う運転を切換えて前記被空調空間(S)を冷房又は暖房する能力を調整する第1空調能力制御部(59)を、備えた請求項5に記載の空気調和システム。   The first air conditioner control device (2a) performs only one of the first process and the second process and the operation of performing both the first process and the second process according to the size of the air conditioning load of the air-conditioned space (S). The air conditioning system according to claim 5, further comprising a first air conditioning capability control unit (59) that adjusts the capability of cooling or heating the air-conditioned space (S) by switching operation. 第1の空調機(1a)が、第1熱交換器(35)の風下で空調用空気を水の気化蒸発で加湿する気化式の第1加湿器(41)と、第2熱交換器(36)の風下で前記空調用空気を水の気化蒸発で加湿する気化式の第2加湿器(42)と、を備えた請求項5又は6に記載の空気調和システム。   The first air conditioner (1a) is a vaporization type first humidifier (41) for humidifying the air-conditioning air by vaporization and evaporation of water under the first heat exchanger (35), and a second heat exchanger ( The air conditioning system according to claim 5 or 6, further comprising a vaporization type second humidifier (42) for humidifying the air-conditioning air by vaporization and evaporation of water under the wind of 36). 第1の空調機(1a)が、第1熱交換器(35)と第2熱交換器(36)の一方又は両方の風下で空調用空気を蒸気で加湿する蒸気式の第3加湿器(48)を備え、第1の空調機制御装置(2a)が、第1処理前の前記空調用空気と第2処理前の前記空調用空気の一方又は両方の温度が前記被空調空間(S)の温度より低い場合に前記空調用空気を利用して前記被空調空間(S)を冷房する第2外気冷房運転部(60)を、備えた請求項5又は6に記載の空気調和システム。   The first air conditioner (1a) is a steam-type third humidifier that humidifies air-conditioning air with steam under one or both of the first heat exchanger (35) and the second heat exchanger (36) ( 48), and the first air conditioner control device (2a) is configured such that the temperature of one or both of the air-conditioning air before the first treatment and the air-conditioning air before the second treatment is the air-conditioned space (S). The air conditioning system according to claim 5 or 6, further comprising a second outside air cooling operation section (60) that cools the air-conditioned space (S) using the air-conditioning air when the temperature is lower than the temperature of the air-conditioning system. 第1の空調機制御装置(2a)が、第1処理に要する第1処理時エンタルピーと第2処理に要する第2処理時エンタルピーとを比較して前記エンタルピーが小さい処理の空調用空気の風量を多くして前記第1の空調機(1a)の空調負荷を下げる第1空調能力補償部(58)を、備えた請求項5から8のいずれかに記載の空気調和システム。   The first air conditioner control device (2a) compares the enthalpy for the first process required for the first process with the enthalpy for the second process required for the second process, and determines the air volume of the air-conditioning air for the process with a small enthalpy. The air conditioning system according to any one of claims 5 to 8, further comprising a first air conditioning capability compensator (58) for increasing the air conditioning load of the first air conditioner (1a). 第2の空調機(1b)が、循環水の流通で空調用空気を冷却又は加熱する第3処理を行う第3熱交換器(62)と、冷媒の流通で前記空調用空気を冷却又は加熱する第4処理を行う第4熱交換器(63)と、前記冷媒と前記循環水を熱交換する第5熱交換器(64)と、前記第4処理の冷却と加熱を切換えて前記第4処理の能力を調整するように構成された前記第4熱交換器(63)と前記第5熱交換器(64)と圧縮機(76)とを有する第2ヒートポンプ(65)と、前記第3処理後の前記空調用空気と前記第4処理後の前記空調用空気を被空調空間(S)へ供給する第2送風機(74)と、前記第3処理前の前記循環水を前記第3熱交換器(62)に流通させる第2水路(66)と、前記第2水路(66)から分岐して前記第3処理前の前記循環水を前記第5熱交換器(64)に流通させる第3水路(67)と、前記第2水路(66)と前記第3水路(67)の前記循環水の流通量の配分を変動させて前記第3熱交換器(62)の前記第3処理の能力を調整する第3水量調整弁(68)と、を備えた請求項1から9のいずれかに記載の空気調和システム。   The second air conditioner (1b) cools or heats the air conditioning air by a third heat exchanger (62) that performs a third process for cooling or heating the air conditioning air by circulation of circulating water, and the refrigerant circulation. A fourth heat exchanger (63) for performing the fourth treatment, a fifth heat exchanger (64) for exchanging heat between the refrigerant and the circulating water, and switching the cooling and heating of the fourth treatment to change the fourth heat exchanger (64). A second heat pump (65) having the fourth heat exchanger (63), the fifth heat exchanger (64), and a compressor (76) configured to adjust a processing capacity; A second blower (74) for supplying the air-conditioning air after the treatment and the air-conditioning air after the fourth treatment to the air-conditioned space (S), and the circulating water before the third treatment as the third heat A second water channel (66) to be circulated through the exchanger (62) and a branch from the second water channel (66) before the third treatment The distribution of the circulation amount of the circulating water in the third water channel (67) for circulating the circulating water to the fifth heat exchanger (64), the second water channel (66), and the third water channel (67) is changed. The air conditioning system according to any one of claims 1 to 9, further comprising a third water amount adjustment valve (68) that adjusts the capacity of the third treatment of the third heat exchanger (62). 第3の空調機(1c)が、循環水の流通で空調用空気を冷却又は加熱する第5処理を行う第6熱交換器(94)と、前記第5処理後の前記空調用空気を被空調空間(S)へ供給する第3送風機(100)と、前記第6熱交換器(94)の風下で蒸気で加湿する蒸気式の第5加湿器(97)と、前記循環水の流通量を変動させて前記第6熱交換器(94)の前記第5処理の能力を調整する第4水量調整弁(96)と、を備え、第3の空調機制御装置(2c)が、第5処理前の前記空調用空気の温度が前記被空調空間(S)の温度より低い場合に前記空調用空気を利用して前記被空調空間(S)を冷房する第5外気冷房運転部(108)を、備えた請求項1から10のいずれかに記載の空気調和システム。   A third air conditioner (1c) receives a sixth heat exchanger (94) that performs a fifth process of cooling or heating the air-conditioning air through circulation of circulating water and the air-conditioning air that has been subjected to the fifth process. A third blower (100) to be supplied to the air-conditioned space (S), a steam-type fifth humidifier (97) humidified with steam in the lee of the sixth heat exchanger (94), and a circulation amount of the circulating water And a fourth water amount adjustment valve (96) that adjusts the capacity of the fifth treatment of the sixth heat exchanger (94), and the third air conditioner control device (2c) A fifth outdoor air cooling operation unit (108) that cools the air-conditioned space (S) using the air-conditioned air when the temperature of the air-conditioned air before processing is lower than the temperature of the air-conditioned space (S). The air conditioning system according to any one of claims 1 to 10, further comprising:
JP2017037888A 2017-03-01 2017-03-01 Air conditioning system Active JP6425750B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2017037888A JP6425750B2 (en) 2017-03-01 2017-03-01 Air conditioning system
CA2995017A CA2995017C (en) 2017-03-01 2018-02-14 Air conditioner and air conditioning system including the same
EP18158280.0A EP3370001B1 (en) 2017-03-01 2018-02-23 Air conditioning system
ES18158280T ES2891649T3 (en) 2017-03-01 2018-02-23 Air conditioning system
CN201820275084.3U CN208012005U (en) 2017-03-01 2018-02-27 Air conditioner and the air reconciliation system for having the air conditioner
CN201810164896.5A CN108534319B (en) 2017-03-01 2018-02-27 Air conditioner and air conditioning system provided with same
US15/908,595 US10502449B2 (en) 2017-03-01 2018-02-28 Air conditioner using heat exchange water and air conditioning system including the same
AU2018201508A AU2018201508B2 (en) 2017-03-01 2018-03-01 Air Conditioner and Air Conditioning System Including the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017037888A JP6425750B2 (en) 2017-03-01 2017-03-01 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2018146118A true JP2018146118A (en) 2018-09-20
JP6425750B2 JP6425750B2 (en) 2018-11-21

Family

ID=63590880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017037888A Active JP6425750B2 (en) 2017-03-01 2017-03-01 Air conditioning system

Country Status (1)

Country Link
JP (1) JP6425750B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165599A (en) * 2019-03-29 2020-10-08 木村工機株式会社 Air conditioning system
JP2021018000A (en) * 2019-07-18 2021-02-15 木村工機株式会社 Separately installed air conditioning system
JP2021017999A (en) * 2019-07-18 2021-02-15 木村工機株式会社 Air conditioning apparatus
JP2021085629A (en) * 2019-11-29 2021-06-03 木村工機株式会社 Air-type radiation air conditioner

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166178A (en) * 1994-12-14 1996-06-25 Hitachi Ltd Air-conditioning system as well as equipment and method for controlling dehumidifying operation thereof
JP2000274785A (en) * 1999-03-19 2000-10-06 Ntt Power & Building Facilities Inc Air conditioning system
JP2004156805A (en) * 2002-11-05 2004-06-03 Sanyo Electric Co Ltd Heat pump system
JP2005069552A (en) * 2003-08-22 2005-03-17 Kimura Kohki Co Ltd Water heat source heat pump unit
JP2008151481A (en) * 2006-12-20 2008-07-03 Kawasaki Thermal Engineering Co Ltd Energy-saving control operation method and device for refrigerating machine
JP2010025503A (en) * 2008-07-23 2010-02-04 Kimura Kohki Co Ltd Heat pump air conditioning system
JP2010071543A (en) * 2008-09-18 2010-04-02 Daido Air Products Electronics Inc Air conditioning system and method
JP2011145045A (en) * 2009-12-17 2011-07-28 Kimura Kohki Co Ltd Inductive radiation air conditioner
WO2012164684A1 (en) * 2011-05-31 2012-12-06 三菱電機株式会社 Temperature adjusting system, air conditioning system, and control method
JP2013100992A (en) * 2013-03-08 2013-05-23 Kimura Kohki Co Ltd Outdoor air-conditioning unit with air-conditioning function

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166178A (en) * 1994-12-14 1996-06-25 Hitachi Ltd Air-conditioning system as well as equipment and method for controlling dehumidifying operation thereof
JP2000274785A (en) * 1999-03-19 2000-10-06 Ntt Power & Building Facilities Inc Air conditioning system
JP2004156805A (en) * 2002-11-05 2004-06-03 Sanyo Electric Co Ltd Heat pump system
JP2005069552A (en) * 2003-08-22 2005-03-17 Kimura Kohki Co Ltd Water heat source heat pump unit
JP2008151481A (en) * 2006-12-20 2008-07-03 Kawasaki Thermal Engineering Co Ltd Energy-saving control operation method and device for refrigerating machine
JP2010025503A (en) * 2008-07-23 2010-02-04 Kimura Kohki Co Ltd Heat pump air conditioning system
JP2010071543A (en) * 2008-09-18 2010-04-02 Daido Air Products Electronics Inc Air conditioning system and method
JP2011145045A (en) * 2009-12-17 2011-07-28 Kimura Kohki Co Ltd Inductive radiation air conditioner
WO2012164684A1 (en) * 2011-05-31 2012-12-06 三菱電機株式会社 Temperature adjusting system, air conditioning system, and control method
JP2013100992A (en) * 2013-03-08 2013-05-23 Kimura Kohki Co Ltd Outdoor air-conditioning unit with air-conditioning function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165599A (en) * 2019-03-29 2020-10-08 木村工機株式会社 Air conditioning system
JP2021018000A (en) * 2019-07-18 2021-02-15 木村工機株式会社 Separately installed air conditioning system
JP2021017999A (en) * 2019-07-18 2021-02-15 木村工機株式会社 Air conditioning apparatus
JP2021085629A (en) * 2019-11-29 2021-06-03 木村工機株式会社 Air-type radiation air conditioner

Also Published As

Publication number Publication date
JP6425750B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP4207166B2 (en) Dehumidifying air conditioner
CN108534319B (en) Air conditioner and air conditioning system provided with same
CN108800375B (en) Air heat source heat pump type air conditioner
WO2017029741A1 (en) Air-conditioning system
KR100821568B1 (en) Air conditioner
JP6425750B2 (en) Air conditioning system
AU2019200456B2 (en) Air conditioning system
JP4505486B2 (en) Heat pump air conditioner
JP6425705B2 (en) Air conditioning system
JP2020041796A (en) Air conditioner with dehumidifying function and control method thereof
JP2018169089A (en) Cold/hot-water type air conditioner
JP6619033B2 (en) Air conditioner
JP2021018000A (en) Separately installed air conditioning system
JP6532980B1 (en) Air conditioner
JP2021017999A (en) Air conditioning apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181023

R150 Certificate of patent or registration of utility model

Ref document number: 6425750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150