JP2018145400A - Lubricating oil for hydrodynamic pressure bearing, hydrodynamic pressure bearing, spindle motor and disk driving device - Google Patents

Lubricating oil for hydrodynamic pressure bearing, hydrodynamic pressure bearing, spindle motor and disk driving device Download PDF

Info

Publication number
JP2018145400A
JP2018145400A JP2018001658A JP2018001658A JP2018145400A JP 2018145400 A JP2018145400 A JP 2018145400A JP 2018001658 A JP2018001658 A JP 2018001658A JP 2018001658 A JP2018001658 A JP 2018001658A JP 2018145400 A JP2018145400 A JP 2018145400A
Authority
JP
Japan
Prior art keywords
carbon atoms
fluid dynamic
lubricating oil
groups
pressure bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018001658A
Other languages
Japanese (ja)
Other versions
JP6764424B2 (en
Inventor
大志 福居
Taishi Fukui
大志 福居
悠治 萩原
Yuji Hagiwara
悠治 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Publication of JP2018145400A publication Critical patent/JP2018145400A/en
Application granted granted Critical
Publication of JP6764424B2 publication Critical patent/JP6764424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a lubricating oil for a hydrodynamic pressure bearing, which can reduce generation of an electric potential difference between a stationary portion and a rotating portion of the hydrodynamic pressure bearing, and a hydrodynamic pressure bearing, a spindle motor and a disk driving device, which use the same.SOLUTION: The disk driving device has a spindle motor 10, the spindle motor 10 has a stationary portion 2 and a rotating portion 3 and a hydrodynamic pressure bearing 4 has a lubricating oil 50 for the hydrodynamic pressure bearing. The lubricating oil 50 for the hydrodynamic pressure bearing has a metal salt or an ionic liquid which is an anion having C1-8 perfluoroalkyl group, where the anion is a compound having predominantly the nitrogen anion or the carbanion.EFFECT: The lubricating oil 50 for the hydrodynamic pressure bearing to which the metal salt or the ionic liquid is added can reduce an occurrence of the electric potential difference between the stationary portion 2 and the rotating portion 3 of the hydrodynamic pressure bearing 4 under a high temperature or a high humidity environment.SELECTED DRAWING: Figure 2

Description

本発明は、流体動圧軸受用潤滑油、流体動圧軸受、スピンドルモータ及びディスク駆動装置に関する。   The present invention relates to a lubricant for a fluid dynamic pressure bearing, a fluid dynamic pressure bearing, a spindle motor, and a disk drive device.

従来の流体動圧軸受用潤滑油は特許文献1に開示されている。この流体動圧軸受用潤滑油は流体動圧軸受のシャフト部とスリーブ部との間に充填される。流体動圧軸受はディスク駆動装置の記録媒体であるディスクを回転駆動するスピンドルモータの軸受として用いられる。   A conventional lubricating oil for fluid dynamic bearings is disclosed in Patent Document 1. The fluid dynamic pressure bearing lubricant is filled between the shaft portion and the sleeve portion of the fluid dynamic pressure bearing. A fluid dynamic pressure bearing is used as a bearing of a spindle motor that rotationally drives a disk that is a recording medium of a disk drive device.

スピンドルモータの回転に伴って流体動圧軸受用潤滑油に動圧が発生し、シャフト部とスリーブ部との接触が防止される。これにより、スリーブ部がシャフト部に対して円滑に回転する。   With the rotation of the spindle motor, dynamic pressure is generated in the fluid dynamic bearing lubricating oil, and contact between the shaft portion and the sleeve portion is prevented. Thereby, a sleeve part rotates smoothly with respect to a shaft part.

特開2014−209030号公報JP 2014-209030 A

しかしながら、上記従来の流体動圧軸受用潤滑油によると、ディスク駆動装置及びスピンドルモータの小形化に伴って流体動圧軸受が小形化、薄型化して、記録媒体とヘッドとの間の浮上距離が小さくなる。このため、スピンドルモータを高温又は高湿環境下で駆動した時に静止部と回転部との間に発生する微小の電位差によってディスクへの読み書きエラーが発生する問題があった。   However, according to the conventional fluid dynamic pressure bearing lubricant, the fluid dynamic pressure bearing is reduced in size and thickness with the downsizing of the disk drive device and the spindle motor, and the flying distance between the recording medium and the head is increased. Get smaller. For this reason, there has been a problem that a read / write error to the disk occurs due to a minute potential difference generated between the stationary part and the rotating part when the spindle motor is driven in a high temperature or high humidity environment.

本発明は、流体動圧軸受の静止部と回転部との間の電位差の発生を低減できる流体動圧軸受用潤滑油及びそれを用いた流体動圧軸受、スピンドルモータ、ディスク駆動装置を提供することを目的とする。   The present invention provides a fluid dynamic pressure bearing lubricant capable of reducing the occurrence of a potential difference between a stationary portion and a rotating portion of a fluid dynamic pressure bearing, and a fluid dynamic pressure bearing, a spindle motor, and a disk drive device using the same. For the purpose.

本発明の例示的な流体動圧軸受用潤滑油は、流体動圧軸受の流体動圧軸受用潤滑油において、金属塩又はイオン液体を含む帯電防止剤を添加した。   The lubricating oil for fluid dynamic pressure bearings of the present invention has an antistatic agent containing a metal salt or ionic liquid added to the fluid dynamic pressure bearing lubricating oil of the fluid dynamic pressure bearing.

例示的な本発明によれば、高温又は高湿環境下において流体動圧軸受の静止部と回転部との間の電位差の発生を低減することができる。   According to the exemplary present invention, occurrence of a potential difference between a stationary part and a rotating part of a fluid dynamic pressure bearing can be reduced under a high temperature or high humidity environment.

図1は、本発明の実施形態に係るディスク駆動装置の縦断面図である。FIG. 1 is a longitudinal sectional view of a disk drive device according to an embodiment of the present invention. 図2は、本発明の実施形態に係るスピンドルモータの縦断面図である。FIG. 2 is a longitudinal sectional view of the spindle motor according to the embodiment of the present invention.

以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。本明細書では、モータの中心軸方向における上側を「上側」とし、下側を「下側」とする。なお、上下方向は、実際の機器に組み込まれたときの位置関係や方向を示すものではない。また、中心軸に平行な方向または略平行な方向を「軸方向」と呼び、中心軸を中心とする径方向を単に「径方向」とし、中心軸を中心とする周方向を「周方向」とする。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. In this specification, the upper side in the central axis direction of the motor is referred to as “upper side” and the lower side is referred to as “lower side”. Note that the vertical direction does not indicate the positional relationship or direction when incorporated in an actual device. A direction parallel to or approximately parallel to the central axis is called an “axial direction”, a radial direction centered on the central axis is simply “radial direction”, and a circumferential direction centered on the central axis is “circumferential direction”. And

(1.ディスク駆動装置の全体構成)
本発明の例示的な実施形態のディスク駆動装置について以下説明する。図1は第1実施形態に係るディスク駆動装置100の縦断面図を示す。ディスク駆動装置100は、いわゆるハードディスク駆動装置である。ディスク駆動装置100はスピンドルモータ10と4枚のディスク20とアクセス部30とハウジング40とを備える。
(1. Overall configuration of disk drive)
A disk drive apparatus according to an exemplary embodiment of the present invention will be described below. FIG. 1 is a longitudinal sectional view of a disk drive device 100 according to the first embodiment. The disk drive device 100 is a so-called hard disk drive device. The disk drive device 100 includes a spindle motor 10, four disks 20, an access unit 30, and a housing 40.

スピンドルモータ10とディスク20とアクセス部30とはハウジング40内に収納される。ハウジング40内は塵や埃が極度に少なく、清浄な空間が形成されている。   The spindle motor 10, the disk 20, and the access unit 30 are accommodated in the housing 40. In the housing 40, dust and dust are extremely small, and a clean space is formed.

ディスク20は中央部に孔を有する円板状の情報記録媒体である。各ディスク20はスピンドルモータ10に装着され、スペーサ22を介して互いに平行且つ等間隔に配置されている。   The disk 20 is a disk-shaped information recording medium having a hole in the center. The respective disks 20 are mounted on the spindle motor 10 and are arranged in parallel with each other at regular intervals via spacers 22.

アクセス部30はヘッド31とアーム32とヘッド移動機構33とを備える。ヘッド31はディスク20に近接して情報の読み出しと書き込みを磁気的に行う。アーム32はヘッド31を支持する。ヘッド移動機構33はアーム32を移動することにより、ヘッド31をディスク20に対して相対的に移動する。   The access unit 30 includes a head 31, an arm 32, and a head moving mechanism 33. The head 31 is close to the disk 20 and magnetically reads and writes information. The arm 32 supports the head 31. The head moving mechanism 33 moves the arm 31 relative to the disk 20 by moving the arm 32.

ヘッド31は回転するディスク20に近接してアクセスする。なお、ディスク20は4枚に限らず、3枚以下又は5枚以上でもよい。   Head 31 accesses close to rotating disk 20. The number of disks 20 is not limited to four, but may be three or less or five or more.

(2.スピンドルモータの構成)
図2はスピンドルモータ10の縦断面図を示す。スピンドルモータ10はアウターロータ型のモータである。スピンドルモータ10は静止部2と回転部3とを有する。静止部2はハウジング40に固定される。回転部3はディスク20を装着して流体動圧軸受用潤滑油50(以下、潤滑油と略す)を介して中心軸Lを中心に静止部2に対して回転可能に支持される。また、静止部2の一部と回転部3の一部とによりコニカル型の流体動圧軸受4が構成されている。
(2. Configuration of spindle motor)
FIG. 2 is a longitudinal sectional view of the spindle motor 10. The spindle motor 10 is an outer rotor type motor. The spindle motor 10 has a stationary part 2 and a rotating part 3. The stationary part 2 is fixed to the housing 40. The rotating part 3 is mounted so as to be rotatable with respect to the stationary part 2 around the central axis L via a fluid dynamic bearing oil 50 (hereinafter abbreviated as lubricating oil) with the disk 20 mounted thereon. Further, a conical fluid dynamic bearing 4 is constituted by a part of the stationary part 2 and a part of the rotating part 3.

(2−1.静止部の構成)
静止部2はベース部17とシャフト部11と環状部材12a、12bとステータコア18とコイル15とを有する。ベース部17はアルミニウム等の金属材料により形成され、ハウジング40にネジ止めされている。なお、ベース部17とハウジング40とは別体であっても、単一の部材により一体に形成してもよい。
(2-1. Configuration of stationary part)
The stationary part 2 includes a base part 17, a shaft part 11, annular members 12 a and 12 b, a stator core 18, and a coil 15. The base portion 17 is formed of a metal material such as aluminum and is screwed to the housing 40. Note that the base portion 17 and the housing 40 may be separate members or may be integrally formed with a single member.

ベース部17の中央部には中心軸Lに沿って貫通孔17aが形成されている。また、貫通孔17aよりも外周側には、軸方向に突出する略円筒形状のホルダ部17bが形成されている。   A through hole 17 a is formed along the central axis L at the center of the base portion 17. A substantially cylindrical holder portion 17b that protrudes in the axial direction is formed on the outer peripheral side of the through hole 17a.

シャフト部11は中心軸Lに沿って延びる略円柱形状の部材である。シャフト部11は貫通孔17aに下端部を嵌入してベース部17に固定される。   The shaft portion 11 is a substantially columnar member extending along the central axis L. The shaft portion 11 is fixed to the base portion 17 by inserting a lower end portion into the through hole 17a.

環状部材12a、12bはシャフト部11の外周面から径方向外側に突出する。環状部材12a、12bはシャフト部11の外周面に軸方向に間隔をおいて上下に固定されている。なお、環状部材12a、12bはシャフト部11と一体成形してもよい。   The annular members 12 a and 12 b protrude outward in the radial direction from the outer peripheral surface of the shaft portion 11. The annular members 12a and 12b are fixed vertically on the outer peripheral surface of the shaft portion 11 with an interval in the axial direction. The annular members 12a and 12b may be integrally formed with the shaft portion 11.

環状部材12a、12bはコニカル型の流体動圧軸受4の場合、略円錐形状であり、環状部材12a、12bの上下面は漸次小径に形成される。   In the case of the conical fluid dynamic pressure bearing 4, the annular members 12 a and 12 b have a substantially conical shape, and the upper and lower surfaces of the annular members 12 a and 12 b are gradually formed with a smaller diameter.

ステータコア18はコアバック18aとティース18bとを有する。コアバック18aは円環状であり、ホルダ部17bの外周面に嵌着される。ティース18bはコアバック18aから径方向外側に複数突出する。   The stator core 18 has a core back 18a and teeth 18b. The core back 18a has an annular shape and is fitted to the outer peripheral surface of the holder portion 17b. A plurality of teeth 18b protrude radially outward from the core back 18a.

コイル15は各ティース18bの周囲に巻回された導線により形成されている。コイル15は電源装置(不図示)と接続されている。電源装置からコイル15に駆動電流を与えると、ティース18bには径方向の磁束が発生する。   The coil 15 is formed of a conductive wire wound around each tooth 18b. The coil 15 is connected to a power supply device (not shown). When a drive current is applied to the coil 15 from the power supply device, a radial magnetic flux is generated in the teeth 18b.

(2−2.回転部の構成)
回転部3はスリーブ部14、保持部材13、マグネット16及びシール部19を備える。スリーブ部14は略円筒状に形成され、第1、第2、第3内周面14a、14b、14cを上方から順に有している。第1内周面14aは上方に向かってシャフト部11から離れる方向に傾斜し、環状部材12aに対向する。
(2-2. Configuration of rotating unit)
The rotating part 3 includes a sleeve part 14, a holding member 13, a magnet 16 and a seal part 19. The sleeve portion 14 is formed in a substantially cylindrical shape, and has first, second, and third inner peripheral surfaces 14a, 14b, and 14c in order from above. The first inner peripheral surface 14a is inclined upward in a direction away from the shaft portion 11, and faces the annular member 12a.

第2内周面14bは中心軸Lに沿って形成され、シャフト部11の外周面に対向する。第3内周面14cは下方に向かってシャフト部11から離れる方向に傾斜し、環状部材12bの上面に対向する。また、スリーブ部14は環状部材12a、シャフト部11及び環状部材12bとの間に微小間隙Sを有する。   The second inner peripheral surface 14 b is formed along the central axis L and faces the outer peripheral surface of the shaft portion 11. The third inner peripheral surface 14c is inclined downward in a direction away from the shaft portion 11, and faces the upper surface of the annular member 12b. The sleeve portion 14 has a minute gap S between the annular member 12a, the shaft portion 11, and the annular member 12b.

保持部材13は筒状に形成され、スリーブ部14が圧入される。保持部材13の下部には内面側に環状の凹部13aが形成され、下端には径方向外側へ向けて突出するフランジ部13bが形成される。ディスク20(図1参照)の中央部に形成された孔は保持部材13の外周面に嵌合する。このとき、フランジ部13bの上面にディスク20が載置される。   The holding member 13 is formed in a cylindrical shape, and the sleeve portion 14 is press-fitted. An annular recess 13a is formed on the inner surface side of the lower portion of the holding member 13, and a flange portion 13b protruding outward in the radial direction is formed at the lower end. A hole formed in the central portion of the disk 20 (see FIG. 1) is fitted to the outer peripheral surface of the holding member 13. At this time, the disk 20 is placed on the upper surface of the flange portion 13b.

マグネット16は周方向に複数並設してヨーク16aに取り付けられる。ヨーク16aを凹部13aに圧入してマグネット16が保持部材13により保持される。マグネット16の内周面は磁極面となっており、ステータコア18の複数のティース18bの外周面と径方向に対向する。   A plurality of magnets 16 are arranged in the circumferential direction and attached to the yoke 16a. The magnet 16 is held by the holding member 13 by pressing the yoke 16a into the recess 13a. The inner peripheral surface of the magnet 16 is a magnetic pole surface and faces the outer peripheral surface of the plurality of teeth 18b of the stator core 18 in the radial direction.

シール部19はスリーブ部14の上面及び下面に取付けられ、環状部材12a、12bとスリーブ部14との微小間隙S内に潤滑油50を封入する。   The seal portion 19 is attached to the upper surface and the lower surface of the sleeve portion 14, and encloses the lubricating oil 50 in the minute gap S between the annular members 12 a and 12 b and the sleeve portion 14.

(3.流体動圧軸受の構成)
流体動圧軸受4はシャフト部11、環状部材12a、12b、スリーブ部14、潤滑油50を備える。既述のように、シャフト部11及び環状部材12a、12bは静止部2の一部であり、スリーブ部14は回転部3の一部である。
(3. Configuration of fluid dynamic pressure bearing)
The fluid dynamic pressure bearing 4 includes a shaft portion 11, annular members 12 a and 12 b, a sleeve portion 14, and a lubricating oil 50. As described above, the shaft portion 11 and the annular members 12 a and 12 b are a part of the stationary portion 2, and the sleeve portion 14 is a part of the rotating portion 3.

流体動圧軸受4はコニカル型であり、スリーブ部14に対向するシャフト部11、環状部材12a及び環状部材12bによって径方向及び軸方向の荷重を支持する。   The fluid dynamic pressure bearing 4 is a conical type, and supports the radial and axial loads by the shaft portion 11, the annular member 12a, and the annular member 12b facing the sleeve portion.

対向する第1内周面14a及び環状部材12aの下面には動圧溝(不図示)が形成される。また、対向する第3内周面14c及び環状部材12bの上面には動圧溝(不図示)が形成される。動圧溝は回転部3の回転時に潤滑油50に流体動圧を誘起する。なお、第1内周面14a及び環状部材12aの下面の一方に動圧溝を形成してもよく、第3内周面14c及び環状部材12bの上面の一方に動圧溝を形成してもよい。   A dynamic pressure groove (not shown) is formed in the opposing first inner peripheral surface 14a and the lower surface of the annular member 12a. In addition, a dynamic pressure groove (not shown) is formed on the opposing third inner peripheral surface 14c and the upper surface of the annular member 12b. The dynamic pressure groove induces fluid dynamic pressure in the lubricating oil 50 when the rotating unit 3 rotates. A dynamic pressure groove may be formed on one of the first inner peripheral surface 14a and the lower surface of the annular member 12a, or a dynamic pressure groove may be formed on one of the third inner peripheral surface 14c and the upper surface of the annular member 12b. Good.

スピンドルモータ10のコイル15に駆動電流を与えると、コイル15には径方向の磁束が発生する。コイル15とマグネット16との間の磁束の作用によりトルクが発生し、静止部2に対して回転部3が中心軸Lを中心として回転する。   When a drive current is applied to the coil 15 of the spindle motor 10, a radial magnetic flux is generated in the coil 15. Torque is generated by the action of magnetic flux between the coil 15 and the magnet 16, and the rotating part 3 rotates about the central axis L with respect to the stationary part 2.

環状部材12a、12bに対してスリーブ部14が回転駆動すると、動圧溝はポンピング作用により微小間隙S中に充填された潤滑油50に流体動圧を誘起する。これにより、スリーブ部14は環状部材12a、12bと非接触で径方向及び軸方向に支持され、環状部材12a、12b及びシャフト部11に対して円滑に高速回転することができる。   When the sleeve portion 14 is rotationally driven with respect to the annular members 12a and 12b, the dynamic pressure groove induces fluid dynamic pressure in the lubricating oil 50 filled in the minute gap S by the pumping action. Accordingly, the sleeve portion 14 is supported in the radial direction and the axial direction without contact with the annular members 12a and 12b, and can smoothly rotate at high speed with respect to the annular members 12a and 12b and the shaft portion 11.

(4.潤滑油の構成)
潤滑油50としては、例えば、ポリオールエステル系オイル、ジエステル系オイル、モノエステル系オイル等のエステルを主成分とするオイルが基油として使用される。エステルを主成分とするオイルは、耐摩耗性、熱安定性、及び流動性に優れているため、流体動圧軸受4の潤滑油50として好適である。
(4. Composition of lubricating oil)
As the lubricating oil 50, for example, an oil mainly composed of an ester such as a polyol ester oil, a diester oil, or a monoester oil is used as the base oil. The oil mainly composed of ester is suitable as the lubricating oil 50 for the fluid dynamic pressure bearing 4 because it is excellent in wear resistance, thermal stability, and fluidity.

また、潤滑油50には金属塩又はイオン液体を含む帯電防止剤が添加されている。帯電防止剤を潤滑油50に添加することにより、潤滑油50を介して対向する環状部12a、12bとスリーブ部14との間で発生する電位差を低減することができる。   Further, an antistatic agent containing a metal salt or an ionic liquid is added to the lubricating oil 50. By adding the antistatic agent to the lubricating oil 50, the potential difference generated between the annular portions 12a and 12b and the sleeve portion 14 that are opposed to each other through the lubricating oil 50 can be reduced.

これにより、スピンドルモータ10を高温環境下又は高湿環境下で駆動した時に静止部2と回転部3との間に発生する微小の電位差によるディスク20への読み書きエラーの発生を防止することができる。   Thereby, when the spindle motor 10 is driven in a high-temperature environment or a high-humidity environment, it is possible to prevent occurrence of a read / write error to the disk 20 due to a minute potential difference generated between the stationary part 2 and the rotating part 3. .

なお、潤滑油50は金属塩又はイオン液体を0.01重量%以上5重量%以下含むことが好ましい。   The lubricating oil 50 preferably contains 0.01 wt% or more and 5 wt% or less of a metal salt or ionic liquid.

帯電防止剤に含まれる金属塩又はイオン液体のアニオンは炭素数が1以上8以下のパーフルオロアルキル基を有することが好ましい。   The metal salt or ionic liquid anion contained in the antistatic agent preferably has a perfluoroalkyl group having 1 to 8 carbon atoms.

パーフルオロアルキル基はCF基を有するため炭素数が1以上8以下であっても疎水性が高い。なお、パーフルオロアルキル基の炭素数が9より大きくなると疎水性及び親水性の両方が低下する。また、パーフルオロアルキル基はC−F結合を有するため結合エネルギーが大きく耐熱性及び耐せん断性が高い。 Since the perfluoroalkyl group has a CF 3 group, it is highly hydrophobic even if it has 1 to 8 carbon atoms. In addition, when the carbon number of the perfluoroalkyl group is larger than 9, both hydrophobicity and hydrophilicity are lowered. Further, since the perfluoroalkyl group has a C—F bond, the bond energy is large and the heat resistance and shear resistance are high.

このため、パーフルオロアルキル基を有するアニオンを帯電防止剤に含有させることにより、帯電防止剤が潤滑油50に対して容易に溶解するとともに潤滑油50の耐熱性及び耐せん断性が高温(50℃〜150℃)又は高湿(82g/m以上)の環境下において長時間安定する。 Therefore, by adding an anion having a perfluoroalkyl group to the antistatic agent, the antistatic agent is easily dissolved in the lubricating oil 50, and the heat resistance and shear resistance of the lubricating oil 50 are high (50 ° C). ˜150 ° C.) or high humidity (82 g / m 3 or more).

炭素数が1以上8以下のパーフルオロアルキル基を有するアニオンの具体例は下記式(1)〜式(10)で表される。   Specific examples of the anion having a perfluoroalkyl group having 1 to 8 carbon atoms are represented by the following formulas (1) to (10).

Figure 2018145400
(1)
[式中、n=0〜8]
Figure 2018145400
(1)
[Where n = 0 to 8]

Figure 2018145400
(2)
[式中、p≠q、p=0〜8、q=0〜8]
Figure 2018145400
(2)
[Wherein p ≠ q, p = 0-8, q = 0-8]

Figure 2018145400
(3)
[式中、m=0〜8]
Figure 2018145400
(3)
[Where m = 0 to 8]

Figure 2018145400
(4)
[式中、n=0〜8]
Figure 2018145400
(4)
[Where n = 0 to 8]

Figure 2018145400
(5)
[式中、p≠q、p=0〜8、q=0〜8]
Figure 2018145400
(5)
[Wherein p ≠ q, p = 0-8, q = 0-8]

Figure 2018145400
(6)
[式中、n=0〜8]
Figure 2018145400
(6)
[Where n = 0 to 8]

Figure 2018145400
(7)
[式中、p≠q、p=0〜8、q=0〜8]
Figure 2018145400
(7)
[Wherein p ≠ q, p = 0-8, q = 0-8]

Figure 2018145400
(8)
[式中、n=0〜8]
Figure 2018145400
(8)
[Where n = 0 to 8]

Figure 2018145400
(9)
[式中、p≠q、p=0〜8、q=0〜8]
Figure 2018145400
(9)
[Wherein p ≠ q, p = 0-8, q = 0-8]

Figure 2018145400
(10)
[式中、l≠m≠n、l=0〜8、m=0〜8、n=0〜8]
Figure 2018145400
(10)
[Wherein l ≠ m ≠ n, l = 0-8, m = 0-8, n = 0-8]

Figure 2018145400
(11)
[式中、n=0〜8]
Figure 2018145400
(11)
[Where n = 0 to 8]

また、帯電防止剤に含まれる金属塩又はイオン液体のアニオンに下記式(12)で表されるアニオンを用いてもよい。   Moreover, you may use the anion represented by following formula (12) for the anion of the metal salt or ionic liquid contained in an antistatic agent.

Figure 2018145400
(12)
Figure 2018145400
(12)

また、帯電防止剤が金属塩を含む場合、金属塩は上記式(1)〜式(12)で表されるアニオンのカウンターカチオンとしてNa、Rb、Cs、Li、Kのいずれかのカチオンを有する。 When the antistatic agent contains a metal salt, the metal salt can be any of Na + , Rb + , Cs + , Li + , and K + as a counter cation of the anion represented by the above formulas (1) to (12). Have some cations.

なお、金属塩のカウンターカチオンがLiの場合、式(1)のn=1、式(3)のm=1、m=4及び式(8)のn=1を除く。また、金属塩のカウンターカチオンがKとの場合、式(1)のn=1及び式(3)のm=1を除く。 When the counter cation of the metal salt is Li + , n = 1 in the formula (1), m = 1 in the formula (3), m = 4, and n = 1 in the formula (8) are excluded. When the counter cation of the metal salt is K + , n = 1 in the formula (1) and m = 1 in the formula (3) are excluded.

また、帯電防止剤がイオン液体を含む場合、イオン液体は上記式(1)〜式(12)で表されるアニオンのカウンターカチオンとして下記式(13)〜式(21)で表されるいずれかのカチオンを有する。   When the antistatic agent contains an ionic liquid, the ionic liquid is represented by any one of the following formulas (13) to (21) as a counter cation of the anion represented by the above formulas (1) to (12). Having cations.

Figure 2018145400
(13)
[式中、R1、R2は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(13)
[Wherein R1 and R2 are alkyl groups or alkenyl groups having 1 to 22 carbon atoms, or aryl groups or alkylbenzene groups having 6 to 30 carbon atoms]

Figure 2018145400
(14)
[式中、R1、R2、R3、R4は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(14)
[Wherein R 1, R 2, R 3, R 4 are an alkyl group or alkenyl group having 1 to 22 carbon atoms, or an aryl group or alkyl benzene group having 6 to 30 carbon atoms]

Figure 2018145400
(15)
[式中、Rは、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(15)
[Wherein, R represents an alkyl group or alkenyl group having 1 to 22 carbon atoms, or an aryl group or alkylbenzene group having 6 to 30 carbon atoms]

Figure 2018145400
(16)
[式中、R1、R2は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(16)
[Wherein R1 and R2 are alkyl groups or alkenyl groups having 1 to 22 carbon atoms, or aryl groups or alkylbenzene groups having 6 to 30 carbon atoms]

Figure 2018145400
(17)
[式中、R1、R2は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(17)
[Wherein R1 and R2 are alkyl groups or alkenyl groups having 1 to 22 carbon atoms, or aryl groups or alkylbenzene groups having 6 to 30 carbon atoms]

Figure 2018145400
(18)
[式中、R1、R2、R3、R4は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(18)
[Wherein R 1, R 2, R 3, R 4 are an alkyl group or alkenyl group having 1 to 22 carbon atoms, or an aryl group or alkyl benzene group having 6 to 30 carbon atoms]

Figure 2018145400
(19)
[式中、R1、R2は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(19)
[Wherein R1 and R2 are alkyl groups or alkenyl groups having 1 to 22 carbon atoms, or aryl groups or alkylbenzene groups having 6 to 30 carbon atoms]

Figure 2018145400
(20)
[式中、R1、R2は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(20)
[Wherein R1 and R2 are alkyl groups or alkenyl groups having 1 to 22 carbon atoms, or aryl groups or alkylbenzene groups having 6 to 30 carbon atoms]

Figure 2018145400
(21)
Figure 2018145400
(21)

また、潤滑油50はソルビタン脂肪酸エステルから成るノニオン性界面活性剤を含む。ノニオン性界面活性剤を含むことにより、潤滑油50中で金属塩又はイオン液体を分散することができる。なお、潤滑油50はノニオン性界面活性剤を0.01重量%以上1重量%以下含むことが好ましい。   The lubricating oil 50 contains a nonionic surfactant made of sorbitan fatty acid ester. By including a nonionic surfactant, the metal salt or ionic liquid can be dispersed in the lubricating oil 50. The lubricating oil 50 preferably contains 0.01% by weight or more and 1% by weight or less of a nonionic surfactant.

本実施形態によると、流体動圧軸受4の潤滑油50に金属塩又はイオン液体を含む帯電防止剤を添加したので、静止部2と回転部3との間に発生する微少の電位差によるディスク20への書き込みエラーの発生を防止することができる。   According to the present embodiment, since the antistatic agent containing a metal salt or ionic liquid is added to the lubricating oil 50 of the fluid dynamic pressure bearing 4, the disk 20 due to a slight potential difference generated between the stationary part 2 and the rotating part 3. Occurrence of a write error can be prevented.

また、帯電防止剤に含まれる金属塩又はイオン液体は炭素数が1以上8以下のパーフルオロアルキル基を有するアニオンを含むので、帯電防止剤が潤滑油50に容易に溶解するとともに潤滑油50の耐熱性及び耐せん断性を高温又は高湿の環境下で長時間安定させることができる。   Further, since the metal salt or ionic liquid contained in the antistatic agent contains an anion having a perfluoroalkyl group having 1 to 8 carbon atoms, the antistatic agent is easily dissolved in the lubricating oil 50 and the lubricating oil 50 Heat resistance and shear resistance can be stabilized for a long time in an environment of high temperature or high humidity.

また、帯電防止剤に含まれる金属塩又はイオン液体が式(1)〜式(12)で表わされるいずれかのアニオンを含むことにより、耐熱性及び耐せん断性の安定した潤滑油50を容易に実現することができる。   Further, since the metal salt or ionic liquid contained in the antistatic agent contains any one of the anions represented by the formulas (1) to (12), the lubricating oil 50 having stable heat resistance and shear resistance can be easily obtained. Can be realized.

また、帯電防止剤に金属塩又はイオン液体を0.01重量%以上5重量%以下含むので、耐熱性及び耐せん断性の安定した潤滑油50を容易に実現することができる。   Moreover, since the antistatic agent contains 0.01 wt% or more and 5 wt% or less of the metal salt or ionic liquid, the lubricating oil 50 having stable heat resistance and shear resistance can be easily realized.

また、帯電防止剤に含まれる金属塩がNa、Rb、Cs、Li、Kとのいずれかのカチオンを有するので、耐熱性及び耐せん断性の安定した潤滑油50を容易に実現することができる。 In addition, since the metal salt contained in the antistatic agent has a cation of Na + , Rb + , Cs + , Li + , or K + , the lubricating oil 50 having stable heat resistance and shear resistance can be easily obtained. Can be realized.

また、帯電防止剤に含まれるイオン液体が式(13)〜式(21)で表わされるいずれかのカチオンを有するので、耐熱性及び耐せん断性の安定した潤滑油50を容易に実現することができる。   Further, since the ionic liquid contained in the antistatic agent has any one of the cations represented by the formulas (13) to (21), it is possible to easily realize the lubricating oil 50 having stable heat resistance and shear resistance. it can.

また、帯電防止剤がソルビタン脂肪酸エステルから成るノニオン性界面活性剤を含むので、金属塩又はイオン液体を分散させることができる。   Moreover, since an antistatic agent contains the nonionic surfactant which consists of sorbitan fatty acid ester, a metal salt or an ionic liquid can be disperse | distributed.

また、帯電防止剤にソルビタン脂肪酸エステルから成るノニオン性界面活性剤を0.01重量%以上5重量%以下含むので、金属塩又はイオン液体が分散した潤滑油50をより容易に実現することができる。   Further, since the antistatic agent contains a nonionic surfactant composed of a sorbitan fatty acid ester in an amount of 0.01% by weight to 5% by weight, the lubricating oil 50 in which a metal salt or an ionic liquid is dispersed can be realized more easily. .

次に本発明の効果について、実施例及び比較例を用いて具体的に説明する。以下の実験では、帯電防止剤を添加した潤滑油50を用いてシャフト部11とスリーブ部14との間の電位差について評価を行った。   Next, the effects of the present invention will be specifically described using examples and comparative examples. In the following experiment, the potential difference between the shaft portion 11 and the sleeve portion 14 was evaluated using the lubricating oil 50 added with the antistatic agent.

以下の実施例1〜実施例19及び比較例1に係る潤滑油は全て基油として分子量が420以上480以下のモノエステル系オイルを用いた。また、実施例1〜実施例19の潤滑油には異なる帯電防止剤を0.05重量%添加した。   All the lubricating oils according to the following Examples 1 to 19 and Comparative Example 1 used monoester oils having a molecular weight of 420 to 480 as the base oil. Moreover, 0.05 weight% of different antistatic agents were added to the lubricating oils of Examples 1 to 19.

実施例1の帯電防止剤は金属塩を含む。この金属塩のカチオンはNaであり、アニオンは式(1)で表され、n=1である。 The antistatic agent of Example 1 contains a metal salt. The cation of this metal salt is Na + , the anion is represented by the formula (1), and n = 1.

実施例2の帯電防止剤は金属塩を含む。この金属塩のカチオンはNaであり、アニオンは式(1)で表され、n=1である。また、帯電防止剤にはソルビタンセスキオレエートから成るノニオン性界面活性剤を0.05重量%添加した。 The antistatic agent of Example 2 contains a metal salt. The cation of this metal salt is Na + , the anion is represented by the formula (1), and n = 1. Further, 0.05% by weight of a nonionic surfactant made of sorbitan sesquioleate was added to the antistatic agent.

実施例3の帯電防止剤は金属塩を含む。この金属塩のカチオンはNaであり、アニオンは式(11)で表される。 The antistatic agent of Example 3 contains a metal salt. The cation of this metal salt is Na + , and the anion is represented by the formula (11).

実施例4の帯電防止剤は金属塩を含む。この金属塩のカチオンはLiであり、アニオンは式(2)で表され、p=1、q=4である。 The antistatic agent of Example 4 contains a metal salt. The cation of this metal salt is Li + , the anion is represented by the formula (2), and p = 1 and q = 4.

実施例5の帯電防止剤は金属塩を含む。この金属塩のカチオンはLiであり、アニオンは式(12)で表される。 The antistatic agent of Example 5 contains a metal salt. The cation of this metal salt is Li + , and the anion is represented by the formula (12).

実施例6の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(14)で表され、R1=R2=R3=5、R4=3である。また、イオン液体のアニオンは式(1)で表され、n=1である。   The antistatic agent of Example 6 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (14), and R1 = R2 = R3 = 5 and R4 = 3. The anion of the ionic liquid is represented by the formula (1), and n = 1.

実施例7の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(14)で表され、R1=R2=R3=8、R4=1である。また、イオン液体のアニオンは式(1)で表され、n=1である。   The antistatic agent of Example 7 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (14), and R1 = R2 = R3 = 8 and R4 = 1. The anion of the ionic liquid is represented by the formula (1), and n = 1.

実施例8の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(14)で表され、R1=R2=R3=8、R4=1である。また、イオン液体のアニオンは式(2)で表され、p=1、q=4である。   The antistatic agent of Example 8 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (14), and R1 = R2 = R3 = 8 and R4 = 1. Moreover, the anion of an ionic liquid is represented by Formula (2), and is p = 1 and q = 4.

実施例9の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(14)で表され、R1=R2=R3=8、R4=1である。また、イオン液体のアニオンは式(3)で表され、m=1である。   The antistatic agent of Example 9 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (14), and R1 = R2 = R3 = 8 and R4 = 1. The anion of the ionic liquid is represented by the formula (3), and m = 1.

実施例10の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(14)で表され、R1=R2=R3=8、R4=1である。また、イオン液体のアニオンは式(4)で表され、n=1である。   The antistatic agent of Example 10 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (14), and R1 = R2 = R3 = 8 and R4 = 1. The anion of the ionic liquid is represented by the formula (4), and n = 1.

実施例11の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(14)で表され、R1=R2=R3=8、R4=1である。また、イオン液体のアニオンは式(5)で表され、p=1、q=2である。   The antistatic agent of Example 11 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (14), and R1 = R2 = R3 = 8 and R4 = 1. Moreover, the anion of an ionic liquid is represented by Formula (5), and is p = 1 and q = 2.

実施例12の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(14)で表され、R1=R2=R3=8、R4=1である。また、イオン液体のアニオンは式(6)で表され、n=1である。   The antistatic agent of Example 12 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (14), and R1 = R2 = R3 = 8 and R4 = 1. Further, the anion of the ionic liquid is represented by the formula (6), and n = 1.

実施例13の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(14)で表され、R1=R2=R3=8、R4=1である。また、イオン液体のアニオンは式(7)で表され、p=1、q=2である。   The antistatic agent of Example 13 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (14), and R1 = R2 = R3 = 8 and R4 = 1. Moreover, the anion of an ionic liquid is represented by Formula (7), and is p = 1 and q = 2.

実施例14の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(14)で表され、R1=R2=R3=8、R4=1である。また、イオン液体のアニオンは式(8)で表され、n=1である。   The antistatic agent of Example 14 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (14), and R1 = R2 = R3 = 8 and R4 = 1. The anion of the ionic liquid is represented by the formula (8), and n = 1.

実施例15の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(14)で表され、R1=R2=R3=8、R4=1である。また、イオン液体のアニオンは式(9)で表され、p=1、q=2である。   The antistatic agent of Example 15 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (14), and R1 = R2 = R3 = 8 and R4 = 1. Moreover, the anion of an ionic liquid is represented by Formula (9), and is p = 1 and q = 2.

実施例16の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(14)で表され、R1=R2=R3=8、R4=1である。また、イオン液体のアニオンは式(10)で表され、l=1、m=2、n=3である。   The antistatic agent of Example 16 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (14), and R1 = R2 = R3 = 8 and R4 = 1. An anion of the ionic liquid is represented by the formula (10), where l = 1, m = 2, and n = 3.

実施例17の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(14)で表され、R1=R2=R3=8、R4=1である。また、イオン液体のアニオンは式(11)で表される。   The antistatic agent of Example 17 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (14), and R1 = R2 = R3 = 8 and R4 = 1. Moreover, the anion of an ionic liquid is represented by Formula (11).

実施例18の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(14)で表され、R1=R2=R3=8、R4=1である。また、イオン液体のアニオンは式(12)で表される。   The antistatic agent of Example 18 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (14), and R1 = R2 = R3 = 8 and R4 = 1. Moreover, the anion of an ionic liquid is represented by Formula (12).

実施例19の帯電防止剤はイオン液体を含む。このイオン液体のカチオンは式(16)で表され、R1=6、R2=2である。また、イオン液体のアニオンは式(1)で表され、n=1である。   The antistatic agent of Example 19 contains an ionic liquid. The cation of this ionic liquid is represented by the formula (16), and R1 = 6 and R2 = 2. The anion of the ionic liquid is represented by the formula (1), and n = 1.

[比較例]
比較例の潤滑油には帯電防止剤に替えて第4級アンモニウムイオン(炭素数が16以上)及びアルキルナフタレンスルホン酸イオン(炭素数が16以上)をそれぞれ0.03重量%添加した。
[Comparative example]
Instead of the antistatic agent, 0.03% by weight of quaternary ammonium ions (having 16 or more carbon atoms) and alkylnaphthalene sulfonate ions (having 16 or more carbon atoms) were added to the lubricating oil of the comparative example.

[電位差の評価]
実施例1〜19及び比較例に係る潤滑油は90℃に加熱して1時間撹拌した後、0℃の環境下で流体動圧軸受4の微小間隙Sに充填した。
[Evaluation of potential difference]
The lubricating oils according to Examples 1 to 19 and the comparative example were heated to 90 ° C. and stirred for 1 hour, and then filled in the minute gap S of the fluid dynamic pressure bearing 4 in an environment of 0 ° C.

電位差の評価はスピンドルモータ10を駆動した際のシャフト部11とスリーブ部14との間の電位差の初期値を測定した後、スピンドルモータ10を高温環境下に放置後及び高温高湿環境下に放置後に0℃の環境下で再び測定した。なお、高温環境下に放置とは具体的に、120℃の環境下でスピンドルモータ10を9000rpmの回転状態で48時間駆動し続けた。また、高温高湿環境下に放置とは120℃、334g/mの環境下でスピンドルモータ10を9000rpmの回転状態で48時間駆動し続けた。これらの結果を表1に示す。 The potential difference is evaluated by measuring the initial value of the potential difference between the shaft portion 11 and the sleeve portion 14 when the spindle motor 10 is driven, and then leaving the spindle motor 10 in a high temperature environment and in a high temperature and high humidity environment. Later, measurement was performed again in an environment of 0 ° C. Specifically, in the high temperature environment, the spindle motor 10 was continuously driven for 48 hours at a rotation speed of 9000 rpm in a 120 ° C. environment. In addition, when left in a high temperature and high humidity environment, the spindle motor 10 was continuously driven at a rotation speed of 9000 rpm for 48 hours in an environment of 120 ° C. and 334 g / m 3 . These results are shown in Table 1.

Figure 2018145400
Figure 2018145400

表1に示すように、帯電防止剤を添加した実施例1〜実施例19の潤滑油は高温環境下及び高湿環境下で48時間経過後に、シャフト部11とスリーブ部14との間の電位差が−0.5V以上+0.5V以下の範囲にあることが確認された。また、帯電防止剤が添加されていない比較例の潤滑油と比較して電位差の発生を低減できることが確認された。   As shown in Table 1, the lubricating oils of Examples 1 to 19 to which an antistatic agent was added had a potential difference between the shaft portion 11 and the sleeve portion 14 after 48 hours had passed in a high temperature environment and a high humidity environment. Was found to be in the range of not less than -0.5V and not more than + 0.5V. Further, it was confirmed that the occurrence of a potential difference can be reduced as compared with the lubricating oil of the comparative example to which no antistatic agent is added.

なお、実施例6〜18の潤滑油は、イオン液体のカチオンとして式(14)を用いて説明しているが、式(13)、または式(15)〜式(21)のいずれかに置き換えても、同等の効果が確認できる。同様に、実施例6〜18の潤滑油は、イオン液体のカチオンとしてアルキル基を含んだ式(14)を用いて説明しているが、アルケニル基、アリール基、アルキルベンゼン基のいずれに置き換えても、同等の効果が確認できる。 In addition, although lubricating oil of Examples 6-18 is demonstrated using Formula (14) as a cation of an ionic liquid, it replaces with either Formula (13) or Formula (15)-Formula (21). However, the same effect can be confirmed. Similarly, the lubricating oils of Examples 6 to 18 have been described using Formula (14) containing an alkyl group as a cation of the ionic liquid, but may be replaced with any of an alkenyl group, an aryl group, and an alkylbenzene group. The same effect can be confirmed.

なお、実施例19の潤滑油は、イオン液体のカチオンとして式(16)を用いて説明しているが、式(13)〜式(15)、または式(17)〜式(21)のいずれかに置き換えても、同等の効果が確認できる。同様に、実施例19の潤滑油は、イオン液体のカチオンとしてアルキル基を含んだ式(16)を用いて説明しているが、アルケニル基、アリール基、アルキルベンゼン基のいずれに置き換えても、同等の効果が確認できる。 In addition, although the lubricating oil of Example 19 is demonstrated using Formula (16) as a cation of an ionic liquid, any of Formula (13)-Formula (15) or Formula (17)-Formula (21) Even if you replace it, you can see the same effect. Similarly, the lubricating oil of Example 19 has been described using Formula (16) containing an alkyl group as the cation of the ionic liquid, but it is equivalent if replaced with any of an alkenyl group, an aryl group, and an alkylbenzene group. The effect of can be confirmed.

(5.その他)
以上、本発明の一実施形態について説明したが、本発明は本実施形態に限定されるものではない。例えば、本実施形態ではコニカル型の流体動圧軸受4を適用したが、コニカル型に限定することなく、例えば、スラスト型の流体動圧軸受4を適用してもよい。
(5. Other)
Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment. For example, although the conical fluid dynamic bearing 4 is applied in the present embodiment, the thrust fluid fluid dynamic bearing 4 may be applied, for example, without being limited to the conical fluid.

また、本実施形態では、軸固定型のアウターロータ型スピンドルモータについて説明したが、本発明は、軸回転型のモータや、インナーロータ型スピンドルモータにも適用することができる。   In the present embodiment, the shaft-fixed outer rotor type spindle motor has been described. However, the present invention can also be applied to a shaft rotation type motor and an inner rotor type spindle motor.

2・・・静止部、
3・・・回転部、
4・・・流体動圧軸受、
10・・・スピンドルモータ、
11・・・シャフト部、
12a、12b・・・環状部材、
13・・・保持部材、
13a・・・凹部、
13b・・・フランジ部、
14・・・スリーブ部、
14a・・・第1内周面
14b・・・第2内周面
14c・・・第3内周面
15・・・コイル、
16・・・マグネット、
17・・・ベース部、
17a・・・貫通孔、
17b・・・ホルダ部、
18・・・ステータコア、
18a・・・コアバッック、
18b・・・ティース、
19・・・シール部、
20・・・ディスク、
22・・・スペーサ、
30・・・アクセス部、
31・・・ヘッド、
32・・・アーム、
33・・・ヘッド移動機構、
40・・・ハウジング、
50・・・潤滑油、
100・・・ディスク駆動装置
L・・・中心軸、
S・・・微小間隙


2 ... stationary part,
3 ... rotating part,
4 ... Fluid dynamic pressure bearing,
10 ... Spindle motor,
11 ... shaft part,
12a, 12b ... annular member,
13: Holding member,
13a ... recess,
13b ... flange part,
14 ... Sleeve part,
14a ... 1st internal peripheral surface 14b ... 2nd internal peripheral surface 14c ... 3rd internal peripheral surface 15 ... Coil,
16 ... Magnet,
17 ... Base part,
17a ... through hole,
17b ... Holder part,
18 ... stator core,
18a ... Core backpack,
18b ... Teeth,
19 ... seal part,
20: Disc,
22 ... spacer,
30 ... access part,
31 ... head,
32 ... arm,
33 ... Head moving mechanism,
40 ... Housing,
50: Lubricating oil,
100: Disc drive L: central axis,
S: Micro gap


Claims (15)

流体動圧軸受の流体動圧軸受用潤滑油において、
金属塩又はイオン液体を含む帯電防止剤を添加したことを特徴とする流体動圧軸受用潤滑油。
In the fluid dynamic pressure bearing lubricant for the fluid dynamic pressure bearing,
A fluid dynamic bearing lubricating oil characterized by adding an antistatic agent containing a metal salt or an ionic liquid.
前記金属塩又は前記イオン液体は炭素数が1以上8以下のパーフルオロアルキル基を有するアニオンを含むことを特徴とする請求項1に記載の流体動圧軸受用潤滑油。   The fluid dynamic bearing lubricating oil according to claim 1, wherein the metal salt or the ionic liquid contains an anion having a perfluoroalkyl group having 1 to 8 carbon atoms. 前記金属塩又は前記イオン液体が下記式(1)〜式(11)で表されるアニオンのいずれかを含むことを特徴とする請求項2に記載の流体動圧軸受用潤滑油。
Figure 2018145400
(1)
[式中、n=0〜8]
Figure 2018145400
(2)
[式中、p≠q、p=0〜8、q=0〜8]
Figure 2018145400
(3)
[式中、m=0〜8]
Figure 2018145400
(4)
[式中、n=0〜8]
Figure 2018145400
(5)
[式中、p≠q、p=0〜8、q=0〜8]
Figure 2018145400
(6)
[式中、n=0〜8]
Figure 2018145400
(7)
[式中、p≠q、p=0〜8、q=0〜8]
Figure 2018145400
(8)
[式中、n=0〜8]
Figure 2018145400
(9)
[式中、p≠q、p=0〜8、q=0〜8]
Figure 2018145400
(10)
[式中、l≠m≠n、l=0〜8、m=0〜8、n=0〜8]
Figure 2018145400
(11)
[式中、n=0〜8]
The fluid dynamic bearing lubricating oil according to claim 2, wherein the metal salt or the ionic liquid contains any one of anions represented by the following formulas (1) to (11).
Figure 2018145400
(1)
[Where n = 0 to 8]
Figure 2018145400
(2)
[Wherein p ≠ q, p = 0-8, q = 0-8]
Figure 2018145400
(3)
[Where m = 0 to 8]
Figure 2018145400
(4)
[Where n = 0 to 8]
Figure 2018145400
(5)
[Wherein p ≠ q, p = 0-8, q = 0-8]
Figure 2018145400
(6)
[Where n = 0 to 8]
Figure 2018145400
(7)
[Wherein p ≠ q, p = 0-8, q = 0-8]
Figure 2018145400
(8)
[Where n = 0 to 8]
Figure 2018145400
(9)
[Wherein p ≠ q, p = 0-8, q = 0-8]
Figure 2018145400
(10)
[Wherein l ≠ m ≠ n, l = 0-8, m = 0-8, n = 0-8]
Figure 2018145400
(11)
[Where n = 0 to 8]
前記金属塩又は前記イオン液体が下記式(12)で表されるアニオンを含むことを特徴とする請求項1に記載の流体動圧軸受用潤滑油。
Figure 2018145400
(12)
The fluid dynamic pressure bearing lubricant according to claim 1, wherein the metal salt or the ionic liquid contains an anion represented by the following formula (12).
Figure 2018145400
(12)
前記金属塩又は前記イオン液体を0.01重量%以上5重量%以下含むことを特徴とする請求項2〜請求項4のいずれかに記載の流体動圧軸受用潤滑油。   5. The fluid dynamic pressure bearing lubricant according to claim 2, wherein the metal salt or the ionic liquid is contained in an amount of 0.01 wt% to 5 wt%. 前記金属塩は前記アニオンとNa、Rb、Csのいずれかのカチオンとを有することを特徴とする請求項2〜請求項5のいずれかに記載の流体動圧軸受用潤滑油。 6. The fluid dynamic bearing lubricating oil according to claim 2, wherein the metal salt includes the anion and any one of Na + , Rb + , and Cs + cations. 7. 前記金属塩は前記アニオンとLiとを有する(式(1)のn=1、式(3)のm=1、m=4、式(8)のn=1を除く)ことを特徴とする請求項2〜請求項5のいずれかに記載の流体動圧軸受用潤滑油。 The metal salt has the anion and Li + (except n = 1 in the formula (1), m = 1 in the formula (3), m = 4, and n = 1 in the formula (8)). The lubricating oil for fluid dynamic pressure bearings according to any one of claims 2 to 5. 前記金属塩は前記アニオンとKとを有する(式(1)のn=1、式(3)のm=1を除く)ことを特徴とする請求項2〜請求項5のいずれかに記載の流体動圧軸受用潤滑油。 6. The metal salt according to claim 2, wherein the metal salt has the anion and K + (except n = 1 in the formula (1) and m = 1 in the formula (3)). Lubricating oil for fluid dynamic pressure bearings. 前記イオン液体は下記式(13)〜式(21)で表されるカチオンのいずれかと前記アニオンとを有することを特徴とする請求項2〜請求項5のいずれかに記載の流体動圧軸受用潤滑油。
Figure 2018145400
(13)
[式中、R1、R2は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(14)
[式中、R1、R2、R3、R4は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(15)
[式中、Rは、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(16)
[式中、R1、R2は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(17)
[式中、R1、R2は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(18)
[式中、R1、R2、R3、R4は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(19)
[式中、R1、R2は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(20)
[式中、R1、R2は、炭素数が1〜22のアルキル基又はアルケニル基、若しくは炭素数が6〜30のアリール基又はアルキルベンゼン基]
Figure 2018145400
(21)
The fluid liquid pressure bearing according to any one of claims 2 to 5, wherein the ionic liquid has any one of cations represented by the following formulas (13) to (21) and the anions. Lubricant.
Figure 2018145400
(13)
[Wherein R1 and R2 are alkyl groups or alkenyl groups having 1 to 22 carbon atoms, or aryl groups or alkylbenzene groups having 6 to 30 carbon atoms]
Figure 2018145400
(14)
[Wherein R 1, R 2, R 3, R 4 are an alkyl group or alkenyl group having 1 to 22 carbon atoms, or an aryl group or alkyl benzene group having 6 to 30 carbon atoms]
Figure 2018145400
(15)
[Wherein, R represents an alkyl group or alkenyl group having 1 to 22 carbon atoms, or an aryl group or alkylbenzene group having 6 to 30 carbon atoms]
Figure 2018145400
(16)
[Wherein R1 and R2 are alkyl groups or alkenyl groups having 1 to 22 carbon atoms, or aryl groups or alkylbenzene groups having 6 to 30 carbon atoms]
Figure 2018145400
(17)
[Wherein R1 and R2 are alkyl groups or alkenyl groups having 1 to 22 carbon atoms, or aryl groups or alkylbenzene groups having 6 to 30 carbon atoms]
Figure 2018145400
(18)
[Wherein R 1, R 2, R 3, R 4 are an alkyl group or alkenyl group having 1 to 22 carbon atoms, or an aryl group or alkyl benzene group having 6 to 30 carbon atoms]
Figure 2018145400
(19)
[Wherein R1 and R2 are alkyl groups or alkenyl groups having 1 to 22 carbon atoms, or aryl groups or alkylbenzene groups having 6 to 30 carbon atoms]
Figure 2018145400
(20)
[Wherein R1 and R2 are alkyl groups or alkenyl groups having 1 to 22 carbon atoms, or aryl groups or alkylbenzene groups having 6 to 30 carbon atoms]
Figure 2018145400
(21)
ソルビタン脂肪酸エステルから成るノニオン性界面活性剤を含むことを特徴とする請求項1〜請求項9のいずれかに記載の流体動圧軸受用潤滑油。   The lubricating oil for fluid dynamic pressure bearings according to any one of claims 1 to 9, comprising a nonionic surfactant made of sorbitan fatty acid ester. 前記ノニオン性界面活性剤を0.01重量%以上1重量%以下含むことを特徴とする請求項10に記載の流体動圧軸受用潤滑油。   The lubricating oil for fluid dynamic pressure bearing according to claim 10, wherein the nonionic surfactant is contained in an amount of 0.01% by weight to 1% by weight. 50℃〜150℃の高温環境下又は湿度82g/m以上の高湿環境下で48時間経過後に、前記流体動圧軸受の静止部と回転部との電位差が、0℃で測定して−0.5V以上+0.5V以下の範囲にあることを特徴とする請求項1〜請求項11のいずれかに記載の流体動圧軸受用潤滑油。 After a lapse of 48 hours in a high temperature environment of 50 ° C. to 150 ° C. or a high humidity environment with a humidity of 82 g / m 3 or more, the potential difference between the stationary part and the rotating part of the fluid dynamic pressure bearing was measured at 0 ° C.− The lubricating oil for fluid dynamic bearings according to any one of claims 1 to 11, wherein the lubricating oil is in a range of 0.5 V or more and +0.5 V or less. 請求項1〜請求項12のいずれかに記載の流体動圧軸受用潤滑油を封入したことを特徴とする流体動圧軸受。   A fluid dynamic bearing comprising the fluid dynamic bearing lubricant according to any one of claims 1 to 12. 請求項13に記載の流体動圧軸受を備えたことを特徴とするスピンドルモータ。   A spindle motor comprising the fluid dynamic pressure bearing according to claim 13. 請求項14に記載のスピンドルモータを備えたことを特徴とするディスク駆動装置。

A disk drive apparatus comprising the spindle motor according to claim 14.

JP2018001658A 2017-03-08 2018-01-10 Lubricating oil for fluid dynamic bearings, fluid dynamic bearings, spindle motors and disk drives Active JP6764424B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017043824 2017-03-08
JP2017043824 2017-03-08

Publications (2)

Publication Number Publication Date
JP2018145400A true JP2018145400A (en) 2018-09-20
JP6764424B2 JP6764424B2 (en) 2020-09-30

Family

ID=63589565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018001658A Active JP6764424B2 (en) 2017-03-08 2018-01-10 Lubricating oil for fluid dynamic bearings, fluid dynamic bearings, spindle motors and disk drives

Country Status (1)

Country Link
JP (1) JP6764424B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132763A (en) * 2019-02-20 2020-08-31 日立建機株式会社 Hydraulic pressure working fluid for work machine and work machine using same
WO2023090432A1 (en) * 2021-11-19 2023-05-25 ミネベアミツミ株式会社 Fluid dynamic bearing, spindle motor, and disk drive device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183868A (en) * 2002-12-06 2004-07-02 Matsushita Electric Ind Co Ltd Fluid bearing device
JP2005089667A (en) * 2003-09-19 2005-04-07 Sanko Kagaku Kogyo Kk Antistatic lubricant oil composition
JP2006321856A (en) * 2005-05-17 2006-11-30 Nippon Shokubai Co Ltd Lubricant composition
JP2007046030A (en) * 2005-07-15 2007-02-22 Idemitsu Kosan Co Ltd Lubricant for oil-containing bearing
JP2007321968A (en) * 2006-06-05 2007-12-13 Matsushita Electric Ind Co Ltd Hydrodynamic bearing device, spindle motor using it and information device
JP2008001886A (en) * 2006-05-23 2008-01-10 Cosmo Sekiyu Lubricants Kk Bearing oil composition
JP2008274021A (en) * 2007-04-25 2008-11-13 Nsk Ltd Grease composition and rolling apparatus
JP2010180331A (en) * 2009-02-06 2010-08-19 New Japan Chem Co Ltd Lubricating oil composition for dynamic pressure fluid bearing or for sintered, oil-impregnated bearing
JP2013241532A (en) * 2012-05-22 2013-12-05 Shin-Etsu Chemical Co Ltd Antistatic silicone rubber composition and method for suppressing yellowing of antistatic silicone rubber cured product
DE102016105758A1 (en) * 2015-04-10 2016-10-13 Minebea Co., Ltd. Lubricant composition for use in fluid dynamic storage systems
JP2017197716A (en) * 2016-04-21 2017-11-02 コスモ石油ルブリカンツ株式会社 Conductive lubricant composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183868A (en) * 2002-12-06 2004-07-02 Matsushita Electric Ind Co Ltd Fluid bearing device
JP2005089667A (en) * 2003-09-19 2005-04-07 Sanko Kagaku Kogyo Kk Antistatic lubricant oil composition
JP2006321856A (en) * 2005-05-17 2006-11-30 Nippon Shokubai Co Ltd Lubricant composition
JP2007046030A (en) * 2005-07-15 2007-02-22 Idemitsu Kosan Co Ltd Lubricant for oil-containing bearing
JP2008001886A (en) * 2006-05-23 2008-01-10 Cosmo Sekiyu Lubricants Kk Bearing oil composition
JP2007321968A (en) * 2006-06-05 2007-12-13 Matsushita Electric Ind Co Ltd Hydrodynamic bearing device, spindle motor using it and information device
JP2008274021A (en) * 2007-04-25 2008-11-13 Nsk Ltd Grease composition and rolling apparatus
JP2010180331A (en) * 2009-02-06 2010-08-19 New Japan Chem Co Ltd Lubricating oil composition for dynamic pressure fluid bearing or for sintered, oil-impregnated bearing
JP2013241532A (en) * 2012-05-22 2013-12-05 Shin-Etsu Chemical Co Ltd Antistatic silicone rubber composition and method for suppressing yellowing of antistatic silicone rubber cured product
DE102016105758A1 (en) * 2015-04-10 2016-10-13 Minebea Co., Ltd. Lubricant composition for use in fluid dynamic storage systems
JP2017197716A (en) * 2016-04-21 2017-11-02 コスモ石油ルブリカンツ株式会社 Conductive lubricant composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132763A (en) * 2019-02-20 2020-08-31 日立建機株式会社 Hydraulic pressure working fluid for work machine and work machine using same
JP7260323B2 (en) 2019-02-20 2023-04-18 日立建機株式会社 Additives for electrical conductivity in hydraulic fluids for working machines
WO2023090432A1 (en) * 2021-11-19 2023-05-25 ミネベアミツミ株式会社 Fluid dynamic bearing, spindle motor, and disk drive device
JP7378682B2 (en) 2021-11-19 2023-11-13 ミネベアミツミ株式会社 Fluid dynamic bearings, spindle motors and disk drives

Also Published As

Publication number Publication date
JP6764424B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
US8472132B2 (en) Fluid dynamic bearing apparatus arranged to discharge air bubbles generated therein and a spindle motor and a disk drive apparatus including the same
JP2010286071A (en) Bearing device, spindle motor and disc drive device
US8743505B2 (en) Fluid dynamic bearing apparatus with specific minute gap structure with spindle motor and disk drive apparatus including same
JP2011099518A (en) Fluid dynamic pressure bearing, spindle motor, and disk drive device
KR20130035391A (en) Lubricating oil composition for fluid dynamic bearings and hdd motor fabricated by using the same
US20110019303A1 (en) Fluid dynamic bearing apparatus, spindle motor, and disk drive apparatus
JP2018145400A (en) Lubricating oil for hydrodynamic pressure bearing, hydrodynamic pressure bearing, spindle motor and disk driving device
JP5496994B2 (en) Lubricating oil composition for fluid dynamic pressure bearing and HDD motor using the same
JP2006105207A (en) Fluid bearing device, spindle motor using the same, and disk driving device using the spindle motor
Ochoński Sliding bearings lubricated with magnetic fluids
JP2017089708A (en) Bearing device, spindle motor and disc driving device
JP2005155673A (en) Manufacturing method for bearing mechanism, bearing mechanism, motor, and disk driving device
JP2006325279A (en) Brushless motor
JP2008133339A (en) Lubricant and spindle motor and recording disk drive unit using the same
JP2000074043A (en) Spindle motor
KR100749028B1 (en) Spindle motor with fluid dynamic bearing
JP6888500B2 (en) Lubricating oil for fluid dynamic bearings, fluid dynamic bearings and spindle motors
JP2014019867A (en) Lubricating oil composition for fluid dynamic pressure bearing and motor for hdd using the same
US20110109995A1 (en) Bearing lubricant, bearing and disk drive device
JP2001139971A (en) Lubricant, hydrodynamic bearing, spindle motor and rotator
JP2001208069A (en) Spindle motor with liquid bearing
JP2007120653A (en) Hydrodynamic bearing device, and spindle motor and information device using the same
KR20130038540A (en) Lubricating oil composition for fluid dynamic bearings and hdd motor fabricated by using the same
US6817767B2 (en) Hybrid spindle bearing
JP2010155886A (en) Lubricant composition and fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180803

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190516

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190604

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200911

R151 Written notification of patent or utility model registration

Ref document number: 6764424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250