JP2018143946A - Spray fine particle manufacturing device - Google Patents

Spray fine particle manufacturing device Download PDF

Info

Publication number
JP2018143946A
JP2018143946A JP2017040777A JP2017040777A JP2018143946A JP 2018143946 A JP2018143946 A JP 2018143946A JP 2017040777 A JP2017040777 A JP 2017040777A JP 2017040777 A JP2017040777 A JP 2017040777A JP 2018143946 A JP2018143946 A JP 2018143946A
Authority
JP
Japan
Prior art keywords
reaction tube
nozzle
fine particle
mist
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017040777A
Other languages
Japanese (ja)
Other versions
JP7266358B2 (en
Inventor
雄一 館山
Yuichi Tateyama
雄一 館山
松井 克己
Katsumi Matsui
克己 松井
広樹 山崎
Hiroki Yamazaki
広樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017040777A priority Critical patent/JP7266358B2/en
Publication of JP2018143946A publication Critical patent/JP2018143946A/en
Application granted granted Critical
Publication of JP7266358B2 publication Critical patent/JP7266358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Glanulating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spray fine particle manufacturing device capable of manufacturing fine particles less in variation of particle size without generating turbulence in movement of mist in a reaction tube.SOLUTION: There is provided a spray fine particle manufacturing device having a reaction tube 1, a nozzle 2 for spraying raw material liquid fixed on an upper part of the reaction tube, a heating source 3 set on a periphery of the reaction tube, and a fine particle collection device 4 connected from a lower part of the reaction tube with a pipe, in which an air introduction port is arranged around the nozzle on a circumference. There is provided a spray fine particle manufacturing device arranged around the nozzle 2 on the circumference and generating air flow from the air introduction port into the reaction tube 1 by an aspiration means of an aspirating fine particle collection device 4 of a lower part of the reaction tube.SELECTED DRAWING: Figure 1

Description

本発明は、噴霧乾燥又は噴霧熱分解による微粒子の製造装置に関する。   The present invention relates to an apparatus for producing fine particles by spray drying or spray pyrolysis.

噴霧乾燥法又は噴霧熱分解法は、原料液を反応管上部のノズルから噴霧し、反応管内部の加熱により乾燥又は熱分解させて微粒子を製造する方法である。この装置は、基本的に、反応管上部にノズルを有し、反応管外周部に加熱源を有し、反応管下部から生成した微粒子を回収する構造を有している。
このような噴霧微粒子製造装置におけるノズルでは、原料液を圧縮空気と同時に先端から噴出してミスト化し、微小粒子を形成する。また、ノズルの周囲にはウォータージャケットが設けられており、ノズルを冷却して、ノズル先端に位置する樹脂製Oリングの溶融を防いでいる。
The spray drying method or spray pyrolysis method is a method in which a raw material liquid is sprayed from a nozzle at the top of a reaction tube and dried or thermally decomposed by heating inside the reaction tube to produce fine particles. This apparatus basically has a structure having a nozzle at the upper part of the reaction tube, a heat source at the outer periphery of the reaction tube, and collecting fine particles generated from the lower part of the reaction tube.
In the nozzle in such an atomized fine particle manufacturing apparatus, the raw material liquid is ejected from the tip simultaneously with the compressed air to be mist to form fine particles. A water jacket is provided around the nozzle to cool the nozzle and prevent melting of the resin O-ring located at the tip of the nozzle.

従来の噴霧装置では、ノズル先端のミスト噴出口周辺が負圧となり、ミストの一部が巻き上げられるような乱流を生じる。巻き上げられたミストは、ノズル先端またはその周辺に付着し、次第に乾燥し、固着物となる。固着物が生じると、ミストパターンが乱れ、製品の粒度分布のばらつき、炉芯管内壁への固着発生の原因となる(図3参照)。   In a conventional spraying device, a mist flow around the mist outlet at the tip of the nozzle is negative and a turbulent flow is generated in which a part of the mist is wound up. The rolled-up mist adheres to the nozzle tip or its periphery, gradually dries, and becomes a fixed substance. When a sticking substance is generated, the mist pattern is disturbed, causing variations in the particle size distribution of the product and causing sticking to the inner wall of the furnace core tube (see FIG. 3).

そこで、特許文献1では、自己清掃噴霧ノズルとして、噴霧口周辺に清掃エアを設けることで、ノズル先端への固着防止が図られている。また、特許文献2では、熱風をらせん状にして吹き込む装置が提案されている。   Therefore, in Patent Document 1, as a self-cleaning spray nozzle, prevention of sticking to the nozzle tip is achieved by providing cleaning air around the spray port. Further, Patent Document 2 proposes a device that blows hot air in a spiral shape.

特表2006−510476号公報JP-T-2006-510476 特開昭49−78254号公報JP-A 49-78254

しかしながら、特許文献1記載の手段では、前記ウォータージャケットやその周辺部への固着は防止できない。また、特許文献2の装置では、ノズル先端のミスト噴出口周辺の負圧による乱流は抑制できるが、ノズル先端の付着や炉心管内壁の付着を抑制することができない。また、吹き込む空気により、ミストの内側と外側での流速が異なり、粒子にばらつきが発生する。また、らせん状に吹き込んだ空気が炉芯管に接触すると、乱流が生じたりするため、粒子にばらつきが発生する可能性がある。
従って、本発明の課題は、反応管内部のミストの動きに乱流を生じさせず、粒度のばらつきの少ない微粒子を製造することができる噴霧微粒子製造装置を提供することにある。
However, the means described in Patent Document 1 cannot prevent the water jacket and its periphery from being fixed. Moreover, in the apparatus of patent document 2, although the turbulent flow by the negative pressure around the mist jet nozzle vicinity of a nozzle tip can be suppressed, adhesion of a nozzle tip and adhesion of a core tube inner wall cannot be suppressed. In addition, the flow velocity between the inside and outside of the mist is different depending on the blown air, and the particles vary. Further, when the air blown in a spiral shape comes into contact with the furnace core tube, a turbulent flow may occur, which may cause variations in particles.
Accordingly, an object of the present invention is to provide an atomized fine particle production apparatus capable of producing fine particles with little variation in particle size without causing turbulent flow in the movement of mist inside a reaction tube.

そこで本発明者は、ノズルから噴出されたミストに乱流を発生させることなく、反応管に付着させない手段について種々検討した結果、ノズル周辺にエア導入口を円周上に配置させれば、反応管下部の吸引性微粒子捕集装置の吸引手段により生じる負圧により、穏やかなミストの下方向への流れが生じ、反応管への固着防止と粒度のばらつき防止が得られることを見出し、本発明を完成した。   Therefore, as a result of various studies on means for preventing the mist ejected from the nozzle from adhering to the reaction tube without causing turbulent flow, the present inventor has found that if the air inlet is arranged around the nozzle on the circumference, It has been found that the negative pressure generated by the suction means of the suction particle collecting device at the lower part of the tube causes a gentle downward flow of mist, preventing sticking to the reaction tube and preventing variation in particle size. Was completed.

すなわち、本発明は、次の〔1〕及び〔2〕を提供するものである。   That is, the present invention provides the following [1] and [2].

〔1〕反応管と、反応管上部に固定された原料液噴霧用ノズルと、反応管外周部に設置された加熱源と、反応管下部から配管で繋いだ微粒子捕集装置を備えた噴霧微粒子製造装置において、ノズル周辺にエア導入口を円周上に配置したことを特徴とする噴霧微粒子製造装置。
〔2〕反応管下部の吸引性微粒子捕集装置の吸引手段によりノズル周辺に円周上に配置されたエア導入口から反応管内へのエアの流れを生じさせる〔1〕記載の噴霧微粒子製造装置。
[1] Sprayed fine particles equipped with a reaction tube, a raw material liquid spray nozzle fixed to the upper part of the reaction tube, a heating source installed on the outer periphery of the reaction tube, and a particulate collection device connected by piping from the lower part of the reaction tube An apparatus for producing atomized fine particles, characterized in that an air inlet port is arranged on the circumference around a nozzle in the production apparatus.
[2] The atomized fine particle production apparatus according to [1], wherein an air flow from the air inlet arranged around the nozzle to the periphery of the nozzle is caused to flow into the reaction tube by the suction means of the suction particle collecting device below the reaction tube .

本発明の装置によれば、ミスト噴出口周辺の強い負圧を無くし、ミストを巻き上げるような乱流を防止できる。定期的な清掃が不要で、粒度のばらつきが少ない微粒子を継続的に製造できる。細く長いミストの流れが形成され、反応管内壁へのミスト固着を防止できる。   According to the apparatus of the present invention, strong negative pressure around the mist ejection port is eliminated, and turbulent flow that winds up the mist can be prevented. Regular cleaning is unnecessary, and fine particles with little variation in particle size can be continuously produced. A thin and long mist flow is formed, and mist sticking to the inner wall of the reaction tube can be prevented.

噴霧微粒子製造装置の全体概略図を示す。An overall schematic view of a spray fine particle manufacturing apparatus is shown. 本発明装置の反応管上部の正面概略図(下)及び上面図(上)を示す。The front schematic view (lower) and top view (upper) of the upper part of the reaction tube of the apparatus of the present invention are shown. 従来装置の反応管上部の正面概略図(下)及び上面図(上)を示す。A front schematic view (lower) and a top view (upper) of the upper part of the reaction tube of the conventional apparatus are shown.

本発明の噴霧微粒子製造装置の実施形態について図面を参照して説明する。   An embodiment of an atomized fine particle manufacturing apparatus of the present invention will be described with reference to the drawings.

本発明の噴霧微粒子製造装置は、図1に示すように、反応管1と、反応管上部に固定された原料液噴霧用ノズル2と、反応管外周部に設置された加熱源3と、反応管下部から配管で繋いだ微粒子捕集装置4を備えている。   As shown in FIG. 1, the spray fine particle production apparatus of the present invention includes a reaction tube 1, a raw material liquid spray nozzle 2 fixed to the upper part of the reaction tube, a heating source 3 installed on the outer periphery of the reaction tube, and a reaction. A particulate collection device 4 connected by piping from the lower part of the tube is provided.

反応管1は、ノズル2から噴霧された液滴を加熱して乾燥または加熱反応して微粒子とし、反応管下部へと移動させる反応炉である。例えば、硝酸アルミニウムとオルトケイ酸テトラエチルの混合溶液をノズル2から噴霧し、400℃〜800℃に加熱すれば、アルミノシリケートの中空粒子が得られる。当該反応管1は、通常円筒形状であり、ステンレスなどの金属、ムライトやアルミナなどのセラミックス等により製造されている。これらの反応管はいずれも採用できる。   The reaction tube 1 is a reaction furnace in which droplets sprayed from the nozzle 2 are heated to dry or heat to form fine particles and move to the lower part of the reaction tube. For example, if a mixed solution of aluminum nitrate and tetraethyl orthosilicate is sprayed from the nozzle 2 and heated to 400 ° C. to 800 ° C., aluminosilicate hollow particles can be obtained. The reaction tube 1 is generally cylindrical and is made of a metal such as stainless steel, a ceramic such as mullite or alumina, or the like. Any of these reaction tubes can be employed.

反応管上部に固定された原料液噴霧用ノズル2としては、2流体ノズルや4流体ノズルが使用できる。このノズルには、原料溶液がポンプを介して供給される。ここで2流体ノズルの方式には、空気と前記溶液とをノズル内部で混合する内部混合方式と、ノズル外部で空気と前記溶液を混合する外部混合方式があるが、いずれも採用できる。   As the raw material liquid spray nozzle 2 fixed to the upper part of the reaction tube, a two-fluid nozzle or a four-fluid nozzle can be used. The raw material solution is supplied to this nozzle through a pump. Here, the two-fluid nozzle method includes an internal mixing method in which air and the solution are mixed inside the nozzle, and an external mixing method in which the air and the solution are mixed outside the nozzle.

反応管外周部には、加熱源3を備えている。加熱源3は、ノズル2から噴霧されたミストを乾燥又は熱分解できる温度域を形成できるヒーターであればよく、ガスの燃焼による加熱源であってもよく、電気ヒーターであってもよい。   A heating source 3 is provided on the outer periphery of the reaction tube. The heating source 3 may be a heater that can form a temperature range in which the mist sprayed from the nozzle 2 can be dried or thermally decomposed, and may be a heating source by gas combustion or an electric heater.

反応管下部には、反応管下部から配管で繋いだ吸引性微粒子捕集装置4を備えている。吸引性の微粒子捕集装置4としては、高性能サイクロン粉体回収機やバグフィルターを用いることができる。また、微粒子の回収にあたっては、フィルターを通過させる等の分級操作を行うことにより調整することができる。   At the lower part of the reaction tube, an attracting particulate collection device 4 connected by piping from the lower part of the reaction tube is provided. As the suction particulate collection device 4, a high-performance cyclone powder recovery machine or a bag filter can be used. Further, the collection of fine particles can be adjusted by performing a classification operation such as passing through a filter.

本発明の装置は、図2のように、ノズル周辺にエア導入口6を円周上に配置したことを特徴とする。図2は、反応管上部のノズル周辺を示した図である。ノズル2は、ノズル本体2aと噴出口5からなる。   As shown in FIG. 2, the apparatus of the present invention is characterized in that air inlets 6 are arranged on the circumference around the nozzle. FIG. 2 is a view showing the vicinity of the nozzle at the top of the reaction tube. The nozzle 2 includes a nozzle body 2 a and a jet port 5.

従来の装置(図3)によれば、ノズル2aの噴出口5aから噴出されたミスト8に乱流が生じ、噴出口5付近への固着9が発生する。また、ミスト8が強力に噴出されると、その周辺に負圧による乱流10が生じる。この乱流は、微粒子の粒子径のばらつきの原因となる。また、ミスト8は、反応管壁への固着も生じる。   According to the conventional apparatus (FIG. 3), turbulent flow is generated in the mist 8 ejected from the ejection port 5a of the nozzle 2a, and sticking 9 near the ejection port 5 occurs. Further, when the mist 8 is ejected strongly, a turbulent flow 10 due to negative pressure is generated around the mist 8. This turbulent flow causes variation in the particle diameter of the fine particles. Moreover, the mist 8 also adheres to the reaction tube wall.

これに対し、本発明では、ノズルの周辺に円周上にエア導入口6を配置した。このエア導入口は、ノズルの噴出口5の周囲をかこむように形成するのが、ミストを円錐状に噴出させる点で望ましい。エア導入口6は、ノズルの周辺に8個以上設けるのが好ましく、12個以上がより好ましく、16個以上がさらに好ましい。また、エア導入口6の口径が小さすぎると生じるエアの流れが強くなりすぎるため、24個以下が好ましい。エア導入口の形状は円形が好ましい。
このようなエア導入口の配置によって、反応管下部の吸引性の微粒子捕集装置、例えばサイクロン捕集装置により生じた反応管内部が負圧になることにより、ミストに下方向への自然な流れ7が生じる。従って、ミストに大きな乱流が生じず、ノズル先端への固着も防止でき、反応管壁への固着も防止できる。
On the other hand, in this invention, the air inlet 6 was arrange | positioned on the circumference around the nozzle. It is desirable that the air inlet is formed so as to bite around the nozzle outlet 5 in that the mist is ejected in a conical shape. Eight or more air inlets 6 are preferably provided around the nozzle, more preferably 12 or more, and even more preferably 16 or more. In addition, if the diameter of the air introduction port 6 is too small, the flow of air that is generated becomes too strong, so 24 or less is preferable. The shape of the air inlet is preferably circular.
By arranging such an air inlet, a negative flow is generated inside the reaction tube generated by a suction particulate collection device at the lower part of the reaction tube, for example, a cyclone collection device, so that the natural flow downwards to the mist. 7 occurs. Therefore, a large turbulent flow does not occur in the mist, and the sticking to the nozzle tip can be prevented, and the sticking to the reaction tube wall can also be prevented.

次に実施例を挙げて、本発明の効果について説明する。   Next, an example is given and the effect of the present invention is explained.

実施例1
エア導入口を設けたノズルユニット(図2)を噴霧熱分解装置の反応管に設置した。次いで蒸留水1リットルに硝酸アルミニウムを0.04mol、オルトケイ酸テトラエチルを0.16mol溶解したアルミニウム及びケイ素の混合水溶液を溶液タンクに投入した。投入された水溶液は送液ポンプにより、2流体ノズルを介してミスト状に噴霧され、乾燥ゾーン(約400℃)、次いで熱分解ゾーン(800℃)を通過させた。バグフィルターを用いて中空粒子を回収した。得られた中空粒子を約1000℃で焼成し、目的とするアルミノシリケート中空粒子を得た。
その後、2流体ノズルの先端、反応管の内壁を確認したところ、付着は確認されなかった。
Example 1
A nozzle unit (FIG. 2) provided with an air inlet was installed in the reaction tube of the spray pyrolysis apparatus. Next, a mixed aqueous solution of aluminum and silicon in which 0.04 mol of aluminum nitrate and 0.16 mol of tetraethyl orthosilicate were dissolved in 1 liter of distilled water was charged into the solution tank. The introduced aqueous solution was sprayed in the form of a mist through a two-fluid nozzle by a liquid feed pump, and passed through a drying zone (about 400 ° C.) and then a thermal decomposition zone (800 ° C.). Hollow particles were collected using a bag filter. The obtained hollow particles were fired at about 1000 ° C. to obtain the intended aluminosilicate hollow particles.
Thereafter, when the tip of the two-fluid nozzle and the inner wall of the reaction tube were confirmed, adhesion was not confirmed.

比較例1
従来のノズルユニット(図3)を噴霧熱分解装置の反応管に設置した。次いで蒸留水1リットルに硝酸アルミニウムを0.04mol、オルトケイ酸テトラエチルを0.16mol溶解したアルミニウム及びケイ素の混合水溶液を溶液タンクに投入した。投入された水溶液は送液ポンプにより、2流体ノズルを介してミスト状に噴霧され、乾燥ゾーン(約400℃)、次いで熱分解ゾーン(800℃)を通過させた。バグフィルターを用いて中空粒子を回収した。得られた中空粒子を約1000℃で焼成し、目的とするアルミノシリケート中空粒子を得た。
その後、2流体ノズルの先端、反応管の内壁を確認したところ、付着が発生していた。
Comparative Example 1
A conventional nozzle unit (FIG. 3) was installed in the reaction tube of the spray pyrolysis apparatus. Next, a mixed aqueous solution of aluminum and silicon in which 0.04 mol of aluminum nitrate and 0.16 mol of tetraethyl orthosilicate were dissolved in 1 liter of distilled water was charged into the solution tank. The introduced aqueous solution was sprayed in the form of a mist through a two-fluid nozzle by a liquid feed pump, and passed through a drying zone (about 400 ° C.) and then a thermal decomposition zone (800 ° C.). Hollow particles were collected using a bag filter. The obtained hollow particles were fired at about 1000 ° C. to obtain the intended aluminosilicate hollow particles.
Thereafter, when the tip of the two-fluid nozzle and the inner wall of the reaction tube were confirmed, adhesion occurred.

1 反応管
2 ノズル
2a ノズル本体
3 加熱源
4 微粒子捕集装置
5 噴出口
6 エア導入口
7 エアの流れ
8 ミスト
9 固着物
10 乱流
11 固着物
DESCRIPTION OF SYMBOLS 1 Reaction tube 2 Nozzle 2a Nozzle main body 3 Heating source 4 Particulate collection device 5 Jet outlet 6 Air inlet 7 Air flow 8 Mist 9 Fixed thing
10 Turbulence
11 Solid matter

Claims (2)

反応管と、反応管上部に固定された原料液噴霧用ノズルと、反応管外周部に設置された加熱源と、反応管下部から配管で繋いだ微粒子捕集装置を備えた噴霧微粒子製造装置において、ノズル周辺にエア導入口を円周上に配置したことを特徴とする噴霧微粒子製造装置。   In a spray particle production apparatus equipped with a reaction tube, a nozzle for spraying a raw material liquid fixed to the upper part of the reaction tube, a heating source installed on the outer periphery of the reaction tube, and a particulate collection device connected by piping from the lower part of the reaction tube An apparatus for producing fine spray particles, characterized in that an air inlet is arranged on the circumference around the nozzle. 反応管下部の吸引性微粒子捕集装置の吸引手段によりノズル周辺に円周上に配置されたエア導入口から反応管内へのエアの流れを生じさせる請求項1記載の噴霧微粒子製造装置。   2. The atomized fine particle manufacturing apparatus according to claim 1, wherein an air flow from the air inlet arranged on the circumference of the nozzle around the nozzle is caused to flow into the reaction tube by the suction means of the suction particle collecting device at the lower part of the reaction tube.
JP2017040777A 2017-03-03 2017-03-03 Spray fine particle production equipment Active JP7266358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017040777A JP7266358B2 (en) 2017-03-03 2017-03-03 Spray fine particle production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017040777A JP7266358B2 (en) 2017-03-03 2017-03-03 Spray fine particle production equipment

Publications (2)

Publication Number Publication Date
JP2018143946A true JP2018143946A (en) 2018-09-20
JP7266358B2 JP7266358B2 (en) 2023-04-28

Family

ID=63589149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017040777A Active JP7266358B2 (en) 2017-03-03 2017-03-03 Spray fine particle production equipment

Country Status (1)

Country Link
JP (1) JP7266358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049436A (en) * 2018-09-27 2020-04-02 太平洋セメント株式会社 Spray pyrolysis plant or spray drier

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337964U (en) * 1976-09-08 1978-04-03
JPH05253468A (en) * 1992-03-10 1993-10-05 Oogawara Kakoki Kk Method and device for spray thermal decomposition
JPH05309201A (en) * 1992-05-08 1993-11-22 Morinaga Milk Ind Co Ltd Spray dryer
JPH07506530A (en) * 1992-05-21 1995-07-20 ニーロ、ホールディング、アクティーゼルスカップ Method and apparatus for minimizing deposits in drying chambers
JP2006000796A (en) * 2004-06-18 2006-01-05 Seiko Epson Corp Resin particulate manufacturing apparatus, particulate manufacturing method and particulate
JP2007083112A (en) * 2005-09-20 2007-04-05 Chugai Ro Co Ltd Powder manufacturing apparatus and powder manufacturing method
JP2007083111A (en) * 2005-09-20 2007-04-05 Chugai Ro Co Ltd Powder production apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253468B2 (en) 2010-09-03 2013-07-31 株式会社東芝 Antenna device and radar device
JP5309201B2 (en) 2011-11-17 2013-10-09 有限会社エル・エス・エム Equipment for manufacturing shrink shrink film mount for heat shrink packaging

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337964U (en) * 1976-09-08 1978-04-03
JPH05253468A (en) * 1992-03-10 1993-10-05 Oogawara Kakoki Kk Method and device for spray thermal decomposition
JPH05309201A (en) * 1992-05-08 1993-11-22 Morinaga Milk Ind Co Ltd Spray dryer
JPH07506530A (en) * 1992-05-21 1995-07-20 ニーロ、ホールディング、アクティーゼルスカップ Method and apparatus for minimizing deposits in drying chambers
JP2006000796A (en) * 2004-06-18 2006-01-05 Seiko Epson Corp Resin particulate manufacturing apparatus, particulate manufacturing method and particulate
JP2007083112A (en) * 2005-09-20 2007-04-05 Chugai Ro Co Ltd Powder manufacturing apparatus and powder manufacturing method
JP2007083111A (en) * 2005-09-20 2007-04-05 Chugai Ro Co Ltd Powder production apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049436A (en) * 2018-09-27 2020-04-02 太平洋セメント株式会社 Spray pyrolysis plant or spray drier
JP7292843B2 (en) 2018-09-27 2023-06-19 太平洋セメント株式会社 spray pyrolyzer or spray dryer

Also Published As

Publication number Publication date
JP7266358B2 (en) 2023-04-28

Similar Documents

Publication Publication Date Title
SU1577710A3 (en) Method of spray drying of food product as solution and method of device for effecting same
JP6836426B2 (en) Spray fine particle manufacturing equipment
CN105698512B (en) A kind of spray drying system
CN207237542U (en) Wet dust collector
CN211885420U (en) Powder spray drying tower
JP7266358B2 (en) Spray fine particle production equipment
JP6440933B2 (en) Spray pyrolysis treatment apparatus and spray pyrolysis treatment method
CN208554083U (en) A kind of novel spray granulation device
JP2007083112A (en) Powder manufacturing apparatus and powder manufacturing method
JP2010208917A (en) Method and device for pulse spray thermal decomposition
RU2326309C1 (en) Dryer for solutions and suspensions
RU2394669C1 (en) Pyrolysis plant
RU2343383C1 (en) Apparatus for drying solutions and suspensions
CN211752552U (en) High-speed centrifugal spraying device
CN211434204U (en) Fluidized bed coating machine
TWI267404B (en) Porous spraying method and device
CN208641780U (en) A kind of dry powder manufacturing apparatus of water-reducing agent
RU82588U1 (en) PYROLYSIS PLANT
KR100486919B1 (en) Extraction device for metal oxide utilizing waste acid and the method thereof
RU2525562C1 (en) Water-jet heater
RU2607445C1 (en) Fluidised bed granulator
CN218608056U (en) Spray drier
CN107754361A (en) A kind of starch spray-drying installation
CN204261365U (en) A kind of high speed centrifugation atomization drying system
JP6997633B2 (en) Fine particle production equipment by spray pyrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210910

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210910

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210922

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210928

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211126

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211130

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220719

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221129

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230314

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230411

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230418

R150 Certificate of patent or registration of utility model

Ref document number: 7266358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150