JP2004292223A - Powder production apparatus - Google Patents

Powder production apparatus Download PDF

Info

Publication number
JP2004292223A
JP2004292223A JP2003085631A JP2003085631A JP2004292223A JP 2004292223 A JP2004292223 A JP 2004292223A JP 2003085631 A JP2003085631 A JP 2003085631A JP 2003085631 A JP2003085631 A JP 2003085631A JP 2004292223 A JP2004292223 A JP 2004292223A
Authority
JP
Japan
Prior art keywords
powder
fine mist
reaction
powder production
production apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003085631A
Other languages
Japanese (ja)
Other versions
JP4698127B2 (en
Inventor
Masao Kamiide
雅男 上出
Motoyuki Yanagimoto
基之 柳本
Toshitaka Komura
季孝 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2003085631A priority Critical patent/JP4698127B2/en
Publication of JP2004292223A publication Critical patent/JP2004292223A/en
Application granted granted Critical
Publication of JP4698127B2 publication Critical patent/JP4698127B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder production apparatus which has uniform temperature distribution in a reaction part and thus realizes homogeneous powder production. <P>SOLUTION: The powder production apparatus 1 is provided with: a cylindrical-shaped reaction part 23 which has a circular section perpendicular to its axis and is supplied with fine mist including a powder raw material; and a plurality of burners 41 for spurting flame arranged along the inner circumference of the circle in the section perpendicular to the axis. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、2次電池や半導体の材料の製造に適用される粉体製造装置に関するものである。
【0002】
【従来の技術】
2次電池等の製造に際しては、その化学組成、微細構造の制御が重要であり、その原料となる粉体の製造装置には、固相反応法や液相反応法を利用したものの他、火炎式噴霧熱分解法を利用したものがある。
【0003】
図3は、この火炎式噴霧熱分解法を利用した粉体製造装置50を示し、筒状の反応部51の底部から上方に向けて火炎を噴射するバーナ52と、このバーナ52の側方に並設され、同じく反応部51の底部から上方に向けて粉体原料を含む微細ミストを噴霧する噴霧装置53が設けられている。
【0004】
【発明が解決しようとする課題】
上記粉体製造装置50における反応部51内においては、径方向に均一な温度分布が得られるのが望ましく、厳しい温度管理が求められる。ところが、図4に示すように、この粉体製造装置50の場合、バーナ52の近くでは、急激に温度が上昇し、バーナ52から離れるにしたがって、温度が低下し、不均一な温度分布となる。このため、均質な粉体が得られないという問題があった。
【0005】
本発明は、斯る従来の問題をなくすことを課題としてなされたもので、反応部内の温度分布を均一にし、均質な粉体製造を可能にした粉体製造装置を提供しようとするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するために、第1発明は、軸直角断面の内周が90°よりも小さい角部を有さない筒状の形状を有し、粉体原料を含む微細ミストが供給される反応部と、上記軸直角断面の上記内周に沿って火炎噴射可能に配設された複数のバーナとを備えた構成とした。
【0007】
第2発明は、第1発明の構成に加えて、上記反応部での温度が調節可能である構成とした。
【0008】
【発明の実施の形態】
次に、本発明の実施形態を図面にしたがって説明する。
図1及び2は、本発明に係る粉体製造装置1を示し、この粉体製造装置1は、粉体生成器11と粉体収集部12と吸引機13とを備え、それぞれはダクト14及び15を介して連通している。
【0009】
粉体生成器11は、中空体で、微細ミスト導入部21と微細ミスト貯留部22と反応部23とに大別され、微細ミスト導入部21は、粉体生成器11の下部側方に、微細ミスト貯留部22に向けて設けられ、微細ミスト貯留部22の上方に筒状の反応部23が続いている。
粉体収集部12は、内部に微粒子とガスとを分離するフィルター部材、例えばバグフィルター24を内蔵している。
吸引機13は、ダクト14、粉体収集部12内のバグフィルター24及びダクト15を介して粉体生成器11内を吸引し、バグフィルター24を通過したガスを外部に排出するように設けられている。従って、粉体生成器11内には、この吸引機13の作用により、微細ミスト導入部21から微細ミスト貯留部22、反応部23を経て、ダクト14に向かう流体の流れが形成される。
【0010】
粉体生成器11について、さらに詳説すると、この微細ミスト導入部21は、微細ミスト貯留部22の側方に固定され、微細ミスト貯留部22に向かって広がった漏斗形状を有する導入管31と、この導入管31の小径側端部に取り付けられ、粉体原料を含んだ溶液と高圧空気とを微細ミスト貯留部22に向けて噴霧する流体ノズル、例えば2流体ノズル32とから形成されている。
【0011】
微細ミスト貯留部22は、2流体ノズル32から噴霧された粉体原料を含んだ微細ミストを拡散させる容積を有し、上記微細ミストを一旦貯める空間を内部に有している。
【0012】
反応部23は、軸直角断面が円形の筒状の形状を有し、この反応部23には、同じく軸直角断面が円形の内周面に沿って火炎噴射可能に4個のバーナ41が2段に配設されている。そして、斯かるバーナ配置により、火炎の旋回流を生じさせ、内部温度が均一になるとともに、微細ミスト貯留部22からの微細ミストも旋回流に沿って流れ、対流時間が長くなる故、反応部23の長さの短縮が可能となっている。また、反応部23は、バーナ41の下方の空間に冷却ガス、例えば冷却空気を供給するための冷却ガス供給手段42を有している。そして、バーナ41への燃料の流量を調節することにより、また冷却ガス供給手段42からの冷却ガスの流量を調節することにより反応部23内における温度調節が可能となっている。なお、冷却ガス供給手段42は必ずしも必要とするものではない。
【0013】
次に、上記構成からなる粉体生成器11における粉体生成プロセスについて説明する。
2流体ノズル32には、図示しない圧送器により水酸化物、硝酸塩、硫酸塩、炭酸塩等の溶液が圧送され、2流体ノズル32から高圧空気とともに上記溶液が導入管31内に噴霧されることにより平均径10μm程度の微細ミストが生成される。この微細ミストは、導入管31から微細ミスト貯留部22内に流入し、流速が減じられて層流化するとともに、比較的大きな径の微細ミストは壁面に接触すると濡れて微細ミスト貯留部22でトラップされるのに対して、比較的小さい径の微細ミストは壁面に接触しても微細ミスト自身の表面張力が大きく濡れない。この結果、径の分布標準偏差が小さい微細ミストが残存することになり、この残存した微細ミストは、微細ミスト貯留部22からダクト14に向かって吸引され、反応部23に至る。
【0014】
図示する例では、反応部23のバーナ41は4個ずつ2段に配設されており、火炎流は反応部23内で円周方向に噴射し、旋回流を形成している。これにより、反応部23内での温度が均一になり、微細ミストは旋回流の流線に沿って流動する。このため、液滴が蒸発し、熱分解するのに十分な滞留時間の確保が可能となっている。そして、この反応部23で瞬時に熱分解、溶融、合成が起こり、目的とする粉体処理が行われる。
【0015】
例えば、マンガン酸リチウムを硝酸塩溶液を用いて作成する場合は、急激な温度勾配の雰囲気下では、マンガン酸リチウムは所望形状の微粉体にならないことがある。このため、反応部23での昇温速度を厳密に管理する必要がある。したがって、本発明はバーナ41の数を限定するものでなく、反応部23内で処理溶液等に応じた軸方向温度分布を実現するように、バーナ41の円周方向における個数、軸方向の段数を最適値を求めて、バーナ41を配置すればよい。
また、図示しない温度制御装置により上述したバーナ41の燃料流量或いは冷却ガス流量を調節して、最適な温度分布を得るようにしてもよい。
【0016】
このようにして熱分解させて得られた粉体は、径がナノメートルオーダの超微粒粉体となり、排ガスとともに粉体生成器11からダクト14を経由して粉体収集部12に至る過程で粉体収集部12の耐熱温度以下に冷却される。そして、固の粉体は排ガスとともに粉体収集部12に導かれ、バグフィルター24により排ガスと分離され、粉体は粉体収集部12内に収集され、バグフィルター24を通過した排ガスはダクト15を介して吸引機13により外部に排出される。
【0017】
なお、粉体生成器11内の圧力は大気圧より低くてもよく、大気圧でもよく、大気圧よりも高くてもよい。さらに、粉体生成器11内の雰囲気ガスの種類については、何等限定するものでなく、種々の雰囲気ガスが適用される。
また、本発明は、反応部23の断面形状を円形に限定するものでなく、軸直角断面の内周が90°よりも小さい角部を有さない筒状の形状を有していればよく、例えば5角形、6角形等の断面形状のものでもよい。
さらに、本発明は、微細ミスト導入部21の数についても限定するものでなく、微細ミスト導入部21の数は一つでもよい。
その他、本発明は、2流体ノズル32に限定するものでなく、複数のノズルを用いて微細ミスト導入部21へ微細ミストを噴出するようにしてもよい。
【0018】
【発明の効果】
以上の説明より明らかなように、第1発明によれば、軸直角断面の内周が90°よりも小さい角部を有さない筒状の形状を有し、粉体原料を含む微細ミストが供給される反応部と、上記軸直角断面の上記内周に沿って火炎噴射可能に配設された複数のバーナとを備えた構成としてある。
このため、反応部内に火炎が届かないデッドスペースがなくなり、円周方向に沿った火炎の旋回流が形成され、均一な温度分布が得られるとともに、微細ミストは旋回流の流線に沿って流動するようになる結果、液滴が蒸発し、熱分解するのに十分な滞留時間の確保が可能となり、均質な粉体製造が可能になり、かつ反応部の長さを短くでき、装置全体をコンパクトなものにすることができる等の効果を奏する。
【0019】
第2発明によれば、第1発明の構成に加えて、上記反応部での温度が調節可能である構成としてある。
このため、上記効果に加えて、処理溶液等に応じて反応部内での厳密な昇温速度の管理が可能となり、粉体の種類が異なっても良好な品質を確保することが可能になるという効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る粉体製造装置の全体構成の概略を示す図である。
【図2】図1に示す粉体製造装置における反応部の断面図である。
【図3】従来の粉体製造装置の概略を示す図である。
【図4】図3に示す従来の粉体製造装置内における温度分布を示す図である。
【符号の説明】
1 粉体製造装置
11 粉体生成器
12 粉体収集部
13 吸引機
14,15 ダクト
21 微細ミスト導入部
22 微細ミスト貯留部
23 反応部
24 バグフィルター
31 導入管
32 2流体ノズル
41 バーナ
42 冷却ガス供給手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a powder manufacturing apparatus applied to, for example, manufacturing of secondary battery and semiconductor materials.
[0002]
[Prior art]
It is important to control the chemical composition and microstructure of secondary batteries and the like. In addition to the solid-phase reaction method and liquid-phase reaction method, powder There is a method using a thermal spray pyrolysis method.
[0003]
FIG. 3 shows a powder manufacturing apparatus 50 using the flame spray pyrolysis method. The burner 52 injects a flame upward from the bottom of a tubular reaction section 51, and a burner 52 is provided on a side of the burner 52. A spray device 53 is provided which is arranged in parallel and sprays a fine mist containing a powder material upward from the bottom of the reaction section 51.
[0004]
[Problems to be solved by the invention]
In the reaction section 51 of the powder production apparatus 50, it is desirable to obtain a uniform temperature distribution in the radial direction, and strict temperature control is required. However, as shown in FIG. 4, in the case of the powder manufacturing apparatus 50, the temperature rapidly rises near the burner 52, and decreases as the distance from the burner 52 increases, resulting in an uneven temperature distribution. . For this reason, there was a problem that a homogeneous powder could not be obtained.
[0005]
The present invention has been made to eliminate the conventional problems, and has as its object to provide a powder production apparatus which makes the temperature distribution in the reaction section uniform and enables uniform powder production. .
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the first invention has a cylindrical shape in which the inner periphery of a cross section perpendicular to the axis has no corner portion smaller than 90 °, and a fine mist containing a powder raw material is supplied. A configuration including a reaction section and a plurality of burners arranged so as to be capable of flame injection along the inner periphery of the cross section perpendicular to the axis is provided.
[0007]
According to a second aspect of the invention, in addition to the configuration of the first aspect, the temperature in the reaction section is adjustable.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
1 and 2 show a powder manufacturing apparatus 1 according to the present invention. The powder manufacturing apparatus 1 includes a powder generator 11, a powder collecting unit 12, and a suction device 13, each of which includes a duct 14 and a suction device 13. And 15.
[0009]
The powder generator 11 is a hollow body, and is roughly divided into a fine mist introduction unit 21, a fine mist storage unit 22, and a reaction unit 23. The fine mist introduction unit 21 is located on the lower side of the powder generator 11, The cylindrical reaction part 23 is provided toward the fine mist storage part 22, and extends above the fine mist storage part 22.
The powder collecting section 12 has a built-in filter member for separating fine particles and gas, for example, a bag filter 24.
The suction device 13 is provided to suck the inside of the powder generator 11 through the duct 14, the bag filter 24 in the powder collection unit 12 and the duct 15, and discharge the gas that has passed through the bag filter 24 to the outside. ing. Therefore, in the powder generator 11, a flow of fluid from the fine mist introduction unit 21 to the duct 14 via the fine mist storage unit 22 and the reaction unit 23 is formed by the action of the suction device 13.
[0010]
The powder generator 11 will be described in further detail. The fine mist introduction part 21 is fixed to the side of the fine mist storage part 22 and has a funnel-shaped introduction pipe 31 that expands toward the fine mist storage part 22; A fluid nozzle, for example, a two-fluid nozzle 32, which is attached to the small-diameter end of the introduction pipe 31 and sprays the solution containing the powdery raw material and the high-pressure air toward the fine mist storage unit 22 is formed.
[0011]
The fine mist storage section 22 has a volume for diffusing the fine mist containing the powder material sprayed from the two-fluid nozzle 32, and has a space for temporarily storing the fine mist therein.
[0012]
The reaction part 23 has a cylindrical shape having a circular cross section perpendicular to the axis, and four burners 41 are provided in the reaction part 23 so that a flame can be injected along the inner peripheral surface also having a circular cross section perpendicular to the axis. Arranged in tiers. And, by such a burner arrangement, the swirling flow of the flame is generated, the internal temperature becomes uniform, and the fine mist from the fine mist storage unit 22 also flows along the swirling flow, and the convection time becomes longer. 23 can be shortened. The reaction section 23 has a cooling gas supply unit 42 for supplying a cooling gas, for example, cooling air to a space below the burner 41. The temperature in the reaction section 23 can be adjusted by adjusting the flow rate of the fuel to the burner 41 and by adjusting the flow rate of the cooling gas from the cooling gas supply means 42. The cooling gas supply means 42 is not always required.
[0013]
Next, a powder generation process in the powder generator 11 having the above configuration will be described.
A solution such as a hydroxide, a nitrate, a sulfate, or a carbonate is pumped into the two-fluid nozzle 32 by a pump (not shown), and the solution is sprayed from the two-fluid nozzle 32 together with high-pressure air into the introduction pipe 31. As a result, a fine mist having an average diameter of about 10 μm is generated. The fine mist flows from the introduction pipe 31 into the fine mist storage 22, and the flow velocity is reduced to be laminar. The fine mist having a relatively large diameter is wet when it comes into contact with the wall surface and is wetted by the fine mist storage 22. On the other hand, even if the fine mist having a relatively small diameter contacts the wall surface, the surface mist of the fine mist itself is not greatly wetted. As a result, fine mist having a small diameter distribution standard deviation remains, and the remaining fine mist is sucked from the fine mist storage unit 22 toward the duct 14 and reaches the reaction unit 23.
[0014]
In the illustrated example, the burners 41 of the reaction unit 23 are arranged in two stages of four each, and the flame flow is injected in the circumferential direction in the reaction unit 23 to form a swirling flow. Thereby, the temperature in the reaction part 23 becomes uniform, and the fine mist flows along the flow line of the swirling flow. For this reason, it is possible to secure a sufficient residence time for the droplets to evaporate and thermally decompose. Then, thermal decomposition, melting, and synthesis occur instantaneously in the reaction section 23, and a target powder treatment is performed.
[0015]
For example, when lithium manganate is prepared using a nitrate solution, lithium manganate may not become a fine powder having a desired shape under an atmosphere having a sharp temperature gradient. For this reason, it is necessary to strictly control the rate of temperature rise in the reaction section 23. Therefore, the present invention does not limit the number of burners 41, but the number of burners 41 in the circumferential direction and the number of axial stages so as to realize an axial temperature distribution according to the processing solution and the like in the reaction section 23. May be determined and the burner 41 may be arranged.
Further, an optimum temperature distribution may be obtained by adjusting the fuel flow rate or the cooling gas flow rate of the burner 41 described above by a temperature control device (not shown).
[0016]
The powder obtained by the thermal decomposition in this manner becomes an ultrafine powder having a diameter of the order of nanometers. In the process from the powder generator 11 to the powder collection unit 12 via the duct 14 together with the exhaust gas, the powder is obtained. The powder is cooled below the heat-resistant temperature of the powder collecting unit 12. Then, the solid powder is guided to the powder collecting section 12 together with the exhaust gas, separated from the exhaust gas by the bag filter 24, the powder is collected in the powder collecting section 12, and the exhaust gas passing through the bag filter 24 is passed through the duct 15. Is discharged to the outside by the suction device 13 through the.
[0017]
The pressure in the powder generator 11 may be lower than the atmospheric pressure, may be the atmospheric pressure, or may be higher than the atmospheric pressure. Further, the kind of the atmosphere gas in the powder generator 11 is not limited at all, and various atmosphere gases are applied.
In addition, the present invention does not limit the cross-sectional shape of the reaction section 23 to a circular shape, and it is sufficient that the inner circumference of the cross section perpendicular to the axis has a cylindrical shape having no corner smaller than 90 °. For example, a cross-sectional shape such as a pentagon or a hexagon may be used.
Further, the present invention does not limit the number of the fine mist introduction portions 21, and the number of the fine mist introduction portions 21 may be one.
In addition, the present invention is not limited to the two-fluid nozzle 32, and the fine mist may be ejected to the fine mist introduction unit 21 using a plurality of nozzles.
[0018]
【The invention's effect】
As is clear from the above description, according to the first invention, the fine mist containing the powder raw material has a cylindrical shape in which the inner circumference of the cross section perpendicular to the axis has no corner portion smaller than 90 °. It is configured to include a supplied reaction section and a plurality of burners arranged so as to be capable of flame injection along the inner periphery of the cross section perpendicular to the axis.
Therefore, there is no dead space in the reaction zone where the flame does not reach, the swirling flow of the flame is formed along the circumferential direction, a uniform temperature distribution is obtained, and the fine mist flows along the swirling flow streamline. As a result, it is possible to secure a sufficient residence time for the droplets to evaporate and thermally decompose, to produce a homogeneous powder, to shorten the length of the reaction section, and to reduce the entire apparatus. There are effects such as compactness.
[0019]
According to the second aspect, in addition to the configuration of the first aspect, the temperature in the reaction section is adjustable.
For this reason, in addition to the above effects, it is possible to strictly control the rate of temperature rise in the reaction section according to the processing solution and the like, and it is possible to ensure good quality even if the type of powder is different. It works.
[Brief description of the drawings]
FIG. 1 is a view schematically showing an overall configuration of a powder production apparatus according to the present invention.
FIG. 2 is a cross-sectional view of a reaction section in the powder manufacturing apparatus shown in FIG.
FIG. 3 is a view schematically showing a conventional powder manufacturing apparatus.
4 is a diagram showing a temperature distribution in the conventional powder manufacturing apparatus shown in FIG.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 powder production apparatus 11 powder generator 12 powder collection unit 13 suction device 14, 15 duct 21 fine mist introduction unit 22 fine mist storage unit 23 reaction unit 24 bag filter 31 introduction pipe 32 two-fluid nozzle 41 burner 42 cooling gas Supply means

Claims (2)

軸直角断面の内周が90°よりも小さい角部を有さない筒状の形状を有し、粉体原料を含む微細ミストが供給される反応部と、上記軸直角断面の上記内周に沿って火炎噴射可能に配設された複数のバーナとを備えたことを特徴とする粉体製造装置。The inner periphery of the section perpendicular to the axis has a cylindrical shape having no corners smaller than 90 °, and the reaction section to which the fine mist containing the powder raw material is supplied, and the inner periphery of the section perpendicular to the axis, And a plurality of burners arranged so as to be capable of injecting a flame. 上記反応部での温度が調節可能であることを特徴とする請求項1に記載の粉体製造装置。The powder production apparatus according to claim 1, wherein the temperature in the reaction section is adjustable.
JP2003085631A 2003-03-26 2003-03-26 Powder production equipment Expired - Lifetime JP4698127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085631A JP4698127B2 (en) 2003-03-26 2003-03-26 Powder production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085631A JP4698127B2 (en) 2003-03-26 2003-03-26 Powder production equipment

Publications (2)

Publication Number Publication Date
JP2004292223A true JP2004292223A (en) 2004-10-21
JP4698127B2 JP4698127B2 (en) 2011-06-08

Family

ID=33400508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085631A Expired - Lifetime JP4698127B2 (en) 2003-03-26 2003-03-26 Powder production equipment

Country Status (1)

Country Link
JP (1) JP4698127B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248872A (en) * 2005-03-14 2006-09-21 Nisshin Ferrite Kk Metallic compound powder and its production method
JP2007083113A (en) * 2005-09-20 2007-04-05 Chugai Ro Co Ltd Powder production apparatus
JP2007084355A (en) * 2005-09-20 2007-04-05 Chugai Ro Co Ltd Powder production apparatus
JP2016204718A (en) * 2015-04-27 2016-12-08 ハード工業有限会社 Powder manufacturing apparatus
JP2019025385A (en) * 2017-07-26 2019-02-21 太平洋セメント株式会社 Spray thermal decomposition device
JP2019162608A (en) * 2018-03-16 2019-09-26 太平洋セメント株式会社 Atomization pyrolysis plant
JP2020032318A (en) * 2018-08-27 2020-03-05 太平洋セメント株式会社 Spray pyrolysis apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248872A (en) * 2005-03-14 2006-09-21 Nisshin Ferrite Kk Metallic compound powder and its production method
JP2007083113A (en) * 2005-09-20 2007-04-05 Chugai Ro Co Ltd Powder production apparatus
JP2007084355A (en) * 2005-09-20 2007-04-05 Chugai Ro Co Ltd Powder production apparatus
JP4555199B2 (en) * 2005-09-20 2010-09-29 中外炉工業株式会社 Powder production equipment
JP2016204718A (en) * 2015-04-27 2016-12-08 ハード工業有限会社 Powder manufacturing apparatus
JP2019025385A (en) * 2017-07-26 2019-02-21 太平洋セメント株式会社 Spray thermal decomposition device
JP7007826B2 (en) 2017-07-26 2022-02-10 太平洋セメント株式会社 Spray pyrolyzer
JP2019162608A (en) * 2018-03-16 2019-09-26 太平洋セメント株式会社 Atomization pyrolysis plant
JP7292833B2 (en) 2018-03-16 2023-06-19 太平洋セメント株式会社 Spray pyrolysis equipment
JP2020032318A (en) * 2018-08-27 2020-03-05 太平洋セメント株式会社 Spray pyrolysis apparatus
JP7202810B2 (en) 2018-08-27 2023-01-12 太平洋セメント株式会社 Spray pyrolysis equipment

Also Published As

Publication number Publication date
JP4698127B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
US9023259B2 (en) Method for the densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing
JP6386091B2 (en) Method for densifying and spheronizing solid material and solution precursor droplets of material using plasma
JP2005218937A (en) Method and apparatus for manufacturing fine particles
US20080041532A1 (en) System for fabricating nanoparticles
JP2004292223A (en) Powder production apparatus
JP2007083112A (en) Powder manufacturing apparatus and powder manufacturing method
KR101881354B1 (en) Core shell particle generator using spraying and drying method
JP2007084355A (en) Powder production apparatus
JP6440933B2 (en) Spray pyrolysis treatment apparatus and spray pyrolysis treatment method
RU2326309C1 (en) Dryer for solutions and suspensions
JP5603748B2 (en) Burner for producing inorganic spheroidized particles, inorganic spheroidized particle producing apparatus, and method for producing inorganic spheroidized particles
KR101128417B1 (en) Smoke and fog cooling nozzle for high temperature gas heat exchange
US7776241B2 (en) Method and apparatus for producing micro particles
JP4071138B2 (en) Powder production equipment
RU2328664C1 (en) Turbulent evaporator and drying chamber with passive nozzle
RU2610632C1 (en) Vortical evaporation-drying chamber with inertial nozzle
RU2335709C1 (en) Plant for solution drying with passive nozzle
JP7266358B2 (en) Spray fine particle production equipment
TWI267404B (en) Porous spraying method and device
JP2021023900A (en) Exhaust gas cleanup method and device
JP6543753B2 (en) Method of densifying and spheroidizing solution precursor droplets of solid materials and materials using plasma
JP2008089236A (en) Heating treatment device
WO2023241129A1 (en) Electronic atomization device and atomization device thereof
RU2341740C1 (en) Drying unit with inert head
KR102267279B1 (en) Core shell particle generator using spraying and drying method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080204

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4698127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term