JP2018143046A - Virtual Power Plant - Google Patents

Virtual Power Plant Download PDF

Info

Publication number
JP2018143046A
JP2018143046A JP2017036360A JP2017036360A JP2018143046A JP 2018143046 A JP2018143046 A JP 2018143046A JP 2017036360 A JP2017036360 A JP 2017036360A JP 2017036360 A JP2017036360 A JP 2017036360A JP 2018143046 A JP2018143046 A JP 2018143046A
Authority
JP
Japan
Prior art keywords
power
index
pcs
output
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017036360A
Other languages
Japanese (ja)
Other versions
JP6849177B2 (en
Inventor
彰大 大堀
Akihiro Ohori
彰大 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2017036360A priority Critical patent/JP6849177B2/en
Publication of JP2018143046A publication Critical patent/JP2018143046A/en
Priority to JP2020203583A priority patent/JP6978572B2/en
Application granted granted Critical
Publication of JP6849177B2 publication Critical patent/JP6849177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a virtual power plant capable of reducing processing load of an apparatus that manages a plurality of power devices.SOLUTION: The virtual power plant includes a plurality of power systems PVS_A,PVS_B,PVS_C, and a central management device MC' for managing them. The central management device MC' includes an index calculation unit 73 that calculates a higher-order index for controlling each power system with respect to the power to be adjusted so that the total power of the power to be adjusted becomes the total target power. Each power system includes a plurality of power conditioners PCS and a centralized management device for managing these. Each power conditioner calculates individual target power based on an optimization problem using an index input from the central management device and controls individual output power. When receiving a higher-order index from the central management device, each central management device calculates indices based on the higher-order indices and outputs the indices to the respective power conditioners.SELECTED DRAWING: Figure 26

Description

本開示は、複数の電力システムをまとめて制御するバーチャルパワープラントに関する。   The present disclosure relates to a virtual power plant that collectively controls a plurality of power systems.

現在、エネルギーシステムの改革が進められており、バーチャルパワープラント(Virtual Power Plant:VPP)が注目されている。バーチャルパワープラントは、点在する発電所を、電力の需要を管理するシステムネットワークでまとめて制御するものであり、複数の発電所をあたかも1つの発電所のように機能させる仮想の発電所を意味している。   At present, the energy system is being reformed, and a virtual power plant (VPP) is drawing attention. A virtual power plant is a virtual power plant that controls scattered power plants together with a system network that manages the demand for power, and allows multiple power plants to function as if they were one power plant. doing.

バーチャルパワープラントが制御する発電所として、再生可能エネルギーを利用した発電システムが考えられる。その一例として太陽光を利用した太陽光発電システムがある。太陽光発電システムは、太陽電池とパワーコンディショナとを備えている。太陽電池は直流電力を生成し、この直流電力をパワーコンディショナが交流電力に変換する。変換された交流電力は、電力系統に供給される。   As a power plant controlled by a virtual power plant, a power generation system using renewable energy can be considered. One example is a solar power generation system using sunlight. The solar power generation system includes a solar cell and a power conditioner. The solar cell generates DC power, and the power conditioner converts this DC power into AC power. The converted AC power is supplied to the power system.

大規模な太陽光発電システムは、各々が電力系統に連系された複数台のパワーコンディショナを備えている。例えば、特許文献1に開示された太陽光発電システムは、複数台の太陽電池と、複数台のパワーコンディショナと、監視制御システムとを備えている。前記監視制御システムは、前記複数台のパワーコンディショナを監視および制御する。   A large-scale photovoltaic power generation system includes a plurality of power conditioners each connected to an electric power system. For example, the solar power generation system disclosed in Patent Document 1 includes a plurality of solar cells, a plurality of power conditioners, and a monitoring control system. The monitoring control system monitors and controls the plurality of power conditioners.

特開2012−205322号公報JP 2012-205322 A

バーチャルパワープラントにおいて、監視制御システムは、上位の中央管理装置からの指示に応じて、太陽光発電システムを制御する。例えば、中央管理装置から電力抑制の指示を入力された場合、監視制御システムは、各パワーコンディショナからの出力電力を抑制させる。そのための手法として、次のようなものが考えられる。すなわち、監視制御システムが、複数台のパワーコンディショナ毎にそれらが目標とする出力電力(目標出力電力)を算出する。そして、当該目標出力電力に基づいて各パワーコンディショナが出力電力を制御する。これにより、太陽光発電システム全体の出力電力が抑制される。   In the virtual power plant, the supervisory control system controls the photovoltaic power generation system in accordance with an instruction from the host central management device. For example, when an instruction to suppress power is input from the central management device, the monitoring control system suppresses output power from each power conditioner. The following can be considered as a technique for that purpose. That is, the supervisory control system calculates the output power (target output power) targeted by each of the plurality of power conditioners. Each power conditioner controls the output power based on the target output power. Thereby, the output electric power of the whole photovoltaic power generation system is suppressed.

しかしながら、上述の手法では、監視制御システムは、複数台のパワーコンディショナ毎に目標出力電力を算出しなければならない。そのため、監視制御システムに対する負荷が大きくなるという問題がある。また、このような監視制御システムの高負荷問題は、出力電力を抑制する場合に限らず、太陽光発電システムにおける所定の電力(調整対象電力)を種々の目標値に制御する場合においても発生する。また、当該高負荷問題は、太陽光発電システムに限らず、複数の電力装置(パワーコンディショナや出力電力を制御する制御装置など)を監視制御システムで監視する他の発電システムにおいても発生する。   However, in the above-described method, the supervisory control system must calculate the target output power for each of a plurality of power conditioners. Therefore, there is a problem that the load on the monitoring control system becomes large. In addition, such a high load problem of the monitoring control system occurs not only when the output power is suppressed, but also when the predetermined power (adjustment target power) in the photovoltaic power generation system is controlled to various target values. . The high load problem is not limited to the solar power generation system, but also occurs in other power generation systems that monitor a plurality of power devices (such as a power conditioner and a control device that controls output power) with a monitoring control system.

本開示に係るバーチャルパワープラントは、上記課題に鑑みて創作されたものである。そこでその目的は、複数台の電力装置を管理する装置の処理負荷を低減させることができるバーチャルパワープラントを提供することにある。   The virtual power plant according to the present disclosure has been created in view of the above problems. Then, the objective is to provide the virtual power plant which can reduce the processing load of the apparatus which manages several electric power apparatuses.

本発明の第1の側面によって提供されるバーチャルパワープラントは、複数の電力システムと、前記複数の電力システムを管理する中央管理装置と、を備えているバーチャルパワープラントであって、前記各電力システムはそれぞれ、電力系統に接続された複数台の電力装置と、前記複数台の電力装置を管理する集中管理装置とを備え、前記集中管理装置は、調整対象電力を検出する検出手段と、前記調整対象電力が目標電力となるように、前記各電力装置に対して個別出力電力を制御させるための指標を算出する指標算出手段と、前記指標を前記各電力装置のそれぞれに送信する送信手段とを備え、前記各電力装置はそれぞれ、前記送信手段が送信した前記指標を受信する受信手段と、前記受信手段が受信した前記指標を用いた最適化問題に基づいて、自装置の前記個別出力電力の個別目標電力を算出する目標電力算出手段と、前記目標電力算出手段が算出した前記個別目標電力となるように前記個別出力電力を制御する制御手段とを備え、前記中央管理装置は、前記各電力システムの前記調整対象電力の合計電力が、全体目標電力となるように、前記各電力システムに対して前記調整対象電力を制御させるための上位指標を算出する上位指標算出手段と、前記上位指標を前記各電力システムのそれぞれに送信する中央管理装置送信手段とを備えており、前記電力システムが前記中央管理装置からの前記上位指標を受信した場合には、当該電力システムの指標算出手段は、前記上位指標に基づいて前記指標を算出することを特徴とする。   The virtual power plant provided by the first aspect of the present invention is a virtual power plant including a plurality of power systems and a central management device that manages the plurality of power systems, and each of the power systems. Each includes a plurality of power devices connected to a power system, and a centralized management device that manages the plurality of power devices, the centralized management device detecting means for detecting power to be adjusted, and the adjustment Index calculating means for calculating an index for causing each power device to control individual output power so that target power becomes target power; and transmitting means for transmitting the index to each of the power devices. Each of the power devices includes a receiving unit for receiving the index transmitted by the transmitting unit, and an optimization problem using the index received by the receiving unit. Based on the target power calculation means for calculating the individual target power of the individual output power of the device itself, and the control means for controlling the individual output power so as to be the individual target power calculated by the target power calculation means. The central management device calculates a higher index for causing each power system to control the power to be adjusted so that the total power of the power to be adjusted of each power system becomes an overall target power And a central management device transmitting means for transmitting the higher index to each of the power systems, and when the power system receives the higher index from the central management device. The index calculation means of the power system calculates the index based on the higher index.

前記バーチャルパワープラントの好ましい実施の形態において、前記上位指標算出手段は、前記電力システムの数をm、j番目の電力システムの調整対象電力をPj(t)(j=1,2、…、m)、前記全体目標電力をPC’(t)、j番目の電力システムの目標電力をPC’_j(t)(j=1,2、…、m)、j番目の電力システムに対する勾配係数をεj(j=1,2、…、m)、j番目の電力システムに対する上位指標をpr’_j(j=1,2、…、m)とし、下記(1a)〜(1c)式で示す数式を解くことで、前記上位指標pr’_j(j=1,2、…、m)を算出し、
前記指標算出手段は、入力された前記上位指標を前記指標とする、
請求項1に記載のバーチャルパワープラント。

Figure 2018143046
In a preferred embodiment of the virtual power plant, the higher-order index calculating means sets the number of the power systems to m, and the adjustment target power of the j-th power system to P j (t) (j = 1, 2,... m), the overall target power is P C ′ (t), the target power of the j-th power system is P C ′ _j (t) (j = 1, 2,..., m), and the gradient with respect to the j-th power system. The coefficient is ε j (j = 1, 2,..., M), the higher index for the j-th power system is pr′_j (j = 1, 2,..., M), and the following equations (1a) to (1c) The upper index pr′_j (j = 1, 2,..., M) is calculated by solving the mathematical formula shown below.
The index calculation means uses the inputted higher index as the index.
The virtual power plant according to claim 1.
Figure 2018143046

前記バーチャルパワープラントの好ましい実施の形態において、前記上位指標算出手段は、前記電力システムの数をm、j番目の太陽光発電システムの調整対象電力をPj(t)(j=1,2、…、m)、前記全体目標電力をPC’(t)、勾配係数をεall、j番目の電力システムに対する上位指標をpr’_j(j=1,2、…、m)とし、下記(2a)〜(2b)式で示す数式を解くことで、前記上位指標pr’_j(j=1,2、…、m)を算出し、前記指標算出手段は、入力された前記上位指標を前記指標とする。

Figure 2018143046
In a preferred embodiment of the virtual power plant, the higher-order index calculating means sets the number of the power systems to m and the adjustment target power of the j-th solar power generation system to P j (t) (j = 1, 2, , M), P c ′ (t) as the overall target power, ε all as the slope coefficient, pr′_j (j = 1, 2,..., M) as the higher index for the j-th power system, 2a) to (2b) are solved to calculate the higher index pr′_j (j = 1, 2,..., M), and the index calculation means calculates the input higher index as the Use as an indicator.
Figure 2018143046

前記バーチャルパワープラントの好ましい実施の形態において、前記各電力システムは、前記調整対象電力の許容範囲の上限値および下限値を、前記送信手段を介して、前記中央管理装置に送信し、前記上位指標算出手段は、前記電力システムの数をm、j番目の電力システムから入力された前記上限値をPC_jmax、前記下限値をPC_jmin(j=1,2、…、m)、j番目の電力システムの調整対象電力をPj(t)(j=1,2、…、m)、前記全体目標電力をPC’(t)、j番目の電力システムの目標電力をPC’_j(t)(j=1,2、…、m)、j番目の電力システムに対する勾配係数をεj(j=1,2、…、m)、j番目の電力システムに対する上位指標をpr’_j(j=1,2、…、m)とし、下記(3a)〜(3c)式で示す数式を解くことで、前記上位指標pr’_j(j=1,2、…、m)を算出し、前記指標算出手段は、入力された前記上位指標を前記指標とする。

Figure 2018143046
In a preferred embodiment of the virtual power plant, each of the power systems transmits an upper limit value and a lower limit value of an allowable range of the adjustment target power to the central management device via the transmission unit, and the higher index. The calculating means sets the number of the power systems to m, the upper limit value input from the jth power system as P C — jmax, the lower limit value as P C — jmin (j = 1, 2,..., M), jth P j (t) (j = 1, 2,..., M), the overall target power P C ′ (t), and the j th power system target power P C ′ _j (T) (j = 1, 2,..., M), the gradient coefficient for the j-th power system is ε j (j = 1, 2,..., M), and the higher index for the j-th power system is pr′_j. (J = 1, 2,..., M), and the following (3a) to (3c) By solving the equations shown in the upper index pr'_j (j = 1,2, ..., m) is calculated, the index calculating means the upper index is input to the index.
Figure 2018143046

前記バーチャルパワープラントの好ましい実施の形態において、前記上位指標算出手段は、前記電力システムの数をm、各電力システムの調整対象電力をPj(t)(j=1,2、…、m)、前記全体目標電力をPC’(t)、勾配係数をεall、j番目の電力システムに対する上位指標をpr’_j(j=1,2、…、m)とし、下記(4a)〜(4b)式で示す数式を解くことで、前記上位指標pr’_j(j=1,2、…、m)を算出し、j番目の電力システムの前記指標算出手段は、入力された前記上位指標pr’_j、前記目標電力PC_j、前記調整対象電力の許容範囲の上限値PC_jmaxおよび下限値PC_jminから、下記(5a)〜(5b)式に基づいて、修正目標電力PC”_jを算出し、当該電力システムの勾配係数をεj、前記指標をprとし、下記(5c)〜(5d)式で示す数式を解くことで、前記指標prを算出する。

Figure 2018143046
In a preferred embodiment of the virtual power plant, the higher-order index calculating means sets the number of the power systems to m and the adjustment target power of each power system to P j (t) (j = 1, 2,..., M) , The overall target power is P C ′ (t), the gradient coefficient is ε all , and the higher index for the j-th power system is pr′_j (j = 1, 2,..., M), 4b) is used to calculate the higher-order index pr′_j (j = 1, 2,..., M), and the index calculation means of the j-th power system is configured to input the higher-order index. Pr'_j, the target power P C _j, from the upper limit value P C _Jmax and the lower limit value P C _Jmin tolerance of the adjusted power, on the basis of the following (5a) ~ (5b) equation, the corrected target power P C ”_J, the gradient coefficient of the power system is ε j , The index pr is calculated by solving the mathematical formulas represented by the following formulas (5c) to (5d), where pr is the index.
Figure 2018143046

前記バーチャルパワープラントの好ましい実施の形態において、すべての前記電力装置は、複数のグループのうちのいずれかのグループに所属しており、前記上位指標算出手段は、前記グループの数をp、k番目のグループの調整対象電力をPk(t)(k=1,2、…、p)、前記全体目標電力をPC’(t)、k番目のグループの目標電力をPC’_k(t)(k=1,2、…、p)、k番目のグループに対する勾配係数をεk(k=1,2、…、p)、k番目のグループに対するラグランジュ乗数をλk(k=1,2、…、p)とし、下記(6)式で示す数式を解くことで、前記ラグランジュ乗数λk(k=1,2、…、p)を算出して、これらを前記上位指標とし、j番目の電力システムの前記指標算出手段は、入力された前記上位指標λk(k=1,2、…、p)、重み付けのための係数ωk_j、前記目標電力PC_j、前記調整対象電力の許容範囲の上限値PC_jmaxおよび下限値PC_jminから、下記(7a)〜(7b)式に基づいて、修正目標電力PC”_jを算出し、当該電力システムの調整対象電力をPj(t)、勾配係数をεj、前記指標をprとし、下記(7c)〜(7d)式で示す数式を解くことで、前記指標prを算出する。

Figure 2018143046
In a preferred embodiment of the virtual power plant, all the electric power devices belong to any one of a plurality of groups, and the higher-order index calculating means sets the number of groups to p, kth P k (t) (k = 1, 2,..., P), the overall target power P C ′ (t), and the k th group target power P C ′ _k (t ) (K = 1, 2,..., P), the gradient coefficient for the k th group is ε k (k = 1, 2,..., P), and the Lagrange multiplier for the k th group is λ k (k = 1, 2,..., P), and by solving the mathematical formula shown in the following equation (6), the Lagrange multipliers λ k (k = 1, 2,..., P) are calculated, and these are used as the higher-order indices. The index calculation means of the second power system is configured to input the higher-order index λ k (k = 1, 2,..., p), weighting coefficient ω k — j, target power P C — j, upper limit value P C — jmax and lower limit value P C — jmin of the allowable range of power to be adjusted, Based on the following formulas (7a) to (7b), the corrected target power P C ″ _j is calculated, the adjustment target power of the power system is P j (t), the gradient coefficient is ε j , and the index is pr, The index pr is calculated by solving mathematical formulas shown in the following formulas (7c) to (7d).
Figure 2018143046

本発明によれば、中央管理装置は、上位指標算出手段が算出した上位指標を、各電力システムのそれぞれに送信する。各電力システムが中央管理装置からの上位指標を受信した場合には、当該電力システムの集中管理装置は、上位指標に基づいて指標を算出して、各電力装置に送信する。各ナ電力装置は、受信した指標を用いた最適化問題に基づいて、自装置の個別出力電力の個別目標電力を算出して、個別出力電力を制御する。集中管理装置は、受信した上位指標に基づいて指標を算出するだけなので、電力装置毎に目標出力電力を算出する場合と比べて、処理負荷を低減することができる。   According to the present invention, the central management apparatus transmits the higher index calculated by the higher index calculation means to each of the power systems. When each power system receives a higher index from the central management apparatus, the central management apparatus of the power system calculates the index based on the higher index and transmits it to each power apparatus. Each power device calculates the individual target power of the individual output power of the own device based on the optimization problem using the received index, and controls the individual output power. Since the centralized management device only calculates the index based on the received higher index, the processing load can be reduced as compared with the case where the target output power is calculated for each power device.

第1実施形態に係る太陽光発電システムの全体構成を示す図である。It is a figure showing the whole solar power generation system composition concerning a 1st embodiment. 第1実施形態に係る太陽光発電システムの連系点電力抑制制御に関する機能構成を示す図である。It is a figure which shows the function structure regarding the connection point electric power suppression control of the solar energy power generation system which concerns on 1st Embodiment. シミュレーションにおいて想定したパワーコンディショナのモデルを示す図である。It is a figure which shows the model of the power conditioner assumed in simulation. シミュレーションにおいて想定したパワーコンディショナの電力制御系のステップ応答を示す図である。It is a figure which shows the step response of the power control system of the power conditioner assumed in simulation. 第1実施形態に係るシミュレーションによる検証結果(ケース1)を示す図である。It is a figure which shows the verification result (case 1) by the simulation which concerns on 1st Embodiment. 第1実施形態に係るシミュレーションによる検証結果(ケース2)を示す図である。It is a figure which shows the verification result (case 2) by the simulation which concerns on 1st Embodiment. 第1実施形態に係るシミュレーションによる検証結果(ケース3)を示す図である。It is a figure which shows the verification result (case 3) by the simulation which concerns on 1st Embodiment. 第1実施形態に係るシミュレーションによる検証結果(ケース4)を示す図である。It is a figure which shows the verification result (case 4) by the simulation which concerns on 1st Embodiment. 第1実施形態に係るシミュレーションによる検証結果(ケース5)を示す図である。It is a figure which shows the verification result (case 5) by the simulation which concerns on 1st Embodiment. 第1実施形態に係るシミュレーションによる検証結果(ケース6)を示す図である。It is a figure which shows the verification result (case 6) by the simulation which concerns on 1st Embodiment. 第1実施形態に係るシミュレーションによる検証結果(ケース7)を示す図である。It is a figure which shows the verification result (case 7) by the simulation which concerns on 1st Embodiment. 第2実施形態に係る太陽光発電システムの全体構成を示す図である。It is a figure which shows the whole structure of the solar energy power generation system which concerns on 2nd Embodiment. 第2実施形態に係る太陽光発電システムの連系点電力抑制制御に関する機能構成を示す図である。It is a figure which shows the function structure regarding the connection point electric power suppression control of the solar energy power generation system which concerns on 2nd Embodiment. 第2実施形態に係るシミュレーションによる検証結果(ケース1)を示す図である。It is a figure which shows the verification result (case 1) by the simulation which concerns on 2nd Embodiment. 第2実施形態に係るシミュレーションによる検証結果(ケース2)を示す図である。It is a figure which shows the verification result (case 2) by the simulation which concerns on 2nd Embodiment. 第2実施形態に係るシミュレーションによる検証結果(ケース3)を示す図である。It is a figure which shows the verification result (case 3) by the simulation which concerns on 2nd Embodiment. 第3実施形態に係る太陽光発電システムの全体構成を示す図である。It is a figure which shows the whole structure of the solar energy power generation system which concerns on 3rd Embodiment. 第3実施形態に係る太陽光発電システムの連系点電力抑制制御に関する機能構成を示す図である。It is a figure which shows the function structure regarding the connection point electric power suppression control of the solar energy power generation system which concerns on 3rd Embodiment. 第4実施形態に係る太陽光発電システムのピークカット制御に関する機能構成を示す図である。It is a figure which shows the function structure regarding the peak cut control of the solar energy power generation system which concerns on 4th Embodiment. 第5実施形態に係る太陽光発電システムの逆潮流回避制御に関する機能構成を示す図である。It is a figure which shows the function structure regarding the reverse power flow avoidance control of the solar energy power generation system which concerns on 5th Embodiment. 第6実施形態に係る太陽光発電システムの全体構成を示す図である。It is a figure which shows the whole structure of the solar energy power generation system which concerns on 6th Embodiment. 第6実施形態に係る太陽光発電システムのシステム総出力抑制制御に関する機能構成を示す図である。It is a figure which shows the function structure regarding the system total output suppression control of the solar energy power generation system which concerns on 6th Embodiment. 第7実施形態に係る太陽光発電システムの全体構成を示す図である。It is a figure which shows the whole structure of the solar energy power generation system which concerns on 7th Embodiment. 第7実施形態に係る太陽光発電システムのシステム総出力抑制制御に関する機能構成を示す図である。It is a figure which shows the function structure regarding the system total output suppression control of the solar energy power generation system which concerns on 7th Embodiment. 第8実施形態に係る太陽光発電システムのスケジュール制御に関する機能構成を示す図である。It is a figure which shows the function structure regarding the schedule control of the solar energy power generation system which concerns on 8th Embodiment. 第9実施形態に係るバーチャルパワープラントの全体構成を示す図である。It is a figure which shows the whole structure of the virtual power plant which concerns on 9th Embodiment. (a)は第1の運転モードを説明するためのブロック図であり、(b)は第2の運転モードを説明するためのブロック図である。(A) is a block diagram for demonstrating a 1st operation mode, (b) is a block diagram for demonstrating a 2nd operation mode. (a)は第3の運転モードを説明するためのブロック図であり、(b)は第4の運転モードを説明するためのブロック図である。(A) is a block diagram for demonstrating a 3rd operation mode, (b) is a block diagram for demonstrating a 4th operation mode. 第5の運転モードを説明するためのブロック図である。It is a block diagram for demonstrating a 5th operation mode.

以下、本発明の実施の形態について、添付図面を参照して具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

まず、本発明に係るバーチャルパワープラントを構成する電力システムについて、第1〜8実施形態として説明する。第1〜8実施形態においては、本発明に係る電力システムを、電力系統に連系された太陽光発電システムとした場合を例として説明する。なお、以下の説明において、連系点における電力が正の場合、太陽光発電システムから電力系統に電力が出力されている(逆潮流している)ものとする。一方、連系点における電力が負の値の場合、電力系統から太陽光発電システムに電力が出力されているものとする。   First, the electric power system which comprises the virtual power plant which concerns on this invention is demonstrated as 1st-8th embodiment. In the first to eighth embodiments, a case where the power system according to the present invention is a solar power generation system linked to a power system will be described as an example. In the following description, when the power at the interconnection point is positive, it is assumed that power is output from the photovoltaic power generation system to the power system (reverse power flow). On the other hand, when the power at the interconnection point is a negative value, the power is output from the power system to the photovoltaic power generation system.

図1および図2は、第1実施形態に係る太陽光発電システムPVS1を説明するための図である。図1は、太陽光発電システムPVS1の全体構成を示している。図2は、図1に示す太陽光発電システムPVS1において、電力系統Aとの連系点における電力を制御する制御系の機能構成を示している。   1 and 2 are diagrams for explaining a photovoltaic power generation system PVS1 according to the first embodiment. FIG. 1 shows the overall configuration of the photovoltaic power generation system PVS1. FIG. 2 shows a functional configuration of a control system that controls electric power at a connection point with the power system A in the photovoltaic power generation system PVS1 shown in FIG.

太陽光発電システムPVS1は、図1に示すように、複数台の太陽電池SPi(i=1,2,・・・,n;nは正の整数)、複数台のパワーコンディショナPCSi、および、集中管理装置MC1を有して構成される。太陽光発電システムPVS1は、系統連系型の逆潮流システムである。 As shown in FIG. 1, the photovoltaic power generation system PVS1 includes a plurality of solar cells SP i (i = 1, 2,..., N; n is a positive integer), a plurality of power conditioners PCS i , And it has the centralized management apparatus MC1. The photovoltaic power generation system PVS1 is a grid-connected reverse power flow system.

複数台の太陽電池SPiはそれぞれ、太陽光エネルギーを電気エネルギーに変換する。各太陽電池SPiは、直列・並列に接続された複数個の太陽電池パネルを含んで構成されている。太陽電池パネルは、例えば、シリコンなどの半導体で生成された太陽電池セルを複数個接続したものを、屋外で利用できるように樹脂や強化ガラスなどで保護したものである。太陽電池SPiは発電した電力(直流電力)を、パワーコンディショナPCSiに出力する。なお、太陽電池SPiによって発電可能な電力の最大量を太陽電池SPiの発電量Pi SPとする。 Each of the plurality of solar cells SP i converts solar energy into electric energy. Each solar cell SP i includes a plurality of solar cell panels connected in series and in parallel. A solar battery panel is a panel in which a plurality of solar battery cells made of a semiconductor such as silicon are connected and protected with a resin or tempered glass so that they can be used outdoors. The solar cell SP i outputs the generated power (DC power) to the power conditioner PCS i . The maximum amount of power that can be generated by the solar cell SP i is defined as the power generation amount P i SP of the solar cell SP i .

複数台のパワーコンディショナPCSiはそれぞれ、太陽電池SPiが発電した電力(直流電力)を交流電力に変換する。そして、変換した交流電力を電力系統Aに出力する。各パワーコンディショナPCSiは、インバータ回路、変圧器、および、制御回路などを含んでいる。インバータ回路は、太陽電池SPiから入力される直流電力を電力系統Aと同期がとれた交流電力に変換する。変圧器は、インバータ回路から出力される交流電圧を昇圧(または降圧)する。制御回路は、インバータ回路などを制御する。また、パワーコンディショナPCSiは、上記のように構成されたものに限定されない。 Each of the plurality of power conditioners PCS i converts the power (DC power) generated by the solar cell SP i into AC power. Then, the converted AC power is output to the power system A. Each power conditioner PCS i includes an inverter circuit, a transformer, a control circuit, and the like. The inverter circuit converts the DC power input from the solar battery SP i into AC power synchronized with the power system A. The transformer boosts (or steps down) the AC voltage output from the inverter circuit. The control circuit controls an inverter circuit and the like. Further, the power conditioner PCS i is not limited to the one configured as described above.

各パワーコンディショナPCSiから出力される有効電力をPi out、無効電力をQi outとすると、各パワーコンディショナPCSiからPi out+jQi outの複素電力が出力されている。したがって、複数台のパワーコンディショナPCSiと電力系統Aとの連系点には、Σii out+jΣii outの複素電力が出力されている。すなわち、連系点における電力(以下、「連系点電力」という。)は、各パワーコンディショナPCSiの出力電力の総和である。本実施形態においては、連系点における電圧変動抑制などに主に活用される無効電力Qi outの出力制御については、特に考慮しない。すなわち、連系点電力は、連系点における有効電力Pi outの総和(Σii out)としている。なお、連系点電力をP(t)とする。 When the effective power output from the power conditioner PCS i P i out, the reactive power and Q i out, the complex power of P i out + jQ i out from the power conditioner PCS i is outputted. Therefore, the complex power of Σ i P i out + jΣ i Q i out is output to the connection point between the plurality of power conditioners PCS i and the power system A. That is, the power at the connection point (hereinafter referred to as “connection point power”) is the sum of the output power of each power conditioner PCS i . In this embodiment, no particular consideration is given to the output control of the reactive power Q i out which is mainly used for suppressing voltage fluctuation at the interconnection point. That is, the interconnection point power is the sum (Σ i P i out ) of the active power P i out at the interconnection point. The interconnection point power is P (t).

このような電力系統Aに連系する太陽光発電システムPVS1が多くなると、電力系統Aへの電力の供給が需要に比べて過多となる。この供給過多の状態を解消するために、各太陽光発電システムPVS1は、電力会社から出力電力を抑制するように指示されることが考えられる。そこで、本実施形態に係る太陽光発電システムPVS1は、電力会社からの出力抑制指令に従い、出力電力を抑制している。   When the photovoltaic power generation system PVS1 linked to such a power system A increases, the supply of power to the power system A becomes excessive compared to the demand. In order to eliminate this excessive supply state, each photovoltaic power generation system PVS1 can be instructed to suppress output power from an electric power company. Therefore, the photovoltaic power generation system PVS1 according to the present embodiment suppresses the output power in accordance with the output suppression command from the power company.

本実施形態においては、太陽光発電システムPVS1は、電力会社からの出力抑制指令として、連系点電力P(t)が所定の値を超えないように指示される。太陽光発電システムPVS1は、この出力抑制指令に従い、連系点電力P(t)を制御する。具体的には、太陽光発電システムPVS1は、電力会社からの出力抑制指令として、連系点電力P(t)の上限値である出力指令値PCを指令される。太陽光発電システムPVS1は、連系点電力P(t)が電力会社から指令される出力指令値PCとなるように、各パワーコンディショナPCSiの出力電力(以下、「個別出力電力」という。)Pi outを制御する。よって、連系点電力P(t)を調整対象電力とし、出力指令値PCを連系点電力P(t)の目標値としている。太陽光発電システムPVS1は、連系点電力P(t)が出力指令値PCを超えている場合、各パワーコンディショナPCSiの個別出力電力Pi outを抑制する。このことから、太陽光発電システムPVS1が行う制御を、「連系点電力抑制制御」という。 In the present embodiment, the photovoltaic power generation system PVS1 is instructed so that the interconnection power P (t) does not exceed a predetermined value as an output suppression command from the power company. The photovoltaic power generation system PVS1 controls the interconnection point power P (t) according to this output suppression command. Specifically, photovoltaic systems PVS1 as output suppression command from an electric power company, is commanded an output command value P C is the upper limit of the linking point power P (t). Photovoltaic systems PVS1, like interconnection point power P (t) is the output command value P C of commanded from the power company, the output power of each power conditioner PCS i (hereinafter, referred to as "individual output power" .) Control P i out . Thus, interconnection node power P (t) is the adjusted power, and the target value of the linking point power P (t) the output command value P C. Photovoltaic systems PVS1, when interconnection point power P (t) exceeds the output command value P C, suppresses an individual output power P i out of the power conditioner PCS i. Therefore, the control performed by the photovoltaic power generation system PVS1 is referred to as “interconnection point power suppression control”.

連系点電力抑制制御においては、各パワーコンディショナPCSiは、集中管理装置MC1から抑制指標prを受信し、受信した抑制指標prに基づき、個別出力電力Pi outの目標(以下、「個別目標電力」という。)Pi refを算出する。抑制指標prは、連系点電力P(t)を出力指令値PCにするための情報であり、個別目標電力Pi refを算出するための情報である。各パワーコンディショナPCSiは、算出した個別目標電力Pi refに基づいて、個別出力電力Pi outを制御する。そのために、各パワーコンディショナPCSiは、図2に示すように、受信部11、目標電力算出部12、および、出力制御部13を含んでいる。 In the interconnection point power suppression control, each power conditioner PCS i receives the suppression index pr from the central management device MC1, and based on the received suppression index pr, the target of the individual output power P i out (hereinafter, “individual” It is referred to as “target power.”) P i ref is calculated. Suppression indicator pr is information for linking point power P (t) to the output command value P C, which is information for calculating the individual target power P i ref. Each power conditioner PCS i controls the individual output power P i out based on the calculated individual target power P i ref . For this purpose, each power conditioner PCS i includes a receiving unit 11, a target power calculating unit 12, and an output control unit 13, as shown in FIG.

受信部11は、集中管理装置MC1から送信される抑制指標prを受信する。受信部11は、例えば無線通信により、集中管理装置MC1から抑制指標prを受信する。なお、無線通信ではなく、有線通信であってもよい。   The receiving unit 11 receives the suppression index pr transmitted from the central management device MC1. The receiving unit 11 receives the suppression index pr from the central management device MC1 by wireless communication, for example. Note that wired communication may be used instead of wireless communication.

目標電力算出部12は、受信部11が受信した抑制指標prに基づき、自装置(パワーコンディショナPCSi)の個別目標電力Pi refを算出する。具体的には、目標電力算出部12は、下記(8)式に示す制約付き最適化問題を解くことで、個別目標電力Pi refを算出する。当該(8)式において、Pi lmtは、各パワーコンディショナPCSiの定格出力(出力限界)を表わし、wiは、パワーコンディショナPCSiの有効電力抑制に関する重みを表わしている。この有効電力抑制に関する重みwiは、目標電力算出部12に記憶されている。また、有効電力抑制に関する重みwiは、ユーザが手動で設定することができる。あるいは、各パワーコンディショナPCSiが、パワーコンディショナPCSiの状況(温度、気候、無効電力量など)に応じて、自動的に設定するようにしてもよい。なお、この下記(8)式についての詳細は、後述する。

Figure 2018143046
The target power calculation unit 12 calculates the individual target power P i ref of the own device (power conditioner PCS i ) based on the suppression index pr received by the reception unit 11. Specifically, the target power calculation unit 12 calculates the individual target power P i ref by solving the constrained optimization problem shown in the following equation (8). In the equation (8), P i lmt represents the rated output (output limit) of each power conditioner PCS i , and w i represents the weight related to effective power suppression of the power conditioner PCS i . The weight w i related to the effective power suppression is stored in the target power calculation unit 12. Further, the weight w i related to effective power suppression can be manually set by the user. Alternatively, each power conditioner PCS i may be automatically set according to the condition (temperature, climate, reactive power amount, etc.) of the power conditioner PCS i . Details of the following equation (8) will be described later.
Figure 2018143046

出力制御部13は、上記インバータ回路を制御して、個別出力電力Pi outを制御する。出力制御部13は、個別出力電力Pi outを、目標電力算出部12が算出した個別目標電力Pi refにする。 The output control unit 13 controls the inverter circuit to control the individual output power P i out . The output control unit 13 sets the individual output power P i out to the individual target power P i ref calculated by the target power calculation unit 12.

集中管理装置MC1は、複数台のパワーコンディショナPCSiを集中管理する。集中管理装置MC1は、例えば無線通信により、各パワーコンディショナPCSiとの間で、各種情報の送受信を行う。なお、無線通信ではなく、有線通信であってもよい。集中管理装置MC1は、連系点電力抑制制御において、連系点電力P(t)を監視する。また、電力会社から指令される出力指令値PCを取得する。そして、集中管理装置MC1は、連系点電力P(t)を出力指令値PCにするための抑制指標prを算出し、各パワーコンディショナPCSiに送信する。そのために、集中管理装置MC1は、図2に示すように、出力指令値取得部21、連系点電力検出部22、指標算出部23、および、送信部24を含んでいる。 The central control device MC1 is to centralize plurality of power conditioners PCS i. The central management device MC1 transmits and receives various types of information to and from each power conditioner PCS i by wireless communication, for example. Note that wired communication may be used instead of wireless communication. The central management device MC1 monitors the connection point power P (t) in the connection point power suppression control. Also, an output command value P C commanded from the electric power company is acquired. Then, the central control device MC1 calculates the suppression indicators pr for interconnection point power P (t) to the output command value P C, and transmits to each of the power conditioner PCS i. For this purpose, the central management device MC1 includes an output command value acquisition unit 21, an interconnection point power detection unit 22, an index calculation unit 23, and a transmission unit 24, as shown in FIG.

出力指令値取得部21は、電力会社から指令される出力指令値PCを取得する。例えば、無線通信により電力会社から出力指令値PCを取得する。また、管理者が所定のコンピュータに電力会社から指令される出力指令値PCを手入力で入力し、出力指令値取得部21が前記コンピュータから出力指令値PCを取得する構成であってもよい。あるいは、他の通信装置を中継して、電力会社から指令される出力指令値PCを取得する構成であってもよい。出力指令値取得部21は、取得した出力指令値PCを指標算出部23に出力する。 The output command value acquisition unit 21 acquires an output command value P C commanded from an electric power company. For example, to obtain the output command value P C from the power company through wireless communication. Further, even if the administrator manually inputs the output command value P C commanded from the power company to a predetermined computer, and the output command value acquisition unit 21 acquires the output command value P C from the computer. Good. Alternatively, it relays the other communication device may be configured to acquire the output command value P C of commanded from the power company. The output command value acquisition unit 21 outputs the acquired output command value P C to the index calculation unit 23.

出力指令値取得部21は、電力会社からの出力抑制の指令がないとき、指標算出部23に指令がないことを伝達する。「電力会社からの出力抑制の指令がないとき」とは、太陽光発電システムPVS1の出力を抑制せず、太陽電池SPiが発電した電力を最大限に出力できるときである。例えば、各パワーコンディショナPCSiが最大電力点追従制御により最大電力点で動作するときに、最大限に出力できる。本実施形態においては、出力指令値取得部21は、電力会社からの出力抑制の指令がないとき、出力指令値PCとして、数値−1を指標算出部23に出力する。なお、指標算出部23に指令がないことを伝達することができれば、その手法は限定されない。例えば、出力指令値取得部21は、出力抑制の指令の有無を示すフラグ情報を電力会社等から取得し、これを指標算出部23に伝達するようにしてもよい。当該フラグ情報は、例えば、出力抑制の指令がない場合「0」であり、出力抑制の指令がある場合「1」である。なお、出力抑制の指令がある場合(フラグ情報が「1」の場合)には、当該フラグ情報とともに出力指令値PCを取得する。 The output command value acquisition unit 21 informs the index calculation unit 23 that there is no command when there is no output suppression command from the power company. The "when there is no command for output suppression from power company", does not suppress the output of the photovoltaic power generation system PVS1, it is when it outputs the most power solar SP i is power. For example, when each power conditioner PCS i operates at the maximum power point by the maximum power point tracking control, the maximum output is possible. In the present embodiment, the output command value acquisition unit 21 outputs a numerical value −1 to the index calculation unit 23 as the output command value P C when there is no output suppression command from the power company. Note that the method is not limited as long as it can be transmitted to the index calculation unit 23 that there is no instruction. For example, the output command value acquisition unit 21 may acquire flag information indicating the presence / absence of an output suppression command from an electric power company or the like, and transmit the flag information to the index calculation unit 23. The flag information is, for example, “0” when there is no output suppression command and “1” when there is an output suppression command. Note that if there is a command for output suppression (when the flag information is "1"), to obtain the output command value P C together with the flag information.

本実施形態においては、出力指令値取得部21が出力指令値PCを取得する場合を例に説明するが、これに限定されない。具体的には、出力指令値PCの代わりに出力抑制率[%]の情報を取得するようにしてもよい。このとき、出力指令値取得部21は、取得した出力抑制率[%]と太陽光発電システムPVS1全体の定格出力(すなわち、各パワーコンディショナPCSiの定格出力の合計)Σii lmtとに基づき、出力指令値PCを算出する。例えば、出力指令値取得部21は、出力抑制率として20%である指令を取得したとき、太陽光発電システムPVS1の定格出力Σii lmtの80%(=100−20)を出力指令値PCとして算出する。出力指令値取得部21は、算出した出力指令値PCを指標算出部23に出力する。 In the present embodiment, illustrating a case where the output command value obtaining unit 21 obtains the output command value P C as an example, but is not limited thereto. Specifically, it is also possible to obtain information of an output inhibition rate [%] instead of the output command value P C. At this time, the output command value obtaining unit 21 obtains the obtained output suppression rate [%] and the rated output of the entire photovoltaic power generation system PVS1 (that is, the sum of the rated outputs of the power conditioners PCS i ) Σ i P i lmt and based on, it calculates the output command value P C. For example, the output command value acquiring unit 21, when obtaining a 20% command as output inhibition rate, 80% of the rated output Σ i P i lmt photovoltaic systems PVS1 (= 100-20) the output command value Calculated as P C. The output command value acquisition unit 21 outputs the calculated output command value P C to the index calculation unit 23.

連系点電力検出部22は、連系点電力P(t)を検出する。そして、検出した連系点電力P(t)を指標算出部23に出力する。なお、連系点電力検出部22を、集中管理装置MC1とは別の検出装置として構成してもよい。この場合、当該検出装置(連系点電力検出部22)が、無線通信または有線通信により、連系点電力P(t)の検出値を集中管理装置MC1に送信する。   The connection point power detection unit 22 detects the connection point power P (t). Then, the detected interconnection point power P (t) is output to the index calculation unit 23. In addition, you may comprise the connection point electric power detection part 22 as a detection apparatus different from the centralized management apparatus MC1. In this case, the detection device (interconnection point power detection unit 22) transmits a detection value of the connection point power P (t) to the central management device MC1 by wireless communication or wired communication.

指標算出部23は、連系点電力P(t)を出力指令値PCにするための抑制指標prを算出する。指標算出部23は、ラグランジュ乗数をλ、勾配係数をε、時間をtとして、下記(9)式および下記(10)式に基づき、抑制指標prを算出する。ただし、指標算出部23は、出力指令値PCとして、電力会社からの出力抑制の指令がないことを表わす数値−1を入力された場合、ラグランジュ乗数λを「0」とする。すなわち、抑制指標prを「0」と算出する。なお、下記(9)式において、個別出力電力Pi outおよび出力指令値PCが、時間tに対して変化する値であるため、それぞれ個別出力電力をPi out(t)、出力指令値をPC(t)と記載している。これらの下記(9)式および下記(10)式の詳細は、後述する。

Figure 2018143046
Index calculating unit 23 calculates the suppression indicators pr for interconnection point power P (t) to the output command value P C. The index calculation unit 23 calculates a suppression index pr based on the following formula (9) and the following formula (10), where λ is a Lagrange multiplier, ε is a gradient coefficient, and t is time. However, the index calculation unit 23 as an output command value P C, when it is entered the numerical value -1 to indicate that there is no command output suppression from power company, the Lagrange multiplier λ is set to "0". That is, the suppression index pr is calculated as “0”. In the following formula (9), since the individual output power P i out and the output command value P C are values that change with respect to time t, the individual output power is represented by P i out (t) and the output command value, respectively. Is described as P C (t). Details of these formulas (9) and (10) will be described later.
Figure 2018143046

送信部24は、指標算出部23が算出した抑制指標prを各パワーコンディショナPCSiに送信する。 The transmission unit 24 transmits the suppression index pr calculated by the index calculation unit 23 to each power conditioner PCS i .

次に、太陽光発電システムPVS1が行う連系点電力抑制制御において、パワーコンディショナPCSiによる個別目標電力Pi refの算出に上記(8)式が用いられる理由と、集中管理装置MC1による抑制指標prの算出に上記(9)式および上記(10)式が用いられる理由とを説明する。 Next, in the interconnection point power suppression control performed by the photovoltaic power generation system PVS1, the reason why the above equation (8) is used for calculating the individual target power P i ref by the power conditioner PCS i and the suppression by the centralized management device MC1. The reason why the equation (9) and the equation (10) are used for calculating the index pr will be described.

太陽光発電システムPVS1は、連系点電力抑制制御において、以下の3つの目標を達成するように構成されている。1つ目の目標(目標1−1)は、「各パワーコンディショナPCSiが分散的に個別目標電力を算出する」ことである。2つ目の目標(目標1−2)は、「太陽光発電システムPVS1の連系点における出力電力(連系点電力)を電力会社からの出力指令値に一致させる」ことである。そして、3つ目の目標(目標1−3)は、「パワーコンディショナPCSi毎に、出力抑制量を調整できるようにする」ことである。なお、出力抑制量とは、パワーコンディショナPCSiが出力可能な最大電力値と個別出力電力Pi outとの差である。前記出力可能な最大電力値は、太陽電池SPiの発電量Pi SP>定格出力Pi lmtの場合には、パワーコンディショナPCSiの定格出力Pi lmtである。一方、太陽電池SPiの発電量Pi SP≦定格出力Pi lmtの場合には、太陽電池SPiの発電量Pi SPである。 The photovoltaic power generation system PVS1 is configured to achieve the following three goals in the connection point power suppression control. The first target (target 1-1) is “each power conditioner PCS i calculates the individual target power in a distributed manner”. The second target (target 1-2) is “to match the output power (interconnection point power) at the connection point of the photovoltaic power generation system PVS1 with the output command value from the power company”. The third target (target 1-3) is “to allow the output suppression amount to be adjusted for each power conditioner PCS i ”. The output suppression amount is a difference between the maximum power value that can be output by the power conditioner PCS i and the individual output power P i out . The maximum power value that can be the output, when the power generation amount P i SP> rated output P i lmt solar cell SP i is the rated output P i lmt power conditioner PCS i. On the other hand, when the power generation amount P i SP of the solar cell SP i ≦ the rated output P i lmt , the power generation amount P i SP of the solar cell SP i .

まず、集中管理装置MC1が、集中的に個別目標電力Pi refを求める場合の制約付き最適化問題を考える。そうすると、下記(11)式が得られる。ここで、上記するように、Pi refは、各パワーコンディショナPCSiの個別目標電力を表わし、Pi lmtは、各パワーコンディショナPCSiの定格出力(出力限界)を表わし、PCは、電力会社から指令される出力指令値を表わしている。なお、下記(11)式の最適解である個別目標電力Pi refを(Pi ref*とする。下記(11)式において、(11a)式は、個別出力電力Pi outの出力抑制量の最小化、(11b)式は、定格出力Pi lmtによる制約、(11c)式は、連系点電力P(t)を出力指令値PCに一致させることをそれぞれ表わしている。

Figure 2018143046
First, consider a constrained optimization problem when the central management device MC1 intensively obtains the individual target power P i ref . Then, the following equation (11) is obtained. Here, as described above, P i ref represents the individual target power of each power conditioner PCS i , P i lmt represents the rated output (output limit) of each power conditioner PCS i , and P C is Represents the output command value commanded by the electric power company. Note that the individual target power P i ref which is the optimum solution of the following equation (11) is (P i ref ) * . In the following equation (11), equation (11a) is the minimization of the output suppression amount of the individual output power P i out , equation (11b) is the constraint due to the rated output P i lmt , and equation (11c) is the interconnection point it represents respectively to match the power P (t) to the output command value P C.
Figure 2018143046

これは、集中管理装置MC1が、上記(11)式から個別目標電力(Pi ref*を求める場合を示している。したがって、上記(11)式の場合、各パワーコンディショナPCSiが分散的に個別目標電力(Pi ref*を算出していないため、目標1−1を達成していない。 This shows a case where the centralized management device MC1 obtains the individual target power (P i ref ) * from the above equation (11). Therefore, in the case of the above formula (11), each power conditioner PCS i does not calculate the individual target power (P i ref ) * in a distributed manner, and thus the target 1-1 is not achieved.

続いて、各パワーコンディショナPCSiが分散的に個別目標電力Pi refを求める場合の制約付き最適化問題を考える。そうすると、下記(12)式が得られる。

Figure 2018143046
Next, consider a constrained optimization problem when each power conditioner PCS i obtains the individual target power P i ref in a distributed manner. Then, the following formula (12) is obtained.
Figure 2018143046

しかし、上記(12)式の最適解である個別目標電力は、各パワーコンディショナPCSiが分散的に求めた個別目標電力Pi refであるが、上記(11c)式が考慮されていない。したがって、連系点電力P(t)を電力会社からの出力指令値PCに一致させる目標1−2を達成できない。 However, the individual target power, which is the optimal solution of the above equation (12), is the individual target power P i ref obtained by each power conditioner PCS i in a distributed manner, but the above equation (11c) is not taken into consideration. Therefore, the target 1-2 for matching the interconnection point power P (t) with the output command value P C from the power company cannot be achieved.

そこで、次の手法により、目標1−2を達成させることを考える。すなわち、各パワーコンディショナPCSiが、集中管理装置MC1から受信する抑制指標prに基づき、分散的に個別目標電力Pi refを算出する。これにより、目標1−2を達成させる。各パワーコンディショナPCSiが、抑制指標prを用いて、分散的に個別目標電力Pi refを求める場合の制約付き最適化問題は、上記(8)式で表わすことができる。なお、上記(8)式の最適解である個別目標電力Pi refを(Pi ref)♭とする。 Therefore, consider achieving the target 1-2 by the following method. That is, each power conditioner PCS i calculates the individual target power P i ref in a distributed manner based on the suppression index pr received from the central management device MC1. Thereby, the target 1-2 is achieved. The constrained optimization problem when each power conditioner PCS i obtains the individual target power P i ref in a distributed manner using the suppression index pr can be expressed by the above equation (8). Note that the individual target power P i ref which is the optimal solution of the above equation (8) is defined as (P i ref ) ♭.

ここで、上記(11)式により得られる最適解(Pi ref*と、上記(8)式により得られる最適解(Pi ref)♭とが一致することで、連系点電力P(t)を電力会社からの出力指令値PCに一致させることができる。すなわち、各パワーコンディショナPCSiが分散的に最適化問題を解いた場合であっても、目標1−2を達成することができる。したがって、定常状態の最適性に着目し、(Pi ref*=(Pi ref)♭となる抑制指標prを考える。そのために、上記(11)式および上記(8)式のKKT(Karush-Kuhn-Tucker)条件を考える。これにより、上記(11)式のKKT条件から下記(13)式が得られ、上記(8)式のKKT条件から下記(14)式が得られる。なお、μは所定のラグランジュ乗数である。

Figure 2018143046
Here, the optimum solution (P i ref ) * obtained by the above equation (11) and the optimum solution (P i ref ) ♭ obtained by the above equation (8) coincide with each other, so that the connection point power P ( t) can be matched with the output command value P C from the electric power company. That is, even if each power conditioner PCS i solves the optimization problem in a distributed manner, the target 1-2 can be achieved. Therefore, focusing on the optimality of the steady state, a suppression index pr that satisfies (P i ref ) * = (P i ref ) ♭ is considered. For that purpose, the KKT (Karush-Kuhn-Tucker) conditions of the above formula (11) and the above formula (8) are considered. Thus, the following expression (13) is obtained from the KKT condition of the above expression (11), and the following expression (14) is obtained from the KKT condition of the above expression (8). Note that μ is a predetermined Lagrange multiplier.
Figure 2018143046

これら上記(13)式および上記(14)式から、pr=λ(上記(10)式)とすることで、2つの最適解(Pi ref*、(Pi ref)♭が一致することが分かる。したがって、集中管理装置MC1がラグランジュ乗数λを算出し、算出したラグランジュ乗数λを抑制指標prとして、各パワーコンディショナPCSiに提示(送信)することで、各パワーコンディショナPCSiがそれぞれ、上記(8)式から個別目標電力(Pi ref)♭を算出することができる。これにより、各パワーコンディショナPCSiが分散的に個別目標電力Pi refを求めた場合であっても、連系点電力P(t)と電力会社からの出力指令値PCとを一致させることができる。すなわち、目標1−2を達成できる。 From these equation (13) and equation (14), it is assumed that pr = λ (the above equation (10)) makes the two optimal solutions (P i ref ) * and (P i ref ) ♭ coincide. I understand. Accordingly, the central management device MC1 calculates the Lagrange multiplier λ, and presents (transmits) the calculated Lagrange multiplier λ as the suppression index pr to each power conditioner PCS i so that each power conditioner PCS i The individual target power (P i ref ) ♭ can be calculated from the equation (8). As a result, even if each power conditioner PCS i obtains the individual target power P i ref in a distributed manner, the connection point power P (t) and the output command value P C from the power company are matched. be able to. That is, the target 1-2 can be achieved.

続いて、集中管理装置MC1によるラグランジュ乗数λの算出方法について、説明する。集中管理装置MC1がラグランジュ乗数λを求めるために、まず、h1,i=−Pi ref、h2,i=Pi ref−Pi lmtとし、各パワーコンディショナPCSiの不等式制約をまとめてhj,i(j=1,2、i=1,・・・,n)とする。そして、上記(11)式の双対問題である下記(15)式を考える。

Figure 2018143046
Next, a method for calculating the Lagrange multiplier λ by the centralized management device MC1 will be described. In order for the central management device MC1 to obtain the Lagrange multiplier λ, first, h 1, i = −P i ref and h 2, i = P i ref −P i lmt are set, and the inequality constraints of each power conditioner PCS i are summarized. H j, i (j = 1, 2, i = 1,..., N). Then, consider the following equation (15) which is a dual problem of the above equation (11).
Figure 2018143046

ここで、各パワーコンディショナPCSiによって求められる最適解(Pi ref)♭が決定されると仮定すると、下記(16)式となり、ラグランジュ乗数λに対する最大化問題の形となる。この下記(16)式に対し勾配法を適用すると、下記(17)式となる。なお、εは勾配係数を表わし、τは時間変数を表わす。

Figure 2018143046
Here, assuming that the optimal solution (P i ref ) ♭ determined by each power conditioner PCS i is determined, the following equation (16) is obtained, which is a form of the maximization problem for the Lagrange multiplier λ. When the gradient method is applied to the following equation (16), the following equation (17) is obtained. Note that ε represents a gradient coefficient, and τ represents a time variable.
Figure 2018143046

上記(17)式において、(Pi ref)♭を対応する各パワーコンディショナPCSiの個別出力電力Pi outで置き換える。さらに、集中管理装置MC1は、各パワーコンディショナPCSiの個別出力電力Pi outを個別に観測せず、連系点電力P(t)=Σii outを観測する。また、電力会社から逐次出力指令値PCを取得しているとする。そうすると、上記(9)式が得られる。よって、集中管理装置MC1は、連系点電力P(t)と電力会社からの出力指令値PCとに基づき、ラグランジュ乗数λを算出できる。そして、上記(10)式に基づき、算出したラグランジュ乗数λを抑制指標prとする。 In the above equation (17), (P i ref ) ♭ is replaced with the individual output power P i out of the corresponding power conditioner PCS i . Further, the centralized management device MC1 does not individually observe the individual output power P i out of each power conditioner PCS i but observes the connection point power P (t) = Σ i P i out . Moreover, to have a valid sequential output command value P C from the power company. Then, the above equation (9) is obtained. Therefore, the central management device MC1 can calculate the Lagrange multiplier λ based on the interconnection point power P (t) and the output command value P C from the power company. Then, based on the above equation (10), the calculated Lagrangian multiplier λ is set as the suppression index pr.

以上のことから、本実施形態においては、各パワーコンディショナPCSiは、個別目標電力Pi refを算出するときに、上記(8)式に示す最適化問題を用いている。また、集中管理装置MC1は、抑制指標prを算出するために、上記(9)式および上記(10)式を用いている。 From the above, in this embodiment, each power conditioner PCS i uses the optimization problem shown in the above equation (8) when calculating the individual target power P i ref . Further, the central management device MC1 uses the above formula (9) and the above formula (10) in order to calculate the suppression index pr.

次に、上記のように構成された太陽光発電システムPVS1において、上記3つの目標を達成し、適切に動作していることをシミュレーションによって検証した。   Next, in the photovoltaic power generation system PVS1 configured as described above, it was verified by simulation that the above three goals were achieved and the system was operating properly.

シミュレーションでは、10台のパワーコンディショナPCSi(i=1〜10;PCS1〜PCS10)を有する太陽光発電システムPVS1を想定した。 In the simulation, a solar power generation system PVS1 having ten power conditioners PCS i (i = 1 to 10; PCS 1 to PCS 10 ) was assumed.

電力系統A(連系点電圧)のモデルは、下記(18)式とした。下記(18)式において、R=RL×L,X=XL×Lであり、RLは配電線の単位長さ当たりの抵抗成分、XLは配電線の単位長さ当たりのリアクタンス成分、Lは配電線の長さ、V1は上位系統電圧を表わしている。本シミュレーションにおいては、上位系統電圧V1を6600[V]、配線線の単位長さ当たりの抵抗成分RLを0.220[Ω/km]、配電線の単位長さ当たりのリアクタンス成分XLを0.276[Ω/km]、配電線の長さLを5[km]とした。

Figure 2018143046
The model of the power system A (interconnection point voltage) was the following equation (18). In the following equation (18), R = R L × L, X = X L × L, R L is a resistance component per unit length of the distribution line, and X L is a reactance component per unit length of the distribution line. , L represents the length of the distribution line, and V 1 represents the upper system voltage. In this simulation, the upper system voltage V 1 is 6600 [V], the resistance component R L per unit length of the wiring line is 0.220 [Ω / km], and the reactance component X L per unit length of the distribution line Was 0.276 [Ω / km], and the length L of the distribution line was 5 [km].
Figure 2018143046

パワーコンディショナPCSiは、図3に示すモデルのものを想定し、個別出力電力Pi outを個別目標電力Pi refに制御するために、PI制御を行っているものとした。パワーコンディショナPCSiの電流制御系は、有効・無効電力制御系に比べ、非常に高速に応答するように設計されている。ここでは、事前に適切な制御系設計がなされているとし、K=1,T=10-4の1次遅れ系で実現している。電流制御系の上位制御系となる電力制御系は、ステップ応答が1[s]以内に収束する程度の時定数を想定し、KPP=KPQ=1.0×10-7、KIP=KIQ=1.2×10-3としている。なお、KPPは有効電力の比例ゲイン、KPQは無効電力の比例ゲイン、KIPは有効電力の積分ゲイン、KIQは無効電力の積分ゲインを表わしている。有効・無効電力制御系のステップ応答を図4に示す。 The power conditioner PCS i is assumed to have the model shown in FIG. 3, and PI control is performed to control the individual output power P i out to the individual target power P i ref . The current control system of the power conditioner PCS i is designed to respond very quickly compared to the active / reactive power control system. Here, it is assumed that an appropriate control system design has been made in advance, and a first-order lag system with K = 1 and T = 10 −4 is realized. The power control system, which is a higher-order control system of the current control system, assumes a time constant that the step response converges within 1 [s], and K PP = K PQ = 1.0 × 10 −7 , K IP = K IQ = 1.2 × 10 −3 . K PP represents a proportional gain of active power, K PQ represents a proportional gain of reactive power, K IP represents an integral gain of active power, and K IQ represents an integral gain of reactive power. The step response of the active / reactive power control system is shown in FIG.

図5〜図11は、上記に示したモデルの太陽光発電システムPVS1を用いて、複数の条件下でシミュレーションを行ったときの結果を示している。なお、各パワーコンディショナPCSiは、接続される太陽電池SPiの発電量Pi SPが定格出力Pi lmtより大きい場合には、パワーコンディショナPCSiの定格出力Pi lmtに抑制するものとする。 5 to 11 show results when simulation is performed under a plurality of conditions using the above-described model photovoltaic power generation system PVS1. Each power conditioner PCS i, when the power generation amount P i SP is greater than the rated output P i lmt of the connected solar cell SP i is one that inhibits the rated output P i lmt of the power conditioner PCS i And

ケース1として、10台のパワーコンディショナPCS1〜PCS10がすべて同じ条件である場合を、シミュレーションした。当該シミュレーションをシミュレーション1−1とする。シミュレーション1−1において、10台のパワーコンディショナPCS1〜PCS10はすべて、定格出力Pi lmtが500[kW]、有効電力抑制に関する重みwiが1.0、太陽電池SPiの発電量Pi SPが600[kW]であるとした。また、電力会社からの出力指令値PCは、0≦t<60[s]では指令がなく、60≦t[s]では3000[kW]であるとした。なお、「出力指令値PCの指令がない」ときには、上記するように出力指令値PCとして、指令がないことを表わす数値−1を用いた。その他、勾配係数εを0.025、集中管理装置MC1が行う抑制指標prの更新と各パワーコンディショナPCSiが行う個別目標電力Pi refの更新との各サンプリング時間を1[s]とした。また、各パワーコンディショナPCSiはすべて、力率1(無効電力目標値=0[kvar])で運転しているものとした。図5は、シミュレーション1−1におけるシミュレーション結果を示している。 As a case 1, a simulation was performed in the case where all of the ten power conditioners PCS 1 to PCS 10 had the same conditions. This simulation is assumed to be simulation 1-1. In simulation 1-1, all of the ten power conditioners PCS 1 to PCS 10 have a rated output P i lmt of 500 [kW], a weight w i relating to active power suppression of 1.0, and a power generation amount of the solar cell SP i . It was assumed that P i SP was 600 [kW]. Further, the output command value P C from the electric power company is assumed to be no command when 0 ≦ t <60 [s], and 3000 [kW] when 60 ≦ t [s]. Note that, when “there is no command for the output command value P C ”, as described above, the numerical value −1 indicating that there is no command is used as the output command value P C. In addition, the slope coefficient ε is 0.025, and each sampling time for updating the suppression index pr performed by the central management device MC1 and updating the individual target power P i ref performed by each power conditioner PCS i is 1 [s]. . In addition, all the power conditioners PCS i are assumed to be operating at a power factor of 1 (reactive power target value = 0 [kvar]). FIG. 5 shows a simulation result in the simulation 1-1.

図5(a)〜(e)は、各パワーコンディショナPCSiの、太陽電池SPiの発電量Pi SP(一点鎖線)、定格出力Pi lmt(実線)、個別目標電力Pi ref(破線)、および、個別出力電力Pi out(実線)を示している。図5(a)は、パワーコンディショナPCS1,PCS2について、図5(b)は、パワーコンディショナPCS3,PCS4について、図5(c)は、パワーコンディショナPCS5,PCS6について、図5(d)は、パワーコンディショナPCS7,PCS8について、図5(e)は、パワーコンディショナPCS9,PCS10について、図示している。なお、図5(a)〜(e)において、理解の便宜上、個別目標電力Pi ref(破線)を少し上方にずらして記載している。図5(f)は、各パワーコンディショナPCS1〜PCS10の個別出力電力P1 out〜P10 outを1つのグラフに示したものである。図5(g)は、連系点電力P(t)(実線)および電力会社からの出力指令値PC(破線)を示している。なお、図5(g)において、理解の便宜上、出力指令値PCの指令がない場合、各パワーコンディショナのPCS1〜PCS10の定格出力P1 lmt〜P10 lmtの合計値を出力指令値PCとして記載している。図5(h)は、指標算出部23が算出するラグランジュ乗数λを示している。そして、図5(i)は、指標算出部23が算出する抑制指標prを示している。 Figure 5 (a) ~ (e) is of the power conditioner PCS i, photovoltaic SP generation amount P i SP (dashed line) of i, rated output P i lmt (solid line), the individual target power P i ref ( (Broken line) and individual output power P i out (solid line) are shown. 5A shows the power conditioners PCS 1 and PCS 2 , FIG. 5B shows the power conditioners PCS 3 and PCS 4 , and FIG. 5C shows the power conditioners PCS 5 and PCS 6 . 5D shows the power conditioners PCS 7 and PCS 8 , and FIG. 5E shows the power conditioners PCS 9 and PCS 10 . In FIGS. 5A to 5E, the individual target power P i ref (broken line) is slightly shifted upward for convenience of understanding. FIG. 5F shows the individual output powers P 1 out to P 10 out of the power conditioners PCS 1 to PCS 10 in one graph. FIG. 5G shows the interconnection point power P (t) (solid line) and the output command value P C (broken line) from the power company. Incidentally, in FIG. 5 (g), the convenience of understanding, if there is no command output command value P C, outputs command the sum of the rated output P 1 lmt ~P 10 lmt of PCS 1 ~PCS 10 of the power conditioner Described as the value P C. FIG. 5H shows the Lagrangian multiplier λ calculated by the index calculation unit 23. FIG. 5I shows the suppression index pr calculated by the index calculation unit 23.

図5から次のことが確認できる。すなわち、シミュレーション開始から出力抑制指令があるまでの期間(0≦t<60[s])では、図5(a)〜(e)が示すように、各パワーコンディショナPCS1〜PCS10の個別出力電力P1 out〜P10 outが、個別目標電力P1 ref〜P10 refの500[kW]に達するまで、太陽電池SPiの発電量P1 SP〜P10 SPに応じて上昇している。そして、個別目標電力P1 ref〜P10 refの500[kW]に達すると、それ以後、個別出力電力P1 out〜P10 outは、個別目標電力P1 ref〜P10 refの500[kW]に制御されていることが確認できる。また、出力指令値PCの指令後(60≦t[s])では、図5(h)および図5(i)が示すように、ラグランジュ乗数λおよび抑制指標prが更新されていることが確認できる。そして、各パワーコンディショナPCS1〜PCS10は、この抑制指標prの更新に基づき、図5(a)〜(e)が示すように、個別目標電力P1 ref〜P10 refを変更している。よって、個別出力電力P1 out〜P10 outが抑制され、個別目標電力P1 ref〜P10 refに追従していることが確認できる。これにより、図5(g)が示すように、連系点電力P(t)が抑制され、定常状態で出力指令値PCに一致していることが確認できる。 The following can be confirmed from FIG. That is, in the period from the start of the simulation to the output suppression command (0 ≦ t <60 [s]), as shown in FIGS. 5A to 5E, the individual power conditioners PCS 1 to PCS 10 are individually displayed. output power P 1 out ~P 10 out is to reach 500 [kW] of the individual target power P 1 ref ~P 10 ref, rises and in response to the power generation amount P 1 SP ~P 10 SP solar cell SP i Yes. When the individual target powers P 1 ref to P 10 ref reach 500 [kW], the individual output powers P 1 out to P 10 out thereafter become 500 [kW] of the individual target powers P 1 ref to P 10 ref. ] Can be confirmed. Further, after the output command value P C is commanded (60 ≦ t [s]), the Lagrange multiplier λ and the suppression index pr are updated as shown in FIGS. 5 (h) and 5 (i). I can confirm. Each power conditioner PCS 1 ~PCS 10, based on the update of the suppression indicators pr, as shown in FIG. 5 (a) ~ (e) , by changing the individual target power P 1 ref ~P 10 ref Yes. Therefore, it can be confirmed that the individual output powers P 1 out to P 10 out are suppressed and follow the individual target powers P 1 ref to P 10 ref . Thus, as shown in FIG. 5 (g), the suppressed linking point power P (t) is, it can be confirmed that they match the output command value P C in the steady state.

ケース2として、10台のパワーコンディショナPCS1〜PCS10のうち2台のパワーコンディショナPCS5,PCS6に設定される有効電力抑制に関する重みw5,w6が他のパワーコンディショナPCS1〜PCS4,PCS7〜PCS10のそれと異なる場合を、シミュレーションした。当該シミュレーションをシミュレーション1−2とする。シミュレーション1−2において、2台のパワーコンディショナPCS5,PCS6の有効電力抑制に関する重みwiを2.0とした。その他の条件は、上記シミュレーション1−1と同じである。図6は、シミュレーション1−2におけるシミュレーション結果を示している。なお、図6(a)〜(i)はそれぞれ、上記シミュレーション1−1における図5(a)〜(i)に対応した図である。 As case 2, weights w 5 and w 6 relating to active power suppression set in two power conditioners PCS 5 and PCS 6 among the ten power conditioners PCS 1 to PCS 10 are the other power conditioners PCS 1. A case different from that of PCS 4 and PCS 7 to PCS 10 was simulated. This simulation is referred to as simulation 1-2. In the simulation 1-2, the weight w i regarding the active power suppression of the two power conditioners PCS 5 and PCS 6 is set to 2.0. Other conditions are the same as those in the simulation 1-1. FIG. 6 shows a simulation result in the simulation 1-2. 6A to 6I are diagrams corresponding to FIGS. 5A to 5I in the simulation 1-1, respectively.

図6から次のことが確認できる。すなわち、図6(a)〜図6(e)が示すように、図5に示すシミュレーション1−1と比較し、有効電力抑制に関する重みwiを変えたパワーコンディショナPCS5,PCS6の出力抑制量が、その他のパワーコンディショナPCS1〜PCS4,PCS7〜PCS10の出力抑制量の半分になっていることが確認できる。このとき、図6(h)および図6(i)が示すように、集中管理装置MC1が算出するラグランジュ乗数λおよび抑制指標prも上記シミュレーション1−1における値(図5(h)および図5(i)参照)と異なっていることも確認できる。したがって、有効電力抑制に関する重みwiを調整することによって、出力抑制量に差を持たせることが可能である。さらに、図6が示すように、パワーコンディショナPCS5,PCS6の出力抑制量を小さくした分、その他のパワーコンディショナPCS1〜PCS4,PCS7〜PCS10の出力抑制量を上記シミュレーション1−1の場合よりも大きくすることで、図6(g)に示すように、連系点電力P(t)が、定常状態で出力指令値PCに一致していることが確認できる。したがって、太陽光発電システムPVS1は、パワーコンディショナPCSiに設定された有効電力抑制に関する重みwiを考慮して、適切に動作を行っているといえる。 The following can be confirmed from FIG. That is, as shown in FIGS. 6A to 6E, the outputs of the power conditioners PCS 5 and PCS 6 in which the weights w i relating to active power suppression are changed as compared with the simulation 1-1 shown in FIG. It can be confirmed that the suppression amount is half of the output suppression amount of the other power conditioners PCS 1 to PCS 4 and PCS 7 to PCS 10 . At this time, as shown in FIG. 6 (h) and FIG. 6 (i), the Lagrange multiplier λ and the suppression index pr calculated by the central management device MC1 are also the values in the simulation 1-1 (FIG. 5 (h) and FIG. 5). It can also be confirmed that this is different from (i). Therefore, it is possible to give a difference to the output suppression amount by adjusting the weight w i related to effective power suppression. Further, as shown in FIG. 6, the output suppression amounts of the other power conditioners PCS 1 to PCS 4 and PCS 7 to PCS 10 are reduced by the amount of the output suppression amount of the power conditioners PCS 5 and PCS 6. by greater than -1, as shown in FIG. 6 (g), interconnection point power P (t) is, it can be confirmed that they match the output command value P C in the steady state. Therefore, it can be said that the photovoltaic power generation system PVS1 is appropriately operating in consideration of the weight w i related to the effective power suppression set in the power conditioner PCS i .

ケース3として、10台のパワーコンディショナPCS1〜PCS10のうち2台のパワーコンディショナPCS5,PCS6の有効電力抑制に関する重みw5,w6を途中で変化させた場合を、シミュレーションした。当該シミュレーションをシミュレーション1−3とする。シミュレーション1−3において、2台のパワーコンディショナPCS5,PCS6の有効電力抑制に関する重みw5,w6を、開始時点(0[s])では、w5=w6=1.0とし、120[s]経過後に、w5=w6=2.0に変化させた。すなわち、60≦t<120[s]では、上記シミュレーション1−1のように各パワーコンディショナPCS1〜PCS10の有効電力抑制に関する重みw1〜w10はすべて1.0であるが、120≦t[s]では、上記シミュレーション1−2のようにパワーコンディショナPCS5,PCS6の有効電力抑制に関する重みw5,w6を2.0に変化させた。その他の条件は、上記シミュレーション1−1と同じである。図7は、シミュレーション1−3におけるシミュレーション結果を示している。なお、図7(a)〜(i)はそれぞれ、上記シミュレーション1−1における図5(a)〜(i)に対応した図である。 As a case 3, a simulation was performed in which weights w 5 and w 6 relating to active power suppression of two power conditioners PCS 5 and PCS 6 out of ten power conditioners PCS 1 to PCS 10 were changed in the middle. . The simulation is referred to as simulation 1-3. In the simulation 1-3, the weights w 5 and w 6 regarding the active power suppression of the two power conditioners PCS 5 and PCS 6 are set to w 5 = w 6 = 1.0 at the start time (0 [s]). After 120 [s], w 5 = w 6 = 2.0. That is, in 60 ≦ t <120 [s] , while the weight w 1 to w 10 about the effective suppression of power each power conditioner PCS 1 ~PCS 10 as described above simulation 1-1 are all 1.0, 120 In ≦ t [s], the weights w 5 and w 6 relating to the active power suppression of the power conditioners PCS 5 and PCS 6 were changed to 2.0 as in the above simulation 1-2. Other conditions are the same as those in the simulation 1-1. FIG. 7 shows a simulation result in the simulation 1-3. 7A to 7I are diagrams corresponding to FIGS. 5A to 5I in the simulation 1-1, respectively.

図7から次のことが確認できる。すなわち、パワーコンディショナPCS5,PCS6の有効電力抑制に関する重みw5,w6を2.0に変化させる前(60≦t<120[s])では、上記シミュレーション1−1と同じ結果であり、パワーコンディショナPCS5,PCS6の有効電力抑制に関する重みw5,w6を2.0に変化させた後(120≦t[s])では、上記シミュレーション1−2と同じ結果となっていることが確認できる。したがって、このように有効電力抑制に関する重みwiを途中で調整(変更)しても、継続して、連系点電力P(t)を出力指令値PCに一致させることが可能である。 The following can be confirmed from FIG. That is, before changing the weights w 5 and w 6 relating to the active power suppression of the power conditioners PCS 5 and PCS 6 to 2.0 (60 ≦ t <120 [s]), the same result as the simulation 1-1 is obtained. Yes, after changing the weights w 5 and w 6 relating to effective power suppression of the power conditioners PCS 5 and PCS 6 to 2.0 (120 ≦ t [s]), the same result as in the simulation 1-2 is obtained. Can be confirmed. Therefore, even in this way adjust the weights w i relating active power suppression in the middle (change), continuously, it is possible to match the interconnection point power P (t) to the output command value P C.

ケース4として、2台のパワーコンディショナ毎(PCS1とPCS2,PCS3とPCS4,PCS5とPCS6,PCS7とPCS8,PCS9とPCS10)に、太陽電池SPiの発電量Pi SPが異なる場合を、シミュレーションした。当該シミュレーションをシミュレーション1−4とする。シミュレーション1−4において、2台のパワーコンディショナ毎(PCS1とPCS2,PCS3とPCS4,PCS5とPCS6,PCS7とPCS8,PCS9とPCS10)の太陽電池SPiの発電量Pi SPをそれぞれ、P1 SP,P2 SP=600[kW]、P3 SP,P4 SP=500[kW]、P5 SP,P6 SP=400[kW]、P7 SP,P8 SP=300[kW]、P9 SP,P10 SP=200[kW]とした。その他の条件は、上記シミュレーション1−1と同じである。図8は、シミュレーション1−4におけるシミュレーション結果を示している。なお、図8(a)〜(i)はそれぞれ、上記シミュレーション1−1における図5(a)〜(i)に対応した図である。 As Case 4, each of the two inverters (PCS 1 and PCS 2 , PCS 3 and PCS 4 , PCS 5 and PCS 6 , PCS 7 and PCS 8 , PCS 9 and PCS 10 ) generates power from the solar cell SP i . The case where the amount P i SP is different was simulated. The simulation is referred to as simulation 1-4. In the simulation 1-4, the solar cell SP i for each of the two inverters (PCS 1 and PCS 2 , PCS 3 and PCS 4 , PCS 5 and PCS 6 , PCS 7 and PCS 8 , PCS 9 and PCS 10 ) The power generation amounts P i SP are respectively P 1 SP , P 2 SP = 600 [kW], P 3 SP , P 4 SP = 500 [kW], P 5 SP , P 6 SP = 400 [kW], P 7 SP, respectively. , P 8 SP = 300 [kW], P 9 SP and P 10 SP = 200 [kW]. Other conditions are the same as those in the simulation 1-1. FIG. 8 shows a simulation result in the simulation 1-4. 8A to 8I are diagrams corresponding to FIGS. 5A to 5I in the simulation 1-1, respectively.

図8から次のことが確認できる。すなわち、図8(a)〜(e)が示すように、個別目標電力Pi refが太陽電池SPiの発電量Pi SP以上である場合、出力抑制を行っていないことが確認できる。また、図8(f)が示すように、定格出力Pi lmtが同一のパワーコンディショナPCS1〜PCS10で太陽電池SPiの発電量Pi SPが異なる場合、太陽電池SPiの発電量Pi SPの少ないパワーコンディショナPCS7〜PCS10は出力抑制を行っていないことが確認できる。さらに、図8(g)が示すように、連系点電力P(t)が抑制され、定常状態で出力指令値PCに一致していることが確認できる。したがって、太陽光発電システムPVS1は、太陽電池SPiの発電量Pi SPを考慮して、適切に動作を行っているといえる。 The following can be confirmed from FIG. That is, as shown in FIGS. 8A to 8E, when the individual target power P i ref is greater than or equal to the power generation amount P i SP of the solar cell SP i , it can be confirmed that output suppression is not performed. Further, as shown in FIG. 8F, when the power generation amount P i SP of the solar cell SP i is different between the power conditioners PCS 1 to PCS 10 having the same rated output P i lmt , the power generation amount of the solar cell SP i is different. P i SP with less power conditioner PCS 7 ~PCS 10 it can be confirmed that that has not been output suppression. Furthermore, as shown in FIG. 8 (g), the suppressed linking point power P (t) is, it can be confirmed that they match the output command value P C in the steady state. Therefore, it can be said that the solar power generation system PVS1 is appropriately operating in consideration of the power generation amount P i SP of the solar cell SP i .

ケース5として、2台のパワーコンディショナ毎(PCS1とPCS2,PCS3とPCS4,PCS5とPCS6,PCS7とPCS8,PCS9とPCS10)に、定格出力Pi lmtが異なる場合を、シミュレーションした。当該シミュレーションをシミュレーション1−5とする。シミュレーション1−5において、2台のパワーコンディショナ毎(PCS1とPCS2,PCS3とPCS4,PCS5とPCS6,PCS7とPCS8,PCS9とPCS10)の定格出力Pi lmtをそれぞれ、P1 lmt,P2 lmt=500[kW]、P3 lmt,P4 lmt=400[kW]、P5 lmt,P6 lmt=300[kW]、P7 lmt,P8 lmt=200[kW]、P9 lmt,P10 lmt=100[kW]とした。また、電力会社からの出力指令値PCとして、0≦t<60[s]では指令がなく、60≦t[s]では2000[kW]とし、太陽電池SPiの発電量Pi SPをそれぞれ、定格出力Pi lmt+100[kW]とした。その他の条件は、上記シミュレーション1−1と同じである。図9は、シミュレーション1−5におけるシミュレーション結果を示している。なお、図9(a)〜(i)はそれぞれ、上記シミュレーション1−1における図5(a)〜(i)に対応した図である。 As Case 5, the rated output P i lmt for each of the two inverters (PCS 1 and PCS 2 , PCS 3 and PCS 4 , PCS 5 and PCS 6 , PCS 7 and PCS 8 , PCS 9 and PCS 10 ) Different cases were simulated. This simulation is referred to as simulation 1-5. In simulation 1-5, the rated output P i lmt for each of the two inverters (PCS 1 and PCS 2 , PCS 3 and PCS 4 , PCS 5 and PCS 6 , PCS 7 and PCS 8 , PCS 9 and PCS 10 ) , P 1 lmt , P 2 lmt = 500 [kW], P 3 lmt , P 4 lmt = 400 [kW], P 5 lmt , P 6 lmt = 300 [kW], P 7 lmt , P 8 lmt = 200 [kW], P 9 lmt , and P 10 lmt = 100 [kW]. Further, as an output command value P C from the electric power company, there is no command when 0 ≦ t <60 [s], and 2000 [kW] when 60 ≦ t [s], and the power generation amount P i SP of the solar cell SP i is The rated output was P i lmt +100 [kW]. Other conditions are the same as those in the simulation 1-1. FIG. 9 shows a simulation result in the simulation 1-5. FIGS. 9A to 9I are diagrams corresponding to FIGS. 5A to 5I in the simulation 1-1, respectively.

図9から次のことが確認できる。すなわち、図9(f)が示すように、定格出力Pi lmtが異なる場合、出力抑制量は、各パワーコンディショナPCS1〜PCS10で等しいことが確認できる。また、図9(g)が示すように連系点電力P(t)が抑制され、定常状態で出力指令値PCに一致していることが確認できる。したがって、太陽光発電システムPVS1は、パワーコンディショナPCSiの定格出力Pi lmtを考慮して、適切に動作を行っているといえる。 The following can be confirmed from FIG. That is, as shown in FIG. 9 (f), when the rated output P i lmt is different, it can be confirmed that the output suppression amount is equal in each of the power conditioners PCS 1 to PCS 10 . Further, as shown in FIG. 9G, it can be confirmed that the connection point power P (t) is suppressed and coincides with the output command value P C in a steady state. Therefore, it can be said that the photovoltaic power generation system PVS1 is appropriately operating in consideration of the rated output P i lmt of the power conditioner PCS i .

ケース6として、上記サンプリング時間を長くした場合を、シミュレーションした。当該シミュレーションをシミュレーション1−6とする。シミュレーション1−6において、上記サンプリング時間を60[s]=1[min]とした。また、勾配係数εを0.0005とし、電力会社からの出力指令値PCとして、0≦t<5[min]では指令がなく、5≦t[min]では3000[kW]とした。その他の条件は、上記シミュレーション1−1と同じである。図10は、シミュレーション1−6におけるシミュレーション結果を示している。なお、図10(a)〜(i)はそれぞれ、上記シミュレーション1−1における図5(a)〜(i)に対応した図である。 As a case 6, a case where the sampling time is increased was simulated. This simulation is referred to as simulation 1-6. In simulation 1-6, the sampling time was set to 60 [s] = 1 [min]. Further, the gradient coefficient ε was set to 0.0005, and the output command value P C from the electric power company was set to 3000 [kW] when 0 ≦ t <5 [min] and no command when 5 ≦ t [min]. Other conditions are the same as those in the simulation 1-1. FIG. 10 shows a simulation result in the simulation 1-6. FIGS. 10A to 10I are diagrams corresponding to FIGS. 5A to 5I in the simulation 1-1, respectively.

図10から次のことが確認できる。すなわち、図10(g)が示すように、上記サンプリング時間を長くした場合、連系点電力P(t)が出力指令値PCに追従するための時間が上記シミュレーション1−1より長くなるものの、連系点電力P(t)が抑制され、定常状態で出力指令値PCに一致していることが確認できる。 The following can be confirmed from FIG. That is, as shown in FIG. 10 (g), when longer the sampling time, although the time to interconnection point power P (t) follows the output command value P C is longer than the above-described simulation 1-1 , is suppressed linking point power P (t) is, it can be confirmed that they match the output command value P C in the steady state.

ケース7として、上記サンプリング時間を上記ケース6におけるサンプリング時間よりもさらに長くした場合を、シミュレーションした。当該シミュレーションをシミュレーション1−7とする。シミュレーション1−7において、上記サンプリング時間を180[s]=3[min]とした。また、勾配係数εを0.0003とし、電力会社からの出力指令値PCとして、0≦t<5[min]では指令がなく、5≦t[min]では3000[kW]とした。その他の条件は、上記シミュレーション1−1と同じである。図11は、シミュレーション1−7におけるシミュレーション結果を示している。なお、図11(a)〜(i)はそれぞれ、上記シミュレーション1−1における図5(a)〜(i)に対応した図である。 In case 7, the case where the sampling time was made longer than the sampling time in case 6 was simulated. This simulation is referred to as simulation 1-7. In simulation 1-7, the sampling time was set to 180 [s] = 3 [min]. Further, the gradient coefficient ε was set to 0.0003, and the output command value P C from the electric power company was set to 3000 [kW] when 0 ≦ t <5 [min] and no command when 5 ≦ t [min]. Other conditions are the same as those in the simulation 1-1. FIG. 11 shows a simulation result in the simulation 1-7. FIGS. 11A to 11I correspond to FIGS. 5A to 5I in the simulation 1-1, respectively.

図11から次のことが確認できる。すなわち、図11(g)が示すように、サンプリング時間を上記シミュレーション1−6よりも長くした場合においても、連系点電力P(t)が抑制され、定常状態で出力指令値PCに一致していることが確認できる。 The following can be confirmed from FIG. That is, as shown in FIG. 11 (g), even when the sampling time is set longer than the simulation 1-6, the connection point power P (t) is suppressed, and the output command value P C is reduced to a steady state. You can confirm that you are doing.

上記図5〜図11毎の結果に加え、図5〜図11を対比することで、次のことが確認できる。すなわち、各図の(h)および(i)が示すように、ラグランジュ乗数λおよび抑制指標prは、パワーコンディショナPCS1〜PCS10の、太陽電池SPiの発電量Pi SP、定格出力Pi lmt、有効電力抑制に関する重みwi、および、出力指令値PCなどに基づき、異なる値が算出されていることが確認できる。また、各図の(a)〜(e)が示すように、抑制指標prの更新に応じて、個別目標電力Pi refが更新されていることを確認できる。そして、パワーコンディショナPCS1〜PCS10は、この個別目標電力Pi refに応じて、個別出力電力Pi outを制御している。よって、各図の(g)が示すように、連系点電力P(t)を出力指令値PCに一致させていることが確認できる。以上のことから、上記(9)式および上記(10)式を用いて集中管理装置MC1が算出した抑制指標prが適切な値であるといえる。 In addition to the results shown in FIGS. 5 to 11, the following can be confirmed by comparing FIGS. That is, as shown in (h) and (i) of each figure, the Lagrangian multiplier λ and the suppression index pr are the power generation amount P i SP and the rated output P of the solar cell SP i of the power conditioners PCS 1 to PCS 10. i lmt, weight w i relating active power suppression, and, on the basis of such an output command value P C, it can be confirmed that different values are calculated. Further, as shown in each figure (a) ~ (e), in accordance with the updating of the suppression indicators pr, it can be confirmed that the individual target power P i ref is updated. The power conditioners PCS 1 to PCS 10 control the individual output power P i out according to the individual target power P i ref . Thus, as shown in (g) is each figure, it can be confirmed that by matching linking point power P (t) to the output command value P C. From the above, it can be said that the suppression index pr calculated by the central management device MC1 using the above equations (9) and (10) is an appropriate value.

上記シミュレーション1−1ないしシミュレーション1−7の結果から、太陽光発電システムPVS1において、各パワーコンディショナPCSiがそれぞれ、集中管理装置MC1から受信する抑制指標prに基づき、分散的に個別目標電力Pi refを算出している。よって、上記目標1−1を達成している。また、連系点電力P(t)が抑制され、出力指令値PCに一致している。よって、上記目標1−2を達成している。そして、各種条件に応じて、パワーコンディショナPCSi毎に個別出力電力Pi outが変化している。すなわち、各種条件に応じて、パワーコンディショナPCSi毎に出力抑制量が変化している。よって、上記目標1−3を達成している。以上のことから、太陽光発電システムPVS1は、上記3つの目標を達成していることが分かる。 From the results of the simulation 1-1 to the simulation 1-7, in the photovoltaic power generation system PVS1, the individual target power P is distributed in a distributed manner based on the suppression index pr received by each power conditioner PCS i from the central management device MC1. i ref is calculated. Therefore, the target 1-1 is achieved. Further, the interconnection point power P (t) is suppressed, it coincides with the output command value P C. Therefore, the above target 1-2 is achieved. The individual output power P i out changes for each power conditioner PCS i according to various conditions. That is, according to various conditions, the output suppression quantity is changed for each power conditioner PCS i. Therefore, the above target 1-3 is achieved. From the above, it can be seen that the photovoltaic power generation system PVS1 has achieved the above three goals.

以上で説明したように、第1実施形態に係る太陽光発電システムPVS1において、集中管理装置MC1は、電力会社からの出力指令値PCおよび検出した連系点電力P(t)から、上記(9)式および上記(10)式を用いて、抑制指標prを算出し、これを各パワーコンディショナPCSiに送信している。また、各パワーコンディショナPCSiは、受信した抑制指標prに基づき、分散的に上記(8)式の最適化問題を解くことで、個別目標電力Pi refを算出し、そして、個別出力電力Pi outを個別目標電力Pi refに制御している。これにより、集中管理装置MC1は、上記(9)式および上記(10)式に示す簡単な計算だけとなる。したがって、太陽光発電システムPVS1において、集中管理装置MC1の処理負荷を低減させることができる。また、各パワーコンディショナPCSiが、抑制指標prに基づき分散的に個別目標電力Pi refを算出し、個別出力電力Pi outを制御する場合であっても、連系点電力P(t)を電力会社からの出力指令値PCに一致させることができる。 As described above, in the photovoltaic power generation system PVS1 according to the first embodiment, the centralized management device MC1 uses the output command value P C from the power company and the detected connection point power P (t) as described above ( The suppression index pr is calculated using Equation 9) and Equation (10) above, and is transmitted to each power conditioner PCS i . Also, each power conditioner PCS i calculates the individual target power P i ref by solving the optimization problem of the above equation (8) in a distributed manner based on the received suppression index pr, and the individual output power the P i out are controlled in a separate target power P i ref. Thereby, the centralized management device MC1 performs only simple calculations shown in the above formulas (9) and (10). Therefore, in the photovoltaic power generation system PVS1, the processing load of the central management device MC1 can be reduced. Further, even when each power conditioner PCS i calculates the individual target power P i ref in a distributed manner based on the suppression index pr and controls the individual output power P i out , the connection point power P (t ) Can be matched with the output command value P C from the electric power company.

上記第1実施形態に係る太陽光発電システムPVS1において、太陽電池SPiを接続した複数台のパワーコンディショナPCSiで構成された場合を例に説明した。しかし、このような太陽光発電システムPVS1の場合、天候変動による出力への影響が大きい。そこで、天候変動などによる出力変動を抑制させるために、太陽電池を接続したパワーコンディショナと蓄電池を接続したパワーコンディショナとを併設した太陽光発電システムが存在する。この場合について、第2実施形態として、以下に説明する。 In the solar power generation system PVS1 according to the first embodiment, the case where the solar power generation system PVS1 is configured by a plurality of power conditioners PCS i to which the solar cells SP i are connected has been described as an example. However, in the case of such a photovoltaic power generation system PVS1, the influence on the output due to weather fluctuation is large. Therefore, in order to suppress output fluctuations due to weather fluctuations or the like, there is a photovoltaic power generation system provided with a power conditioner connected with a solar battery and a power conditioner connected with a storage battery. This case will be described below as a second embodiment.

図12および図13は、第2実施形態に係る太陽光発電システムPVS2を説明するための図である。図12は、太陽光発電システムPVS2の全体構成を示す図である。図13は、図12に示す太陽光発電システムPVS2において、電力系統Aとの連系点における電力を制御する制御系の機能構成を示す図である。なお、上記第1実施形態に係る太陽光発電システムPVS1と同一あるいは類似のものについては、同じ符号を付してその説明を省略する。   12 and 13 are diagrams for explaining the photovoltaic power generation system PVS2 according to the second embodiment. FIG. 12 is a diagram illustrating an overall configuration of the photovoltaic power generation system PVS2. FIG. 13 is a diagram illustrating a functional configuration of a control system that controls electric power at a connection point with the electric power system A in the photovoltaic power generation system PVS2 illustrated in FIG. In addition, about the same or similar thing as the photovoltaic power generation system PVS1 which concerns on the said 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図12に示すように、太陽光発電システムPVS2は、複数台の太陽電池SPi(i=1,2,・・・,n;nは正の整数)、複数台のパワーコンディショナPCSPVi、複数台の蓄電池Bk(k=1,2,・・・,m;mは正の整数)、複数台のパワーコンディショナPCSBk、および、集中管理装置MC2を有して構成される。太陽光発電システムPVS2は、系統連型の逆潮流システムである。 As shown in FIG. 12, the photovoltaic power generation system PVS2 includes a plurality of solar cells SP i (i = 1, 2,..., N; n is a positive integer), a plurality of power conditioners PCS PVi , A plurality of storage batteries B k (k = 1, 2,..., M; m is a positive integer), a plurality of power conditioners PCS Bk , and a centralized management device MC2. The photovoltaic power generation system PVS2 is a grid-connected reverse power flow system.

複数台のパワーコンディショナPCSPViはそれぞれ、上記第1実施形態のパワーコンディショナPCSiと同様に構成される。すなわち、各パワーコンディショナPCSPViは、太陽電池SPiが発電した電力(直流電力)を交流電力に変換し、変換した交流電力を電力系統Aに出力する。 Each of the plurality of power conditioners PCS PVi is configured similarly to the power conditioner PCS i of the first embodiment. That is, each power conditioner PCS PVi converts the power (DC power) generated by the solar cell SP i into AC power, and outputs the converted AC power to the power system A.

複数台の蓄電池Bkはそれぞれ、繰り返し、充電により電力を蓄えることができる電池である。蓄電池Bkは、例えば、リチウムイオン電池、ニッケル水素電池、ニッケルカドミウム電池、鉛蓄電池などの二次電池である。また、電気二重層コンデンサなどのコンデンサを用いてもよい。蓄電池Bkは、蓄積された電力を放電して、直流電力をパワーコンディショナPCSBkに供給する。 Each of the plurality of storage batteries B k is a battery that can repeatedly store power by charging. The storage battery B k is a secondary battery such as a lithium ion battery, a nickel metal hydride battery, a nickel cadmium battery, or a lead storage battery. A capacitor such as an electric double layer capacitor may be used. The storage battery B k discharges the stored power and supplies DC power to the power conditioner PCS Bk .

複数台のパワーコンディショナPCSBkはそれぞれ、蓄電池Bkから入力される直流電力を交流電力に変換して出力するものである。さらに、各パワーコンディショナPCSBkは、電力系統Aや各パワーコンディショナPCSPViから入力される交流電力を直流電力へ変換し、蓄電池Bkに供給する。すなわち、蓄電池Bkを充電する。各パワーコンディショナPCSBkは、蓄電池Bkの充電および放電を制御している。したがって、蓄電池Bkの充電を行う充電回路および蓄電池Bkの放電を行う放電回路として機能する。 Each of the plurality of power conditioners PCS Bk converts DC power input from the storage battery B k into AC power and outputs the AC power. Furthermore, the power conditioner PCS Bk is the AC power input from the electric power system A and each of the power conditioner PCS PVi converted into DC power and supplies the battery B k. That is, the storage battery Bk is charged. Each power conditioner PCS Bk is controlling the charging and discharging of the battery B k. Thus, functions as a discharge circuit to discharge the charging circuit and the battery B k to charge the battery B k.

各パワーコンディショナPCSPViから出力される有効電力をPPVi out、無効電力をQPVi outとすると、各パワーコンディショナPCSPViからPPVi out+jQPVi outの複素電力が出力されている。また、各パワーコンディショナPCSBkから出力される有効電力をPBk out、無効電力をQBk outとすると、各パワーコンディショナPCSBkからPBk out+jQBk outの複素電力が出力されている。したがって、複数台のパワーコンディショナPCSPVi,PCSBkと電力系統Aとの連系点には、(ΣiPVi out+ΣkBk out)+j(ΣiPVi out+ΣkBk out)の複素電力が出力されている。すなわち、連系点電力は、各パワーコンディショナPCSPVi,PCSBkの出力電力の総和である。なお、本実施形態においても、連系点における電圧変動抑制などに主に活用される無効電力QPVi out,QBk outの出力制御については、特に考慮しない。すなわち、連系点電力は、連系点における有効電力PPVi out,PBk outの総和(ΣiPVi out+ΣkBk out)としている。 When the active power output from each power conditioner PCS PVi is P PVi out and the reactive power is Q PVi out , the complex power of P PVi out + jQ PVi out is output from each power conditioner PCS PVi . Also, assuming that the active power output from each power conditioner PCS Bk is P Bk out and the reactive power is Q Bk out , the complex power of P Bk out + jQ Bk out is output from each power conditioner PCS Bk . Therefore, a plurality of power conditioners PCS PVi, the interconnection point between the PCS Bk and power system A, (Σ i P PVi out + Σ k P Bk out) + j (Σ i Q PVi out + Σ k Q Bk out) The complex power is output. That is, the interconnection point power is the sum of the output powers of the power conditioners PCS PVi and PCS Bk . In the present embodiment, the output control of reactive powers Q PVi out and Q Bk out mainly used for suppressing voltage fluctuation at the interconnection point is not particularly considered. That is, the connection point power is the sum of the effective powers P PVi out and P Bk out at the connection point (Σ i P PVi out + Σ k P Bk out ).

本実施形態においては、太陽光発電システムPVS2は、電力会社から、連系点電力P(t)が所定の値を超えないように指示される。太陽光発電システムPVS2は、この指示に従い、連系点電力P(t)を制御する。具体的には、太陽光発電システムPVS2は、電力会社からの指示として、上記出力指令値PCを指令される。太陽光発電システムPVS2は、連系点電力P(t)が電力会社から指令される出力指令値PCとなるように、各パワーコンディショナPCSPVi,PCSBkの個別出力電力PPVi out,PBk outを制御する。よって、連系点電力P(t)を調整対象電力とし、出力指令値PCを連系点電力P(t)の目標値としている。太陽光発電システムPVS2は、連系点電力P(t)が出力指令値PCを超えている場合、各パワーコンディショナPCSPVi,PCSBkの個別出力電力PPVi out,PBk outを抑制する。このことから、太陽光発電システムPVS2も連系点電力抑制制御を行っている。 In the present embodiment, the photovoltaic power generation system PVS2 is instructed by the electric power company so that the interconnection point power P (t) does not exceed a predetermined value. The solar power generation system PVS2 controls the interconnection point power P (t) according to this instruction. Specifically, photovoltaic systems PVS2 as an instruction from the power company is commanded the output command value P C. Photovoltaic systems PVS2, like interconnection point power P (t) is the output command value P C of commanded from the power company, the power conditioner PCS PVi, PCS Bk individual output power P PVi out, P Control Bk out . Thus, interconnection node power P (t) is the adjusted power, and the target value of the linking point power P (t) the output command value P C. Photovoltaic systems PVS2, when interconnection point power P (t) exceeds the output command value P C, suppresses the power conditioner PCS PVi, individual output power P PVi out of PCS Bk, the P Bk out . For this reason, the photovoltaic power generation system PVS2 also performs interconnection point power suppression control.

連系点電力抑制制御においては、各パワーコンディショナPCSPViは、集中管理装置MC2から抑制指標prPVを受信し、受信した抑制指標prPVに基づき、個別目標電力PPVi refを算出する。抑制指標prPVは、連系点電力P(t)を出力指令値PCにするための情報であり、個別目標電力PPVi refを算出するための情報である。各パワーコンディショナPCSPViは、算出した個別目標電力PPVi refに基づいて、個別出力電力PPVi outを制御する。そのために、各パワーコンディショナPCSPViは、図13に示すように、受信部11、目標電力算出部12’、および、出力制御部13を含んでいる。 In the interconnection point power suppression control, each power conditioner PCS PVi receives the suppression index pr PV from the central management device MC2, and calculates the individual target power P PVi ref based on the received suppression index pr PV . Suppression indicator pr PV is information for linking point power P (t) to the output command value P C, which is information for calculating the individual target power P PVi ref. Each power conditioner PCS PVi controls the individual output power P PVi out based on the calculated individual target power P PVi ref . Therefore, each power conditioner PCS PVi includes a receiving unit 11, a target power calculating unit 12 ′, and an output control unit 13, as shown in FIG.

目標電力算出部12’は、受信部11が受信した抑制指標prPVに基づき、自装置(パワーコンディショナPCSPVi)の個別目標電力PPVi refを算出する。具体的には、目標電力算出部12’は、下記(19)式に示す制約付き最適化問題を解くことで、個別目標電力PPVi refを算出する。したがって、目標電力算出部12’は、第1実施形態に係る目標電力算出部12と比較し、個別目標電力PPVi refを算出するための最適化問題の演算式が異なっている。当該(19)式において、wPViは、パワーコンディショナPCSPViの有効電力抑制に関する重みを表わしており、設計値である。また、Pφiは、パワーコンディショナPCSPViの個別出力電力PPVi outの抑制を優先するか否かを示す設計パラメータ(以下、「優先度パラメータ」という。)を示しており、設計値である。当該優先度パラメータPφiを小さくすると、蓄電池Bkの充電量を少なくし、個別出力電力PPVi outが抑制され易くなる。一方、当該優先度パラメータPφiを大きくすると、蓄電池Bkの充電量を多くし、個別出力電力PPVi outが抑制され難くなる。よって、優先度パラメータPφiは、蓄電池Bkの充電を優先するか否かを示す設計パラメータであるとも言える。さらに、この優先度パラメータPφiによって、パワーコンディショナPCSPViの定格出力による出力限界とは別に、パワーコンディショナPCSPViの個別出力電力PPVi outの疑似的な出力限界が設定されていると考えられる。そのため、優先度パラメータPφiは、疑似有効出力限界とも言える。上記重みwPViおよび上記優先度パラメータPφiはユーザが設定可能である。この下記(19)式についての詳細は、後述する。

Figure 2018143046
The target power calculation unit 12 ′ calculates the individual target power P PVi ref of the own device (power conditioner PCS PVi ) based on the suppression index pr PV received by the reception unit 11. Specifically, the target power calculation unit 12 ′ calculates the individual target power P PVi ref by solving the constrained optimization problem expressed by the following equation (19). Therefore, the target power calculation unit 12 ′ is different from the target power calculation unit 12 according to the first embodiment in the calculation formula of the optimization problem for calculating the individual target power P PVi ref . In the equation (19), w PVi represents a weight related to active power suppression of the power conditioner PCS PVi , and is a design value. Pφ i represents a design parameter indicating whether or not to give priority to suppression of the individual output power P PVi out of the power conditioner PCS PVi (hereinafter referred to as “priority parameter”), and is a design value. . When the priority parameter Pφ i is reduced, the charge amount of the storage battery B k is reduced, and the individual output power P PVi out is easily suppressed. On the other hand, when the priority parameter Pφ i is increased, the charge amount of the storage battery B k is increased, and the individual output power P PVi out is hardly suppressed. Therefore, it can be said that the priority parameter Pφ i is a design parameter indicating whether or not priority is given to the charging of the storage battery B k . In addition, this priority parameter P.PHI i, the output limit according to the rated output of the power conditioner PCS PVi separately, considered as pseudo output limits of the individual output power P PVi out of the power conditioner PCS PVi is set It is done. Therefore, it can be said that the priority parameter Pφ i is a pseudo effective output limit. The weight w PVi and the priority parameter Pφ i can be set by the user. Details of the following equation (19) will be described later.
Figure 2018143046

連系点電力抑制制御においては、各パワーコンディショナPCSBkは、集中管理装置MC2から充放電指標prBを受信し、受信した充放電指標prBに基づき、個別目標電力PBk refを算出する。充放電指標prBは、連系点電力P(t)を出力指令値PCにするための情報であり、個別目標電力PBk refを算出するための情報である。また、蓄電池Bkをどれくらい充電するか放電するかを決定するための情報でもある。各パワーコンディショナPCSBkは、算出した個別目標電力PBk refに基づいて、個別出力電力PBk outを制御する。そのために、各パワーコンディショナPCSBkは、図13に示すように、受信部31、目標電力算出部32、および、出力制御部33を含んでいる。 In the interconnection point power suppression control, each power conditioner PCS Bk receives the charge / discharge index pr B from the central management device MC2, and calculates the individual target power P Bk ref based on the received charge / discharge index pr B. . Discharge indicator pr B is information for linking point power P (t) to the output command value P C, which is information for calculating the individual target power P Bk ref. It is also information for determining how much the storage battery B k is charged or discharged. Each power conditioner PCS Bk controls the individual output power P Bk out based on the calculated individual target power P Bk ref . Therefore, each power conditioner PCS Bk includes a receiving unit 31, a target power calculating unit 32, and an output control unit 33 as shown in FIG.

受信部31は、上記第1実施形態に係る受信部11と同様に構成され、集中管理装置MC2から送信される充放電指標prBを受信する。 The receiving unit 31 is configured in the same manner as the receiving unit 11 according to the first embodiment, and receives the charge / discharge indicator pr B transmitted from the central management device MC2.

目標電力算出部32は、受信部31が受信した充放電指標prBに基づき、自装置(パワーコンディショナPCSBk)の個別目標電力PBk refを算出する。具体的には、目標電力算出部32は、下記(20)式に示す最適化問題を解くことで、個別目標電力PBk refを算出する。当該(20)式において、PBk lmtは、各パワーコンディショナPCSBkの定格出力(出力限界)を表わしている。wBkは、パワーコンディショナPCSBkの有効電力に関する重みを表わしている。上記重みwBkは、ユーザが設定可能である。また、αk,βkは、蓄電池Bkの残量によって調整できる調整パラメータを表わしている。なお、この下記(20)式についての詳細は、後述する。

Figure 2018143046
The target power calculation unit 32 calculates the individual target power P Bk ref of the own device (power conditioner PCS Bk ) based on the charge / discharge index pr B received by the reception unit 31. Specifically, the target power calculation unit 32 calculates the individual target power P Bk ref by solving the optimization problem expressed by the following equation (20). In the equation (20), P Bk lmt represents the rated output (output limit) of each power conditioner PCS Bk . w Bk represents a weight related to the active power of the power conditioner PCS Bk . The weight w Bk can be set by the user. Α k and β k represent adjustment parameters that can be adjusted according to the remaining amount of the storage battery B k . Details of the following equation (20) will be described later.
Figure 2018143046

出力制御部33は、上記第1実施形態に係る出力制御部13と同様に構成される。出力制御部33は、蓄電池Bkの放電および充電を制御することで、個別出力電力PBk outを、目標電力算出部32が算出した個別目標電力PBk refにする。具体的には、目標電力算出部32によって算出された個別目標電力PBk refが正の値の場合、蓄電池Bkに蓄積された電力(直流電力)を交流電力に変換し、電力系統Aに供給する。すなわち、パワーコンディショナPCSBkを放電回路として機能させる。一方、個別目標電力PBk refが負の値の場合、パワーコンディショナPCSPViから出力された交流電力の少なくとも一部を直流電力に変換し、蓄電池Bkに供給する。すなわち、パワーコンディショナPCSBkを充電回路として機能させる。 The output control unit 33 is configured similarly to the output control unit 13 according to the first embodiment. The output control unit 33 controls the discharging and charging of the storage battery B k to set the individual output power P Bk out to the individual target power P Bk ref calculated by the target power calculation unit 32. Specifically, when the individual target power P Bk ref calculated by the target power calculation unit 32 is a positive value, the power (DC power) stored in the storage battery B k is converted into AC power and Supply. That is, the power conditioner PCS Bk is caused to function as a discharge circuit. On the other hand, when the individual target power P Bk ref is a negative value, at least part of the AC power output from the power conditioner PCS PVi is converted into DC power and supplied to the storage battery B k . That is, the power conditioner PCS Bk is caused to function as a charging circuit.

集中管理装置MC2は、複数台のパワーコンディショナPCSPVi,PCSBkを集中管理する。集中管理装置MC2は、図13に示すように、上記第1実施形態に係る集中管理装置MC1と比較し、指標算出部23が指標算出部43に、送信部24が送信部44に置き換えられている点で異なる。集中管理装置MC2は、連系点電力抑制制御において、連系点電力P(t)を出力指令値PCにするための抑制指標prPVおよび充放電指標prBを算出し、抑制指標prPVをパワーコンディショナPCSPViに、充放電指標prBをパワーコンディショナPCSBkに送信する。 The central management device MC2 centrally manages a plurality of power conditioners PCS PVi and PCS Bk . As shown in FIG. 13, the central management device MC2 is different from the central management device MC1 according to the first embodiment in that the index calculation unit 23 is replaced with an index calculation unit 43 and the transmission unit 24 is replaced with a transmission unit 44. It is different in point. The central control device MC2, at interconnection node power suppression control, calculates a suppression index pr PV and charge-discharge indicator pr B for interconnection point power P (t) to the output command value P C, suppression index pr PV Is transmitted to the power conditioner PCS PVi , and the charge / discharge index pr B is transmitted to the power conditioner PCS Bk .

指標算出部43は、連系点電力P(t)を出力指令値PCにするための抑制指標prPVおよび充放電指標prBを算出する。指標算出部43は、ラグランジュ乗数をλ、勾配係数をε、時間をtとして、下記(21)式および下記(22)式に基づき、抑制指標prPVおよび充放電指標prBを算出する。ただし、指標算出部43は、出力指令値取得部21からの出力指令値PCとして、電力会社からの出力抑制の指令がないことを表わす数値−1を入力された場合、ラグランジュ乗数λを「0」とする。すなわち、抑制指標prPVおよび充放電指標prBをともに「0」と算出する。なお、下記(21)式において、個別出力電力PPVi out,PBk outおよび出力指令値PCが、時間tに対して変化する値であるため、それぞれ個別出力電力をPPVi out(t),PBk out(t)および出力指令値をPC(t)と記載している。これらの下記(21)式および下記(22)式の詳細は、後述する。

Figure 2018143046
Index calculating unit 43 calculates the suppression indicators pr PV and charge-discharge indicator pr B for interconnection point power P (t) to the output command value P C. The index calculation unit 43 calculates the suppression index pr PV and the charge / discharge index pr B based on the following formula (21) and the following formula (22), where λ is the Lagrange multiplier, ε is the gradient coefficient, and t is time. However, when the numerical value −1 indicating that there is no output suppression command from the power company is input as the output command value P C from the output command value acquisition unit 21, the index calculation unit 43 sets the Lagrange multiplier λ to “ 0 ”. That is, both the suppression index pr PV and the charge / discharge index pr B are calculated as “0”. Incidentally, the following in equation (21), individual output power P PVi out, P Bk out and the output command value P C is because a value that varies with respect to time t, respectively a separate output power P PVi out (t) , P Bk out (t) and the output command value are described as P C (t). Details of these formulas (21) and (22) will be described later.
Figure 2018143046

送信部44は、指標算出部43が算出した抑制指標prPVをパワーコンディショナPCSPViに送信し、指標算出部43が算出した充放電指標prBをパワーコンディショナPCSBkに送信する。 The transmission unit 44 transmits the suppression index pr PV calculated by the index calculation unit 43 to the power conditioner PCS PVi, and transmits the charge / discharge index pr B calculated by the index calculation unit 43 to the power conditioner PCS Bk .

次に、太陽光発電システムPVS2が行う連系点電力抑制制御において、パワーコンディショナPCSPViによる個別目標電力PPVi refの算出に上記(19)式が用いられる理由、パワーコンディショナPCSBkによる個別目標電力PBk refの算出に上記(20)式が用いられる理由、および、集中管理装置MC2による抑制指標prPV,充放電指標prBの算出に上記(21)式および上記(22)式が用いられる理由を説明する。 Next, in the interconnection point power suppression control performed by the photovoltaic power generation system PVS2, the reason why the above equation (19) is used to calculate the individual target power P PVi ref by the power conditioner PCS PVi , the individual by the power conditioner PCS Bk The reason why the above equation (20) is used for calculating the target power P Bk ref and the above equations (21) and (22) are used for calculating the suppression index pr PV and the charge / discharge index pr B by the centralized management device MC2. The reason why it is used will be described.

太陽光発電システムPVS2は、連系点電力抑制制御において、以下の5つの目標を達成するように構成されている。1つ目の目標(目標2−1)は、「各パワーコンディショナPCSPVi,PCSBkが分散的に個別目標電力を算出する」ことである。2つ目の目標(目標2−2)は、「太陽電池に接続されたパワーコンディショナPCSPViの出力電力をできる限り抑制しない」ことである。3つ目の目標(目標2−3)は、「蓄電池は、連系点電力が出力指令値よりも大きい場合には充電し、不足している場合には放電する」ことである。4つ目の目標(目標2−4)は、「太陽光発電システムPVS2の連系点における出力電力(連系点電力)を電力会社からの出力指令値に一致させる」ことである。そして、5つ目の目標(2−5)は、「パワーコンディショナPCSPVi,PCSBk毎に、出力抑制量を調整できるようにする」ことである。 The photovoltaic power generation system PVS2 is configured to achieve the following five goals in the connection point power suppression control. The first target (target 2-1) is “each power conditioner PCS PVi , PCS Bk calculates the individual target power in a distributed manner”. The second target (target 2-2) is “not to suppress the output power of the power conditioner PCS PVi connected to the solar cell as much as possible”. The third target (target 2-3) is “the storage battery is charged when the connection point power is larger than the output command value, and discharged when it is insufficient”. The fourth target (target 2-4) is to “match the output power (interconnection point power) at the connection point of the photovoltaic power generation system PVS2 with the output command value from the power company”. The fifth target (2-5) is “to allow the output suppression amount to be adjusted for each of the power conditioners PCS PVi and PCS Bk ”.

まず、集中管理装置MC2が集中的に個別目標電力PPVi ref,PBk refを求める場合の制約付き最適化問題を考える。そうすると、下記(23)式が得られる。ここで、上記するように、PPVi ref,PBk refはそれぞれ、各パワーコンディショナPCSPVi,PCSBkの個別目標電力を表わし、PPVi lmt,PBk lmtはそれぞれ、各パワーコンディショナPCSPVi,PCSBkの定格出力(出力限界)を表わし、Pφiは優先度パラメータを表わす。なお、下記(23)式の最適解である個別目標電力PPVi ref,PBk refをそれぞれ、(PPVi ref*,(PBk ref*とする。下記(23)式において、(23a)式は、各パワーコンディショナPCSPViの個別出力電力PPVi outの出力抑制量の最小化および各パワーコンディショナPCSBkの個別出力電力PBk outの出力量の最小化、(23b)式は、各パワーコンディショナPCSPViの定格出力PPVi lmtによる制約、(23c)式は、各パワーコンディショナPCSBkの定格出力PBk lmtによる制約、(23d)式は、各蓄電池Bkの残量制約、(23e)式は、連系点電力P(t)を出力指令値PCに一致させることを、それぞれ表わしている。

Figure 2018143046
First, consider a constrained optimization problem when the central management device MC2 intensively obtains the individual target powers P PVi ref and P Bk ref . Then, the following equation (23) is obtained. Here, as described above, P PVi ref and P Bk ref represent the individual target powers of the respective power conditioners PCS PVi and PCS Bk , and P PVi lmt and P Bk lmt respectively represent the respective power conditioners PCS PVi. , PCS Bk rated output (output limit), and Pφ i represents a priority parameter. Note that the individual target powers P PVi ref and P Bk ref which are the optimum solutions of the following equation (23) are (P PVi ref ) * and (P Bk ref ) * , respectively. In the following equation (23), equation (23a) represents the minimization of the output suppression amount of the individual output power P PVi out of each power conditioner PCS PVi and the output amount of the individual output power P Bk out of each power conditioner PCS Bk. (23b) is a constraint due to the rated output P PVi lmt of each power conditioner PCS PVi , (23c) is a constraint due to the rated output P Bk lmt of each power conditioner PCS Bk , (23d) the remaining constraints of the storage batteries B k, (23e) expression to match interconnection point power P (t) to the output command value P C, it represents respectively.
Figure 2018143046

これは集中管理装置MC2が、上記(23)式から個別目標電力(PPVi ref*,(PBk ref*を求める場合を示している。したがって、上記(23)式の場合、各パワーコンディショナPCSPVi,PCSBkが分散的に個別目標電力(PPVi ref*,(PBk ref*を算出していないため、目標2−1を達成していない。 This shows a case where the centralized management device MC2 obtains the individual target powers (P PVi ref ) * and (P Bk ref ) * from the above equation (23). Therefore, in the case of the above equation (23), each power conditioner PCS PVi and PCS Bk does not calculate the individual target powers (P PVi ref ) * and (P Bk ref ) * in a distributed manner. Not achieved.

続いて、各パワーコンディショナPCSPViが分散的に個別目標電力PPVi refを求める場合の制約付き最適化問題を考える。そうすると、下記(24)式が得られる。

Figure 2018143046
Next, consider a constrained optimization problem when each power conditioner PCS PVi obtains the individual target power P PVi ref in a distributed manner. Then, the following equation (24) is obtained.
Figure 2018143046

同様に、各パワーコンディショナPCSBkが分散的に個別目標電力PBk refを求める場合の制約付き最適化問題を考える。そうすると、下記(25)式が得られる。

Figure 2018143046
Similarly, consider a constrained optimization problem when each power conditioner PCS Bk obtains the individual target power P Bk ref in a distributed manner. Then, the following equation (25) is obtained.
Figure 2018143046

しかし、上記(24)式の最適解である個別目標電力は、各パワーコンディショナPCSPViが分散的に求めた個別目標電力PPVi refであるが、上記(23e)式が考慮されていない。同様に、上記(25)式の最適解である個別目標電力は、各パワーコンディショナPCSBkが分散的に求めた個別目標電力PBk refであるが、上記(23e)式が考慮されていない。したがって、連系点電力P(t)を電力会社からの出力指令値PCに一致させる目標2−4を達成できない。 However, the individual target power, which is the optimum solution of the above equation (24), is the individual target power P PVi ref obtained by each power conditioner PCS PVi in a distributed manner, but the above equation (23e) is not considered. Similarly, the individual target power that is the optimum solution of the above equation (25) is the individual target power P Bk ref obtained by each power conditioner PCS Bk in a distributed manner, but the above equation (23e) is not taken into consideration. . Therefore, the target 2-4 for matching the interconnection point power P (t) with the output command value P C from the power company cannot be achieved.

そこで、次に手法により、目標2−4を達成させることを考える。すなわち、各パワーコンディショナPCSPViが、集中管理装置MC2から受信する抑制指標prPVに基づき、分散的に個別目標電力PPVi refを算出し、また、各パワーコンディショナPCSBkが集中管理装置MC2から受信する充放電指標prBに基づき、分散的に個別目標電力PBk refを算出する。これにより、目標2−4を達成させる。各パワーコンディショナPCSPViが、抑制指標prPVを用いて、分散的に個別目標電力PPVi refを求める場合の制約付き最適化問題は、上記(19)式で表わすことができる。なお、上記(19)式の最適解である個別目標電力PPVi refを(PPVi ref)♭とする。同様に、各パワーコンディショナPCSBkが、充放電指標prBを用いて、分散的に個別目標電力PBk refを求める場合の制約付き最適化問題は、上記(20)式で表わすことができる。なお、上記(20)式の最適解である個別目標電力PBk refを(PBk ref)♭とする。 Then, consider achieving the target 2-4 by the next method. That is, each power conditioner PCS PVi calculates the individual target power P PVi ref in a distributed manner based on the suppression index pr PV received from the central management device MC2, and each power conditioner PCS Bk is calculated by the central management device MC2. The individual target power P Bk ref is calculated in a distributed manner based on the charging / discharging index pr B received from. Thereby, the target 2-4 is achieved. The constrained optimization problem when each power conditioner PCS PVi obtains the individual target power P PVi ref in a distributed manner using the suppression index pr PV can be expressed by the above equation (19). The individual target power P PVi ref which is the optimal solution of the above equation (19) is assumed to be (P PVi ref ) ♭. Similarly, the constrained optimization problem when each power conditioner PCS Bk obtains the individual target power P Bk ref in a distributed manner using the charge / discharge index pr B can be expressed by the above equation (20). . The individual target power P Bk ref that is the optimum solution of the above equation (20) is assumed to be (P Bk ref ) ♭.

ここで、上記(23)式により得られる最適解(PPVi ref*と、上記(19)式により得られる最適解(PPVi ref)♭とが一致し、かつ、上記(23)式により得られる最適解(PBk ref*と、上記(20)式により得られる最適解(PBk ref)♭とが一致することで、連系点電力P(t)を電力会社からの出力指令値PCに一致させることができる。すなわち、各パワーコンディショナPCSPVi,PCSBkが分散的に最適化問題を解いた場合であっても、目標2−4を達成することができる。したがって、定常状態の最適性に着目し、(PPVi ref*=(PPVi ref)♭となる抑制指標prPV、および、(PBk ref*=(PBk ref)♭となる充放電指標prBを考える。そのために、上記(23)式、上記(19)式、および、上記(20)式のKKT条件を考える。これにより、上記(23)式のKKT条件から下記(26)式が得られ、上記(19)式のKKT条件から下記(27)式が得られ、上記(20)式のKKT条件から下記(28)式が得られる。なお、μ,νは所定のラグランジュ乗数である。

Figure 2018143046
Here, the optimum solution (P PVi ref ) * obtained by the above equation (23) and the optimum solution (P PVi ref ) ♭ obtained by the above equation (19) coincide with each other, and the above equation (23) The optimum solution (P Bk ref ) * obtained and the optimum solution (P Bk ref ) ♭ obtained by the above equation (20) coincide with each other so that the connection point power P (t) is output from the power company. It can be matched to the value P C. That is, even if each of the power conditioners PCS PVi and PCS Bk solves the optimization problem in a distributed manner, the target 2-4 can be achieved. Therefore, paying attention to the optimality of the steady state, the charging / discharging which satisfies (P PVi ref ) * = (P PVi ref ) ♭ and the suppression index pr PV and (P Bk ref ) * = (P Bk ref ) ♭ Consider the index pr B. Therefore, the KKT conditions of the above equation (23), the above equation (19), and the above equation (20) are considered. Thus, the following expression (26) is obtained from the KKT condition of the above expression (23), the following expression (27) is obtained from the KKT condition of the above expression (19), and the following ( 28) is obtained. Μ and ν are predetermined Lagrange multipliers.
Figure 2018143046

これら上記(26)式、上記(27)式、および、上記(28)式から、prPV=prB=λ(上記(22)式)とすることで、(PPVi ref*と(PPVi ref)♭、また、(PBk ref*と(PBk ref)♭が一致することが分かる。したがって、集中管理装置MC2がラグランジュ乗数λを算出し、算出したラグランジュ乗数λを抑制指標prPVとして、各パワーコンディショナPCSPViに提示(送信)することで、各パワーコンディショナPCSPViがそれぞれ、上記(19)式から個別目標電力(PPVi ref)♭を算出することができる。同様に、集中管理装置MC2は、算出したラグランジュ乗数λを充放電指標prBとして、各パワーコンディショナPCSBkに提示(送信)することで、各パワーコンディショナPCSBkがそれぞれ、上記(20)式から個別目標電力(PBk ref)♭を算出することができる。これにより、各パワーコンディショナPCSPVi,PCSBkが分散的に個別目標電力PPVi ref,PBk refを求めた場合であっても、連系点電力P(t)と電力会社からの出力指令値PCとを一致させることができる。すなわち、目標2−4を達成できる。 From these equation (26), equation (27), and equation (28), by setting pr PV = pr B = λ (the above equation (22)), (P PVi ref ) * and (P PVi ref ) ♭ and (P Bk ref ) * and (P Bk ref ) ♭ match. Thus, the central control device MC2 calculates the Lagrange multiplier lambda, the calculated Lagrange multiplier lambda as suppression indicator pr PV, to present to each power conditioner PCS PVi (transmission), the power conditioner PCS PVi respectively, The individual target power (P PVi ref ) ♭ can be calculated from the above equation (19). Similarly, the central management device MC2 presents (transmits) the calculated Lagrangian multiplier λ to each power conditioner PCS Bk as the charge / discharge index pr B so that each power conditioner PCS Bk has the above (20). The individual target power (P Bk ref ) ♭ can be calculated from the equation. Thus, even if each power conditioner PCS PVi and PCS Bk obtains the individual target powers P PVi ref and P Bk ref in a distributed manner, the connection point power P (t) and the output command from the power company The value P C can be matched. That is, the target 2-4 can be achieved.

続いて、集中管理装置MC2によるラグランジュ乗数λの算出方法について、説明する。ラグランジュ乗数λを求めるために、まず、h1 1,i=−PPVi ref、h1 2,i=PPVi ref−PPVi lmtとし、各パワーコンディショナPCSPViの不等式制約をまとめてh1 x,i≦0(x=1,2、i=1,・・・,n)とする。また、同様に、h2 1,k=−PBk lmt−PBk ref、h2 2,k=PBk ref−PBk lmt、h2 3,k=αk−PBk ref、h2 4,k=PBk ref−βkとし、各パワーコンディショナPCSBkの不等式制約をまとめてh2 y,k≦0(y=1,2,3,4、k=1,・・・,m)とする。そして、上記(23)式の双対問題である下記(29)式を考える。

Figure 2018143046
Next, a method for calculating the Lagrange multiplier λ by the central management device MC2 will be described. In order to obtain the Lagrangian multiplier λ, first, h 1 1, i = −P PVi ref , h 1 2, i = P PVi ref −P PVi lmt, and the inequality constraints of each power conditioner PCS PVi are summarized as h 1. x, i ≦ 0 (x = 1, 2, i = 1,..., n). Similarly, h 2 1, k = −P Bk lmt −P Bk ref , h 2 2, k = P Bk ref −P Bk lmt , h 2 3, k = α k −P Bk ref , h 2 4 , k = P Bk ref −β k, and inequality constraints of each power conditioner PCS Bk are summarized and h 2 y, k ≦ 0 (y = 1, 2, 3, 4, k = 1,..., m ). Then, consider the following equation (29) which is a dual problem of the above equation (23).
Figure 2018143046

ここで、各パワーコンディショナPCSPVi,PCSBkによって求められる最適解(PPVi ref)♭,(PBk ref)♭が決定されると仮定すると、下記(30)式となり、ラグランジュ乗数λに対する最大化問題の形となる。この下記(30)式に対し勾配法を適用すると、下記(31)式となる。なお、εは勾配係数を表わし、τは時間変数を表わす。

Figure 2018143046
Here, assuming that optimum solutions (P PVi ref ) ♭ and (P Bk ref ) ♭ determined by the respective power conditioners PCS PVi and PCS Bk are determined, the following equation (30) is obtained, and the maximum for the Lagrange multiplier λ It becomes a form of a problem. When the gradient method is applied to the following equation (30), the following equation (31) is obtained. Note that ε represents a gradient coefficient, and τ represents a time variable.
Figure 2018143046

上記(31)式において、(PPVi ref)♭を対応するパワーコンディショナPCSPViの個別出力電力PPVi outで置き換え、(PBk ref)♭を対応するパワーコンディショナPCSBkの個別出力電力PBk outで置き換える。さらに、集中管理装置MC2は、各パワーコンディショナPCSPVi,PCSBkの個別出力電力PPVi out,PBk outを個別に観測せず、連系点電力P(t)=ΣiPVi out+ΣkBk outを観測する。また、電力会社から逐次出力指令値PCを取得しているとする。そうすると、上記(21)式が得られる。よって、集中管理装置MC2は、連系点電力P(t)と電力会社からの出力指令値PCとに基づき、ラグランジュ乗数λを算出できる。そして、上記(22)式に基づき、算出したラグランジュ乗数λを抑制指標prPVおよび充放電指標prBとする。 In the above equation (31), (P PVi ref ) ♭ is replaced with the individual output power P PVi out of the corresponding power conditioner PCS PVi , and (P Bk ref ) ♭ is replaced with the individual output power P of the corresponding power conditioner PCS Bk. Replace with Bk out . Further, the centralized management device MC2 does not individually observe the individual output powers P PVi out and P Bk out of the power conditioners PCS PVi and PCS Bk , and the connection point power P (t) = Σ i P PVi out + Σ Observe k P Bk out . Moreover, to have a valid sequential output command value P C from the power company. Then, the above equation (21) is obtained. Thus, the central control device MC2, based on the interconnection point power P (t) and the output command value P C from the power company may calculate the Lagrange multiplier lambda. Then, based on the above equation (22), the calculated Lagrangian multiplier λ is used as the suppression index pr PV and the charge / discharge index pr B.

以上のことから、本実施形態においては、各パワーコンディショナPCSPViは、個別目標電力PPVi refを算出するときに、上記(19)式に示す最適化問題を用いている。また、各パワーコンディショナPCSBkは、個別目標電力PBk refを算出するときに、上記(20)式に示す最適化問題を用いている。そして、集中管理装置MC2は、抑制指標prPVおよび充放電指標prBを算出するときに、上記(21)式および上記(22)式を用いている。 From the above, in this embodiment, each power conditioner PCS PVi uses the optimization problem shown in the above equation (19) when calculating the individual target power P PVi ref . Each power conditioner PCS Bk uses the optimization problem shown in the above equation (20) when calculating the individual target power P Bk ref . The centralized management device MC2 uses the above formula (21) and the above formula (22) when calculating the suppression index pr PV and the charge / discharge index pr B.

次に、上記のように構成された太陽光発電システムPVS2において、上記5つの目標を達成し、適切に動作していることをシミュレーションによって検証した。   Next, in the photovoltaic power generation system PVS2 configured as described above, it was verified by simulation that the above five goals were achieved and the system was operating properly.

シミュレーションでは、太陽電池SPiが接続されたパワーコンディショナPCSPViを5台(i=1〜5;PCSPV1〜PCSPV5)と、蓄電池Bkが接続されたパワーコンディショナPCSBkを5台(k=1〜5;PCSB1〜PCSB5)と、を有する太陽光発電システムPVS2を想定した。 In the simulation, 5 units of the power conditioner PCS PVi the solar cell SP i is connected; and (i = 1~5 PCS PV1 ~PCS PV5 ), 5 units of the power conditioner PCS Bk storage battery B k are connected ( k = 1 to 5; PCS B1 to PCS B5 ).

また、本シミュレーションにおいては、蓄電池Bkのモデルは、d/dt(xk)=−KkBk out,sk=xkとした。ここで、skは、蓄電池Bkの充電電力量を表わし、KKは、蓄電池Bkの特性を表わしている。さらに、蓄電池Bkの残量によって調整できる調整パラメータαk,βkは、表1のように設定した。当該表1において、SOCkは、各蓄電池BBkの充電率(State Of Charge)[%]を示しており、充電電力量[kWh]をSk,蓄電池Bkの最大容量[kWh]をSk maxとして、SOCk=(Sk/Sk max)×100により算出される。

Figure 2018143046
In this simulation, the model of the storage battery B k is d / dt (x k ) = − K k P Bk out , s k = x k . Here, s k denotes the charged electrical energy of the storage battery B k, K K represents the characteristic of the battery B k. Furthermore, the adjustment parameters α k and β k that can be adjusted according to the remaining amount of the storage battery B k are set as shown in Table 1. In Table 1, SOC k indicates the charging rate (State Of Charge) [%] of each storage battery B Bk , the charging power [kWh] is S k , and the maximum capacity [kWh] of the storage battery B k is S As k max , SOC k = (S k / S k max ) × 100 is calculated.
Figure 2018143046

最適化問題に関するパラメータである各パワーコンディショナPCSPViの優先度パラメータ(疑似有効出力限界)Pφiは1000[kW]とした。その他、電力系統A(連系点電圧)のモデル(上記(18)式参照)および各パワーコンディショナPCSPVi,PCSBkのモデル(図3および図4参照)は、上記第1実施形態に係るシミュレーション時のものと同様とした。 The priority parameter (pseudo effective output limit) Pφ i of each power conditioner PCS PVi , which is a parameter related to the optimization problem, was set to 1000 [kW]. In addition, the model of the power system A (interconnection point voltage) (see the above equation (18)) and the models of the power conditioners PCS PVi and PCS Bk (see FIGS. 3 and 4) are related to the first embodiment. The same as in the simulation.

図14〜図16は、上記に示したモデルの太陽光発電システムPVS2を用いて、複数の条件下でシミュレーションを行ったときの結果を示している。   14-16 has shown the result when simulating on several conditions using the solar power generation system PVS2 of the model shown above.

ケース1として、5台のパワーコンディショナPCSPV1〜PCSPV5がすべて同じ条件であり、5台のパワーコンディショナPCSB1〜PCSB5がすべて同じ条件である場合を、シミュレーションした。当該シミュレーションをシミュレーション2−1とする。シミュレーション2−1において、5台のパワーコンディショナPCSPV1〜PCSPV5はすべて、定格出力PPVi lmtが500[kW]、有効電力抑制に関する重みwPViが1.0、太陽電池SPiの発電量Pi SPが600[kW]であるとした。また、5台のパワーコンディショナPCSB1〜PCSB5はすべて、定格出力PPVi lmtが500[kW]、有効電力抑制に関する重みwPViが1.0であるとした。蓄電池B1〜B5の最大容量S1 max〜S5 maxはすべて500[kWh]であるとした。そして、電力会社からの出力指令値PCは、0≦t<60[s]では指令がなく、60≦t[s]では1500[kW]であるとした。なお、「出力指令値PCの指令がない」ときには、上記するように出力指令値PCとして、指令がないことを表わす数値−1を用いた。その他、勾配係数εを0.05、集中管理装置MC2が行う抑制指標prPVおよび充放電指標prBの更新と各パワーコンディショナPCSPVi,PCSBkが行う個別目標電力PPVi ref,PBk refの更新との各サンプリング時間を1[s]とした。また、各パワーコンディショナPCSPVi,PCSBkはすべて、力率1(無効電力目標値=0[kvar])で運転しているものとした。図14は、シミュレーション2−1におけるシミュレーション結果を示している。 Case 1, all five of the power conditioner PCS PV1 ~PCS PV5 the same conditions, a case where all five of the power conditioner PCS B1 ~PCS B5 are the same conditions was simulated. This simulation is referred to as simulation 2-1. In the simulation 2-1, all five of the power conditioner PCS PV1 ~PCS PV5 is rated output P PVi lmt is 500 [kW], the weights w PVi about active power suppression 1.0, the amount of power generated by solar cell SP i It was assumed that P i SP was 600 [kW]. In addition, it is assumed that the five power conditioners PCS B1 to PCS B5 all have a rated output P PVi lmt of 500 [kW] and a weight w PVi for effective power suppression of 1.0. The maximum capacities S 1 max to S 5 max of the storage batteries B 1 to B 5 were all 500 [kWh]. The output command value P C from the electric power company is assumed to be no command when 0 ≦ t <60 [s] and 1500 [kW] when 60 ≦ t [s]. Note that, when “there is no command for the output command value P C ”, as described above, the numerical value −1 indicating that there is no command is used as the output command value P C. In addition, the slope coefficient ε is 0.05, the update of the suppression index pr PV and the charge / discharge index pr B performed by the central control device MC2, and the individual target powers P PVi ref and P Bk ref performed by the power conditioners PCS PVi and PCS Bk Each sampling time with the update of 1 was set to 1 [s]. In addition, all the power conditioners PCS PVi and PCS Bk are assumed to be operating at a power factor of 1 (reactive power target value = 0 [kvar]). FIG. 14 shows a simulation result in the simulation 2-1.

図14(a)は、太陽電池SPiの発電量Pi SPを示している。図14(b)は、各パワーコンディショナPCSPViの個別目標電力PPVi refを示している。図14(c)は、各パワーコンディショナPCSPViの個別出力電力PPVi outを示している。図14(d)は、連系点電力P(t)(実線)および電力会社からの出力指令値PC(破線)を示している。図14(e)は、各パワーコンディショナPCSBkの個別目標電力PBk refを示している。図14(f)は、各パワーコンディショナPCSBkの個別出力電力PBk outを示している。図14(g)は、指標算出部43が算出する抑制指標prPVおよび充放電指標prBを示している。 FIG. 14A shows the power generation amount P i SP of the solar cell SP i . FIG. 14B shows the individual target power P PVi ref of each power conditioner PCS PVi . FIG. 14C shows the individual output power P PVi out of each power conditioner PCS PVi . FIG. 14D shows the interconnection point power P (t) (solid line) and the output command value P C (broken line) from the power company. FIG. 14E shows the individual target power P Bk ref of each power conditioner PCS Bk . FIG. 14F shows the individual output power P Bk out of each power conditioner PCS Bk . FIG. 14G shows the suppression index pr PV and the charge / discharge index pr B calculated by the index calculation unit 43.

図14から次のことが確認できる。すなわち、図14(b)および図14(c)が示すように、出力指令値PCの指令後(60≦t[s])であっても、個別目標電力PPV1 ref〜PPV5 refが500[kW]のままであり、個別出力電力PPV1 out〜PPV5 outが抑制されていないことが確認できる。また、図14(e)および図14(f)が示すように、各パワーコンディショナPCSBkの個別出力電力PB1 out〜PB5 outが、0[kW]から負(マイナス)に遷移していることが確認できる。これは、パワーコンディショナPCSBkに電力が入力されていることを表わしており、各パワーコンディショナPCSBkに入力される電力を用いて、蓄電池Bkを充電している。また、図14(d)が示すように、連系点電力P(t)は、出力指令値PCと一致していることも確認できる。したがって、太陽光発電システムPVS2は、電力会社から出力指令値PCが指令されたとき、各パワーコンディショナPCSPViの個別出力電力PPVi outを抑制せず、蓄電池Bkの充電に用いていることが確認できる。 The following can be confirmed from FIG. That is, as shown in FIG. 14 (b) and FIG. 14 (c), the even after the command output command value P C (60 ≦ t [s ]), the individual target power P PV1 ref ~P PV5 ref It remains 500 [kW], and it can be confirmed that the individual output powers P PV1 out to P PV5 out are not suppressed. Further, as shown in FIG. 14 (e) and FIG. 14 (f), the individual output power P B1 out ~P B5 out of the power conditioner PCS Bk is, transitions from 0 [kW] negative (minus) It can be confirmed. This represents the fact that the input power to the power conditioner PCS Bk, with the power input to the power conditioner PCS Bk, charging the battery B k. Further, as shown in FIG. 14 (d), the interconnection point power P (t) can also be confirmed that it matches the output command value P C. Thus, solar systems PVS2, when the output command value P C from the power company is commanded not suppress individual output power P PVi out of the power conditioner PCS PVi, it is used to charge the battery B k I can confirm that.

ケース2として、5台のパワーコンディショナPCSB1〜PCSB5のうち1台のパワーコンディショナPCSB5に接続された蓄電池B5の最大容量S5 maxが他のパワーコンディショナPCSB1〜PCSB4に接続された蓄電池B1〜B4のそれと異なる場合を、シミュレーションした。当該シミュレーションをシミュレーション2−2とする。シミュレーション2−2において、1台のパワーコンディショナPCSB5に接続された蓄電池B5の最大容量S5 maxを3[kWh]とした。その他の条件は、上記シミュレーション2−1と同じとした。図15は、シミュレーション2−2におけるシミュレーション結果を示している。なお、図15において、図15(a)〜(g)は、上記シミュレーション2−1における図14(a)〜(g)に対応した図である。 Case 2, the five power conditioner PCS B1 ~PCS maximum capacity of the storage battery B 5, which is connected to one of the power conditioner PCS B5 of B5 S 5 max other power conditioner PCS B1 ~PCS B4 a case different from that of the connected battery B 1 ~B 4, and simulation. This simulation is referred to as simulation 2-2. In the simulation 2-2, the maximum capacity S 5 max of the storage battery B 5 connected to one power conditioner PCS B5 was set to 3 [kWh]. Other conditions were the same as those in the simulation 2-1. FIG. 15 shows a simulation result in the simulation 2-2. In FIG. 15, FIGS. 15A to 15G correspond to FIGS. 14A to 14G in the simulation 2-1.

図15から次のことが確認できる。すなわち、図15(a)〜(c)が示すように、上記シミュレーション2−1と同様に、出力指令値PCの指令後(60≦t[s])であっても、個別目標電力PPV1 ref〜PPV5 refは抑制されていないことが確認できる。また、図15(e)および図15(f)が示すように、各パワーコンディショナPCSB1〜PCSB5の個別出力電力PB1 out〜PB5 outが、0[kW]から負(マイナス)に遷移していることが確認できる。したがって、上記シミュレーション2−1と同様に、各パワーコンディショナPCSB1〜PCSB5は、入力される電力を用いて、蓄電池Bkを充電している。また、図15(e)および図15(f)が示すように、110≦t[s]で、パワーコンディショナPCSB5の個別出力電力PB5 outが0(ゼロ)となり、その他のパワーコンディショナPCSB1〜PCSB4の個別出力電力PB1 out〜PB4 outがさらに低下している(入力電力が増加している)。これは、蓄電池B5の最大容量S5 maxが3[kWh]であり、他の蓄電池B1〜B4より低いため、t=110[s]で、蓄電池B5が他の蓄電池B1〜B4より先に充電が完了したことを表わしている。よって、蓄電池B5の充電が完了したため、パワーコンディショナPCSB5への電力の入力を停止し、充電を停止していることを表わしている。そして、当該パワーコンディショナPCSB5に入力していた分の電力を他のパワーコンディショナPCSB1〜PCSB4に分配したため、その他のパワーコンディショナPCSB1〜PCSB4の個別出力電力PB1 out〜PB4 outがさらに低下している(入力される電力が増加している)。さらに、図15(d)が示すように、蓄電池B5の充電停止に伴い、一時的に連系点電力P(t)が出力指令値PCより大きくなっている。しかし、定常状態では、連系点電力P(t)は、出力指令値PCと一致していることも確認できる。したがって、太陽光発電システムPVS2は、各蓄電池Bkの性能を考慮して、適切に動作を行っているといえる。 The following can be confirmed from FIG. That is, as shown in FIG. 15 (a) ~ (c) , similarly to the simulation 2-1, even after a command output command value P C (60 ≦ t [s ]), the individual target power P It can be confirmed that PV1 ref to P PV5 ref are not suppressed. Further, as shown in FIG. 15 (e) and FIG. 15 (f), negative (minus) from the individual output power P B1 out ~P B5 out of the power conditioner PCS B1 ~PCS B5 is, 0 [kW] It can be confirmed that there is a transition. Therefore, similarly to the simulation 2-1, each power conditioner PCS B1 ~PCS B5, using a power input, and to charge the battery B k. Further, as shown in FIGS. 15 (e) and 15 (f), when 110 ≦ t [s], the individual output power P B5 out of the power conditioner PCS B5 becomes 0 (zero), and other power conditioners PCS B1 individual output power P B1 out ~P B4 out of ~PCS B4 is further decreased (the input power is increasing). This is because the maximum capacity S 5 max of the storage battery B 5 is 3 [kWh] and is lower than the other storage batteries B 1 to B 4 , so that at t = 110 [s], the storage battery B 5 is connected to the other storage batteries B 1 to B. before the B 4 represents that the charging is completed. Thus, since the charging of the battery B 5 is completed, it stops the input power to the power conditioner PCS B5, represents that it stops charging. Then, the power due to distribute conditioner PCS B5 minute power which has been input to the other of the power conditioner PCS B1 ~PCS B4, other power conditioner PCS B1 ~PCS B4 individual output power P B1 out to P B4 out has further decreased (input power has increased). Furthermore, as shown in FIG. 15 (d), the with the charge stop the battery B 5, and temporarily linking point power P (t) becomes greater than the output command value P C. However, in the steady state, interconnection point power P (t) can also be confirmed that it matches the output command value P C. Thus, solar systems PVS2 can be said in consideration of the performance of each battery B k, it is subjected to proper operation.

ケース3として、5台のパワーコンディショナPCSB1〜PCSB5のうち1台のパワーコンディショナPCSB5に設定される有効電力に関する重みwB5が他のパワーコンディショナPCSB1〜PCSB4に設定されるそれと異なる場合を、シミュレーションした。当該シミュレーションをシミュレーション2−3とする。シミュレーション2−3において、上記1台のパワーコンディショナPCSB5の有効電力に関する重みwB5を2.0とした。すなわち、他のパワーコンディショナPCSB1〜PCSB4のそれと比較し、充電量を半分にすることを表わしている。その他の条件は、上記シミュレーション2−1と同じとした。図16は、シミュレーション2−3におけるシミュレーション結果を示している。なお、図16において、図16(a)〜(g)は、上記シミュレーション2−1における図14(a)〜(g)に対応した図である。 Case 3, the weight w B5 is set to the other of the power conditioner PCS B1 ~PCS B4 relates active power is set to one of the power conditioner PCS B5 of five power conditioner PCS B1 ~PCS B5 A different case was simulated. This simulation is referred to as simulation 2-3. In the simulation 2-3, the weight w B5 related to the active power of the one power conditioner PCS B5 is set to 2.0. That is, the charging amount is halved compared with those of the other power conditioners PCS B1 to PCS B4 . Other conditions were the same as those in the simulation 2-1. FIG. 16 shows a simulation result in the simulation 2-3. In addition, in FIG. 16, (a)-(g) is a figure corresponding to FIG.14 (a)-(g) in the said simulation 2-1.

図16から次のことが確認できる。すなわち、図16(a)〜(c)が示すように、上記シミュレーション2−1と同様に、出力指令値PCの指令後(60≦t[s])であっても、個別目標電力PPV1 ref〜PPV5 refは抑制していないことが確認できる。また、図15(e)および図15(f)より、パワーコンディショナPCSB1〜PCSB5の個別出力電力PB1 out〜PB5 outが、0[kW]から負(マイナス)に遷移していることが確認できる。したがって、上記シミュレーション2−1と同様に、各パワーコンディショナPCSB1〜PCSB5は、入力される電力を用いて、蓄電池Bkを充電している。また、図16(e)および図16(f)が示すように、有効電力に関する重みwB5が異なるパワーコンディショナPCSB5の充電量(パワーコンディショナPCSB5への入力電力)が、その他のパワーコンディショナPCSB1〜PCSB4の半分になっていることが確認できる。そして、図16(d)が示すように、連系点電力P(t)が、定常状態で出力指令値PCと一致していることも確認できる。したがって、太陽光発電システムPVS2は、パワーコンディショナPCSBkに設定された有効電力に関する重みwBkを考慮して、適切に動作を行っているといえる。 The following can be confirmed from FIG. That is, as shown in FIGS. 16A to 16C, as in the case of the simulation 2-1, the individual target power P is obtained even after the output command value P C is commanded (60 ≦ t [s]). It can be confirmed that PV1 ref to P PV5 ref are not suppressed. Further, from FIG. 15 (e) and FIG. 15 (f), the individual output powers P B1 out to P B5 out of the power conditioners PCS B1 to PCS B5 transition from 0 [kW] to negative (minus). I can confirm that. Therefore, similarly to the simulation 2-1, each power conditioner PCS B1 ~PCS B5, using a power input, and to charge the battery B k. As shown in FIGS. 16E and 16F , the charge amount of the power conditioner PCS B5 having different weight w B5 related to the active power (input power to the power conditioner PCS B5 ) is the other power. It can be confirmed that the conditioners are half of PCS B1 to PCS B4 . Then, as shown in FIG. 16D, it can also be confirmed that the connection point power P (t) matches the output command value P C in a steady state. Therefore, it can be said that the photovoltaic power generation system PVS2 is appropriately operating in consideration of the weight w Bk related to the active power set in the power conditioner PCS Bk .

上記図14〜図16毎の結果に加え、図14〜図16を対比することで、次のことが確認できる。すなわち、各図の(g)が示すように、抑制指標prPVおよび充放電指標prBが、各パワーコンディショナPCSPV1〜PCSPV5,PCSB1〜PCSB5の、太陽電池SPiの発電量Pi SP、蓄電池Bkの性能、定格出力PPVi lmt,PBk lmt、有効電力抑制に関する重みwPVi、有効電力に関する重みwBk、および、出力指令値PCなどに基づき、異なる値が算出されていることが確認できる。そして、各図の(b)および(e)が示すように、抑制指標prPVおよび充放電指標prBの更新に応じて、個別目標電力PPVi ref,PBk refが更新されていることが確認できる。各パワーコンディショナPCSPV1〜PCSPV5,PCSB1〜PCSB5は、この個別目標電力PPVi ref,PBk refに応じて、個別出力電力PPVi out,PBk outを制御している。よって、各図の(d)が示すように、連系点電力P(t)が出力指令値PCに一致していることが確認できる。以上のことから、上記(21)式および上記(22)式を用いて集中管理装置MC2が算出した抑制指標prPVおよび充放電指標prBが適切な値であるといえる。 In addition to the results shown in FIGS. 14 to 16, the following can be confirmed by comparing FIGS. That is, as shown in each figure (g), suppression indicators pr PV and charge-discharge index pr B is, in each power conditioner PCS PV1 ~PCS PV5, PCS B1 ~PCS B5, power generation amount P of the solar cell SP i i SP, the performance of the battery B k, the rated output P PVi lmt, P Bk lmt, weights w PVi about active power suppression, weight w Bk regarding active power, and, based on such an output command value P C, different values are calculated Can be confirmed. As shown in (b) and (e) of each figure, the individual target powers P PVi ref and P Bk ref are updated in accordance with the update of the suppression index pr PV and the charge / discharge index pr B. I can confirm. Each power conditioner PCS PV1 ~PCS PV5, PCS B1 ~PCS B5 , the individual target power P PVi ref, depending on the P Bk ref, and controls the individual output power P PVi out, P Bk out. Therefore, as shown in each figure (d), it can be confirmed that the interconnection point power P (t) coincides with the output command value P C. From the above, it can be said that the suppression index pr PV and the charge / discharge index pr B calculated by the central management device MC2 using the above formulas (21) and (22) are appropriate values.

上記シミュレーション2−1ないしシミュレーション2−3の結果から、太陽光発電システムPVS2において、各パワーコンディショナPCSPViがそれぞれ、集中管理装置MC2から受信する抑制指標prPVに基づき、分散的に個別目標電力PPVi refを算出している。また、各パワーコンディショナPCSBkがそれぞれ、集中管理装置MC2から受信する充放電指標prBに基づき、分散的に個別目標電力PBk refを算出している。よって、上記目標2−1を達成している。また、各パワーコンディショナPCSPViは、個別目標電力PPVi outをできる限り抑制せず、連系点電力P(t)が出力指令値PCより超過している分を、各パワーコンディショナPCSBkに入力し、蓄電池Bkの充電に利用している。よって、上記目標2−2および上記目標2−3を達成している。また、連系点電力P(t)が出力指令値PCに一致している。よって、上記目標2−4を達成している。そして、各種条件に応じて、各パワーコンディショナPCSPVi,PCSBk毎に個別出力電力PPVi out,PBk outが変化している。すなわち、各種条件に応じて、各パワーコンディショナPCSPVi,PCSBk毎に出力抑制量が変化している。よって、上記目標2−5を達成している。以上のことから、太陽光発電システムPVS2は、上記5つの目標を達成していることが分かる。 From the results of the above simulations 2-1 to 2-3, in the photovoltaic power generation system PVS2, the individual target powers are distributed in a distributed manner based on the suppression index pr PV received by each power conditioner PCS PVi from the central management device MC2. P PVi ref is calculated. Further, each power conditioner PCS Bk calculates the individual target power P Bk ref in a distributed manner based on the charge / discharge index pr B received from the central management device MC2. Therefore, the target 2-1 is achieved. Each power conditioner PCS PVi are individual target power P PVi out not suppress as much as possible, the amount of interconnection point power P (t) exceeds the output command value P C, the power conditioner PCS enter to Bk, it is available to charge the battery B k. Therefore, the above goals 2-2 and 2-3 are achieved. Further, the interconnection point power P (t) matches the output command value P C. Therefore, the target 2-4 is achieved. The individual output powers P PVi out and P Bk out change for each power conditioner PCS PVi and PCS Bk according to various conditions. That is, the output suppression amount changes for each power conditioner PCS PVi and PCS Bk according to various conditions. Therefore, the target 2-5 is achieved. From the above, it can be seen that the photovoltaic power generation system PVS2 has achieved the above five goals.

以上で説明したように、第2実施形態に係る太陽光発電システムPVS2において、集中管理装置MC2は、電力会社からの出力指令値PCおよび検出した連系点電力P(t)から抑制指標prPVおよび充放電指標prBを算出する。そして、抑制指標prPVを各パワーコンディショナPCSPViに送信し、充放電指標prBを各パワーコンディショナPCSBkに送信している。また、各パワーコンディショナPCSPViは、受信した抑制指標prPVに基づき、分散的に上記(19)式の最適化問題を解くことで、個別目標電力PPVi refを算出する。そして、個別出力電力PPVi outを当該個別目標電力PPVi refに制御している。さらに、各パワーコンディショナPCSBkは、受信した充放電指標prBに基づき、分散的に上記(20)式の最適化問題を解くことで、個別目標電力PBk refを算出する。そして、個別出力電力PBk outを当該個別目標電力PBk refに制御している。これにより、集中管理装置MC2は、上記(21)式および上記(22)式に示す簡単な計算だけとなる。したがって、太陽光発電システムPVS2において、集中管理装置MC2の処理負荷を低減させることができる。また、各パワーコンディショナPCSPVi,PCSBkがそれぞれ、抑制指標prPVおよび充放電指標prBに基づき分散的に個別目標電力PPVi ref,PBk refを算出し、個別出力電力PPVi out,PBk outを制御する場合であっても、連系点電力P(t)を電力会社からの出力指令値PCに一致させることができる。 As described above, in the photovoltaic power generation system PVS2 according to the second embodiment, the central control device MC2 is suppressed index pr from the output command value P C and detected interconnection point power P from the power company (t) PV and charge / discharge index pr B are calculated. Then, the suppression index pr PV is transmitted to each power conditioner PCS PVi , and the charge / discharge index pr B is transmitted to each power conditioner PCS Bk . Each power conditioner PCS PVi calculates the individual target power P PVi ref by solving the optimization problem of the above equation (19) in a distributed manner based on the received suppression index pr PV . Then, the individual output power P PVi out is controlled to the individual target power P PVi ref . Furthermore, each power conditioner PCS Bk calculates the individual target power P Bk ref by solving the optimization problem of the above equation (20) in a distributed manner based on the received charge / discharge index pr B. The individual output power P Bk out is controlled to the individual target power P Bk ref . Thereby, the centralized management device MC2 performs only simple calculations shown in the above formula (21) and the above formula (22). Therefore, in the photovoltaic power generation system PVS2, the processing load of the central management device MC2 can be reduced. Further, each of the power conditioners PCS PVi and PCS Bk calculates the individual target powers P PVi ref and P Bk ref in a distributed manner based on the suppression index pr PV and the charge / discharge index pr B , respectively, and the individual output powers P PVi out , Even when P Bk out is controlled, the connection point power P (t) can be matched with the output command value P C from the power company.

上記第1実施形態においては、有効電力抑制に関する重みwiを考慮し、上記第2実施形態においては、有効電力抑制に関する重みwPViおよび有効電力に関する重みwBkを考慮した場合を例に説明したが、これに限定されない。例えば、上記第1実施形態において、目標1−3の「パワーコンディショナPCSi毎に、出力抑制量を調整できるようにする」を考慮する必要がなければ、パワーコンディショナPCSi毎に設定される上記有効電力抑制に関する重みwiをすべて同じ値(例えば「1」)にしてもよい。また同様に、上記第2実施形態において、目標2−5の「パワーコンディショナPCSPVi,PCSBk毎に、出力抑制量を調整できるようにする」を考慮する必要がなければ、パワーコンディショナPCSPVi,PCSBk毎に設定される上記有効電力抑制に関する重みwPViおよび有効電力に関する重みwBkをすべて同じ値(例えば「1」)にしてもよい。 In the first embodiment, the weight w i related to active power suppression is considered, and in the second embodiment, the case where the weight w PVi related to active power suppression and the weight w Bk related to active power are considered is described as an example. However, it is not limited to this. For example, in the first embodiment described above, the target 1-3 is set for each power conditioner PCS i unless it is necessary to consider “allowing the output suppression amount to be adjusted for each power conditioner PCS i ”. The weights w i related to the effective power suppression may all be the same value (for example, “1”). Similarly, in the second embodiment, if it is not necessary to consider the target 2-5 “allowing the output suppression amount to be adjusted for each of the power conditioners PCS PVi and PCS Bk ”, the power conditioner PCS. The weight w PVi related to effective power suppression set for each PVi and PCS Bk and the weight w Bk related to active power may all be set to the same value (for example, “1”).

上記第2実施形態においては、目標電力算出部12’が上記(19)式のように優先度パラメータPφiを用いて、個別目標電力PPVi refを算出した場合を例に説明したが、上記第1実施形態における上記(8)式のように、定格出力PPVi lmtを用いても良い。この場合、個別出力電力PPVi outの抑制を優先するか蓄電池Bkの充放電(個別出力電力PBk out)での対応を優先するかは、有効電力抑制に関する重みwPViおよび有効電力に関する重みwBkで調整すればよい。 In the second embodiment, the case where the target power calculation unit 12 ′ calculates the individual target power P PVi ref using the priority parameter Pφ i as in the above equation (19) has been described as an example. as noted above (8) in the first embodiment, it may be used the rated output P PVi lmt. In this case, whether priority is given to the suppression of the individual output power P PVi out or priority is given to the charge / discharge of the storage battery B k (individual output power P Bk out ), the weight w PVi and the weight related to the active power Adjust with w Bk .

上記第2実施形態においては、目標電力算出部12’が解く最適化問題は、上記(19)式に限定されない。例えば、上記(19)式の代わりに、下記(19’)式を用いてもよい。下記(19’)式は、上記(19)式と比較して、下記(19c’)式に示す各パワーコンディショナPCSPViの出力電流制約が追加されている。なお、下記(19’)式において、QPViは各パワーコンディショナPCSPViの無効電力、SPVi dは各パワーコンディショナPCSPViの出力可能な最大の皮相電力、V0は設計時における連系点の基準電圧、VPViは各パワーコンディショナPCSPViにおける連系点の電圧をそれぞれ示している。また、下記(19’)式において、下記(19c’)式に示す各パワーコンディショナPCSPViの出力電流制約の代わりに、下記(19d’)式に示すパワーコンディショナPCSPViの定格容量制約を用いてもよい。

Figure 2018143046
In the second embodiment, the optimization problem solved by the target power calculation unit 12 ′ is not limited to the above equation (19). For example, instead of the above equation (19), the following equation (19 ′) may be used. The following equation (19 ′) is added to the output current constraint of each power conditioner PCS PVi shown in the following equation (19c ′) as compared with the above equation (19). In the following (19 ') equation, Q PVi the reactive power of the power conditioner PCS PVi, S PVi d is printable maximum apparent power of the power conditioner PCS PVi, V 0 is the interconnection at the time of design The point reference voltage, V PVi , indicates the voltage at the connection point in each power conditioner PCS PVi . In the following equation (19 ′), instead of the output current constraint of each power conditioner PCS PVi shown in the following equation (19c ′), the rated capacity constraint of the power conditioner PCS PVi shown in the following equation (19d ′) is used. It may be used.
Figure 2018143046

上記第2実施形態においては、目標電力算出部32が解く最適化問題は、上記(20)式に限定されない。例えば、上記(20)式の代わりに、下記(20’)式を用いてもよい。下記(20’)式は、上記(20)式と比較して、下記(20a’)に示す評価関数において、蓄電池BkのSOCに応じた重みwSOCkが追加されている。この重みwSOCkは、下記(32)式で算出される。当該(32)式において、ASOCはwSOCkのオフセット、KSOCは重みwSOCkのゲイン、sは重みwSOCkのオン/オフスイッチ(例えば、オンのとき1,オフのとき0)、SOCkは現在の蓄電池BkのSOC、SOCdは基準となるSOCをそれぞれ示している。さらに、制約条件に、下記(20c’)式に示す蓄電池BkのCレート制約および下記(20e’)式に示す各パワーコンディショナPCSBkの出力電流制約が追加されている。Cレートとは、蓄電池Bkの有する全容量に対する充電時あるいは放電時の電流の相対的な比率であり、蓄電池Bkの有する全容量を1時間で充電あるいは放電するときを1Cとしたものである。本実施形態においては、充電側のCレートを充電レートCrate Mとし放電側のCレートを放電レートCrate Pとし、これらは予め所定の値(例えば、ともに0.3C)が設定されている。なお、下記(20’)式において、PSMk lmtは−Crate M×WHS lmt(WHS lmtは蓄電池Bkの定格出力容量)で求められる蓄電池Bkの充電定格出力、PSPk lmtはCrate P×WHS lmtで求められる蓄電池Bkの放電定格出力、QBkは各パワーコンディショナPCSBkの無効電力、SBk dは各パワーコンディショナPCSBkの出力可能な最大の皮相電力、VBkは各パワーコンディショナPCSBkにおける連系点の電圧をそれぞれ示している。さらに、蓄電池Bkの充電定格出力PSMk lmtは、補正開始SOCをSOCC、SOCの充電制限閾値をcMAXとして、下記(33)式に示すSOCに応じた蓄電池充電量補正が考慮されている。当該蓄電池充電量補正は、補正開始SOCまでは、通常通りの運転を行い、補正開始SOCからSOC上限までは、SOC上限で出力が0となるように一次関数的に出力を補正するようにしている。また、下記(20’)式において、下記(20e’)に示す各パワーコンディショナPCSBkの出力電流制約の代わりに、下記(20f’)式に示す各パワーコンディショナPCSBkの定格容量制約を用いてもよい。

Figure 2018143046
In the second embodiment, the optimization problem solved by the target power calculation unit 32 is not limited to the above equation (20). For example, instead of the above equation (20), the following equation (20 ′) may be used. The following equation (20 ′) is added with a weight w SOCk corresponding to the SOC of the storage battery B k in the evaluation function shown in the following (20a ′) as compared with the above equation (20). This weight w SOCk is calculated by the following equation (32). The In (32), A SOC's w SOCK offset, K SOC is the weight w SOCK gain, s is the weight w SOCK ON / OFF switch (e.g., 1 When on, the off-0), SOC k Indicates the SOC of the current storage battery B k , and SOC d indicates the reference SOC. Furthermore, the C rate constraint of the storage battery B k shown in the following equation (20c ′) and the output current constraint of each power conditioner PCS Bk shown in the following equation (20e ′) are added to the constraint conditions. The C rate is a relative ratio of the charging time or the time of the discharge current to the total capacitance of the storage battery B k, obtained by the 1C when to charge or discharge the total capacitance of the storage battery B k at 1 hour is there. In the present embodiment, the C rate on the charging side is the charging rate C rate M , the C rate on the discharging side is the discharging rate C rate P, and predetermined values (for example, both 0.3 C) are set in advance. . In the following equation (20 ′), P SMk lmt is a rated charge output of the storage battery B k obtained by −C rate M × WH S lmt (WH S lmt is a rated output capacity of the storage battery B k ), and P SPk lmt is The discharge rated output of the storage battery B k obtained by C rate P × WH S lmt , Q Bk is the reactive power of each power conditioner PCS Bk , S Bk d is the maximum apparent power that can be output by each power conditioner PCS Bk , V Bk indicates the voltage at the interconnection point in each power conditioner PCS Bk . Further, the rated charge output P SMk lmt of the storage battery B k takes into account the storage battery charge amount correction according to the SOC shown in the following equation (33), with the correction start SOC as SOC C and the SOC charge limit threshold as cMAX. . The storage battery charge amount correction is performed as usual until the correction start SOC, and from the correction start SOC to the SOC upper limit, the output is corrected linearly so that the output becomes 0 at the SOC upper limit. Yes. Further, in the following equation (20 ′), instead of the output current constraint of each power conditioner PCS Bk shown in the following (20e ′), the rated capacity constraint of each power conditioner PCS Bk shown in the following (20f ′) equation. It may be used.
Figure 2018143046

なお、以下に説明する他の実施形態に係る太陽光発電システムにおいて、目標電力算出部12’は、個別目標電力PPVi refを算出する際に、上記(19)式あるいは上記(19’)式のいずれの最適化問題を用いてもよい。同様に、目標電力算出部32は、個別目標電力PBk refを算出する際に、上記(20)式あるいは上記(20’)式のいずれの最適化問題を用いてもよい。 In the photovoltaic power generation system according to another embodiment described below, the target power calculation unit 12 ′ calculates the above-described formula (19) or (19 ′) formula when calculating the individual target power P PVi ref. Any of these optimization problems may be used. Similarly, when calculating the individual target power P Bk ref , the target power calculation unit 32 may use any optimization problem of the above equation (20) or the above equation (20 ′).

上記第2実施形態において、連系点に複数台のパワーコンディショナPCSPVi,PCSBkを接続した太陽光発電システムPVS2を例に説明したが、さらに、電力負荷が接続されていてもよい。電力負荷は、供給される電力を消費するものであり、例えば、工場や一般家庭などである。このような他の実施形態について、図17〜図20を用いて、以下に説明する。なお、以下の説明においては、上記第1実施形態および第2実施形態と同一あるいは類似のものについては、同じ符号を付してその説明を省略する。 In the second embodiment, the solar power generation system PVS2 in which a plurality of power conditioners PCS PVi and PCS Bk are connected to the interconnection point has been described as an example. However, a power load may be further connected. The power load consumes the supplied power, and is, for example, a factory or a general household. Such other embodiments will be described below with reference to FIGS. In the following description, the same or similar parts as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図17および図18は、第3実施形態に係る太陽光発電システムPVS3を示している。図17は、太陽光発電システムPVS3の全体構成を示している。図18は、図17に示す太陽光発電システムPVS3において、連系点における電力を制御する制御系の機能構成を示している。なお、太陽光発電システムPVS3は、複数台のパワーコンディショナPCSPViおよび複数台のパワーコンディショナPCSBkを備えているが、図18においては、それぞれ1台目のみを記載している。図17および図18に示すように、太陽光発電システムPVS3は、上記第2実施形態に係る太陽光発電システムPVS2と比較して、電力負荷Lが追加されている点で異なる。電力負荷Lは連系点に接続されており、電力系統A、各パワーコンディショナPCSPVi、および、各パワーコンディショナPCSBkから電力が供給される。本実施形態においては、各パワーコンディショナPCSPViの個別出力電力PPVi out(太陽電池SPiの発電量Pi SP)の総和ΣPPVi outが電力負荷Lの消費電力より上回っているものとする。そして、電力負荷Lで消費されなかった余剰電力の一部あるいは全部が電力系統Aに逆潮流しているものとする。余剰電力は、個別出力電力PPVi outの総和ΣPPVi outと消費電力との差である。 17 and 18 show a photovoltaic power generation system PVS3 according to the third embodiment. FIG. 17 shows the overall configuration of the photovoltaic power generation system PVS3. FIG. 18 shows a functional configuration of a control system that controls electric power at the interconnection point in the photovoltaic power generation system PVS3 shown in FIG. The solar power generation system PVS3 includes a plurality of power conditioners PCS PVi and a plurality of power conditioners PCS Bk . In FIG. 18, only the first one is shown. As illustrated in FIGS. 17 and 18, the photovoltaic power generation system PVS3 is different from the photovoltaic power generation system PVS2 according to the second embodiment in that an electric power load L is added. The power load L is connected to the interconnection point, and power is supplied from the power system A, each power conditioner PCS PVi , and each power conditioner PCS Bk . In the present embodiment, it is assumed that the sum .SIGMA.P PVi out individual output power P PVi out of the power conditioner PCS PVi (power generation amount P i SP solar cell SP i) exceeds than the power consumption of the power load L . It is assumed that a part or all of the surplus power that has not been consumed by the power load L flows backward to the power system A. Excess power is the difference between the individual output power P PVi out of total .SIGMA.P PVi out and the power consumption.

このような太陽光発電システムPVS3において、余剰電力を逆潮流させる際、この余剰電力が電力会社からの出力指令値PCを超えないようにする必要がある。太陽光発電システムPVS3において、逆潮流されている余剰電力は、連系点電力検出部22によって検出される連系点電力P(t)と見なせる。そこで、太陽光発電システムPVS3は、上記第2実施形態と同様に、抑制指標prPVおよび充放電指標prBを用いた連系点電力抑制制御を行うことで、連系点電力P(t)を目標電力(出力指令値PC)にしている。 In such a solar power generation system PVS3, when to reverse power flow surplus power, it is necessary to prevent this excess power does not exceed the output command value P C from the power company. In the photovoltaic power generation system PVS3, the surplus power that is flowing backward can be regarded as the connection point power P (t) detected by the connection point power detection unit 22. Therefore, the solar power generation system PVS3 performs the connection point power suppression control using the suppression index pr PV and the charge / discharge index pr B , similarly to the second embodiment, so that the connection point power P (t). Is the target power (output command value P C ).

本実施形態に係る太陽光発電システムPVS3によれば、集中管理装置MC3は、電力会社からの出力指令値PCおよび連系点電力P(t)に基づいて、抑制指標prPVおよび充放電指標prBを算出している。このとき、集中管理装置MC3は、上記(21)式および上記(22)式を用いて、抑制指標prPVおよび充放電指標prBを算出する。そして、各パワーコンディショナPCSPViは、抑制指標prPVに基づいて、分散的に個別目標電力PPVi refを算出している。また、各パワーコンディショナPCSBkは、充放電指標prBに基づいて、分散的に個別目標電力PBk refを算出している。これにより、集中管理装置MC3の処理負荷を低減させることができる。また、連系点電力P(t)、すなわち、電力系統Aに逆潮流させる余剰電力を出力指令値PCに制御することができる。よって、電力系統Aに逆潮流させる余剰電力が電力会社からの出力指令値PCを超えないようにできる。 According to the solar power generation system PVS3 according to the present embodiment, the central control device MC3, based on the output command value P C and linking point power P from the power company (t), suppression indicators pr PV and charge-discharge index pr B is calculated. At this time, the central management device MC3 calculates the suppression index pr PV and the charge / discharge index pr B using the above formula (21) and the above formula (22). Each power conditioner PCS PVi calculates the individual target power P PVi ref in a distributed manner based on the suppression index pr PV . Further, each power conditioner PCS Bk calculates the individual target power P Bk ref in a distributed manner based on the charge / discharge index pr B. As a result, the processing load of the central management device MC3 can be reduced. Furthermore, interconnection point power P (t), i.e., it is possible to control the surplus power to be backward flow to the power grid A to the output command value P C. Therefore, it is possible to prevent the surplus power to flow backward in the power system A from exceeding the output command value P C from the power company.

上記第3実施形態においては、第2実施形態に係る太陽光発電システムPVS2に対して、電力負荷Lを追加した場合を例に説明したが、第1実施形態に係る太陽光発電システムPVS1に電力負荷Lを追加した場合も、抑制指標prを用いて、連系点電力抑制制御を行うことができる。この場合も、連系点電力P(t)を目標電力(出力指令値PC)にしつつ、集中管理装置MC1の処理負荷を低減させることができる。 In the said 3rd Embodiment, although the case where the electric power load L was added was demonstrated to the photovoltaic power generation system PVS2 which concerns on 2nd Embodiment as an example, electric power is supplied to the photovoltaic power generation system PVS1 which concerns on 1st Embodiment. Even when the load L is added, the connection point power suppression control can be performed using the suppression index pr. Also in this case, the processing load of the central management device MC1 can be reduced while the interconnection point power P (t) is set to the target power (output command value P C ).

図19は、第4実施形態に係る太陽光発電システムPVS4を示している。なお、太陽光発電システムPVS4は、複数台のパワーコンディショナPCSPVi,PCSBkを備えているが、図19においては、図18と同様に1台目のみを記載している。また、太陽光発電システムPVS4の全体構成は、上記第3実施形態に係る太陽光発電システムPVS3(図17参照)と略同じである。上記第3実施形態においては、各パワーコンディショナPCSPViの個別出力電力PPVi out(太陽電池SPiの発電量Pi SP)が電力負荷Lの消費電力より上回っているものと仮定したが、第4実施形態においては、各パワーコンディショナPCSPViの個別出力電力PPVi out(太陽電池SPiの発電量Pi SP)の総和ΣPPVi outが電力負荷Lの消費電力より下回っているものとする。すなわち、太陽電池SPiの発電量Pi SPでは足りない不足電力の一部あるいは全部が電力系統Aから供給されているものとする。不足電力は、個別出力電力PPVi outの総和ΣPPVi outと消費電力との差である。 FIG. 19 shows a photovoltaic power generation system PVS4 according to the fourth embodiment. The solar power generation system PVS4 includes a plurality of power conditioners PCS PVi and PCS Bk . In FIG. 19, only the first one is shown as in FIG. The overall configuration of the photovoltaic power generation system PVS4 is substantially the same as that of the photovoltaic power generation system PVS3 (see FIG. 17) according to the third embodiment. In the third embodiment, it is assumed that the individual output power P PVi out (power generation amount P i SP of the solar battery SP i ) of each power conditioner PCS PVi exceeds the power consumption of the power load L. In the fourth embodiment, the sum ΣP PVi out of the individual output power P PVi out of each power conditioner PCS PVi (the power generation amount P i SP of the solar cell SP i ) is lower than the power consumption of the power load L. To do. That is, it is assumed that a part or all of the insufficient power that is insufficient for the power generation amount P i SP of the solar cell SP i is supplied from the power system A. Insufficient power is the difference between the individual output power P PVi out of total .SIGMA.P PVi out and the power consumption.

このような太陽光発電システムPVS4において、不足電力を電力系統Aから供給するためには、電力会社から電力を買う(買電する)必要がある。そして、買電した分、電力会社に電気料金を支払う。電気料金には基本料金と従量制料金とが含まれている。基本料金は、連系点に設けられた電力メーターによって、例えば30分ごとの電力使用量が記録され、その最大値(ピーク値)で決まる。具体的には、電力使用量のピーク値が高い場合に基本料金は高くなり、電力使用量のピーク値が低い場合に基本料金は安くなる。そこで、第4実施形態に係る太陽光発電システムPVS4は、上記抑制指標prPVおよび充放電指標prBを用いて各パワーコンディショナPCSPVi,PCSBkが分散的に制御して、電力系統Aから供給される電力(買電電力)のピーク値を抑える。これを「ピークカット制御」という。なお、買電電力は、電力系統Aから太陽光発電システムPVS4に供給される電力すなわち太陽光発電システムPVS4が電力系統Aから得た(買電した)電力の大きさである。上記するように連系点電力P(t)は、太陽光発電システムPVS4から電力系統Aに出力される場合(逆潮流の場合)を正の値としている。よって、電力系統Aから太陽光発電システムPVS4に入力される場合、連系点電力P(t)は負の値になる。買電電力を制御するピークカット制御の場合は、目標値を負の値として、連系点電力P(t)が当該目標値を下回らないように制御している。 In such a photovoltaic power generation system PVS4, in order to supply insufficient power from the power grid A, it is necessary to purchase (purchase) power from an electric power company. Then, the electricity bill is paid to the power company for the purchased power. Electricity charges include basic charges and pay-as-you-go charges. The basic charge is determined by the maximum value (peak value), for example, by recording the amount of power used every 30 minutes by a power meter provided at the connection point. Specifically, the basic charge is high when the peak value of power usage is high, and the basic charge is low when the peak value of power usage is low. Therefore, in the photovoltaic power generation system PVS4 according to the fourth embodiment, each of the power conditioners PCS PVi and PCS Bk is controlled in a distributed manner using the suppression index pr PV and the charge / discharge index pr B. Suppress the peak value of supplied power (purchased power). This is called “peak cut control”. The purchased power is the amount of power supplied from the power system A to the solar power generation system PVS4, that is, the power obtained by the solar power generation system PVS4 from the power system A (purchased). As described above, the connection point power P (t) has a positive value when it is output from the photovoltaic power generation system PVS4 to the power system A (in the case of reverse power flow). Therefore, when it inputs into the photovoltaic power generation system PVS4 from the electric power grid | system A, the connection point electric power P (t) becomes a negative value. In the case of peak cut control for controlling the purchased power, the target value is set to a negative value, and control is performed so that the interconnection power P (t) does not fall below the target value.

太陽光発電システムPVS4は、ピークカット制御において、各パワーコンディショナPCSPViの個別出力電力PPVi outを制御して、太陽電池SPiによって発電された電力をすべて出力する。また、各パワーコンディショナPCSBkの個別出力電力PBk outを制御し、必要に応じて蓄電池Bkに蓄積された電力を放電する。このようにして、電力負荷Lの消費電力の一部を、太陽電池SPiによって発電された電力および蓄電池Bkに蓄積された電力で補填することで、上記買電電力の上昇を抑えている。このピークカット制御を行うために、図19に示すように、集中管理装置MC4は、第2実施形態に係る集中管理装置MC2と比較して、次の点で異なる。すなわち、集中管理装置MC4は、出力指令値取得部21の代わりにピークカット設定部45を備え、また、指標算出部43の代わりに指標算出部43’を備えている。 Photovoltaic systems PVS4, in the peak-cut control, to control the individual output power P PVi out of the power conditioner PCS PVi, and outputs all the electric power generated by the solar cell SP i. Further, the individual output power P Bk out of each power conditioner PCS Bk is controlled, and the power stored in the storage battery B k is discharged as necessary. In this way, a part of the power consumption of the power load L is supplemented with the power generated by the solar battery SP i and the power stored in the storage battery B k , thereby suppressing the increase in the purchased power. . In order to perform this peak cut control, as shown in FIG. 19, the central management device MC4 differs from the central management device MC2 according to the second embodiment in the following points. That is, the central management device MC4 includes a peak cut setting unit 45 instead of the output command value acquisition unit 21, and includes an index calculation unit 43 ′ instead of the index calculation unit 43.

ピークカット設定部45は、ピークカット制御のための各種設定を行う。本実施形態においては、ピークカット設定部45は、買電電力の上限値に基づいて、当該上限値を負の値としたピークカット目標電力Pcutを設定する。このピークカット目標電力Pcutは、連系点電力P(t)の目標値であり、負の値である。ピークカット目標電力Pcutは、ユーザによって任意に設定される。ピークカット設定部45は、設定されたピークカット目標電力Pcutを指標算出部43’に出力する。 The peak cut setting unit 45 performs various settings for peak cut control. In the present embodiment, the peak cut setting unit 45 sets the peak cut target power P cut with the upper limit value as a negative value based on the upper limit value of the purchased power. This peak cut target power P cut is a target value of the interconnection point power P (t) and is a negative value. The peak cut target power P cut is arbitrarily set by the user. The peak cut setting unit 45 outputs the set peak cut target power P cut to the index calculation unit 43 ′.

指標算出部43’は、上記第2実施形態に係る指標算出部43と比較して、出力指令値PCの代わりにピークカット設定部45から入力されるピークカット目標電力Pcutを用いて、抑制指標prPVおよび充放電指標prBを算出する。すなわち、本実施形態においては、指標算出部43’は、連系点電力P(t)をピークカット目標電力Pcutにするための抑制指標prPVおよび充放電指標prBを算出する。このとき、指標算出部43’は、上記(21)式における出力指令値PC(t)の代わりにピークカット目標電力Pcutを用いて、ラグランジュ乗数λを算出する。そして、上記(22)式により、算出したラグランジュ乗数λを充放電指標prBとして算出する。なお、抑制指標prPVについては、各パワーコンディショナPCSPViから太陽電池SPiによって発電された電力がすべて出力されるように、固定値「0」が用いられる。よって、指標算出部43’は、充放電指標prBのみを算出しているともいえる。指標算出部43’は、算出した抑制指標prPVを、送信部44を介して、各パワーコンディショナPCSPViに送信する。また、算出した充放電指標prBを、送信部44を介して、各パワーコンディショナPCSBkに送信する。 Index calculating unit 43 'uses the second compared to the index calculation unit 43 according to the embodiment, the peak-cut target power P cut inputted from the peak cut setting unit 45 instead of the output command value P C, The suppression index pr PV and the charge / discharge index pr B are calculated. That is, in the present embodiment, the index calculation unit 43 ′ calculates the suppression index pr PV and the charge / discharge index pr B for making the interconnection point power P (t) the peak cut target power P cut . At this time, the index calculation unit 43 ′ calculates the Lagrange multiplier λ using the peak cut target power P cut instead of the output command value P C (t) in the equation (21). Then, the calculated Lagrangian multiplier λ is calculated as the charge / discharge index pr B by the above equation (22). For the suppression index pr PV , a fixed value “0” is used so that all the electric power generated by the solar cell SP i is output from each power conditioner PCS PVi . Therefore, it can be said that the index calculation unit 43 ′ calculates only the charge / discharge index pr B. The index calculation unit 43 ′ transmits the calculated suppression index pr PV to each power conditioner PCS PVi via the transmission unit 44. Further, the calculated charging / discharging index pr B is transmitted to each power conditioner PCS Bk via the transmission unit 44.

このように構成された太陽光発電システムPVS4において、集中管理装置MC4は、連系点電力検出部22によって検出される連系点電力P(t)を監視する。そして、連系点電力P(t)がピークカット目標電力Pcut以下となった場合に、指標算出部43’により連系点電力P(t)をピークカット目標電力Pcutにするための抑制指標prPV(=0)および充放電指標prBを算出する。各パワーコンディショナPCSPViはそれぞれ、集中管理装置MC4が算出した抑制指標prPVを用いた最適化問題に基づいて、個別目標電力PPVi refを算出し、個別出力電力PPVi outが個別目標電力PPVi refとなるように制御している。また、各パワーコンディショナPCSBkはそれぞれ、集中管理装置MC4が算出した充放電指標prBを用いた最適化問題に基づいて、個別目標電力PBk refを算出し、個別出力電力PBk outを個別目標電力PBk refに制御する。これらにより、連系点電力P(t)がピークカット目標電力Pcut以下である場合に、太陽電池SPiによって発電された電力はすべて出力され、かつ、蓄電池Bkに蓄積された電力は放電される。その結果、連系点電力P(t)が上昇し、連系点電力P(t)がピークカット目標電力Pcutとなる。したがって、連系点電力P(t)がピークカット目標電力Pcut以下となることを抑制して、太陽光発電システムPVS4は上記ピーク値を抑制している。 In the photovoltaic power generation system PVS4 configured as described above, the central management device MC4 monitors the connection point power P (t) detected by the connection point power detection unit 22. Then, when the interconnection point power P (t) becomes equal to or lower than the peak cut target power P cut , the index calculation unit 43 ′ suppresses the interconnection point power P (t) to be the peak cut target power P cut. An index pr PV (= 0) and a charge / discharge index pr B are calculated. Each power conditioner PCS PVi calculates the individual target power P PVi ref based on the optimization problem using the suppression index pr PV calculated by the central management device MC4, and the individual output power P PVi out is the individual target power. It is controlled to become P PVi ref . Further, each power conditioner PCS Bk calculates the individual target power P Bk ref based on the optimization problem using the charge / discharge index pr B calculated by the centralized management device MC4, and calculates the individual output power P Bk out . Control to individual target power P Bk ref . Accordingly, when the interconnection point power P (t) is equal to or less than the peak cut target power P cut , all the power generated by the solar cell SP i is output, and the power stored in the storage battery B k is discharged. Is done. As a result, the connection point power P (t) increases, and the connection point power P (t) becomes the peak cut target power P cut . Therefore, to prevent the interconnection point power P (t) is equal to or less than the peak-cut target power P cut, photovoltaic systems PVS4 is suppressed the peak value.

なお、集中管理装置MC4は、連系点電力P(t)が設定されたピークカット目標電力Pcut以下である場合に、これをピークカット目標電力Pcutに制御している。そのため、連系点電力P(t)の検出間隔や抑制指標prPVおよび充放電指標prBの算出間隔によっては、瞬時的にピークカット目標電力Pcut以下になる。したがって、買電電力の上限値を設定するときに、ユーザが所望する上限値より所定量小さい値を設定するとよい。これにより、ピークカット目標電力Pcutが実際の目標値より大きい値に設定されるため、瞬時的に連系点電力P(t)が低下してもピークカット目標電力Pcut以下になることを抑制することができる。 Note that when the interconnection point power P (t) is equal to or less than the set peak cut target power P cut , the centralized management device MC4 controls this to the peak cut target power P cut . Therefore, depending on the detection interval of the interconnection point power P (t) and the calculation intervals of the suppression index pr PV and the charge / discharge index pr B , the peak cut target power P cut is instantaneously reduced. Therefore, when setting the upper limit value of purchased power, a value smaller than the upper limit value desired by the user may be set. Thereby, since the peak cut target power P cut is set to a value larger than the actual target value, even if the interconnection point power P (t) instantaneously decreases, the peak cut target power P cut is not more than the peak cut target power P cut. Can be suppressed.

以上のことから、本実施形態に係る太陽光発電システムPVS4によれば、連系点電力P(t)の目標電力として、出力指令値PCの代わりにピークカット設定部45が設定するピークカット目標電力Pcutを用いた場合であっても、連系点電力P(t)を目標電力(ピークカット目標電力Pcut)にすることができる。さらに、各パワーコンディショナPCSPVi,PCSBkが分散的に個別目標電力PPVi ref,PBk refを求めることで、集中管理装置MC4の処理負荷を低減させることができる。 From the above, according to the solar power generation system PVS4 according to the present embodiment, as the target power of the interconnection point power P (t), peak cut set by the peak cut setting unit 45 instead of the output command value P C Even when the target power P cut is used, the connection point power P (t) can be set to the target power (peak cut target power P cut ). Furthermore, each power conditioner PCS PVi and PCS Bk obtains the individual target powers P PVi ref and P Bk ref in a distributed manner, thereby reducing the processing load on the central management device MC4.

上記第4実施形態において、ピークカット制御中は、蓄電池Bkの放電が優先されるため、蓄電池Bkに蓄積された電力は減少する。そのために、所定の充電条件を満たしたときに、電力系統Aから供給される電力の一部を用いて、蓄電池Bkの充電を行うようにしてもよい。このような充電条件としては、例えば、連系点電力P(t)がピークカット目標電力Pcutより閾値以上大きい場合などが挙げられる。このようにすることで、次のピークカット制御に備えて、蓄電池Bkを充電しておくことができる。 In the fourth embodiment, during the peak cut control, since the discharge of the storage battery B k is given priority, the power stored in battery B k decreases. Therefore, when filled with predetermined charging conditions, using a portion of the power supplied from the power system A, it may be to charge the battery B k. Examples of such charging conditions include a case where the interconnection point power P (t) is larger than the peak cut target power P cut by a threshold value or more. By doing in this way, storage battery Bk can be charged in preparation for the next peak cut control.

このような蓄電池Bkの充電制御において、所定の時間帯毎に、充電の有無や充電速度を変更するようにしてもよい。例えば、所定の時間帯毎に、充電モードを設定可能にしておく。そして、当該充電モードに応じて、蓄電池Bkの充電を制御する。このような充電モードとしては、例えば、充電無モード、通常充電モード、および、低速充電モードがある。充電無モードは、充電を行わないモードである。通常充電モードは、所定の充電速度(通常速度)で充電するモードである。低速充電モードは、通常速度より遅い所定の速度(低速度)で充電するモードである。なお、充電モードはこれらに限定されない。ユーザは集中管理装置MC4のユーザインタフェースなどにより充電モードの設定を行うことができ、ピークカット設定部45はユーザの操作指示に応じて充電モードを設定する。上記所定の時間帯とは、1日を複数個に分けた所定の期間であり、例えば、1時間毎に分けた場合、24個の時間帯毎に設定可能であり、30分毎に分けた場合、48個の時間帯毎に設定可能である。なお、朝、昼、夕、晩、深夜などの時間帯に分けてもよい。さらに、1日単位ではなく、1週間単位で所定の時間帯を設けてもよい。 In such charge control of the storage battery B k , the presence / absence of charge and the charge speed may be changed for each predetermined time period. For example, the charging mode can be set for each predetermined time zone. Then, in accordance with the charging mode, it controls the charging of the battery B k. Examples of such a charging mode include a no-charge mode, a normal charging mode, and a low-speed charging mode. The no charge mode is a mode in which charging is not performed. The normal charging mode is a mode for charging at a predetermined charging speed (normal speed). The low-speed charging mode is a mode for charging at a predetermined speed (low speed) slower than the normal speed. The charging mode is not limited to these. The user can set the charging mode through the user interface of the centralized management device MC4, and the peak cut setting unit 45 sets the charging mode according to the user's operation instruction. The predetermined time period is a predetermined period in which one day is divided into a plurality of times. For example, when divided every hour, it can be set every 24 time periods and divided every 30 minutes. In this case, it can be set every 48 time zones. It may be divided into time zones such as morning, noon, evening, evening, and midnight. Further, a predetermined time zone may be provided not in units of days but in units of weeks.

具体的には、集中管理装置MC4は、ピークカット設定部45によって設定された充電モードの設定情報を、送信部44を介して各パワーコンディショナPCSBkそれぞれに送信する。そして、受信部31を介してこれを受信した各パワーコンディショナPCSBkは、設定されている充電モードに対応付けられた上記充電レートCrate Mを用いて上記(20c’)式に示す蓄電池BkのCレート制約(充電定格出力PSMk lmt)を変更する。例えば、通常充電モードに対する充電レートCrate Mには0.3を、低速充電モードに対する充電レートCrate Mには0.1を、充電なしモードに対する充電レートCrate Mには0をそれぞれ設定する。そして、各パワーコンディショナPCSBkは、上記(20’)式に示す最適化問題に基づいて、個別目標電力PBk refを求めることで、充電モードの設定に応じて蓄電池Bkの充電の有無および充電速度を変更することができる。なお、低速充電モードが連続して設定されている時間帯において、蓄電池Bkが満充電するように、充電速度を可変にしてもよい。例えば、深夜0時から朝6時まで連続して「低速充電モード」が設定されている場合、6時間かけて蓄電池Bkが満充電となるように、充電速度を設定する。詳細には、充電レートCrate Mを1/6(≒0.167)にする。ただし、通常速度を超えないようにすることが望ましい。このようにすることで、充電モードに応じて、適宜蓄電池Bkの充電の有無や充電速度を変更することができる。したがって、時間帯によって(買電の)上記従量制料金の電力量単価が変わる場合において、例えば、電力量単価が安い時間帯に買電電力を多くし、電力量単価が高い時間帯に買電電力を少なくすることができる。 Specifically, the central management device MC4 transmits the charging mode setting information set by the peak cut setting unit 45 to each of the power conditioners PCS Bk via the transmission unit 44. Each power conditioner PCS Bk received this via the receiving unit 31, the storage battery B shown above (20c ') equation using the charging rate C rate M associated with the charging mode is set Change the C rate constraint (charge rated output P SMk lmt ) of k . For example, the charging rate C rate M for the normal charging mode is set to 0.3, the charging rate C rate M for the low speed charging mode is set to 0.1, and the charging rate C rate M for the no charging mode is set to 0. . Each power conditioner PCS Bk obtains the individual target power P Bk ref based on the optimization problem shown in the above equation (20 ′), so that the storage battery B k is charged according to the setting of the charging mode. And the charging speed can be changed. Note that the charging speed may be variable so that the storage battery Bk is fully charged in the time zone in which the low-speed charging mode is continuously set. For example, when the “low-speed charging mode” is set continuously from midnight to 6:00 am, the charging speed is set so that the storage battery Bk is fully charged over 6 hours. Specifically, the charging rate C rate M is set to 1/6 (≈0.167). However, it is desirable not to exceed the normal speed. In this way, according to the charging mode, it is possible to change whether or charging rate of the charging of the appropriate battery B k. Therefore, when the unit price of the pay-as-you-go charge (for purchasing electricity) varies depending on the time of day, for example, the amount of purchased power is increased during a period when the unit price of electricity is low, and the power is purchased during a period when the unit price of power is high. Electric power can be reduced.

上記第4実施形態においては、太陽電池SPiが接続された複数台のパワーコンディショナPCSPViを備えている場合を例に説明したが、これらを備えていなくてもよい。すなわち、蓄電池Bkが接続された複数台のパワーコンディショナPCSBkと電力負荷Lと集中管理装置MC4とで構成されるものでもよい。 In the fourth embodiment, the case where a plurality of power conditioners PCS PVi to which the solar cells SP i are connected is described as an example, but these may not be provided. That may be those composed of battery B k are connected to a plurality of power conditioners PCS Bk and power load L and the central control device MC4.

図20は、第5実施形態に係る太陽光発電システムPVS5を示している。なお、太陽光発電システムPVS5は、複数台のパワーコンディショナPCSPVi,PCSBkを備えているが、図20においては、図18と同様に1台目のみを記載している。また、太陽光発電システムPVS5の全体構成は、上記第3実施形態に係る太陽光発電システムPVS3(図17参照)と略同じである。上記第3実施形態においては、余剰電力を逆潮流させることが可能であったが、第5実施形態においては、逆潮流が禁止されているものとする。 FIG. 20 shows a photovoltaic power generation system PVS5 according to the fifth embodiment. The solar power generation system PVS5 includes a plurality of power conditioners PCS PVi and PCS Bk . In FIG. 20, only the first one is shown as in FIG. The overall configuration of the solar power generation system PVS5 is substantially the same as that of the solar power generation system PVS3 (see FIG. 17) according to the third embodiment. In the third embodiment, it was possible to reverse the surplus power, but in the fifth embodiment, reverse power flow is prohibited.

逆潮流が禁止されている太陽光発電システムPVS5では、電力系統Aへの連系点にRPR(逆電力継電器)51を設ける必要がある。このRPR51は、リレーの一種である。RPR51は、太陽光発電システムPVS5から電力系統Aに逆潮流が発生したことを検出すると、太陽光発電システムPVS5を電力系統Aから遮断する。一度、遮断されてしまうと、復帰するのに、専門の業者を呼ぶ必要があるため時間がかかる。例えば工場の休止日などにより、電力負荷Lの低負荷時には、電力負荷Lの消費電力は低下する。したがって、工場の休止日に天気が晴れた場合には、太陽電池SPiの発電量Pi SPが電力負荷Lの消費電力を超える場合があり、このとき、逆潮流が発生する。そこで、第5実施形態に係る太陽光発電システムPVS5において、上記抑制指標prPVおよび充放電指標prBを用いて各パワーコンディショナPCSPVi,PCSBkが分散的に制御して、逆潮流の発生を抑制する。これを「逆潮流回避制御」という。なお、連系点電力P(t)が正の値である場合、逆潮流が発生しているので、逆潮流の発生を抑制するためには、連系点電力P(t)が正の値にならないように、負の値を維持すればよい。 In the photovoltaic power generation system PVS5 in which reverse power flow is prohibited, it is necessary to provide an RPR (reverse power relay) 51 at the connection point to the power system A. The RPR 51 is a kind of relay. When the RPR 51 detects that a reverse power flow has occurred in the power system A from the solar power generation system PVS5, the RPR 51 shuts off the solar power generation system PVS5 from the power system A. Once shut off, it takes time because it is necessary to call a specialist to return. For example, the power consumption of the power load L decreases when the power load L is low due to, for example, a factory stoppage day. Therefore, when the weather is fine on the days when the factory is closed, the power generation amount P i SP of the solar cell SP i may exceed the power consumption of the power load L, and at this time, a reverse power flow occurs. Therefore, in the photovoltaic power generation system PVS5 according to the fifth embodiment, the power conditioners PCS PVi and PCS Bk are controlled in a distributed manner using the suppression index pr PV and the charge / discharge index pr B to generate reverse power flow. Suppress. This is called “reverse power flow avoidance control”. In addition, when the connection point power P (t) is a positive value, a reverse power flow is generated. Therefore, in order to suppress the generation of the reverse power flow, the connection point power P (t) is a positive value. It is sufficient to maintain a negative value so as not to become.

太陽光発電システムPVS5は、逆潮流回避制御において、各パワーコンディショナPCSPViの個別出力電力PPVi outを抑制する。また、パワーコンディショナPCSBkの個別出力電力PBk outを制御して蓄電池Bkを充電する。このようにして、常に電力系統Aから太陽光発電システムPVS5に電力を供給させている。したがって、連系点電力P(t)が、正の値にならないように、負の値を維持している。これにより、逆潮流の発生が抑制される。この逆潮流回避制御を行うために、図20に示すように、集中管理装置MC5は、第2実施形態に係る集中管理装置MC2と比較して、次の点で異なる。すなわち、集中管理装置MC5は、出力指令値取得部21の代わりに逆潮流回避設定部46を備え、また、指標算出部43の代わりに指標算出部43”を備えている。 The solar power generation system PVS5 suppresses the individual output power P PVi out of each power conditioner PCS PVi in the reverse power flow avoidance control. Further, to charge the battery B k controls the individual output power P Bk out of the power conditioner PCS Bk. In this way, power is always supplied from the power system A to the solar power generation system PVS5. Accordingly, the negative value is maintained so that the interconnection point power P (t) does not become a positive value. Thereby, generation | occurrence | production of a reverse power flow is suppressed. In order to perform this reverse power flow avoidance control, as shown in FIG. 20, the central management device MC5 differs from the central management device MC2 according to the second embodiment in the following points. That is, the centralized management device MC5 includes a reverse power flow avoidance setting unit 46 instead of the output command value acquisition unit 21, and includes an index calculation unit 43 ″ instead of the index calculation unit 43.

逆潮流回避設定部46は、逆潮流回避制御のための各種設定を行う。本実施形態においては、逆潮流回避設定部46は、逆潮流の発生を抑制するための逆潮流回避目標電力PRPRを設定する。この逆潮流回避目標電力PRPRは、連系点電力P(t)の目標値であり、負の値である。逆潮流回避目標電力PRPRは、ユーザによって任意に設定される。逆潮流回避設定部46は、設定された逆潮流回避目標電力PRPRを指標算出部43”に出力する。 The reverse power flow avoidance setting unit 46 performs various settings for reverse power flow avoidance control. In the present embodiment, the reverse power flow avoidance setting unit 46 sets a reverse power flow avoidance target power PRPR for suppressing the occurrence of reverse power flow. This reverse power flow avoidance target power PRPR is a target value of the interconnection point power P (t) and is a negative value. The reverse power flow avoidance target power PRPR is arbitrarily set by the user. The reverse power flow avoidance setting unit 46 outputs the set reverse power flow avoidance target power PRPR to the index calculation unit 43 ″.

指標算出部43”は、連系点電力P(t)を逆潮流回避目標電力PRPRにするための抑制指標prPVおよび充放電指標prBを算出する。すなわち、本実施形態においては、指標算出部43”は、上記第2実施形態に係る指標算出部43と比較して、出力指令値PCの代わりに逆潮流回避設定部46から入力される逆潮流回避目標電力PRPRを用いて、抑制指標prPVおよび充放電指標prBを算出する。具体的には、指標算出部43”は、上記(21)式における出力指令値PC(t)の代わりに逆潮流回避目標電力PRPRを用いて、ラグランジュ乗数λを算出する。そして、上記(22)式により、算出したラグランジュ乗数λを抑制指標prPVおよび充放電指標prBとして算出する。指標算出部43”は、算出した抑制指標prPVを、送信部44を介して、パワーコンディショナPCSPViに送信する。また、算出した充放電指標prBを、送信部44を介して、パワーコンディショナPCSBkに送信する。 Index calculating unit 43 'calculates the suppression indicators pr PV and charge-discharge indicator pr B for interconnection point power P (t) to reverse flow around the target power P RPR. That is, in this embodiment, the index calculator 43 ', as compared with the index calculation unit 43 according to the second embodiment, by using the backward flow around the target power P RPR inputted from the reverse flow prevention settings unit 46 instead of the output command value P C Then, the suppression index pr PV and the charge / discharge index pr B are calculated. Specifically, the index calculation unit 43 ″ calculates the Lagrange multiplier λ using the reverse power flow avoidance target power PRPR instead of the output command value P C (t) in the equation (21). The calculated Lagrangian multiplier λ is calculated as the suppression index pr PV and the charge / discharge index pr B by the equation (22). The index calculation unit 43 ″ transmits the calculated suppression index pr PV to the power Send to NAPCS PVi . Further, the calculated charge / discharge index pr B is transmitted to the power conditioner PCS Bk via the transmission unit 44.

このように構成された太陽光発電システムPVS5において、集中管理装置MC5は、連系点電力検出部22によって検出される連系点電力P(t)を監視する。そして、連系点電力P(t)が逆潮流回避目標電力PRPR以上となった場合に、指標算出部43”により連系点電力P(t)を逆潮流回避目標電力PRPRにするための抑制指標prPVおよび充放電指標prBを算出する。各パワーコンディショナPCSPViはそれぞれ、集中管理装置MC5が算出した抑制指標prPVを用いた最適化問題に基づいて、個別目標電力PPVi refを算出し、個別出力電力PPVi outを個別目標電力PPVi refに制御する。また、各パワーコンディショナPCSBkはそれぞれ、集中管理装置MC5が算出した充放電指標prBを用いた最適化問題に基づいて、個別目標電力PBk refを算出し、個別出力電力PBk outを個別目標電力PBk refに制御する。これらにより、連系点電力P(t)を逆潮流回避目標電力PRPRに制御して、逆潮流の発生を抑制している。すなわち、逆潮流によってRPR51が動作することを抑制している。 In the photovoltaic power generation system PVS5 configured as described above, the central management device MC5 monitors the connection point power P (t) detected by the connection point power detection unit 22. When the connection point power P (t) becomes equal to or higher than the reverse power flow avoidance target power PRPR , the index calculation unit 43 ″ changes the connection point power P (t) to the reverse power flow avoidance target power PRPR. to the calculated suppression indicators pr PV and charge-discharge indicator pr B. each power conditioner PCS PVi, based on the optimization problem using suppression index pr PV to the central control device MC5 has been calculated, the individual target power P PVi ref is calculated, and the individual output power P PVi out is controlled to the individual target power P PVi ref , and each power conditioner PCS Bk is optimized using the charge / discharge index pr B calculated by the central control device MC5. Based on the problem, the individual target power P Bk ref is calculated, and the individual output power P Bk out is controlled to the individual target power P Bk ref , whereby the connection point power P (t) is converted to the reverse power flow avoidance target power P. to control the RPR, head tide It has a generation suppression. That, RPR51 by reverse flow is prevented from operating.

なお、逆潮流回避目標電力PRPRの設定値が0である(あるいは0に近い)と、連系点電力P(t)の検出間隔や抑制指標prPVおよび充放電指標prBの算出間隔によっては、瞬時的に連系点電力P(t)が上昇した場合に、連系点電力P(t)が正の値となり、逆潮流が発生する可能性がある。そのため、設定される逆潮流回避目標電力PRPRが0より所定量小さい値以下にするとよい。これにより、逆潮流回避目標電力PRPRが0より小さくなるため、瞬時的に連系点電力P(t)が上昇しても0を超えることを抑制することができる。したがって、逆潮流が発生することを抑制することができる。 If the set value of the reverse power avoidance target power PRPR is 0 (or close to 0), it depends on the detection interval of the connection point power P (t) and the calculation interval of the suppression index pr PV and the charge / discharge index pr B. When the connection point power P (t) increases instantaneously, the connection point power P (t) becomes a positive value and a reverse power flow may occur. For this reason, the reverse power flow avoidance target power PRPR to be set is preferably set to a value smaller than 0 by a predetermined amount or less. Thereby, since reverse power flow avoidance target electric power PRPR becomes smaller than 0, even if connection point electric power P (t) rises instantaneously, it can suppress exceeding 0. Therefore, it is possible to suppress the occurrence of reverse power flow.

以上のことから、本実施形態に係る太陽光発電システムPVS5によれば、連系点電力P(t)の目標電力として、出力指令値PCの代わりに逆潮流回避設定部46が設定する逆潮流回避目標電力PRPRを用いた場合であっても、連系点電力P(t)を目標電力(逆潮流回避目標電力PRPR)にすることができる。さらに、各パワーコンディショナPCSPVi,PCSBkが分散的に個別目標電力PPVi ref,PBk refを求めることで、集中管理装置MC4の処理負荷を低減させることができる。 From the above, according to the solar power generation system PVS5 according to the present embodiment, as the target power of the interconnection point power P (t), the inverse of the reverse flow prevention settings unit 46 sets, instead of the output command value P C Even when the tidal current avoidance target power PRPR is used, the interconnection point power P (t) can be set to the target power (reverse power flow avoidance target power PRPR ). Furthermore, each power conditioner PCS PVi and PCS Bk obtains the individual target powers P PVi ref and P Bk ref in a distributed manner, thereby reducing the processing load on the central management device MC4.

上記第5実施形態において、逆潮流回避制御中は、蓄電池Bkの充電が優先されるため、蓄電池Bkに電力が蓄積されていく。そのため、所定の放電条件を満たしたときに、蓄電池Bkの放電を行うようにしてもよい。このような放電条件としては、例えば、連系点電力P(t)が逆潮流回避目標電力PRPRより閾値以上小さい場合などが挙げられる。このようにすることで、次の逆潮流回避制御に備えて、蓄電池Bkを放電しておくことができる。 In the fifth embodiment, during the reverse flow prevention control, since the charging of the battery B k is the priority, the power is accumulated in the battery B k. Therefore, when filled with a predetermined discharge condition may be to discharge the battery B k. Examples of such discharge conditions include a case where the interconnection point power P (t) is smaller than the reverse power flow avoidance target power PRPR by a threshold value or more. By doing in this way, the storage battery Bk can be discharged in preparation for the next reverse power flow avoidance control.

このような蓄電池Bkの放電制御において、上記所定の時間帯毎に、放電をするか否かを変更するようにしてもよい。例えば、上記所定の時間帯毎に、放電モードを設定可能にしておく。そして、当該放電モードに応じて、蓄電池Bkを放電するか否かを制御する。このような放電モードとしては、例えば、放電有モードと放電無モードとがある。放電有モードは、放電を行うモードである。放電無モードは、放電を行わないモードである。なお、放電モードはこれらに限定されない。ユーザは集中管理装置MC5のユーザインタフェースなどにより放電モードの設定を行うことができ、逆潮流回避設定部46はユーザの操作指示に応じて放電モードを設定する。このときの所定の時間帯は、上記ピークカット制御における所定の時間帯と同じであっても異なっていてもよい。 In such discharge control of the storage battery B k , whether or not to discharge may be changed for each predetermined time period. For example, the discharge mode can be set for each predetermined time period. And according to the said discharge mode, it is controlled whether the storage battery Bk is discharged. Such discharge modes include, for example, a discharge mode and a discharge no mode. The discharge mode is a mode in which discharge is performed. The no discharge mode is a mode in which no discharge is performed. The discharge mode is not limited to these. The user can set the discharge mode by using the user interface of the central management device MC5, and the reverse power flow avoidance setting unit 46 sets the discharge mode according to the user's operation instruction. The predetermined time zone at this time may be the same as or different from the predetermined time zone in the peak cut control.

具体的には、集中管理装置MC5は、逆潮流回避設定部46によって設定された放電モードの設定情報を、送信部44を介して各パワーコンディショナPCSBkそれぞれに送信する。そして、受信部31を介してこれを受信した各パワーコンディショナPCSBkは、設定されている放電モードに対応付けられた上記放電レートCrate Pを用いて上記(20c’)式に示す蓄電池BkのCレート制約(放電定格出力PSPk lmt)を変更する。例えば、放電有モードに対する放電レートCrate Pには0.3を、放電無モードに対する放電レートCrate Pには0をそれぞれ設定する。そして、パワーコンディショナPCSBkは、上記(20’)式に示す最適化問題に基づいて、個別目標電力PBk refを求めることで、放電モードの設定に応じて蓄電池Bkを放電するか否かを変更することができる。このようにすることで、放電モードに応じて、適宜蓄電池Bkを放電するか否かを変更することができる。したがって、必要に応じて蓄電池Bkを放電させず、電力を蓄積させておくことができる。 Specifically, the central management device MC5 transmits the discharge mode setting information set by the reverse power flow avoidance setting unit 46 to each power conditioner PCS Bk via the transmission unit 44. Each power conditioner PCS Bk received this via the receiving unit 31, the storage battery B shown above (20c ') equation using the discharge rate C rate P associated with the discharge mode that is set Change the C rate constraint (discharge rated output P SPk lmt ) of k . For example, 0.3 is the discharge rate C rate P to the discharge chromatic mode, the discharge rate C rate P to the discharge-free mode is set to 0, respectively. Then, the power conditioner PCS Bk obtains the individual target power P Bk ref based on the optimization problem shown in the above equation (20 ′), and thereby discharges the storage battery B k according to the setting of the discharge mode. Can be changed. By doing in this way, it can change suitably whether storage battery Bk is discharged according to discharge mode. Therefore, the electric power can be accumulated without discharging the storage battery B k as necessary.

上記第5実施形態においては、蓄電池Bkが接続された複数台のパワーコンディショナPCSBkを備えている場合を例に説明したが、これらを備えていなくてもよい。すなわち、太陽電池SPiが接続された複数台のパワーコンディショナPCSPViと電力負荷Lと集中管理装置MC5とで構成されるものでもよい。この場合、太陽光発電システムPVS5は、逆潮流回避制御を行うとき、パワーコンディショナPCSPViからの個別出力電力PPVi outの抑制のみで、連系点電力P(t)を設定された逆潮流回避目標電力PRPRにしている。 In the fifth embodiment, the case where a plurality of power conditioners PCS Bk to which the storage battery B k is connected is described as an example. However, these may not be provided. That is, it may be configured by a plurality of power conditioners PCS PVi , a power load L, and a central management device MC5 to which the solar cell SP i is connected. In this case, when the photovoltaic power generation system PVS5 performs the reverse power flow avoidance control, the reverse power flow in which the connection point power P (t) is set only by suppressing the individual output power P PVi out from the power conditioner PCS PVi. The avoidance target power PRPR is set.

上記第3実施形態ないし第5実施形態においてはそれぞれ、連系点電力抑制制御、ピークカット制御、逆潮流回避制御を個々に実装した太陽光発電システムPVS3,PVS4,PVS5について説明したが、これらの各種制御を組み合わせることも可能である。この場合、集中管理装置が適宜いずれの制御を行うかを切り替えるようにすればよい。例えば、ユーザの操作に応じて切り替えるようにしてもよいし、状況(連系点電力P(t)の正負(逆潮流中か否か)、逆潮流が禁止されているか、電力負荷Lの電力消費履歴や稼働日など)に応じて自動的に切り替えるようにしてもよい。   In the third to fifth embodiments, the solar power generation systems PVS3, PVS4, and PVS5 in which the interconnection point power suppression control, peak cut control, and reverse power flow avoidance control are individually implemented have been described. It is also possible to combine various controls. In this case, it is only necessary to switch which control the centralized management apparatus performs as appropriate. For example, switching may be performed according to the user's operation, the situation (positive / negative of the connection point power P (t) (whether or not reverse flow is in progress), reverse flow is prohibited, or power of the power load L It may be automatically switched according to a consumption history or a working day.

上記第1実施形態ないし第5実施形態においては、連系点電力検出部22が検出する連系点電力P(t)を、目標電力(出力指令値PC、ピークカット目標電力Pcut、あるいは、逆潮流回避目標電力PRPR)に制御する場合について説明したが、これに限定されない。例えば、連系点電力検出部22が検出する連系点電力P(t)の代わりに、集中管理装置が、各パワーコンディショナPCSi,PCSPVi,PCSBkからそれぞれ個別出力電力Pi out,PPVi out,PBk outを入手し、入手した個別出力電力Pi out,PPVi out,PBk outの総和(以下、「システム総出力」という。)が目標電力となるように制御してもよい。このような他の実施形態を、図21〜図25を用いて、以下に説明する。 In the first to fifth embodiments, the connection point power P (t) detected by the connection point power detection unit 22 is set to the target power (output command value P C , peak cut target power P cut , or It has described the case of controlling the backward flow avoidance target power P RPR), but is not limited thereto. For example, instead of the connection point power P (t) detected by the connection point power detection unit 22, the centralized management device uses the individual output power P i out , from each of the power conditioners PCS i , PCS PVi , PCS Bk . P PVi out and P Bk out are obtained, and control is performed so that the total sum of the obtained individual output powers P i out , P PVi out and P Bk out (hereinafter referred to as “system total output”) becomes the target power. Also good. Such another embodiment will be described below with reference to FIGS.

図21および図22は、第6実施形態に係る太陽光発電システムPVS6を示している。図21は、太陽光発電システムPVS6の全体構成を示している。図22は、図21に示す太陽光発電システムPVS6において、システム総出力を制御する制御系の機能構成を示している。なお、太陽光発電システムPVS6は、複数台のパワーコンディショナPCSPVi,PCSBkを備えているが、図22においては、図18と同様に1台目のみを記載している。 21 and 22 show a photovoltaic power generation system PVS6 according to the sixth embodiment. FIG. 21 shows the overall configuration of the photovoltaic power generation system PVS6. FIG. 22 shows a functional configuration of a control system that controls the total system output in the photovoltaic power generation system PVS6 shown in FIG. The solar power generation system PVS6 includes a plurality of power conditioners PCS PVi and PCS Bk . In FIG. 22, only the first one is shown as in FIG.

第6実施形態に係る太陽光発電システムPVS6は、連系点電力P(t)を検出せず、各パワーコンディショナPCSPVi,PCSBkの個別出力電力PPVi out,PBk outのすべての総和(システム総出力Ptotal(t))を算出し、当該システム総出力Ptotal(t)が電力会社から指示される出力指令値PCとなるように制御している。すなわち、本実施形態においては、システム総出力Ptotal(t)を調整対象電力とし、そして、出力指令値PCをシステム総出力Ptotal(t)の目標電力としている。なお、本実施形態において、太陽光発電システムPVS6が行う制御を、「システム総出力抑制制御」という。 The photovoltaic power generation system PVS6 according to the sixth embodiment does not detect the connection point power P (t), and sums all of the individual output powers P PVi out and P Bk out of the power conditioners PCS PVi and PCS Bk. (System total output P total (t)) is calculated, and the system total output P total (t) is controlled to be the output command value P C instructed by the electric power company. That is, in this embodiment, the system total output P total (t) is the adjusted power, and, and the output command value P C and a target power of the total system output P total (t). In the present embodiment, the control performed by the photovoltaic power generation system PVS6 is referred to as “system total output suppression control”.

太陽光発電システムPVS6は、図21および図22に示すように、上記第2実施形態に係る太陽光発電システムPVS2と比較して、次の点で異なる。すなわち、集中管理装置MC6において、連系点電力検出部22を備えず、各パワーコンディショナPCSPVi,PCSBkからそれぞれ個別出力電力PPVi out,PBk outを入手するための構成を有している。具体的には、各パワーコンディショナPCSPViはそれぞれ、出力電力検出部14および送信部15をさらに備えており、各パワーコンディショナPCSBkはそれぞれ、出力電力検出部34および送信部35をさらに備えている。また、集中管理装置MC6は、連系点電力検出部22および指標算出部43の代わりに、受信部61と総出力算出部62と指標算出部63とを備えている。 As shown in FIGS. 21 and 22, the photovoltaic power generation system PVS6 differs from the photovoltaic power generation system PVS2 according to the second embodiment in the following points. That is, the central management device MC6 does not include the interconnection point power detection unit 22, but has a configuration for obtaining the individual output powers P PVi out and P Bk out from the power conditioners PCS PVi and PCS Bk , respectively. Yes. Specifically, each power conditioner PCS PVi further includes an output power detection unit 14 and a transmission unit 15, and each power conditioner PCS Bk further includes an output power detection unit 34 and a transmission unit 35, respectively. ing. Further, the central management device MC6 includes a receiving unit 61, a total output calculating unit 62, and an index calculating unit 63 instead of the interconnection point power detecting unit 22 and the index calculating unit 43.

出力電力検出部14は、各パワーコンディショナPCSPViに備えられており、自装置の個別出力電力PPVi outを検出する。出力電力検出部34は、各パワーコンディショナPCSBkに備えられており、自装置の個別出力電力PBk outを検出する。 The output power detection unit 14 is provided in each power conditioner PCS PVi and detects the individual output power P PVi out of its own device. The output power detection unit 34 is provided in each power conditioner PCS Bk and detects the individual output power P Bk out of its own device.

送信部15は、出力電力検出部14が検出した個別出力電力PPVi outを集中管理装置MC6に送信する。送信部35は、出力電力検出部34が検出した個別出力電力PBk outを集中管理装置MC6に送信する。 The transmission unit 15 transmits the individual output power P PVi out detected by the output power detection unit 14 to the central management device MC6. The transmission unit 35 transmits the individual output power P Bk out detected by the output power detection unit 34 to the central management device MC6.

受信部61は、各パワーコンディショナPCSPVi,PCSBkから送信される個別出力電力PPVi out,PBk outを受信する。 The receiving unit 61 receives the individual output powers P PVi out and P Bk out transmitted from the power conditioners PCS PVi and PCS Bk .

総出力算出部62は、受信部61が受信した個別出力電力PPVi out,PBk outの総和であるシステム総出力Ptotal(t)を算出する。本実施形態においては、総出力算出部62は、入力されるすべての個別出力電力PPVi out,PBk outを加算したシステム総出力Ptotal(t)を算出する。 The total output calculation unit 62 calculates a system total output P total (t) that is the sum of the individual output powers P PVi out and P Bk out received by the reception unit 61. In the present embodiment, the total output calculation unit 62 calculates the total system output P total (t) obtained by adding all the individual output powers P PVi out and P Bk out that are input.

指標算出部63は、総出力算出部62が算出したシステム総出力Ptotal(t)を、出力指令値PCにするための抑制指標prPVおよび充放電指標prBを算出する。このとき、指標算出部63は、上記(21)式における連系点電力P(t)の代わりにシステム総出力Ptotal(t)を用いて、ラグランジュ乗数λを算出する。そして、上記(22)式により、算出したラグランジュ乗数λを抑制指標prPVおよび充放電指標prBとして算出する。算出された抑制指標prPVは、送信部44を介して、各パワーコンディショナPCSPViに送信される。また、算出された充放電指標prBはそれぞれ、送信部44を介して、各パワーコンディショナPCSBkに送信される。 Index calculating unit 63, the total output calculation section 62 calculates the systems total output P total (t), calculates the suppression indicators pr PV and charge-discharge indicator pr B to the output command value P C. At this time, the index calculation unit 63 calculates the Lagrange multiplier λ using the system total output P total (t) instead of the interconnection point power P (t) in the above equation (21). Then, the calculated Lagrangian multiplier λ is calculated as the suppression index pr PV and the charge / discharge index pr B by the above equation (22). The calculated suppression index pr PV is transmitted to each power conditioner PCS PVi via the transmission unit 44. In addition, the calculated charge / discharge index pr B is transmitted to each power conditioner PCS Bk via the transmission unit 44.

本実施形態に係る太陽光発電システムPVS6によれば、調整対象電力として、上記第2実施形態における連系点電力P(t)の代わりにシステム総出力Ptotal(t)を用いた場合であっても、システム総出力Ptotal(t)を目標電力(出力指令値PC)にすることができる。さらに、各パワーコンディショナPCSPVi,PCSBkが分散的に個別目標電力PPVi ref,PBk refを求めるため、集中管理装置MC6の処理負荷を低減させることができる。 According to the photovoltaic power generation system PVS6 according to the present embodiment, the system total output Ptotal (t) is used as the adjustment target power instead of the interconnection power P (t) in the second embodiment. However, the system total output P total (t) can be set to the target power (output command value P C ). Furthermore, since the power conditioners PCS PVi and PCS Bk obtain the individual target powers P PVi ref and P Bk ref in a distributed manner, the processing load on the central management device MC6 can be reduced.

上記第6実施形態においては、第2実施形態に係る太陽光発電システムPVS2に対して、システム総出力Ptotal(t)を出力指令値PCに制御する場合を例に説明したが、第1実施形態に係る太陽光発電システムPVS1において同様にしてもよい。すなわち、第1実施形態に係る太陽光発電システムPVS1において、連系点電力P(t)の代わりにシステム総出力Ptotal(t)を出力指令値PCに制御した場合も、抑制指標prを用いて、システム総出力抑制制御を行うことができる。この場合も、システム総出力Ptotal(t)を目標電力(出力指令値PC)にしつつ、集中管理装置の処理負荷を低減させることができる。 In the above-described sixth embodiment, with respect to solar power generation system PVS2 according to the second embodiment, a case has been described for controlling the output command value P C total system output P total (t) as an example, the first The same may be applied to the photovoltaic power generation system PVS1 according to the embodiment. That is, in the photovoltaic power generation system PVS1 according to the first embodiment, even when controlling system total output P total (t) to the output command value P C in place of interconnection point power P (t), the suppression indicators pr By using this, it is possible to perform system total output suppression control. In this case as well, the processing load of the centralized management device can be reduced while setting the total system output P total (t) to the target power (output command value P C ).

上記第6実施形態においては、各パワーコンディショナPCSPVi,PCSBkが連系点に接続された太陽光発電システムPVS6を例に説明したが、上記第3ないし第5実施形態と同様に、さらに、上記電力負荷Lを備えていてもよい。 In the sixth embodiment, the solar power generation system PVS6 in which each of the power conditioners PCS PVi and PCS Bk is connected to the interconnection point has been described as an example. However, as in the third to fifth embodiments, The power load L may be provided.

図23および図24は、第7実施形態に係る太陽光発電システムPVS7を示している。図23は、太陽光発電システムPVS7の全体構成を示している。図24は、図23に示す太陽光発電システムPVS7において、システム総出力を制御する制御系の機能構成を示している。なお、太陽光発電システムPVS7は、複数台のパワーコンディショナPCSPVi,PCSBkを備えているが、図24においては、図18と同様に1台目のみを記載している。 23 and 24 show a solar power generation system PVS7 according to the seventh embodiment. FIG. 23 shows the overall configuration of the photovoltaic power generation system PVS7. FIG. 24 shows a functional configuration of a control system that controls the total system output in the photovoltaic power generation system PVS7 shown in FIG. The solar power generation system PVS7 includes a plurality of power conditioners PCS PVi and PCS Bk . In FIG. 24, only the first one is shown as in FIG.

太陽光発電システムPVS7は、図23および図24に示すように、上記第6実施形態に係る太陽光発電システムPVS6と比較して、さらに、連系点に電力負荷Lが接続されている点で異なる。このような場合においても、上記第6実施形態と同様に、算出したシステム総出力Ptotal(t)に基づいて、抑制指標prPVおよび充放電指標prBを用いたシステム総出力抑制制御を行うことができる。したがって、上記第6実施形態と同様に、システム総出力Ptotal(t)を出力指令値PCにしつつ、集中管理装置MC7の処理負荷を低減させることができる。 As shown in FIGS. 23 and 24, the photovoltaic power generation system PVS7 is further compared to the photovoltaic power generation system PVS6 according to the sixth embodiment in that an electric power load L is connected to the interconnection point. Different. Even in such a case, the total system output suppression control using the suppression index pr PV and the charge / discharge index pr B is performed based on the calculated total system output P total (t), as in the sixth embodiment. be able to. Therefore, as in the sixth embodiment, while the system total output P total (t) to the output command value P C, it is possible to reduce the processing load of the central control device MC7.

上記第7実施形態においては、上記第6実施形態に係る太陽光発電システムPVS6に対して、電力負荷Lを追加した場合を例に説明したが、太陽光発電システムPVS1に対して、電力負荷Lを追加し、かつ、連系点電力P(t)の代わりにシステム総出力Ptotal(t)を出力指令値PCに制御する太陽光発電システムにおいても、上記抑制指標prを用いて、システム総出力抑制制御を行うことができる。この場合も、システム総出力Ptotal(t)を目標電力(出力指令値PC)にするとともに、集中管理装置の処理負荷を低減させることができる。 In the said 7th Embodiment, although the case where the electric power load L was added with respect to the solar power generation system PVS6 which concerns on the said 6th Embodiment was demonstrated to the example, the electric power load L with respect to the solar power generation system PVS1. Add a, and, even in the solar power generation system that controls the output command value P C total system output P total (t) instead of interconnection point power P (t), by using the suppression indicators pr, system Total output suppression control can be performed. Also in this case, the system total output P total (t) can be set to the target power (output command value P C ), and the processing load of the centralized management device can be reduced.

図25は、第8実施形態に係る太陽光発電システムPVS8を示している。なお、太陽光発電システムPVS8は、複数台のパワーコンディショナPCSPVi,PCSBkを備えているが、図25においては、図18と同様に1台目のみを記載している。また、太陽光発電システムPVS8の全体構成は、上記第7実施形態に係る太陽光発電システムPVS7と略同じである。第8実施形態に係る太陽光発電システムPVS8は、複数台のパワーコンディショナPCSPVi,PCSBkを、複数台のパワーコンディショナPCSPViの集合である第1パワーコンディショナ群GPVと複数台のパワーコンディショナPCSBkの集合である第2パワーコンディショナ群GBとの2つグループに分けた場合を例に説明する。 FIG. 25 shows a photovoltaic power generation system PVS8 according to the eighth embodiment. The solar power generation system PVS8 includes a plurality of power conditioners PCS PVi and PCS Bk . In FIG. 25, only the first one is shown as in FIG. The overall configuration of the solar power generation system PVS8 is substantially the same as that of the solar power generation system PVS7 according to the seventh embodiment. The photovoltaic power generation system PVS8 according to the eighth embodiment includes a plurality of power conditioners PCS PVi and PCS Bk , a first power conditioner group G PV that is a set of a plurality of power conditioners PCS PVi , and a plurality of power conditioners PCS PVi . a case in which divided into two groups of the second power conditioner group G B is the set of the power conditioner PCS Bk will be described as an example.

第8実施形態に係る太陽光発電システムPVS8は、上記第1パワーコンディショナ群GPVと上記第2パワーコンディショナ群GBとにおいて、それぞれ目標電力を設定し、第1パワーコンディショナ群GPVの総出力電力および第2パワーコンディショナ群GBの総出力電力がそれぞれ上記目標電力になるように制御する。この制御を「スケジュール制御」という。なお、第1パワーコンディショナ群GPVの総出力電力は、各パワーコンディショナPCSPViの個別出力電力PPVi outの総和ΣPPVi outであり、以下、第1群総出力PGPVとする。また、第2パワーコンディショナ群GBの総出力電力は、各パワーコンディショナPCSBkの個別出力電力PBk outの総和ΣPBk outであり、以下、第2群総出力PGBとする。 The solar power generation system PVS8 according to the eighth embodiment sets a target power for each of the first power conditioner group G PV and the second power conditioner group G B, and sets the first power conditioner group G PV. the total output power and the total output power of the second power conditioner group G B in is controlled to respectively become the target power. This control is called “schedule control”. The total output power of the first power conditioner group G PV is the sum ΣP PVi out of the individual output powers P PVi out of each power conditioner PCS PVi , and is hereinafter referred to as the first group total output P GPV . The total output power of the second power conditioner group G B is the sum .SIGMA.P Bk out of individual output power P Bk out of the power conditioner PCS Bk, hereinafter referred to as the second group the total output P GB.

太陽光発電システムPVS8は、スケジュール制御を行うために、図25に示すように、上記第7実施形態に係る太陽光発電システムPVS7と比較して、次の点で異なる。すなわち、集中管理装置MC8において、出力指令値取得部21の代わりにスケジュール設定部64を、総出力算出部62の代わりに総出力算出部62’を、また、指標算出部63の代わりに指標算出部63’を備えている。   In order to perform schedule control, the solar power generation system PVS8 differs from the solar power generation system PVS7 according to the seventh embodiment in the following points, as shown in FIG. That is, in the central management device MC8, the schedule setting unit 64 is replaced instead of the output command value acquiring unit 21, the total output calculating unit 62 ′ is replaced instead of the total output calculating unit 62, and the index calculation is performed instead of the index calculating unit 63. A portion 63 ′ is provided.

スケジュール設定部64は、スケジュール制御のための各種設定を行う。本実施形態においては、スケジュール設定部64は、第1群総出力PGPVの目標値である第1群目標電力PTPVおよび第2群総出力PGBの目標値である第2群目標電力PTBを設定する。第1群目標電力PTPVおよび第2群目標電力PTBは、上記所定の時間帯毎に設定可能である。これらの設定値は、ユーザによって任意に設定される。スケジュール設定部64は、設定された各種設定値を指標算出部63’に出力する。 The schedule setting unit 64 performs various settings for schedule control. In the present embodiment, the schedule setting unit 64 includes the first group target power P TPV that is the target value of the first group total output P GPV and the second group target power P that is the target value of the second group total output P GB. Set TB . The first group target power P TPV and the second group target power P TB can be set for each predetermined time period. These set values are arbitrarily set by the user. The schedule setting unit 64 outputs the various set values that have been set to the index calculation unit 63 ′.

総出力算出部62’は、第1群総出力PGPVおよび第2群総出力PGBをそれぞれ算出する。具体的には、総出力算出部62’は、受信部61が受信したパワーコンディショナPCSPViの個別出力電力PPVi outを加算し、第1群総出力PGPVを算出する。また、総出力算出部62’は、受信部61が受信したパワーコンディショナPCSBkの個別出力電力PBk outを加算し、第2群総出力PGBを算出する。 The total output calculation unit 62 ′ calculates the first group total output P GPV and the second group total output P GB , respectively. Specifically, the total output calculation unit 62 ′ calculates the first group total output P GPV by adding the individual output power P PVi out of the power conditioner PCS PVi received by the reception unit 61. The total output calculation unit 62 'adds the individual output power P Bk out of the power conditioner PCS Bk the receiving unit 61 has received, it calculates the total output P GB second group.

指標算出部63’は、総出力算出部62’が算出した第1群総出力PGPVを、スケジュール設定部64から入力される第1群目標電力PTPVにするための抑制指標prPVを算出する。このとき、指標算出部63’は、下記(34)式を用いて、抑制指標prPVを算出する。なお、下記(34)式において、λPVは複数台のパワーコンディショナPCSPViに対するラグランジュ乗数、εPVは複数台のパワーコンディショナPCSPViに対する勾配係数を示している。また、第1群総出力PGPVおよび第1群目標電力PTPVが時間tに対して変化する値であるため、それぞれ第1群総出力をPGPV(t)、第1群目標電力をPTPV(t)と記載している。よって、指標算出部63’は、上記(9)式において、連系点電力P(t)の代わりに第1群総出力PGPV(t)を、出力指令値PC(t)の代わりに第1群目標電力PTPV(t)を用いて、ラグランジュ乗数λPVを算出する。そして、算出したラグランジュ乗数λPVを抑制指標prPVとする。指標算出部63’は、算出した抑制指標prPVを、送信部44を介して、各パワーコンディショナPCSPViに送信する。

Figure 2018143046
The index calculation unit 63 ′ calculates a suppression index pr PV for making the first group total output P GPV calculated by the total output calculation unit 62 ′ into the first group target power P TPV input from the schedule setting unit 64. To do. At this time, the index calculation unit 63 ′ calculates the suppression index pr PV using the following equation (34). In the following equation (34), λ PV represents a Lagrange multiplier for a plurality of power conditioners PCS PVi , and ε PV represents a gradient coefficient for the plurality of power conditioners PCS PVi . Further, since the first group total output P GPV and the first group target power P TPV are values that change with respect to time t, the first group total output is P GPV (t), and the first group target power is P. TPV (t) is described. Therefore, the index calculation unit 63 ′ uses the first group total output P GPV (t) instead of the interconnection point power P (t) in the above equation (9), instead of the output command value P C (t). A Lagrange multiplier λ PV is calculated using the first group target power P TPV (t). Then, the calculated Lagrangian multiplier λ PV is set as the suppression index pr PV . The index calculation unit 63 ′ transmits the calculated suppression index pr PV to each power conditioner PCS PVi via the transmission unit 44.
Figure 2018143046

指標算出部63’は、総出力算出部62’が算出した第2群総出力PGBを、スケジュール設定部64から入力される第2群目標電力PTBにするための充放電指標prBを算出する。このとき、指標算出部63’は、下記(35)式を用いて、充放電指標prBを算出する。なお、下記(35)式において、λBは複数台のパワーコンディショナPCSBkに対するラグランジュ乗数、εBは複数台のパワーコンディショナPCSBkに対する勾配係数を示している。また、第2群総出力PGBおよび第2群目標電力PTBが時間tに対して変化する値であるため、それぞれ第2群総出力をPGB(t)、第2群目標電力をPTB(t)と記載している。よって、指標算出部63’は、上記(9)式において、連系点電力P(t)の代わりに第2群総出力PGB(t)を、出力指令値PC(t)の代わりに第2群目標電力PTB(t)を用いて、ラグランジュ乗数λBを算出する。そして、算出したラグランジュ乗数λBを充放電指標prBとする。指標算出部63’は、算出した充放電指標prBを、送信部44を介して、各パワーコンディショナPCSBkに送信する。

Figure 2018143046
The index calculation unit 63 ′ sets a charge / discharge index pr B for making the second group total output P GB calculated by the total output calculation unit 62 ′ into the second group target power P TB input from the schedule setting unit 64. calculate. At this time, the index calculation unit 63 ′ calculates the charge / discharge index pr B using the following equation (35). In the following equation (35), λ B represents a Lagrange multiplier for a plurality of power conditioners PCS Bk , and ε B represents a gradient coefficient for the plurality of power conditioners PCS Bk . Further, since the second group total output P GB and the second group target power P TB are values that change with respect to time t, the second group total output is P GB (t), and the second group target power is P TB (t) is described. Therefore, the index calculation unit 63 ′ uses the second group total output P GB (t) instead of the interconnection power P (t) in the above equation (9), instead of the output command value P C (t). A Lagrange multiplier λ B is calculated using the second group target power P TB (t). The calculated Lagrangian multiplier λ B is used as the charge / discharge index pr B. The index calculation unit 63 ′ transmits the calculated charge / discharge index pr B to each power conditioner PCS Bk via the transmission unit 44.
Figure 2018143046

このように構成された太陽光発電システムPVS8において、集中管理装置MC8は、各パワーコンディショナPCSPViから個別出力電力PPVi outを入手し、第1群総出力PGPVを算出する。そして、算出した第1群総出力PGPVが第1群目標電力PTPVとなるように、上記(34)式を用いて、抑制指標prPVを算出する。算出された抑制指標prPVは、各パワーコンディショナPCSPViに送信される。各パワーコンディショナPCSPViはそれぞれ、受信した抑制指標prPVを用いて、個別目標電力PPVi refを算出し、個別出力電力PPVi outが個別目標電力PPVi refとなるように制御する。また、集中管理装置MC8は、パワーコンディショナPCSBkから個別出力電力PBk outを入手し、第2群総出力PGBを算出する。そして、算出した第2群総出力PGBが第2群目標電力PTBとなるように、上記(35)式を用いて、充放電指標prBを算出する。算出された充放電指標prBは、各パワーコンディショナPCSBkに送信される。各パワーコンディショナPCSBkはそれぞれ、受信した充放電指標prBを用いて、個別目標電力PBk refを算出し、個別出力電力PBk outが個別目標電力PBk refとなるように制御する。これらにより、第1群総出力PGPVが第1群目標電力PTPVとなり、また、第2群総出力PGBが第2群目標電力PTBとなる。 In the photovoltaic power generation system PVS8 configured as described above, the central management device MC8 obtains the individual output power P PVi out from each power conditioner PCS PVi, and calculates the first group total output P GPV . Then, the suppression index pr PV is calculated using the above equation (34) so that the calculated first group total output P GPV becomes the first group target power P TPV . The calculated suppression index pr PV is transmitted to each power conditioner PCS PVi . Each power conditioner PCS PVi calculates the individual target power P PVi ref using the received suppression index pr PV and controls the individual output power P PVi out to become the individual target power P PVi ref . Further, the central management device MC8 obtains the individual output power P Bk out from the power conditioner PCS Bk, and calculates the second group total output P GB . Then, the charge / discharge index pr B is calculated using the above equation (35) so that the calculated second group total output P GB becomes the second group target power P TB . The calculated charge / discharge index pr B is transmitted to each power conditioner PCS Bk . Each power conditioner PCS Bk calculates the individual target power P Bk ref using the received charge / discharge index pr B and controls the individual output power P Bk out to be the individual target power P Bk ref . As a result, the first group total output P GPV becomes the first group target power P TPV , and the second group total output P GB becomes the second group target power P TB .

以上のことから、本実施形態に係る太陽光発電システムPVS8によれば、第1パワーコンディショナ群GPVおよび第2パワーコンディショナ群GB毎に目標電力(第1群目標電力PTPVおよび第2群目標電力PTB)を設定して、第1群総出力PGPVを第1群目標電力PTPVに、そして、第2群総出力PGBを第2群目標電力PTBにすることができる。また、パワーコンディショナPCSPVi,PCSBkがそれぞれ、抑制指標prPV,充放電指標prBに基づいて、分散的に個別目標電力PPVi ref,PBk refを算出するので、集中管理装置MC8の処理負荷を低減させることができる。 From the above, according to the solar power generation system PVS8 according to this embodiment, and target power (first group target power P TPV to the first power conditioner group G PV and the second power for each conditioner group G B No. Set the second group target power P TB ), the first group total output P GPV becomes the first group target power P TPV , and the second group total output P GB becomes the second group target power P TB. it can. Further, the power conditioners PCS PVi and PCS Bk calculate the individual target powers P PVi ref and P Bk ref in a distributed manner based on the suppression index pr PV and the charge / discharge index pr B , respectively. Processing load can be reduced.

上記第8実施形態においては、第1パワーコンディショナ群GPVおよび第2パワーコンディショナ群GB毎に目標電力(第1群目標電力PTPVおよび第2群目標電力PTB)を設定した場合を例に説明したが、いずれか一方のみであってもよい。 In the above-described eighth embodiment, if you set the target power (first group target power P TPV and the second group target power P TB) to the first power conditioner group each G PV and second power conditioner group G B However, only one of them may be used.

上記第8実施形態においては、複数台のパワーコンディショナPCSPVi,PCSBkを、複数台のパワーコンディショナPCSPViの集合である第1パワーコンディショナ群GPVと複数台のパワーコンディショナPCSBkの集合である第2パワーコンディショナ群GBとの2つのグループに分けた場合を例に説明したが、これに限定されない。例えば、第1パワーコンディショナ群GPVをさらに複数のグループに分割して、当該グループ毎に目標電力を設定するようにしてもよい。なお、第2パワーコンディショナ群GBについても同様である。また、1つのグループに1台以上のパワーコンディショナPCSPViおよび1台以上のパワーコンディショナPCSBkの両方が含むようにグループ分けして、当該グループ毎に目標電力を設定するようにしてもよい。この場合、上記(21)式および上記(22)式を用いて、グループ毎に、抑制指標prPVおよび充放電指標prBを算出すればよい。 In the eighth embodiment, a plurality of power conditioners PCS PVi and PCS Bk are used as a first power conditioner group G PV that is a set of a plurality of power conditioners PCS PVi and a plurality of power conditioners PCS Bk. it is a set of but a case in which divided into two groups with the second power conditioner group G B is described as an example, but is not limited thereto. For example, the first power conditioner group G PV further divided into a plurality of groups, may be set the target power for each the group. The same applies to the second power conditioner group G B. In addition, one group may be grouped so that both one or more power conditioners PCS PVi and one or more power conditioners PCS Bk are included, and target power may be set for each group. . In this case, the suppression index pr PV and the charge / discharge index pr B may be calculated for each group using the formula (21) and the formula (22).

上記第7実施形態および第8実施形態においてはそれぞれ、システム総出力抑制制御、スケジュール制御を個々に実装した太陽光発電システムPVS7,PVS8について説明したが、これらを組み合わせることも可能である。この場合、集中管理装置が適宜いずれの制御を行うかを切り替えるようにすればよい。例えば、ユーザの操作に応じて切り替えるようにしてもよいし、状況(電力会社から抑制指示を受けているか、第1群目標電力PTPVや第2群目標電力PTBが設定されているかなど)に応じて自動的に切り替えるようにしてもよい。 In the seventh embodiment and the eighth embodiment, the solar power generation systems PVS7 and PVS8 in which the system total output suppression control and the schedule control are individually implemented have been described, but it is also possible to combine them. In this case, it is only necessary to switch which control the centralized management apparatus performs as appropriate. For example, you may make it switch according to a user's operation, and a situation (whether the suppression instruction is received from an electric power company, or 1st group target electric power PTPV or 2nd group target electric power PTB is set) It is also possible to automatically switch according to the above.

上記第7実施形態および第8実施形態においては、集中管理装置MC7,MC8が、各パワーコンディショナPCSPVi,PCSBkから個別出力電力PPVi out,PBk outを入手する構成を備えた場合を例に説明したが、さらに、電力負荷Lの消費電力を、電力負荷Lから入手する構成を追加してもよい。このように電力負荷Lの消費電力が入手可能な場合、各パワーコンディショナPCSPVi,PCSBkから入手した個別出力電力PPVi out,PBk outと電力負荷Lから入手した消費電力との総和を算出することで、連系点電力P(t)を推算することができる。したがって、連系点電力検出部22を備えていなくても、上記第3実施形態ないし第5実施形態に記載する連系点電力抑制制御、ピークカット制御、および、逆潮流回避制御を行うことができる。 In the seventh embodiment and the eighth embodiment, the central management devices MC7 and MC8 have a configuration in which the individual output powers P PVi out and P Bk out are obtained from the power conditioners PCS PVi and PCS Bk. Although described as an example, a configuration for obtaining the power consumption of the power load L from the power load L may be added. When the power consumption of the power load L is available in this way, the sum of the individual output powers P PVi out and P Bk out obtained from the power conditioners PCS PVi and PCS Bk and the power consumption obtained from the power load L is calculated. By calculating, the connection point power P (t) can be estimated. Therefore, the interconnection point power suppression control, the peak cut control, and the reverse power flow avoidance control described in the third to fifth embodiments can be performed even if the interconnection point power detection unit 22 is not provided. it can.

上記第3実施形態ないし第5実施形態においてはそれぞれ、連系点電力P(t)に基づいて、連系点電力抑制制御、ピークカット制御、逆潮流回避制御を行う場合を例に説明し、上記第7実施形態および第8実施形態においてはそれぞれ、システム総出力Ptotal(t),第1群総出力PGPVおよび第2群総出力PGBに基づいて、システム総出力抑制制御、スケジュール制御を行う場合を例にそれぞれ説明したが、これに限定されない。連系点電力P(t)を検出する手段(連系点電力検出部22)およびパワーコンディショナPCSPVi,PCSBkからそれぞれ個別出力電力PPVi out,PBk outを入手する手段の両方を備えておき、連系点電力抑制制御、ピークカット制御、逆潮流回避制御、システム総出力抑制制御、および、スケジュール制御を複合的に制御するようにしてもよい。 In the third embodiment to the fifth embodiment, the case where the connection point power suppression control, the peak cut control, and the reverse power flow avoidance control are performed based on the connection point power P (t) is described as an example. In the seventh embodiment and the eighth embodiment, based on the total system output P total (t), the first group total output P GPV and the second group total output P GB , the system total output suppression control and the schedule control, respectively. However, the present invention is not limited to this. Both means for detecting the connection point power P (t) (connection point power detection unit 22) and means for obtaining the individual output powers P PVi out and P Bk out from the power conditioners PCS PVi and PCS Bk , respectively, are provided. The interconnection point power suppression control, peak cut control, reverse power flow avoidance control, system total output suppression control, and schedule control may be controlled in combination.

上記第1実施形態ないし第8実施形態においては、本開示に係る電力システムが太陽光発電システムである場合を例に説明したが、これに限られない。本開示に係る電力システムは、他の発電システムであってもよい。他の発電システムとしては、例えば、風力発電システムや燃料電池による発電システム、回転機形の発電機による発電システム、ネガワット取引を行うアグリゲータによる、需要家の負荷を管理する仮想的な発電システムなどが考えられる。なお、アグリゲータは、ネガワット取引により、節約できた電力を発電した電力とみなしているので、実際に発電を行っているのではない。これらの発電システムの場合でも、集中管理装置は、連系点電力を検出するか個別出力電力の総和を算出して調整対象電力とし、指標を算出して各電力装置に送信する。そして、各電力装置は、受信した指標を用いた最適化問題に基づいて、自装置の個別目標電力を算出し、当該個別目標電力となるように個別出力電力を制御する。風力発電システムや燃料電池による発電システムの場合、電力装置は、太陽光発電システムと同様、パワーコンディショナである。また、回転機形の発電機による発電システムの場合、電力装置は、発電機およびこれを制御する制御装置である。また、アグリゲータによる発電システムの場合、電力装置は、需要家の負荷およびこれを制御する制御装置である。なお、アグリゲータによる発電システムにおいては、節約できた電力を発電した電力とみなしているので、需要家の負荷の通常の消費電力から削減した電力が個別出力電力になる。また、本開示に係る電力システムは、上記した発電システムを併用したものとしてもよい。例えば、太陽光発電システムに回転機形の発電機を追加して、集中管理装置が太陽光発電システムの各パワーコンディショナおよび発電機の制御装置に指標を送信して全体の出力を制御する構成としてもよい。   In the said 1st Embodiment thru | or 8th Embodiment, although the case where the electric power system which concerns on this indication was a photovoltaic power generation system was demonstrated to the example, it is not restricted to this. The power system according to the present disclosure may be another power generation system. Other power generation systems include, for example, a wind power generation system, a fuel cell power generation system, a rotary generator-type power generation system, and a virtual power generation system that manages the load on consumers by an aggregator that performs negawatt transactions. Conceivable. Note that the aggregator does not actually generate power because it regards the power saved by the negawatt transaction as generated power. Even in the case of these power generation systems, the centralized management device detects the connection point power or calculates the sum of the individual output powers as the adjustment target power, calculates the index, and transmits it to each power device. Each power device calculates the individual target power of the own device based on the optimization problem using the received index, and controls the individual output power so as to be the individual target power. In the case of a wind power generation system or a power generation system using a fuel cell, the power device is a power conditioner as in the case of a solar power generation system. In the case of a power generation system using a rotating machine type generator, the power device is a generator and a control device that controls the generator. Moreover, in the case of the power generation system by an aggregator, an electric power apparatus is a consumer's load and a control apparatus which controls this. In the power generation system using the aggregator, since the saved power is regarded as generated power, the power reduced from the normal power consumption of the consumer's load becomes the individual output power. The power system according to the present disclosure may be a combination of the above-described power generation system. For example, a configuration in which a rotating machine type generator is added to the photovoltaic power generation system, and the central control device transmits an index to each power conditioner and generator control device of the photovoltaic power generation system to control the overall output It is good.

次に、本発明に係るバーチャルパワープラントについて、第9実施形態として説明する。バーチャルパワープラントは、上述した電力システム(第1〜第8実施形態に示す太陽光発電システムPVS1〜PVS8)を複数まとめて、さらに上位の中央管理装置がこれらを制御することで実現される。なお、上述したように、各電力システムは、太陽光発電システム以外の発電システムであってもよい。   Next, a virtual power plant according to the present invention will be described as a ninth embodiment. The virtual power plant is realized by collecting a plurality of the above-described power systems (solar power generation systems PVS1 to PVS8 shown in the first to eighth embodiments) and controlling them by a higher-level central management device. As described above, each power system may be a power generation system other than the solar power generation system.

図26は、第9実施形態に係るバーチャルパワープラントの全体構成を示す図である。当該バーチャルパワープラント(以下では、「VPP」と記載する場合がある)は、太陽光発電システムPVS_A,PVS_B,PVS_Cおよび中央管理装置MC’を備えている。   FIG. 26 is a diagram illustrating an overall configuration of a virtual power plant according to the ninth embodiment. The virtual power plant (hereinafter may be referred to as “VPP”) includes photovoltaic power generation systems PVS_A, PVS_B, PVS_C, and a central management device MC ′.

太陽光発電システムPVS_A,PVS_B,PVS_Cは、それぞれが、上述した太陽光発電システムPVS1〜PVS8のいずれかである。図26においては、太陽光発電システムPVS_A,PVS_B,PVS_Cを簡略化して、集中管理装置MC_A(MC_B,MC_C)と、これによって管理されている複数のパワーコンディショナPCSとして記載している。集中管理装置MC_A(MC_B,MC_C)は、それぞれ調整対象電力を出力指令値PCにするための指標prを算出し、各パワーコンディショナPCSに送信する。本実施形態においては、太陽光発電システムPVS_A,PVS_B,PVS_Cが特許請求の範囲に記載の「電力システム」に相当する。各パワーコンディショナPCSは、集中管理装置MC_A(MC_B,MC_C)より受信した指標prに基づいて個別目標電力Pi refを算出し、個別出力電力Pi outを制御する。集中管理装置MC_A(MC_B,MC_C)は、中央管理装置MC’より上位指標pr’_A(pr’_B,pr’_C)を入力された場合、当該上位指標pr’_A(pr’_B,pr’_C)に基づいて、指標prを算出する。なお、本実施形態においては、VPPが3つの太陽光発電システムPVS_A,PVS_B,PVS_Cを備えている場合を例にして説明するが、VPPが備える太陽光発電システムの数は限定されない。実際には、VPPは、より多数の太陽光発電システムを備えている。 Each of the photovoltaic power generation systems PVS_A, PVS_B, and PVS_C is any one of the above-described photovoltaic power generation systems PVS1 to PVS8. In FIG. 26, the photovoltaic power generation systems PVS_A, PVS_B, and PVS_C are simplified and described as a centralized management device MC_A (MC_B, MC_C) and a plurality of power conditioners PCS managed thereby. The central control device MC_A (MC_B, MC_C) calculates an index pr to the output command value P C and adjusted power respectively transmitted to the power conditioner PCS. In the present embodiment, the photovoltaic power generation systems PVS_A, PVS_B, and PVS_C correspond to the “power system” described in the claims. Each power conditioner PCS calculates the individual target power P i ref based on the index pr received from the central management device MC_A (MC_B, MC_C), and controls the individual output power P i out . When the central management device MC_A (MC_B, MC_C) receives a higher index pr′_A (pr′_B, pr′_C) from the central management device MC ′, the higher management index pr′_A (pr′_B, pr ′). The index pr is calculated based on _C). In this embodiment, the case where the VPP includes three photovoltaic power generation systems PVS_A, PVS_B, and PVS_C will be described as an example, but the number of photovoltaic power generation systems included in the VPP is not limited. In practice, VPP is equipped with a larger number of photovoltaic systems.

中央管理装置MC’は、太陽光発電システムPVS_A,PVS_B,PVS_Cを管理するものである。中央管理装置MC’は、太陽光発電システムPVS_A(PVS_B,PVS_C)の集中管理装置MC_A(MC_B,MC_C)と通信(無線通信であってもよいし、有線通信であってもよい)を行っている。中央管理装置MC’は、上位指標pr’_A(pr’_B,pr’_C)を算出して、集中管理装置MC_A(MC_B,MC_C)に送信する。中央管理装置MC’は、出力指令値取得部71、受信部72、指標算出部73、および、送信部74を備えている。   The central management device MC ′ manages the photovoltaic power generation systems PVS_A, PVS_B, and PVS_C. The central management device MC ′ communicates with the centralized management device MC_A (MC_B, MC_C) of the photovoltaic power generation system PVS_A (PVS_B, PVS_C) (may be wireless communication or wired communication). Yes. The central management device MC ′ calculates a higher index pr′_A (pr′_B, pr′_C) and transmits it to the centralized management device MC_A (MC_B, MC_C). The central management device MC ′ includes an output command value acquisition unit 71, a reception unit 72, an index calculation unit 73, and a transmission unit 74.

出力指令値取得部71は、出力指令値取得部21と同様のものであり、中央管理装置MC’に対する出力指令値PC’を取得するものである。出力指令値取得部71は、電力会社からの要請や、あらかじめ計画された出力指令に応じて出力指令値PC’を取得して、指標算出部73に出力する。 The output command value acquisition unit 71 is the same as the output command value acquisition unit 21 and acquires the output command value P C ′ for the central management device MC ′. The output command value acquisition unit 71 acquires the output command value P C ′ according to a request from the electric power company or an output command planned in advance, and outputs it to the index calculation unit 73.

受信部72は、集中管理装置MC_A,MC_B,MC_Cから、個別出力電力Pi outを受信するものである。集中管理装置MC_A(MC_B,MC_C)は、管理している各パワーコンディショナPCSより、それぞれ個別出力電力Pi outを入力されている。受信部72は、集中管理装置MC_A,MC_B,MC_Cがそれぞれ取得した個別出力電力Pi outを受信する。受信部72は、受信した個別出力電力Pi outを、指標算出部73に出力する。なお、太陽光発電システムPVS_A(PVS_B,PVS_C)が負荷を備えている場合、集中管理装置MC_A(MC_B,MC_C)は、当該負荷に供給される電力も検出して、中央管理装置MC’に送信する。受信部72は、受信した負荷供給電力値も、指標算出部73に出力する。また、集中管理装置MC_A(MC_B,MC_C)が個別出力電力Pi outを取得しておらず、個別出力電力Pi outの合計値として連系点電力P(t)=ΣPi outを取得している場合は、受信部72は、連系点電力P(t)を受信して、ΣPi outとして指標算出部73に出力するこの場合、集中管理装置MC_Aから受信した連系点電力P(t)は、集中管理装置MC_Aが管理するパワーコンディショナPCSの個別出力電力Pi outの合計値ΣAi outとして出力され、集中管理装置MC_Bから受信した連系点電力P(t)は、集中管理装置MC_Bが管理するパワーコンディショナPCSの個別出力電力Pi outの合計値ΣBi outとして出力され、集中管理装置MC_Cから受信した連系点電力P(t)は、集中管理装置MC_Cが管理するパワーコンディショナPCSの個別出力電力Pi outの合計値ΣCi outとして出力される。なお、負荷を備えている場合、連系点電力P(t)は、ΣPi outから負荷供給電力値を減算した値となる。また、受信部72は、個別出力電力Pi outを、集中管理装置MC_A,MC_B,MC_Cから受信するのではなく、各パワーコンディショナPCSから受信するようにしてもよい。 The receiving unit 72 receives the individual output power P i out from the central management device MC_A, MC_B, MC_C. The centralized management device MC_A (MC_B, MC_C) receives the individual output power P i out from each of the managed power conditioners PCS. The receiving unit 72 receives the individual output power P i out acquired by the central management devices MC_A, MC_B, and MC_C, respectively. The receiving unit 72 outputs the received individual output power P i out to the index calculating unit 73. When the photovoltaic power generation system PVS_A (PVS_B, PVS_C) includes a load, the central management device MC_A (MC_B, MC_C) also detects the power supplied to the load and transmits it to the central management device MC ′. To do. The receiving unit 72 also outputs the received load supply power value to the index calculating unit 73. Further, the centralized management device MC_A (MC_B, MC_C) does not acquire the individual output power P i out, and acquires the connection point power P (t) = ΣP i out as the total value of the individual output power P i out. In this case, the receiving unit 72 receives the connection point power P (t) and outputs it to the index calculation unit 73 as ΣP i out. In this case, the connection point power P ( t) is output as the total value Σ A P i out of the individual output power P i out of the power conditioner PCS managed by the central management device MC_A, and the interconnection point power P (t) received from the central management device MC_B is The connection point power P (t), which is output as the total value Σ B P i out of the individual output power P i out of the power conditioner PCS managed by the central management device MC_B and received from the central management device MC_C, is Managed by device MC_C It is output as the total value Σ C P i out of the individual output power P i out of that power conditioner PCS. When a load is provided, the interconnection point power P (t) is a value obtained by subtracting the load supply power value from ΣP i out . Further, the receiving unit 72 may receive the individual output power P i out from each power conditioner PCS instead of receiving the individual output power P i out from the central management device MC_A, MC_B, MC_C.

指標算出部73は、受信部72が受信した個別出力電力Pi out、および、出力指令値取得部71が取得した出力指令値PC’を入力されて、太陽光発電システムPVS_A,PVS_B,PVS_Cに対する上位指標pr’_A,pr'_B,pr'_Cを演算して、送信部74に出力する。上位指標pr’_A,pr'_B,pr'_Cは、すべての個別出力電力Pi outを合計したΣalli out(=ΣAi out+ΣBi out+ΣCi out)を、出力指令値PC’にするため指標である。なお、受信部72から負荷供給電力値が入力された場合は、Σalli outから負荷供給電力値を減算した値が用いられる。本実施形態においては、指標算出部73が特許請求の範囲に記載の「上位指標算出手段」に相当し、出力指令値PC’が特許請求の範囲に記載の「全体目標電力」に相当する。本実施形態に係るVPPは、運転モードを切り替えることができる。指標算出部73は、運転モードによって上位指標pr’_A,pr'_B,pr'_Cの演算を切り替える。運転モードの詳細、および、指標算出部73が行う演算については後述する。 The index calculation unit 73 receives the individual output power P i out received by the reception unit 72 and the output command value P C ′ acquired by the output command value acquisition unit 71 and receives the photovoltaic power generation systems PVS_A, PVS_B, and PVS_C. Higher-order indices pr′_A, pr′_B, and pr′_C are calculated and output to the transmission unit 74. Upper index pr'_A, pr'_B, pr'_C, all the individual output power P i out the sum of Σ all P i out (= Σ A P i out + Σ B P i out + Σ C P i out) The output command value P C ′ is an index. When the load supply power value is input from the receiving unit 72, a value obtained by subtracting the load supply power value from Σ all P i out is used. In the present embodiment, the index calculation unit 73 corresponds to “upper index calculation means” described in the claims, and the output command value P C ′ corresponds to “total target power” described in the claims. . The VPP according to the present embodiment can switch the operation mode. The index calculation unit 73 switches the calculation of the higher indices pr′_A, pr′_B, pr′_C depending on the operation mode. Details of the operation mode and calculations performed by the index calculation unit 73 will be described later.

送信部74は、指標算出部73が算出した上位指標pr’_A,pr'_B,pr'_Cを、それぞれ、集中管理装置MC_A,MC_B,MC_C(太陽光発電システムPVS_A,PVS_B,PVS_C)に送信するものである。送信部74は、上位指標pr’_A,pr'_B,pr'_Cを送信するときに、運転モードを示す情報も送信する。集中管理装置MC_A,MC_B,MC_Cは、運転モードに応じた制御を行う。具体的には、集中管理装置MC_A,MC_B,MC_Cは、運転モードに応じて、各パワーコンディショナPCSに送信する指標prの算出方法を切り替える。なお、VPPにおける運転モードが固定されている場合は、運転モードを示す情報も送信する必要はなく、集中管理装置MC_A,MC_B,MC_Cにおける指標prの算出方法を固定しておけばよい。   The transmission unit 74 transmits the higher-order indices pr′_A, pr′_B, and pr′_C calculated by the index calculation unit 73 to the central management devices MC_A, MC_B, and MC_C (solar power generation systems PVS_A, PVS_B, and PVS_C), respectively. To do. The transmission unit 74 also transmits information indicating the operation mode when transmitting the higher indices pr′_A, pr′_B, pr′_C. The centralized management devices MC_A, MC_B, and MC_C perform control according to the operation mode. Specifically, the central management device MC_A, MC_B, MC_C switches the calculation method of the index pr to be transmitted to each power conditioner PCS according to the operation mode. When the operation mode in VPP is fixed, it is not necessary to transmit information indicating the operation mode, and the calculation method of the index pr in the central management devices MC_A, MC_B, and MC_C may be fixed.

太陽光発電システムPVS_A(PVS_B,PVS_C)が上位指標pr’_A(pr’_B,pr’_C)に基づいて各パワーコンディショナPCSの個別出力電力Pi outを制御することで、VPPによる電力制御が行われる。例えば、電力会社から出力を抑制するよう要請されて、出力指令値取得部71が出力指令値PC’を取得した場合、中央管理装置MC'は、上位指標pr’_A,pr'_B,pr'_Cを算出して、それぞれ、太陽光発電システムPVS_A,PVS_B,PVS_Cに送信する。太陽光発電システムPVS_A(PVS_B,PVS_C)の集中管理装置MC_A(MC_B,MC_C)は、受信した上位指標pr’_A(pr’_B,pr’_C)に応じて指標prを算出し、各パワーコンディショナPCSに送信する。そして、各パワーコンディショナPCSは、集中管理装置MC_A(MC_B,MC_C)より受信した指標prに基づいて個別目標電力Pi refを算出し、個別出力電力Pi outを制御する。これにより、VPP全体としての出力電力が、出力指令値PC’に一致するように制御されて、出力が抑制される。 The photovoltaic power generation system PVS_A (PVS_B, PVS_C) controls the individual output power P i out of each power conditioner PCS based on the higher-order index pr′_A (pr′_B, pr′_C), thereby controlling the power by the VPP. Is done. For example, when the power company requests that the output be suppressed and the output command value acquisition unit 71 acquires the output command value P C ′, the central management device MC ′ determines that the higher level indicators pr′_A, pr′_B, pr '_C is calculated and transmitted to the photovoltaic power generation systems PVS_A, PVS_B, and PVS_C, respectively. The centralized management device MC_A (MC_B, MC_C) of the photovoltaic power generation system PVS_A (PVS_B, PVS_C) calculates the index pr according to the received higher-order index pr′_A (pr′_B, pr′_C), and each power condition. Send to NaPCS. Each power conditioner PCS calculates the individual target power P i ref based on the index pr received from the central management device MC_A (MC_B, MC_C), and controls the individual output power P i out . As a result, the output power of the entire VPP is controlled to match the output command value P C ′, and the output is suppressed.

次に、VPPの各運転モードと指標算出部73が行う演算について説明する。   Next, each operation mode of VPP and the calculation performed by the index calculation unit 73 will be described.

まず、各太陽光発電システムPVS_A,PVS_B,PVS_Cのそれぞれの目的を考慮せず、VPP全体としての目的を達成させる第1の運転モードについて説明する。   First, the 1st operation mode which achieves the objective as the whole VPP, without considering each objective of each photovoltaic power generation system PVS_A, PVS_B, and PVS_C is demonstrated.

図27(a)は、第1の運転モードを説明するためのブロック図である。   FIG. 27A is a block diagram for explaining the first operation mode.

第1の運転モードでは、指標算出部73は、受信部72より入力された個別出力電力Pi outからΣAi out、ΣBi outおよびΣCi outを算出する(受信部72が連系点電力P(t)を受信して、受信部72からΣAi out、ΣBi out、ΣCi outとして入力されている場合は、そのまま用いる)。また、指標算出部73は、出力指令値取得部71より入力された出力指令値PC’から、太陽光発電システムPVS_A,PVS_B,PVS_Cに対する目標値であるPC'_A、PC'_B、PC'_C(PC'_A+PC'_B+PC'_C=PC')を設定する。目標値PC'_A、PC'_B、PC'_Cは、例えば、各太陽光発電システムPVS_A,PVS_B,PVS_Cの容量比や出力電力比などに応じて設定される。そして、指標算出部73は、ΣAi outをPC'_Aにするための上位指標pr’_A、ΣBi outをPC'_Bにするための上位指標pr’_B、および、ΣCi outをPC'_Cにするための上位指標pr’_Cを算出する。指標算出部73は、勾配係数をεAとして、下記(36a)式に基づいてラグランジュ乗数λAを算出し、ラグランジュ乗数λAを上位指標pr’_Aとする。同様に、指標算出部73は、勾配係数をεBとして、下記(36b)式に基づいてラグランジュ乗数λBを算出し、ラグランジュ乗数λBを上位指標pr’_Bとし、勾配係数をεCとして、下記(36c)式に基づいてラグランジュ乗数λCを算出し、ラグランジュ乗数λCを上位指標pr’_Cとする。中央管理装置MC’は、上位指標pr’_AとしてλAを太陽光発電システムPVS_Aに送信し、上位指標pr’_BとしてλBを太陽光発電システムPVS_Bに送信し、上位指標pr’_CとしてλCを太陽光発電システムPVS_Cに送信する。

Figure 2018143046
In the first operation mode, the index calculation unit 73 calculates Σ A P i out , Σ B P i out and Σ C P i out from the individual output power P i out input from the reception unit 72 (reception unit). 72 linking point power P (t) by receiving, sigma a P i out from the receiving unit 72, sigma B P i out, if entered as Σ C P i out is used as). In addition, the index calculation unit 73 uses the output command values P C ′ input from the output command value acquisition unit 71 as target values for the photovoltaic power generation systems PVS_A, PVS_B, and PVS_C, P C ′ _A, P C ′ _B, P C '_C (P C' _A + P C '_B + P C' _C = P C ') to set the. The target values P C '_A, P C ' _B, and P C '_C are set according to, for example, the capacity ratio or output power ratio of each photovoltaic power generation system PVS_A, PVS_B, PVS_C. The index calculation unit 73, sigma A P i out the P C 'pr'_A higher indices for the _A, Σ B P i out the P C' pr'_B higher index for the _B and, An upper index pr′_C for setting Σ C P i out to P C '_C is calculated. The index calculation unit 73 calculates a Lagrange multiplier λ A based on the following equation (36a), with the gradient coefficient as ε A , and sets the Lagrange multiplier λ A as a higher index pr′_A. Similarly, the index calculation unit 73 calculates a Lagrange multiplier λ B based on the following equation (36b) with the gradient coefficient as ε B , sets the Lagrange multiplier λ B as a higher index pr′_B, and sets the gradient coefficient as ε C. The Lagrange multiplier λ C is calculated based on the following equation (36c), and the Lagrangian multiplier λ C is set as the higher index pr′_C. The central management device MC ′ transmits λ A as the higher index pr′_A to the photovoltaic power generation system PVS_A, transmits λ B as the higher index pr′_B to the photovoltaic power generation system PVS_B, and sets λ as the higher index pr′_C. C is transmitted to the photovoltaic power generation system PVS_C.
Figure 2018143046

太陽光発電システムPVS_A(PVS_B,PVS_C)は、中央管理装置MC’より受信した上位指標pr’_A(pr’_B,pr’_C)を用いて、各パワーコンディショナPCSの制御を行う。具体的には、太陽光発電システムPVS_A(PVS_B,PVS_C)の集中管理装置MC_A(MC_B,MC_C)は、中央管理装置MC’より受信した上位指標pr’_A(pr’_B,pr’_C)を指標prとして、各パワーコンディショナPCSに送信する。各パワーコンディショナPCSは、受信した上位指標pr’_A(pr’_B,pr’_C)に基づいて個別目標電力Pi refを算出し、個別出力電力Pi outを制御する。 The photovoltaic power generation system PVS_A (PVS_B, PVS_C) controls each power conditioner PCS using the higher index pr′_A (pr′_B, pr′_C) received from the central management device MC ′. Specifically, the centralized management device MC_A (MC_B, MC_C) of the photovoltaic power generation system PVS_A (PVS_B, PVS_C) uses the higher index pr′_A (pr′_B, pr′_C) received from the central management device MC ′. It transmits to each power conditioner PCS as index pr. Each power conditioner PCS calculates the individual target power P i ref based on the received higher index pr′_A (pr′_B, pr′_C), and controls the individual output power P i out .

第1の運転モードでは、太陽光発電システムPVS_A(PVS_B,PVS_C)の集中管理装置MC_A(MC_B,MC_C)は、中央管理装置MC’より受信した上位指標pr’_A(pr’_B,pr’_C)を各パワーコンディショナPCSに送信するだけであるが、太陽光発電システムPVS_A,PVS_B,PVS_CがVPP全体としての目標である出力指令値PC’に応じた出力をすることで、VPP全体としての目的を達成させることができる。 In the first operation mode, the centralized management device MC_A (MC_B, MC_C) of the photovoltaic power generation system PVS_A (PVS_B, PVS_C) receives the higher-order index pr′_A (pr′_B, pr′_C) received from the central management device MC ′. ) Is transmitted to each power conditioner PCS, but the PV system PVS_A, PVS_B, and PVS_C outputs according to the output command value P C ′, which is the target of the entire VPP. The purpose can be achieved.

より一般化して、VPPが備えている太陽光発電システムの数がmの場合は、指標算出部73は、j番目の太陽光発電システムの調整対象電力をPj(t)(j=1,2、…、m)、j番目の太陽光発電システムの目標電力をPC’_j(t)(j=1,2、…、m)、j番目の太陽光発電システムに対する勾配係数をεj(j=1,2、…、m)、j番目の太陽光発電システムに対する上位指標をpr’_j(j=1,2、…、m)とした場合、下記(36d)〜(36f)式で示す数式を解くことで、上位指標pr’_j(j=1,2、…、m)を算出する。調整対象電力Pj(t)は、j番目の太陽光発電システムのパワーコンディショナの個別出力電力の合計Σji out(t)であり、j番目の太陽光発電システムが負荷を備えている場合は、個別出力電力の合計Σji out(t)から負荷消費電力値を減算したものである。また、j番目の太陽光発電システムが連系点電力P(t)を検出する場合、調整対象電力Pj(t)は、連系点電力P(t)である。

Figure 2018143046
More generally, when the number of photovoltaic power generation systems included in the VPP is m, the index calculation unit 73 determines the adjustment target power of the jth photovoltaic power generation system as P j (t) (j = 1, , M), the target power of the j-th photovoltaic power generation system is P C ′ _j (t) (j = 1, 2,..., M), and the gradient coefficient for the j-th photovoltaic power generation system is ε j (J = 1, 2,..., M), where pr′_j (j = 1, 2,..., M) is the upper index for the jth photovoltaic power generation system, the following equations (36d) to (36f) The upper index pr′_j (j = 1, 2,..., M) is calculated by solving the mathematical formula shown in FIG. The adjustment target power P j (t) is the sum Σ j P i out (t) of the individual output power of the power conditioner of the j-th solar power generation system, and the j-th solar power generation system has a load. If it is, the load power consumption value is subtracted from the total individual output power Σ j P i out (t). In addition, when the j-th solar power generation system detects the connection point power P (t), the adjustment target power P j (t) is the connection point power P (t).

Figure 2018143046

次に、第1の運転モードとは異なる第2の運転モードについて説明する。   Next, a second operation mode different from the first operation mode will be described.

図27(b)は、第2の運転モードを説明するためのブロック図である。   FIG. 27B is a block diagram for explaining the second operation mode.

第2の運転モードでは、指標算出部73は、受信部72より入力された個別出力電力Pi outからΣalli outを算出する(受信部72が連系点電力P(t)を受信して、受信部72からΣAi out、ΣBi out、ΣCi outとして入力されている場合は、これらから算出する)。そして、指標算出部73は、Σalli outを、出力指令値取得部71より入力された出力指令値PC’にするための指標を算出する。指標算出部73は、勾配係数をεallとして、下記(37)式に基づいてラグランジュ乗数λallを算出し、ラグランジュ乗数λallを上位指標pr’_A,pr’_B,pr’_Cとする。中央管理装置MC’は、上位指標pr’_Aとしてλallを太陽光発電システムPVS_Aに送信し、上位指標pr’_Bとしてλallを太陽光発電システムPVS_Bに送信し、上位指標pr’_Cとしてλallを太陽光発電システムPVS_Cに送信する。

Figure 2018143046
In the second operation mode, the index calculation unit 73 calculates Σ all P i out from the individual output power P i out input from the reception unit 72 (the reception unit 72 receives the interconnection point power P (t)). to, Σ A P i out from the receiving unit 72, Σ B P i out, if entered as Σ C P i out is calculated from these). Then, the index calculation unit 73 calculates an index for setting Σ all P i out to the output command value P C ′ input from the output command value acquisition unit 71. The index calculation unit 73 calculates a Lagrange multiplier λ all based on the following equation (37) with the gradient coefficient as ε all , and sets the Lagrange multiplier λ all as higher indices pr′_A, pr′_B, pr′_C. Central management unit MC 'is a lambda all as an upper index pr'_A sent to photovoltaic systems PVS_A, the lambda all as an upper index pr'_B sent to photovoltaic systems PVS_B, lambda as an upper index pr'_C All is transmitted to the photovoltaic power generation system PVS_C.
Figure 2018143046

太陽光発電システムPVS_A(PVS_B,PVS_C)は、中央管理装置MC’より受信した上位指標pr’_A(pr’_B,pr’_C)を用いて、各パワーコンディショナPCSの制御を行う。具体的には、太陽光発電システムPVS_A(PVS_B,PVS_C)の集中管理装置MC_A(MC_B,MC_C)は、中央管理装置MC’より受信した上位指標pr’_A(pr’_B,pr’_C)を指標prとして、各パワーコンディショナPCSに送信する。各パワーコンディショナPCSは、受信した上位指標pr’_A(pr’_B,pr’_C)に基づいて個別目標電力Pi refを算出し、個別出力電力Pi outを制御する。上位指標pr’_A,pr’_B,pr’_Cはいずれもλallなので、太陽光発電システムPVS_A,PVS_B,PVS_CのパワーコンディショナPCSは、すべて同じ指標に基づいて制御される。 The photovoltaic power generation system PVS_A (PVS_B, PVS_C) controls each power conditioner PCS using the higher index pr′_A (pr′_B, pr′_C) received from the central management device MC ′. Specifically, the centralized management device MC_A (MC_B, MC_C) of the photovoltaic power generation system PVS_A (PVS_B, PVS_C) uses the higher index pr′_A (pr′_B, pr′_C) received from the central management device MC ′. It transmits to each power conditioner PCS as index pr. Each power conditioner PCS calculates the individual target power P i ref based on the received higher index pr′_A (pr′_B, pr′_C), and controls the individual output power P i out . Since the higher indices pr′_A, pr′_B, and pr′_C are all λ all , the power conditioners PCS of the photovoltaic power generation systems PVS_A, PVS_B, and PVS_C are all controlled based on the same index.

第2の運転モードでは、太陽光発電システムPVS_A(PVS_B,PVS_C)の集中管理装置MC_A(MC_B,MC_C)は、中央管理装置MC’より受信した同一の上位指標pr’_A(pr’_B,pr’_C)を各パワーコンディショナPCSに送信するだけであるが、太陽光発電システムPVS_A,PVS_B,PVS_CがVPP全体としての目標である出力指令値PC’に応じた出力をすることで、VPP全体としての目的を達成させることができる。 In the second operation mode, the centralized management device MC_A (MC_B, MC_C) of the photovoltaic power generation system PVS_A (PVS_B, PVS_C) receives the same higher index pr′_A (pr′_B, pr) received from the central management device MC ′. '_C) is only transmitted to each power conditioner PCS, but the photovoltaic power generation system PVS_A, PVS_B, PVS_C outputs VPP according to the output command value P C ' which is the target of the entire VPP. The overall goal can be achieved.

より一般化して、VPPが備えている太陽光発電システムの数がmの場合でもは、指標算出部73は、j番目の太陽光発電システムの調整対象電力をPj(t)(j=1,2、…、m)として、上下記(37’)式に基づいてラグランジュ乗数λallを算出し、ラグランジュ乗数λallを、j番目の太陽光発電システムに対する上位指標pr’_j(j=1,2、…、m)とすればよい。調整対象電力Pj(t)は、j番目の太陽光発電システムのパワーコンディショナの個別出力電力の合計Σji out(t)であり、j番目の太陽光発電システムが負荷を備えている場合は、個別出力電力の合計Σji out(t)から負荷消費電力値を減算したものである。また、j番目の太陽光発電システムが連系点電力P(t)を検出する場合、調整対象電力Pj(t)は、連系点電力P(t)である。

Figure 2018143046
More generally, even when the number of photovoltaic power generation systems included in the VPP is m, the index calculation unit 73 determines the adjustment target power of the jth photovoltaic power generation system as P j (t) (j = 1). , 2, ..., as m), calculates the Lagrange multiplier lambda all based on the following (37 ') wherein the Lagrangian multiplier lambda all, the higher the index pr'_j for j-th PV system (j = 1 , 2, ..., m). The adjustment target power P j (t) is the sum Σ j P i out (t) of the individual output power of the power conditioner of the j-th solar power generation system, and the j-th solar power generation system has a load. If it is, the load power consumption value is subtracted from the total individual output power Σ j P i out (t). In addition, when the j-th solar power generation system detects the connection point power P (t), the adjustment target power P j (t) is the connection point power P (t).
Figure 2018143046

次に、各太陽光発電システムPVS_A,PVS_B,PVS_Cのそれぞれの目的を達成しつつ、VPP全体としての目的も達成させるように働く第3の運転モードについて説明する。   Next, a description will be given of a third operation mode that works to achieve the objectives of the entire VPP while achieving the objectives of the respective photovoltaic power generation systems PVS_A, PVS_B, and PVS_C.

図28(a)は、第3の運転モードを説明するためのブロック図である。   FIG. 28A is a block diagram for explaining the third operation mode.

第3の運転モードでは、各太陽光発電システムPVS_A,PVS_B,PVS_Cは、調整対象電力の許容範囲の上限値および下限値を中央管理装置MC’に送信する。具体的には、太陽光発電システムPVS_Aの集中管理装置MC_Aは、太陽光発電システムPVS_Aの調整対象電力の許容範囲の上限値PC_Amaxおよび下限値PC_Aminを送信する。同様に、太陽光発電システムPVS_Bの集中管理装置MC_Bは、太陽光発電システムPVS_Bの調整対象電力の許容範囲の上限値PC_Bmaxおよび下限値PC_Bminを送信し、太陽光発電システムPVS_Cの集中管理装置MC_Cは、太陽光発電システムPVS_Cの調整対象電力の許容範囲の上限値PC_Cmaxおよび下限値PC_Cminを送信する。上限値および下限値は、集中管理装置MC_A(MC_B,MC_C)が行っている制御に応じて決定される。例えば、連系点電力抑制制御を行っている場合は、出力指令値PCを上限値とする。受信部72は、受信した各上限値および下限値を、指標算出部73に出力する。指標算出部73は、受信部72より入力された個別出力電力Pi outからΣAi out、ΣBi outおよびΣCi outを算出する(受信部72が連系点電力P(t)を受信して、受信部72からΣAi out、ΣBi out、ΣCi outとして入力されている場合は、そのまま用いる)。また、指標算出部73は、出力指令値取得部71より入力された出力指令値PC’と、受信部72より入力された各上限値および下限値とから、太陽光発電システムPVS_A,PVS_B,PVS_Cに対する目標値であるPC'_A、PC'_B、PC'_C(PC_Amin≦PC'_A≦PC_Amax、PC_Bmin≦PC'_B≦PC_Bmax、PC_Cmin≦PC'_C≦PC_Cmax)を設定する。そして、指標算出部73は、ΣAi outをPC'_Aにするための上位指標pr’_A、ΣBi outをPC'_Bにするための上位指標pr’_B、および、ΣCi outをPC'_Cにするための上位指標pr’_Cを算出する。指標算出部73は、勾配係数をεAとして、上記(36a)式に基づいてラグランジュ乗数λAを算出し、ラグランジュ乗数λAを上位指標pr’_Aとする。同様に、指標算出部73は、勾配係数をεBとして、上記(36b)式に基づいてラグランジュ乗数λBを算出し、ラグランジュ乗数λBを上位指標pr’_Bとし、勾配係数をεCとして、上記(36c)式に基づいてラグランジュ乗数λCを算出し、ラグランジュ乗数λCを上位指標pr’_Cとする。中央管理装置MC’は、上位指標pr’_AとしてλAを太陽光発電システムPVS_Aに送信し、上位指標pr’_BとしてλBを太陽光発電システムPVS_Bに送信し、上位指標pr’_CとしてλCを太陽光発電システムPVS_Cに送信する。 In the third operation mode, each of the photovoltaic power generation systems PVS_A, PVS_B, and PVS_C transmits the upper limit value and the lower limit value of the allowable range of the adjustment target power to the central management device MC ′. Specifically, the centralized management device MC_A of the photovoltaic power generation system PVS_A transmits the upper limit value P C — Amax and the lower limit value P C — Amin of the allowable range of the adjustment target power of the photovoltaic power generation system PVS_A. Similarly, the central control device MC_B photovoltaic systems PVS_B sends the upper limit value P C _Bmax and the lower limit value P C _Bmin tolerance of adjusted power photovoltaic systems PVS_B, concentrated solar power systems PVS_C The management device MC_C transmits the upper limit value P C — Cmax and the lower limit value P C — Cmin of the allowable range of the adjustment target power of the photovoltaic power generation system PVS_C. The upper limit value and the lower limit value are determined according to the control performed by the central management device MC_A (MC_B, MC_C). For example, if you are linking point power suppression control, the upper limit output command value P C. The receiving unit 72 outputs each received upper limit value and lower limit value to the index calculating unit 73. Index calculating unit 73, the individual output power is input from the receiving section 72 P i from out Σ A P i out, Σ B P i out and sigma C P i out is calculated (receiver 72 interconnection point power P (t) receives, sigma a P i out from the receiving unit 72, Σ B P i out, if entered as Σ C P i out is used as). Further, the index calculation unit 73 calculates the photovoltaic power generation system PVS_A, PVS_B, from the output command value P C ′ input from the output command value acquisition unit 71 and the upper limit value and the lower limit value input from the reception unit 72. P C '_A, P C' is a target value for PVS_C _B, P C '_C ( P C _Amin ≦ P C' _A ≦ P C _Amax, P C _Bmin ≦ P C '_B ≦ P C _Bmax, P C _Cmin ≦ P C ′ _C ≦ P C _Cmax). The index calculation unit 73, sigma A P i out the P C 'pr'_A higher indices for the _A, Σ B P i out the P C' pr'_B higher index for the _B and, An upper index pr′_C for setting Σ C P i out to P C '_C is calculated. The index calculation unit 73 calculates the Lagrange multiplier λ A based on the above equation (36a) with the gradient coefficient as ε A , and sets the Lagrange multiplier λ A as the higher index pr′_A. Similarly, the index calculation unit 73 calculates a Lagrange multiplier λ B based on the above equation (36b) with the gradient coefficient as ε B , sets the Lagrange multiplier λ B as a higher index pr′_B, and sets the gradient coefficient as ε C. Then, the Lagrange multiplier λ C is calculated based on the above equation (36c), and the Lagrange multiplier λ C is set as the higher index pr′_C. The central management device MC ′ transmits λ A as the higher index pr′_A to the photovoltaic power generation system PVS_A, transmits λ B as the higher index pr′_B to the photovoltaic power generation system PVS_B, and sets λ as the higher index pr′_C. C is transmitted to the photovoltaic power generation system PVS_C.

太陽光発電システムPVS_A(PVS_B,PVS_C)は、中央管理装置MC’より受信した上位指標pr’_A(pr’_B,pr’_C)を用いて、各パワーコンディショナPCSの制御を行う。具体的には、太陽光発電システムPVS_A(PVS_B,PVS_C)の集中管理装置MC_A(MC_B,MC_C)は、中央管理装置MC’より受信した上位指標pr’_A(pr’_B,pr’_C)を指標prとして、各パワーコンディショナPCSに送信する。各パワーコンディショナPCSは、受信した上位指標pr’_A(pr’_B,pr’_C)に基づいて個別目標電力Pi refを算出し、個別出力電力Pi outを制御する。 The photovoltaic power generation system PVS_A (PVS_B, PVS_C) controls each power conditioner PCS using the higher index pr′_A (pr′_B, pr′_C) received from the central management device MC ′. Specifically, the centralized management device MC_A (MC_B, MC_C) of the photovoltaic power generation system PVS_A (PVS_B, PVS_C) uses the higher index pr′_A (pr′_B, pr′_C) received from the central management device MC ′. It transmits to each power conditioner PCS as index pr. Each power conditioner PCS calculates the individual target power P i ref based on the received higher index pr′_A (pr′_B, pr′_C), and controls the individual output power P i out .

第3の運転モードでは、太陽光発電システムPVS_A(PVS_B,PVS_C)の集中管理装置MC_A(MC_B,MC_C)は、中央管理装置MC’より受信した上位指標pr’_A(pr’_B,pr’_C)を各パワーコンディショナPCSに送信するだけであるが、指標算出部73は、太陽光発電システムPVS_A(PVS_B,PVS_C)から入力される上限値および下限値を考慮して上位指標pr’_A(pr’_B,pr’_C)を算出するので、太陽光発電システムPVS_A(PVS_B,PVS_C)は、それぞれの目的を達成させることができる。また、目標値PC'_A、PC'_B、PC'_Cを設定する際に、PC'_A+PC'_B+PC'_C=PC'の条件を満たすことができれば、VPP全体としての目的も達成させることができる。 In the third operation mode, the centralized management device MC_A (MC_B, MC_C) of the photovoltaic power generation system PVS_A (PVS_B, PVS_C) receives the higher index pr′_A (pr′_B, pr′_C) received from the central management device MC ′. ) Is transmitted to each power conditioner PCS, but the index calculation unit 73 considers the upper limit value and the lower limit value input from the photovoltaic power generation system PVS_A (PVS_B, PVS_C), and the upper index pr′_A ( Since pr′_B, pr′_C) is calculated, the photovoltaic power generation system PVS_A (PVS_B, PVS_C) can achieve the respective purposes. The target value P C '_A, P C' _B, ' when setting the _C, P C' P C if it can meet the _A + P C '_B + P C' _C = P C ', as a whole VPP Objectives can also be achieved.

より一般化して、VPPが備えている太陽光発電システムの数がmの場合は、指標算出部73は、j番目の太陽光発電システムから入力された上限値をPC_jmax、下限値をPC_jmin(j=1,2、…、m)、j番目の太陽光発電システムの調整対象電力をPj(t)(j=1,2、…、m)、j番目の太陽光発電システムの目標電力をPC’_j(t)(j=1,2、…、m)、j番目の太陽光発電システムに対する勾配係数をεj(j=1,2、…、m)、j番目の太陽光発電システムに対する上位指標をpr’_j(j=1,2、…、m)とした場合、下記(38a)〜(38c)式で示す数式を解くことで、上位指標pr’_j(j=1,2、…、m)を算出する。調整対象電力Pj(t)は、j番目の太陽光発電システムのパワーコンディショナの個別出力電力の合計Σji out(t)であり、j番目の太陽光発電システムが負荷を備えている場合は、個別出力電力の合計Σji out(t)から負荷消費電力値を減算したものである。また、j番目の太陽光発電システムが連系点電力P(t)を検出する場合、調整対象電力Pj(t)は、連系点電力P(t)である。

Figure 2018143046
More generally, when the number of photovoltaic power generation systems included in the VPP is m, the index calculation unit 73 sets the upper limit value input from the jth photovoltaic power generation system as P C — jmax and the lower limit value as P. C _jmin (j = 1,2, ... , m), j -th adjustment-target power of photovoltaic systems and P j (t) (j = 1,2, ..., m), j -th solar power system Is the target power of P C ′ _j (t) (j = 1, 2,..., M), the gradient coefficient for the jth photovoltaic power generation system is ε j (j = 1, 2,..., M), jth. When the upper index for the solar power generation system is pr′_j (j = 1, 2,..., M), the upper index pr′_j ( j = 1, 2,..., m) are calculated. The adjustment target power P j (t) is the sum Σ j P i out (t) of the individual output power of the power conditioner of the j-th solar power generation system, and the j-th solar power generation system has a load. If it is, the load power consumption value is subtracted from the total individual output power Σ j P i out (t). In addition, when the j-th solar power generation system detects the connection point power P (t), the adjustment target power P j (t) is the connection point power P (t).
Figure 2018143046

次に、第3の運転モードとは異なる第4の運転モードについて説明する。   Next, a fourth operation mode different from the third operation mode will be described.

図28(b)は、第4の運転モードを説明するためのブロック図である。   FIG. 28B is a block diagram for explaining the fourth operation mode.

第4の運転モードでは、指標算出部73は、受信部72より入力された個別出力電力Pi outからΣalli outを算出する(受信部72が連系点電力P(t)を受信して、受信部72からΣAi out、ΣBi out、ΣCi outとして入力されている場合は、これらから算出する)。そして、指標算出部73は、Σalli outを、出力指令値取得部71より入力された出力指令値PC’にするための指標を算出する。指標算出部73は、勾配係数をεallとして、上記(37)式に基づいてラグランジュ乗数λallを算出し、ラグランジュ乗数λallを上位指標pr’_A,pr’_B,pr’_Cとする。中央管理装置MC’は、上位指標pr’_Aとしてλallを太陽光発電システムPVS_Aに送信し、上位指標pr’_Bとしてλallを太陽光発電システムPVS_Bに送信し、上位指標pr’_Cとしてλallを太陽光発電システムPVS_Cに送信する。 In the fourth operation mode, the index calculation unit 73 calculates Σ all P i out from the individual output power P i out input from the reception unit 72 (the reception unit 72 receives the interconnection point power P (t)). to, Σ A P i out from the receiving unit 72, Σ B P i out, if entered as Σ C P i out is calculated from these). Then, the index calculation unit 73 calculates an index for setting Σ all P i out to the output command value P C ′ input from the output command value acquisition unit 71. The index calculation unit 73 calculates a Lagrangian multiplier λ all based on the above equation (37) with the gradient coefficient as ε all , and sets the Lagrangian multiplier λ all as higher indices pr′_A, pr′_B, pr′_C. Central management unit MC 'is a lambda all as an upper index pr'_A sent to photovoltaic systems PVS_A, the lambda all as an upper index pr'_B sent to photovoltaic systems PVS_B, lambda as an upper index pr'_C All is transmitted to the photovoltaic power generation system PVS_C.

太陽光発電システムPVS_Aの集中管理装置MC_Aは、受信した上位指標pr’_Aを指標算出部23に入力する。指標算出部23は、入力された上位指標pr’_A(=λall)と、取得した出力指令値PC(太陽光発電システムPVS_B,PVS_Cが取得した出力指令値PCと区別するため、以下では「PC_A」とする)とから、下記(39a)式に基づいて、修正出力指令値PC”_Aを算出する。ただし、修正出力指令値PC”_Aは、太陽光発電システムPVS_Aの調整対象電力の許容範囲の上限値PC_Amaxおよび下限値PC_Aminに対して、PC_Amin≦PC”_A≦PC_Amaxに制限される。指標算出部23は、算出された修正出力指令値PC”_Aを出力指令値として、上記(9)式または上記(21)式に基づき、指標pr(抑制指標prPVおよび充放電指標prB)を算出する。太陽光発電システムPVS_B,PVS_Cと区別するために、勾配係数をεAとし、ラグランジュ乗数をλAとすると、集中管理装置MC_Aの指標算出部23は、下記(39b)式に基づいてラグランジュ乗数λAを算出し、ラグランジュ乗数λAを指標prとする。同様に、太陽光発電システムPVS_Bの集中管理装置MC_Bは、受信した上位指標pr’_B(=λall)と、取得した出力指令値PC_Bと、太陽光発電システムPVS_Bの調整対象電力の許容範囲の上限値PC_Bmaxおよび下限値PC_Bminとから、下記(39c)式に基づいて、修正出力指令値PC”_B(PC_Bmin≦PC”_B≦PC_Bmax)を算出する。そして、勾配係数をεBとして、下記(39d)式に基づいてラグランジュ乗数λBを算出し、ラグランジュ乗数λBを指標prとする。また、太陽光発電システムPVS_Cの集中管理装置MC_Cは、受信した上位指標pr’_C(=λall)と、取得した出力指令値PC_Cと、太陽光発電システムPVS_Cの調整対象電力の許容範囲の上限値PC_Cmaxおよび下限値PC_Cminとから、下記(39e)式に基づいて、修正出力指令値PC”_C(PC_Cmin≦PC”_C≦PC_Cmax)を算出する。そして、勾配係数をεCとして、下記(39f)式に基づいてラグランジュ乗数λCを算出し、ラグランジュ乗数λCを指標prとする。太陽光発電システムPVS_A(PVS_B,PVS_C)の集中管理装置MC_A(MC_B,MC_C)は、それぞれ指標算出部23が算出した指標prを各パワーコンディショナPCSに送信する。各パワーコンディショナPCSは、受信した指標prに基づいて個別目標電力Pi refを算出し、個別出力電力Pi outを制御する。

Figure 2018143046
The centralized management device MC_A of the photovoltaic power generation system PVS_A inputs the received higher index pr′_A to the index calculation unit 23. Index calculating unit 23 is provided with an upper index pr'_A input (= λ all), acquired output command value P C (photovoltaic system PVS_B, to be distinguished from the output command value P C which PVS_C acquired, following in from to) and "P C _A", on the basis of the following (39a) expression, "to calculate the _A. However, modifying the output command value P C" corrected output command value P C _A are photovoltaic systems PVS_A against adjusted power tolerance upper limit value P C _Amax and the lower limit value P C _Amin of, is limited to P C _Amin ≦ P C "_A ≦ P C _Amax. index calculating unit 23, the correction calculated Based on the output command value P C ″ _A as an output command value, the index pr (suppression index pr PV and charge / discharge index pr B ) is calculated based on the formula (9) or the formula (21). In order to distinguish from the photovoltaic power generation systems PVS_B and PVS_C, when the gradient coefficient is ε A and the Lagrange multiplier is λ A , the index calculation unit 23 of the centralized management device MC_A uses the Lagrange multiplier λ based on the following equation (39b): A is calculated, and the Lagrange multiplier λ A is used as an index pr. Similarly, the centralized management device MC_B of the photovoltaic power generation system PVS_B receives the received upper index pr′_B (= λ all ), the acquired output command value P C —B, and the allowable power of the adjustment target power of the photovoltaic power generation system PVS_B. ranging from the upper limit value P C _Bmax and the lower limit value P C _Bmin of, calculated are followings (39c) on the basis of the expression, modification output command value P C "_B (P C _Bmin ≦ P C" _B ≦ P C _Bmax) . Then, with the gradient coefficient as ε B , a Lagrange multiplier λ B is calculated based on the following equation (39d), and the Lagrange multiplier λ B is used as an index pr. Further, the centralized management device MC_C of the photovoltaic power generation system PVS_C receives the received upper index pr′_C (= λ all ), the acquired output command value P C _C, and the allowable range of the adjustment target power of the photovoltaic power generation system PVS_C. From the upper limit value P C _Cmax and the lower limit value P C _Cmin, a corrected output command value P C ″ _C (P C _Cmin ≦ P C ″ _C ≦ P C _Cmax) is calculated based on the following equation (39e). Then, with the gradient coefficient as ε C , a Lagrange multiplier λ C is calculated based on the following equation (39f), and the Lagrange multiplier λ C is used as an index pr. The centralized management device MC_A (MC_B, MC_C) of the photovoltaic power generation system PVS_A (PVS_B, PVS_C) transmits the index pr calculated by the index calculation unit 23 to each power conditioner PCS. Each power conditioner PCS calculates the individual target power P i ref based on the received index pr and controls the individual output power P i out .
Figure 2018143046

第4の運転モードでは、太陽光発電システムPVS_A(PVS_B,PVS_C)の集中管理装置MC_A(MC_B,MC_C)は、中央管理装置MC’より受信した同一の上位指標pr’_A(pr’_B,pr’_C)に基づいて、調整対象電力の許容範囲の上限値および下限値を考慮した修正出力指令値PC”_A(PC”_B,PC”_C)を算出し、これに基づいて算出された指標Prによって各パワーコンディショナPCSを制御する。したがって、太陽光発電システムPVS_A(PVS_B,PVS_C)は、それぞれの目的を達成させることができる。また、修正出力指令値PC”_A、PC”_B、PC”_Cを算出する際に、いずれも上限値および下限値を超えなければ、VPP全体としての目的も達成させることができる。また、いずれかが上限値または下限値を超えた場合でも、上記(37)式によりラグランジュ乗数λallが調整されて他の太陽光発電システムでカバーされるので、VPP全体としての目的も達成させるように制御される。 In the fourth operation mode, the centralized management device MC_A (MC_B, MC_C) of the photovoltaic power generation system PVS_A (PVS_B, PVS_C) receives the same higher index pr′_A (pr′_B, pr) received from the central management device MC ′. based on the '_C), adjusted power tolerance upper limit value and lower limit corrected output command value considering values P C "_A (P C" _B, calculates the P C "_C), calculated on the basis of this Therefore, the photovoltaic power generation systems PVS_A (PVS_B, PVS_C) can achieve their respective objectives, and the corrected output command values P C ″ _A, P C "_B, P C" when calculating the _C, if any not exceed the upper limit value and the lower limit value, that the objects also be achieved as a whole VPP Yes. Further, even when any of the values exceeds the upper limit value or the lower limit value, the Lagrange multiplier λ all is adjusted by the above equation (37) and is covered by another photovoltaic power generation system, so that the objective of the entire VPP is also achieved. To be controlled.

より一般化して、VPPが備えている太陽光発電システムの数がmの場合は、指標算出部73は、上記(37’)式に基づいてラグランジュ乗数λallを算出し、ラグランジュ乗数λallを、j番目の太陽光発電システムに対する上位指標pr’_j(j=1,2、…、m)とすればよい。そして、j番目の太陽光発電システムの指標算出部23は、入力された上位指標pr’_j(=λall)、出力指令値PC_j、調整対象電力の許容範囲の上限値PC_jmaxおよび下限値PC_jminから、下記(40a)〜(40b)式に基づいて、修正出力指令値PC”_jを算出し、当該太陽光発電システムの調整対象電力をPj(t)、勾配係数をεj、指標をprとし、下記(40c)〜(40d)式で示す数式を解くことで、前記指標prを算出する。調整対象電力Pj(t)は、j番目の太陽光発電システムのパワーコンディショナの個別出力電力の合計Σji out(t)であり、j番目の太陽光発電システムが負荷を備えている場合は、個別出力電力の合計Σji out(t)から負荷消費電力値を減算したものである。また、j番目の太陽光発電システムが連系点電力P(t)を検出する場合、調整対象電力Pj(t)は、連系点電力P(t)である。

Figure 2018143046
More generally, when the number of photovoltaic power generation systems included in the VPP is m, the index calculation unit 73 calculates the Lagrange multiplier λ all based on the above equation (37 ′), and sets the Lagrange multiplier λ all . , J <th> solar power generation system, the higher index pr'_j (j = 1, 2, ..., m) may be used. Then, the index calculation unit 23 of the j-th photovoltaic power generation system receives the input upper index pr′_j (= λ all ), the output command value P C — j, the upper limit value P C — jmax of the allowable range of the adjustment target power, and Based on the following formulas (40a) to (40b), the corrected output command value P C ″ _j is calculated from the lower limit value P C — jmin, and the adjustment target power of the solar power generation system is set to P j (t), the gradient coefficient Is set to ε j , and the index is pr, and the index pr is calculated by solving the following mathematical formulas (40c) to (40d): the adjustment target power P j (t) is the j-th solar power generation system. Σ j P i out (t) of the individual output powers of the power conditioner of the power source, and when the j-th photovoltaic power generation system has a load, the total Σ j P i out (t) of the individual output powers Is obtained by subtracting the load power consumption value from j. When the photovoltaic power generation system of the eye detects the connection point power P (t), the adjustment target power P j (t) is the connection point power P (t).
Figure 2018143046

なお、第4の運転モードにおいて、上記(40a)〜(40d)式による演算を、指標算出部73で行うようにしてもよい。具体的には、j番目の太陽光発電システムがそれぞれ上限値PC_jmax、下限値PC_jminおよび出力指令値PC_jを中央管理装置MC’に送信する。指標算出部73が上記(40a)〜(40c)式で示す数式を解くことで、ラグランジュ乗数λjを算出し、ラグランジュ乗数λjを上位指標pr’_jとする。そして、j番目の太陽光発電システムの指標算出部23は、受信した上位指標pr’_jを指標prとすればよい。 In the fourth operation mode, the calculation by the above formulas (40a) to (40d) may be performed by the index calculation unit 73. Specifically, the j-th solar power generation system transmits an upper limit value P C — jmax, a lower limit value P C — jmin, and an output command value P C — j to the central management device MC ′. The index calculation unit 73 calculates the Lagrange multiplier λ j by solving the mathematical formulas expressed by the above equations (40a) to (40c), and sets the Lagrange multiplier λ j as the higher-order index pr′_j. Then, the index calculation unit 23 of the j-th solar power generation system may use the received higher index pr′_j as the index pr.

次に、VPPが各パワーコンディショナPCSを複数のグループに分けて管理する場合である第5の運転モードについて説明する。具体的には、グループαとグループβとが設定されており、太陽光発電システムPVS_AのパワーコンディショナPCSがすべてグループαに属し、太陽光発電システムPVS_CのパワーコンディショナPCSがすべてグループβに属し、太陽光発電システムPVS_BのパワーコンディショナPCSの一部がグループαに属し、その他がグループβに属している場合について説明する。   Next, a fifth operation mode in which the VPP manages each power conditioner PCS in a plurality of groups will be described. Specifically, group α and group β are set, and all the power conditioners PCS of the photovoltaic power generation system PVS_A belong to the group α, and all the power conditioners PCS of the photovoltaic power generation system PVS_C belong to the group β. A case where a part of the power conditioner PCS of the photovoltaic power generation system PVS_B belongs to the group α and the other belongs to the group β will be described.

図29は、第5の運転モードを説明するためのブロック図である。   FIG. 29 is a block diagram for explaining the fifth operation mode.

第5の運転モードでは、指標算出部73は、受信部72より入力された個別出力電力Pi outから、グループαに属しているパワーコンディショナPCSの出力の合計であるΣαPi out、および、グループβに属しているパワーコンディショナPCSの出力の合計であるΣβPi outを算出する。また、指標算出部73は、出力指令値取得部71より入力された出力指令値PC’から、グループαに対する目標値であるPC'_α、および、グループβに対する目標値であるPC'_β(PC'_α+PC'_β=PC')を設定する。目標値PC'_α、PC'_βは、例えば、各グループα,βの容量比や出力電力比などに応じて設定される。なお、VPP全体としての出力を目標値であるPC'に制御するのではなく、各グループの出力をそれぞれの目標値に制御するのであれば、PC'_α+PC'_β=PC'の制限をすることなく、それぞれの目標値PC'_α、PC'_βを設定すればよい。そして、指標算出部73は、ΣαPi outをPC'_αにするための指標、および、ΣβPi outをPC'_βにするための指標を算出する。指標算出部73は、勾配係数をεαとして、下記(41a)式に基づいてラグランジュ乗数λαを算出する。同様に、指標算出部73は、勾配係数をεβとして、下記(41b)式に基づいてラグランジュ乗数λβを算出する。そして、中央管理装置MC’は、上位指標pr’_Aとしてλαを太陽光発電システムPVS_Aに送信し、上位指標pr’_BとしてλαおよびλΒを太陽光発電システムPVS_Bに送信し、上位指標pr’_Cとしてλβを太陽光発電システムPVS_Cに送信する。

Figure 2018143046
In the fifth operation mode, the index calculation unit 73, from the individual output power P i out input from the reception unit 72, ΣαP i out , which is the sum of the outputs of the power conditioners PCS belonging to the group α, ΣβP i out which is the total output of the power conditioners PCS belonging to the group β is calculated. In addition, the index calculation unit 73 determines, based on the output command value P C ′ input from the output command value acquisition unit 71, P C ′ _α that is a target value for the group α and P C ′ that is a target value for the group β. _Β (P C '_α + P C ' _β = P C ') is set. The target values P C ′ _α and P C ′ _β are set according to, for example, the capacity ratio and output power ratio of the groups α and β. If the output of the entire VPP is not controlled to the target value P C ′ but the output of each group is controlled to the target value, P C ′ _α + P C ′ _β = P C ′ The target values P C '_α and P C ' _β may be set without any limitation. Then, the index calculation unit 73 calculates an index for setting ΣαP i out to P C '_α and an index for setting ΣβP i out to P C ' _β. The index calculation unit 73 calculates a Lagrange multiplier λα based on the following equation (41a) with the gradient coefficient as εα. Similarly, the index calculation unit 73 calculates a Lagrange multiplier λβ based on the following equation (41b) with the gradient coefficient as εβ. Then, the central management device MC ′ transmits λα as the higher index pr′_A to the photovoltaic power generation system PVS_A, transmits λα and λΒ as the higher index pr′_B to the photovoltaic power generation system PVS_B, and determines the higher index pr′_C. Λβ is transmitted to the photovoltaic power generation system PVS_C.
Figure 2018143046

太陽光発電システムPVS_Aの集中管理装置MC_Aは、受信した上位指標pr’_A(=λα)と、取得した出力指令値PC_Aと、太陽光発電システムPVS_Aの調整対象電力の許容範囲の上限値PC_Amaxおよび下限値PC_Aminとから、下記(42a)式に基づいて、修正出力指令値PC”_A(PC_Amin≦PC”_A≦PC_Amax)を算出する。そして、勾配係数をεAとして、上記(39b)式に基づいてラグランジュ乗数λAを算出し、ラグランジュ乗数λAを指標prとする。同様に、太陽光発電システムPVS_Cの集中管理装置MC_Cは、受信した上位指標pr’_C(=λΒ)と、取得した出力指令値PC_Cと、太陽光発電システムPVS_Cの調整対象電力の許容範囲の上限値PC_Cmaxおよび下限値PC_Cminとから、下記(42c)式に基づいて、修正出力指令値PC”_C(PC_Cmin≦PC”_C≦PC_Cmax)を算出する。そして、勾配係数をεCとして、上記(39f)式に基づいてラグランジュ乗数λCを算出し、ラグランジュ乗数λCを指標prとする。また、太陽光発電システムPVS_Bの集中管理装置MC_Bは、受信した上位指標pr’_Bを指標算出部23に入力する。指標算出部23は、入力された上位指標pr’_B(=λα,λΒ)と、取得した出力指令値PC_Bと、太陽光発電システムPVS_Bの調整対象電力の許容範囲の上限値PC_Bmaxおよび下限値PC_Bminとから、下記(42b)式に基づいて、修正出力指令値PC”_B(PC_Bmin≦PC”_B≦PC_Bmax)を算出する。ωα,ωβは、重み付けのための係数であり、各グループに所属するパワーコンディショナPCSの合計容量比や台数比に応じて設定される。指標算出部23は、算出された修正出力指令値PC”_Bを出力指令値とし、勾配係数をεBとして、上記(39d)式に基づいてラグランジュ乗数λBを算出し、ラグランジュ乗数λBを指標prとする。太陽光発電システムPVS_A(PVS_B,PVS_C)の集中管理装置MC_A(MC_B,MC_C)は、それぞれ指標算出部23が算出した指標prを各パワーコンディショナPCSに送信する。各パワーコンディショナPCSは、受信した指標prに基づいて個別目標電力Pi refを算出し、個別出力電力Pi outを制御する。

Figure 2018143046
The centralized management device MC_A of the photovoltaic power generation system PVS_A receives the received upper index pr′_A (= λα), the acquired output command value P C _A, and the upper limit value of the allowable range of the adjustment target power of the photovoltaic power generation system PVS_A. A corrected output command value P C ″ _A (P C _Amin ≦ P C ″ _A ≦ P C _Amax) is calculated from P C _Amax and the lower limit value P C _Amin based on the following equation (42a). Then, with the gradient coefficient as ε A , the Lagrange multiplier λ A is calculated based on the above equation (39b), and the Lagrange multiplier λ A is used as the index pr. Similarly, the centralized management device MC_C of the solar power generation system PVS_C receives the received upper index pr′_C (= λΒ), the acquired output command value P C — C, and the allowable range of the adjustment target power of the solar power generation system PVS_C. From the upper limit value P C — Cmax and the lower limit value P C — Cmin, a corrected output command value P C ″ _C (P C — Cmin ≦ P C ″ _C ≦ P C — Cmax) is calculated based on the following equation (42c). Then, with the gradient coefficient as ε C , the Lagrange multiplier λ C is calculated based on the above equation (39f), and the Lagrange multiplier λ C is used as the index pr. Further, the centralized management device MC_B of the solar power generation system PVS_B inputs the received higher index pr′_B to the index calculation unit 23. The index calculation unit 23 inputs the higher-order index pr′_B (= λα, λΒ), the acquired output command value P C —B, and the upper limit value P C —Bmax of the allowable range of the adjustment target power of the photovoltaic power generation system PVS_B. Based on the following equation (42b), the corrected output command value P C ″ _B (P C _Bmin ≦ P C ″ _B ≦ P C _Bmax) is calculated from the lower limit value P C _Bmin. ωα and ωβ are coefficients for weighting, and are set according to the total capacity ratio or the number ratio of the power conditioners PCS belonging to each group. The index calculation unit 23 calculates the Lagrange multiplier λ B based on the above equation (39d), using the calculated corrected output command value P C ″ _B as the output command value, the gradient coefficient as ε B , and the Lagrange multiplier λ B. The centralized management device MC_A (MC_B, MC_C) of the photovoltaic power generation system PVS_A (PVS_B, PVS_C) transmits the index pr calculated by the index calculation unit 23 to each power conditioner PCS. The conditioner PCS calculates the individual target power P i ref based on the received index pr and controls the individual output power P i out .
Figure 2018143046

第5の運転モードでは、太陽光発電システムPVS_A(PVS_B,PVS_C)の集中管理装置MC_A(MC_B,MC_C)は、中央管理装置MC’より受信した上位指標pr’_A(pr’_B,pr’_C)に基づいて、調整対象電力の許容範囲の上限値および下限値を考慮した修正出力指令値PC”_A(PC”_B,PC”_C)を算出し、これに基づいて算出された指標Prによって各パワーコンディショナPCSを制御する。したがって、太陽光発電システムPVS_A(PVS_B,PVS_C)は、それぞれの目的を達成させることができる。また、修正出力指令値PC”_A、PC”_B、PC”_Cを算出する際に、いずれも上限値および下限値を超えなければ、VPP全体としての目的も達成させることができる。また、いずれかが上限値または下限値を超えた場合でも、上記(41a),(41b)式によりラグランジュ乗数λα,λβが調整されて他の太陽光発電システムでカバーされるので、VPP全体としての目的も達成させるように制御される。 In the fifth operation mode, the centralized management device MC_A (MC_B, MC_C) of the photovoltaic power generation system PVS_A (PVS_B, PVS_C) receives the higher index pr′_A (pr′_B, pr′_C) received from the central management device MC ′. ) on the basis, adjusted power tolerance upper limit value and modifying the output command value considering the lower limit value P C "_A (P C" _B, calculates the P C "_C), calculated based on this Each power conditioner PCS is controlled by the index Pr.Therefore, the photovoltaic power generation systems PVS_A (PVS_B, PVS_C) can achieve their respective purposes, and the corrected output command values P C ″ _A, P C ″. When calculating _B, P C ″ _C, if both do not exceed the upper limit value and the lower limit value, the purpose of the entire VPP can be achieved. Even if any of the values exceeds the upper limit value or the lower limit value, the Lagrange multipliers λα and λβ are adjusted by the above equations (41a) and (41b) and covered by other photovoltaic power generation systems. It is controlled to achieve the purpose.

より一般化して、VPPが備えている太陽光発電システムの数がmで、グループの数がpの場合は、指標算出部73は、k番目のグループの調整対象電力をPk(t)(k=1,2、…、p)、k番目のグループの目標電力をPC’_k(t)(k=1,2、…、p)、k番目のグループに対する勾配係数をεk(k=1,2、…、p)、k番目のグループに対するラグランジュ乗数をλk(k=1,2、…、p)とし、下記(43a)〜(43b)式で示す数式を解くことで、前記ラグランジュ乗数λk(k=1,2、…、p)を算出し、これを上位指標とする。調整対象電力Pk(t)は、k番目のグループに所属するパワーコンディショナの個別出力電力の合計Σki out(t)であり、k番目のグループが負荷を備えている場合は、個別出力電力の合計Σki out(t)から負荷消費電力値を減算したものである。太陽光発電システムへは、上位指標λk(k=1,2、…、p)のうち、パワーコンディショナが所属するグループに対応するものだけを送信するようにしてもよい。そして、j番目の太陽光発電システムの指標算出部23は、上位指標λk(k=1,2、…、p)、重み付けのための係数ωk_j、調整対象電力の許容範囲の上限値PC_jmaxおよび下限値PC_jminから、下記(44a)〜(44b)式に基づいて、修正出力指令値PC”_jを算出する。上記例では、太陽光発電システムPVS_AのパワーコンディショナPCSがすべてグループαに属しているので、下記(44a)式において、重み付けのための係数ωα_A=1、ωβ_A=0となって、上記(42a)式となっている。そして、指標算出部23は、当該太陽光発電システムの調整対象電力をPj(t)、勾配係数をεj、指標をprとし、下記(44c)〜(44d)式で示す数式を解くことで、前記指標prを算出する。調整対象電力Pj(t)は、j番目の太陽光発電システムのパワーコンディショナの個別出力電力の合計Σji out(t)であり、j番目の太陽光発電システムが負荷を備えている場合は、個別出力電力の合計Σji out(t)から負荷消費電力値を減算したものである。また、j番目の太陽光発電システムが連系点電力P(t)を検出する場合、調整対象電力Pj(t)は、連系点電力P(t)である。

Figure 2018143046
More generally, when the number of photovoltaic power generation systems included in the VPP is m and the number of groups is p, the index calculation unit 73 determines the adjustment target power of the kth group as P k (t) ( k = 1, 2,..., p), the target power of the kth group is P C '_k (t) (k = 1, 2,..., p), and the gradient coefficient for the kth group is ε k (k = 1, 2,..., P), λ k (k = 1, 2,..., P) as the Lagrange multiplier for the k-th group, and solving the equations shown in the following equations (43a) to (43b): The Lagrange multiplier λ k (k = 1, 2,..., P) is calculated and used as a higher index. The adjustment target power P k (t) is the total Σ k P i out (t) of the individual output powers of the power conditioners belonging to the k th group, and when the k th group has a load, This is a value obtained by subtracting the load power consumption value from the total individual output power Σ k P i out (t). You may make it transmit only a thing corresponding to the group to which a power conditioner belongs among high-order parameter | index (lambda) k (k = 1, 2, ..., p) to a photovoltaic power generation system. Then, the index calculation unit 23 of the j-th solar power generation system includes a higher index λ k (k = 1, 2,..., P), a weighting coefficient ω k _j, and an upper limit value of the allowable range of the adjustment target power. Based on the following formulas (44a) to (44b), the corrected output command value P C ″ _j is calculated from P C — jmax and the lower limit value P C — jmin. In the above example, the power conditioner PCS of the photovoltaic power generation system PVS_A is calculated. Since all belong to the group α, in the following equation (44a), the weighting coefficients ωα_A = 1 and ωβ_A = 0 are obtained, and the equation (42a) is obtained. The index pr is calculated by solving the mathematical formulas shown in the following formulas (44c) to (44d), where P j (t) is the adjustment target power of the solar power generation system, ε j is the slope coefficient, and pr is the index. Adjustment target The electric power P j (t) is the sum Σ j P i out (t) of the individual output power of the power conditioner of the j-th solar power generation system, and the j-th solar power generation system has a load. Is obtained by subtracting the load power consumption value from the total output power Σ j P i out (t), and when the j-th photovoltaic power generation system detects the interconnection power P (t), The adjustment target power P j (t) is the interconnection point power P (t).
Figure 2018143046

なお、第5の運転モードにおいて、上記(44a)〜(44d)式による演算を、指標算出部73で行うようにしてもよい。具体的には、j番目の太陽光発電システムがそれぞれ上限値PC_jmax、下限値PC_jminおよび出力指令値PC_jを中央管理装置MC’に送信する。指標算出部73が上記(44a)〜(44c)式で示す数式を解くことで、ラグランジュ乗数λjを算出し、ラグランジュ乗数λjを上位指標pr’_jとする。そして、j番目の太陽光発電システムの指標算出部23は、受信した上位指標pr’_jを指標prとすればよい。 In the fifth operation mode, the calculation by the above formulas (44a) to (44d) may be performed by the index calculation unit 73. Specifically, the j-th solar power generation system transmits an upper limit value P C — jmax, a lower limit value P C — jmin, and an output command value P C — j to the central management device MC ′. The index calculation unit 73 calculates the Lagrange multiplier λ j by solving the mathematical formulas shown in the above equations (44a) to (44c), and sets the Lagrange multiplier λ j as the higher-order index pr′_j. Then, the index calculation unit 23 of the j-th solar power generation system may use the received higher index pr′_j as the index pr.

第9実施形態によると、中央管理装置MC’は、指標算出部73が算出した上位指標pr’_A,pr'_B,pr'_Cを、それぞれ、集中管理装置MC_A,MC_B,MC_C(太陽光発電システムPVS_A,PVS_B,PVS_C)に送信する。集中管理装置MC_A(MC_B,MC_C)は、受信した上位指標pr’_A(pr’_B,pr’_C)に応じて指標prを算出し、各パワーコンディショナPCSに送信する。そして、各パワーコンディショナPCSは、集中管理装置MC_A(MC_B,MC_C)より受信した指標prに基づいて個別出力電力Pi outを制御する。集中管理装置MC_A(MC_B,MC_C)は、受信した上位指標pr’_A(pr’_B,pr’_C)に応じて指標prを算出するだけなので、パワーコンディショナPCS毎に目標出力電力を算出する場合と比べて、処理負荷を低減することができる。特に、第1ないし第3の運転モードの場合、集中管理装置MC_A(MC_B,MC_C)は、受信した上位指標pr’_A(pr’_B,pr’_C)をそのまま指標prとするので、処理負荷をより低減することができる。 According to the ninth embodiment, the central management device MC ′ uses the central management devices MC_A, MC_B, and MC_C (solar power generation) as the higher-order indexes pr′_A, pr′_B, and pr′_C calculated by the index calculation unit 73, respectively. System PVS_A, PVS_B, PVS_C). The centralized management device MC_A (MC_B, MC_C) calculates an index pr according to the received upper index pr′_A (pr′_B, pr′_C), and transmits it to each power conditioner PCS. Each power conditioner PCS controls the individual output power P i out based on the index pr received from the central management device MC_A (MC_B, MC_C). The centralized management device MC_A (MC_B, MC_C) only calculates the index pr according to the received higher index pr′_A (pr′_B, pr′_C), and therefore calculates the target output power for each power conditioner PCS. Compared to the case, the processing load can be reduced. In particular, in the case of the first to third operation modes, the centralized management device MC_A (MC_B, MC_C) uses the received higher index pr′_A (pr′_B, pr′_C) as the index pr as it is. Can be further reduced.

なお、第9実施形態においては、VPPが備える電力システムが太陽光発電システムの場合について説明したが、これに限られない。VPPが備える電力システムは、上述したように、風力発電システム、燃料電池による発電システム、回転機形の発電機による発電システム、アグリゲータによる発電システム、太陽光発電システム、および、これらを併用した発電システムであってもよい。これらの場合、各発電システムも、特許請求の範囲に記載の「電力システム」に相当する。これらの発電システムに対しても、中央管理装置MC’は、指標算出部73が算出した上位指標を送信する。これらの発電システムも、受信した上位指標に応じて、出力の制御を行う。また、第3の運転モードにおいては、これらの発電システムも、調整対象電力の許容範囲の上限値および下限値を中央管理装置MC’に送信する。   In the ninth embodiment, the case where the power system included in the VPP is a solar power generation system has been described. However, the present invention is not limited to this. As described above, the power system provided in the VPP includes a wind power generation system, a fuel cell power generation system, a rotating machine type power generation system, an aggregator power generation system, a solar power generation system, and a power generation system using these in combination. It may be. In these cases, each power generation system also corresponds to a “power system” recited in the claims. Also for these power generation systems, the central management device MC ′ transmits the higher index calculated by the index calculation unit 73. These power generation systems also perform output control according to the received higher index. In the third operation mode, these power generation systems also transmit the upper limit value and the lower limit value of the allowable range of the adjustment target power to the central management device MC ′.

本発明に係るバーチャルパワープラントは、上記実施形態に限定されるものではなく、本発明の特許請求の範囲に記載の内容を逸脱しなければ、各部の具体的な構成は、種々に設計変更自在である。   The virtual power plant according to the present invention is not limited to the above embodiment, and the specific configuration of each part can be variously modified without departing from the contents described in the claims of the present invention. It is.

PVS1〜PVS8,PVS_A,PVS_B,PVS_C 太陽光発電システム(電力システム)
A 電力系統
SPi 太陽電池
k 蓄電池
PCSi,PCSPVi,PCSBk パワーコンディショナ(電力装置)
PV 第1パワーコンディショナ群
B 第2パワーコンディショナ群
11,31 受信部
12,12’,32 目標電力算出部
13,33 出力制御部
14 出力電力検出部
15 送信部
MC1〜MC8,MC_A,MC_B,MC_C 集中管理装置
21 出力指令値取得部
22 連系点電力検出部
23,43,43’,43” 指標算出部
24,44 送信部
45 ピークカット設定部
46 逆潮流回避設定部
51 RPR(逆電力継電器)
61 受信部
62,62’ 総出力算出部
63,63’ 指標算出部
64 スケジュール設定部
MC’ 中央管理装置
71 出力指令値取得部
72 受信部
73 指標算出部
74 送信部
L 電力負荷
PVS1-PVS8, PVS_A, PVS_B, PVS_C Solar power generation system (electric power system)
A Power system SP i solar battery B k storage battery PCS i , PCS PVi , PCS Bk power conditioner (power equipment)
G PV first power conditioner group G B second power conditioner groups 11, 31 receiving unit 12, 12 ', 32 target power calculator 13, 33 output control unit 14 outputs the power detection unit 15 transmission unit MC1~MC8, MC_A , MC_B, MC_C Centralized management device 21 Output command value acquisition unit 22 Link point power detection unit 23, 43, 43 ′, 43 ″ Index calculation unit 24, 44 Transmission unit 45 Peak cut setting unit 46 Reverse power flow avoidance setting unit 51 RPR (Reverse power relay)
REFERENCE SIGNS LIST 61 receiving unit 62, 62 ′ total output calculating unit 63, 63 ′ index calculating unit 64 schedule setting unit MC ′ central management device 71 output command value acquiring unit 72 receiving unit 73 index calculating unit 74 transmitting unit L power load

Claims (6)

複数の電力システムと、前記複数の電力システムを管理する中央管理装置と、を備えているバーチャルパワープラントであって、
前記各電力システムはそれぞれ、電力系統に接続された複数台の電力装置と、前記複数台の電力装置を管理する集中管理装置と、を備え、
前記集中管理装置は、
調整対象電力を検出する検出手段と、
前記調整対象電力が目標電力となるように、前記各電力装置に対して個別出力電力を制御させるための指標を算出する指標算出手段と、
前記指標を前記各電力装置のそれぞれに送信する送信手段と、
を備え、
前記各電力装置はそれぞれ、
前記送信手段が送信した前記指標を受信する受信手段と、
前記受信手段が受信した前記指標を用いた最適化問題に基づいて、自装置の前記個別出力電力の個別目標電力を算出する目標電力算出手段と、
前記目標電力算出手段が算出した前記個別目標電力となるように前記個別出力電力を制御する制御手段と、
を備え、
前記中央管理装置は、
前記各電力システムの前記調整対象電力の合計電力が、全体目標電力となるように、前記各電力システムに対して前記調整対象電力を制御させるための上位指標を算出する上位指標算出手段と、
前記上位指標を前記各電力システムのそれぞれに送信する中央管理装置送信手段と、
を備えており、
前記電力システムが前記中央管理装置からの前記上位指標を受信した場合には、当該電力システムの指標算出手段は、前記上位指標に基づいて前記指標を算出する、
ことを特徴とするバーチャルパワープラント。
A virtual power plant comprising a plurality of power systems and a central management device that manages the plurality of power systems,
Each of the power systems includes a plurality of power devices connected to a power system, and a centralized management device that manages the plurality of power devices,
The centralized management device is:
Detection means for detecting power to be adjusted;
Index calculation means for calculating an index for controlling the individual output power to each power device so that the adjustment target power becomes a target power;
Transmitting means for transmitting the index to each of the power devices;
With
Each of the power devices is
Receiving means for receiving the indicator transmitted by the transmitting means;
Target power calculation means for calculating the individual target power of the individual output power of the device based on the optimization problem using the index received by the reception means;
Control means for controlling the individual output power so as to be the individual target power calculated by the target power calculation means;
With
The central management device is:
Upper index calculation means for calculating a higher index for causing each power system to control the power to be adjusted so that the total power of the power to be adjusted of each power system becomes an overall target power;
A central management device transmitting means for transmitting the upper index to each of the power systems;
With
When the power system receives the upper index from the central management device, the index calculation means of the power system calculates the index based on the upper index,
A virtual power plant characterized by that.
前記上位指標算出手段は、前記電力システムの数をm、j番目の電力システムの調整対象電力をPj(t)(j=1,2、…、m)、前記全体目標電力をPC’(t)、j番目の電力システムの目標電力をPC’_j(t)(j=1,2、…、m)、j番目の電力システムに対する勾配係数をεj(j=1,2、…、m)、j番目の電力システムに対する上位指標をpr’_j(j=1,2、…、m)とし、下記(1a)〜(1c)式で示す数式を解くことで、前記上位指標pr’_j(j=1,2、…、m)を算出し、
前記指標算出手段は、入力された前記上位指標を前記指標とする、
請求項1に記載のバーチャルパワープラント。
Figure 2018143046
The upper index calculating means sets the number of the power systems to m, the j-th power system adjustment target power to P j (t) (j = 1, 2,..., M), and the overall target power to P C ′. (T), the target power of the j-th power system is P C '_j (t) (j = 1, 2,..., M), and the gradient coefficient for the j-th power system is ε j (j = 1, 2, ..., m), the higher index for the j-th power system is pr′_j (j = 1, 2,..., M), and the upper index is solved by solving the mathematical expressions shown in the following equations (1a) to (1c). calculating pr′_j (j = 1, 2,..., m),
The index calculation means uses the inputted higher index as the index.
The virtual power plant according to claim 1.
Figure 2018143046
前記上位指標算出手段は、前記電力システムの数をm、j番目の太陽光発電システムの調整対象電力をPj(t)(j=1,2、…、m)、前記全体目標電力をPC’(t)、勾配係数をεall、j番目の電力システムに対する上位指標をpr’_j(j=1,2、…、m)とし、下記(2a)〜(2b)式で示す数式を解くことで、前記上位指標pr’_j(j=1,2、…、m)を算出し、
前記指標算出手段は、入力された前記上位指標を前記指標とする、
請求項1に記載のバーチャルパワープラント。
Figure 2018143046
The higher-order index calculating means sets the number of the power systems to m, the adjustment target power of the j-th solar power generation system to P j (t) (j = 1, 2,..., M), and the overall target power to P C ′ (t), the gradient coefficient is ε all , the upper index for the j-th power system is pr′_j (j = 1, 2,..., M), and the following equations (2a) to (2b) are used. By solving, the upper index pr′_j (j = 1, 2,..., M) is calculated,
The index calculation means uses the inputted higher index as the index.
The virtual power plant according to claim 1.
Figure 2018143046
前記各電力システムは、前記調整対象電力の許容範囲の上限値および下限値を、前記送信手段を介して、前記中央管理装置に送信し、
前記上位指標算出手段は、前記電力システムの数をm、j番目の電力システムから入力された前記上限値をPC_jmax、前記下限値をPC_jmin(j=1,2、…、m)、j番目の電力システムの調整対象電力をPj(t)(j=1,2、…、m)、前記全体目標電力をPC’(t)、j番目の電力システムの目標電力をPC’_j(t)(j=1,2、…、m)、j番目の電力システムに対する勾配係数をεj(j=1,2、…、m)、j番目の電力システムに対する上位指標をpr’_j(j=1,2、…、m)とし、下記(3a)〜(3c)式で示す数式を解くことで、前記上位指標pr’_j(j=1,2、…、m)を算出し、
前記指標算出手段は、入力された前記上位指標を前記指標とする、
請求項1に記載のバーチャルパワープラント。
Figure 2018143046
Each of the power systems transmits an upper limit value and a lower limit value of an allowable range of the adjustment target power to the central management device via the transmission unit,
The upper index calculation means sets the number of the power systems to m, the upper limit value input from the jth power system as P C — jmax, and the lower limit value as P C — jmin (j = 1, 2,..., M). , P j (t) (j = 1, 2,..., M), the overall target power P C ′ (t), and the jth power system target power P C '_j (t) (j = 1,2, ..., m), the slope coefficient epsilon j for the j-th power system (j = 1,2, ..., m ), the higher the index for the j-th power system pr′_j (j = 1, 2,..., m) and solving the mathematical formulas shown in the following formulas (3a) to (3c), the upper index pr′_j (j = 1, 2,..., m) To calculate
The index calculation means uses the inputted higher index as the index.
The virtual power plant according to claim 1.
Figure 2018143046
前記上位指標算出手段は、前記電力システムの数をm、各電力システムの調整対象電力をPj(t)(j=1,2、…、m)、前記全体目標電力をPC’(t)、勾配係数をεall、j番目の電力システムに対する上位指標をpr’_j(j=1,2、…、m)とし、下記(4a)〜(4b)式で示す数式を解くことで、前記上位指標pr’_j(j=1,2、…、m)を算出し、
j番目の電力システムの前記指標算出手段は、
入力された前記上位指標pr’_j、前記目標電力PC_j、前記調整対象電力の許容範囲の上限値PC_jmaxおよび下限値PC_jminから、下記(5a)〜(5b)式に基づいて、修正目標電力PC”_jを算出し、
当該電力システムの勾配係数をεj、前記指標をprとし、下記(5c)〜(5d)式で示す数式を解くことで、前記指標prを算出する、
請求項1に記載のバーチャルパワープラント。
Figure 2018143046
The higher-order index calculating means sets the number of the power systems to m, the power to be adjusted for each power system to P j (t) (j = 1, 2,..., M), and the total target power to P C ′ (t ), The gradient coefficient is ε all , the higher index for the j-th power system is pr′_j (j = 1, 2,..., M), and the mathematical formulas shown in the following equations (4a) to (4b) are solved, Calculating the higher index pr′_j (j = 1, 2,..., M);
The index calculating means of the j-th power system is
It entered the upper index Pr'_j, the target power P C _j, from the upper limit value P C _jmax and the lower limit value P C _jmin tolerance of the adjusted power, on the basis of the following (5a) ~ (5b) formula , Calculate the corrected target power P C ″ _j,
The gradient coefficient of the power system is ε j , the index is pr, and the index pr is calculated by solving the following mathematical formulas (5c) to (5d).
The virtual power plant according to claim 1.
Figure 2018143046
すべての前記電力装置は、複数のグループのうちのいずれかのグループに所属しており、
前記上位指標算出手段は、前記グループの数をp、k番目のグループの調整対象電力をPk(t)(k=1,2、…、p)、前記全体目標電力をPC’(t)、k番目のグループの目標電力をPC’_k(t)(k=1,2、…、p)、k番目のグループに対する勾配係数をεk(k=1,2、…、p)、k番目のグループに対するラグランジュ乗数をλk(k=1,2、…、p)とし、下記(6)式で示す数式を解くことで、前記ラグランジュ乗数λk(k=1,2、…、p)を算出して、これらを前記上位指標とし、
j番目の電力システムの前記指標算出手段は、
入力された前記上位指標λk(k=1,2、…、p)、重み付けのための係数ωk_j、前記目標電力PC_j、前記調整対象電力の許容範囲の上限値PC_jmaxおよび下限値PC_jminから、下記(7a)〜(7b)式に基づいて、修正目標電力PC”_jを算出し、
当該電力システムの調整対象電力をPj(t)、勾配係数をεj、前記指標をprとし、下記(7c)〜(7d)式で示す数式を解くことで、前記指標prを算出する、
請求項1に記載のバーチャルパワープラント。
Figure 2018143046
All the power devices belong to one of a plurality of groups,
The higher-order index calculating means sets the number of groups to p, the k-th group adjustment target power to P k (t) (k = 1, 2,..., P), and the overall target power to P C ′ (t ), The target power of the k-th group is P C '_k (t) (k = 1, 2,..., P), and the gradient coefficient for the k-th group is ε k (k = 1, 2,..., P). , The Lagrange multiplier for the kth group is λ k (k = 1, 2,..., P), and the Lagrange multiplier λ k (k = 1, 2,... , P), and these are used as the high-order indicators,
The index calculating means of the j-th power system is
The inputted higher index λ k (k = 1, 2,..., P), weighting coefficient ω k — j, target power P C — j, upper limit value P C — jmax of allowable range of adjustment target power, and From the lower limit value P C — jmin, the corrected target power P C ″ — j is calculated based on the following formulas (7a) to (7b):
The adjustment target power of the power system is P j (t), the gradient coefficient is ε j , the index is pr, and the index pr is calculated by solving the mathematical formulas shown in the following formulas (7c) to (7d).
The virtual power plant according to claim 1.
Figure 2018143046
JP2017036360A 2017-02-28 2017-02-28 Virtual power plant Active JP6849177B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017036360A JP6849177B2 (en) 2017-02-28 2017-02-28 Virtual power plant
JP2020203583A JP6978572B2 (en) 2017-02-28 2020-12-08 Virtual power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036360A JP6849177B2 (en) 2017-02-28 2017-02-28 Virtual power plant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020203583A Division JP6978572B2 (en) 2017-02-28 2020-12-08 Virtual power plant

Publications (2)

Publication Number Publication Date
JP2018143046A true JP2018143046A (en) 2018-09-13
JP6849177B2 JP6849177B2 (en) 2021-03-24

Family

ID=63526936

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017036360A Active JP6849177B2 (en) 2017-02-28 2017-02-28 Virtual power plant
JP2020203583A Active JP6978572B2 (en) 2017-02-28 2020-12-08 Virtual power plant

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020203583A Active JP6978572B2 (en) 2017-02-28 2020-12-08 Virtual power plant

Country Status (1)

Country Link
JP (2) JP6849177B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110620380A (en) * 2019-09-05 2019-12-27 深圳供电局有限公司 Virtual power plant control system
CN111463834A (en) * 2020-04-08 2020-07-28 合肥阳光新能源科技有限公司 Operation control method of virtual power plant and virtual power plant
JP2021052542A (en) * 2019-09-26 2021-04-01 東京電力ホールディングス株式会社 Negawatt trading support device and negawatt trading method
CN113191680A (en) * 2021-05-21 2021-07-30 上海交通大学 Self-adaptive virtual power plant distributed architecture and economic dispatching method thereof
JP2021125927A (en) * 2020-02-03 2021-08-30 株式会社東芝 Power generation system and control method of the power generation system
WO2021171676A1 (en) * 2020-02-26 2021-09-02 株式会社日立製作所 Distributed resource management device and distributed resource management method
CN113410874A (en) * 2021-06-04 2021-09-17 国网综合能源服务集团有限公司 Load resource optimization control method based on virtual power plant peak regulation auxiliary service
CN113794200A (en) * 2021-08-31 2021-12-14 国网上海市电力公司 Multi-type load resource aggregation method for virtual power plant
CN115049323A (en) * 2022-08-16 2022-09-13 东方电子股份有限公司 Virtual power plant monitoring system based on distributed resource collaboration
WO2023062953A1 (en) * 2021-10-14 2023-04-20 株式会社日立製作所 Cooperation management system and cooperation management method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102571163B1 (en) * 2021-11-25 2023-08-28 한국에너지기술연구원 Surplus power limiting type solar panel control system and solar panel control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130018516A1 (en) * 2011-07-15 2013-01-17 Simon Chee Real-time photovoltaic power plant control system
JP2015141482A (en) * 2014-01-28 2015-08-03 国立研究開発法人宇宙航空研究開発機構 power management method, and system
JP2016033817A (en) * 2014-07-28 2016-03-10 国立研究開発法人宇宙航空研究開発機構 Power control system and method, and information transmission capacity control system and method
WO2017018344A1 (en) * 2015-07-29 2017-02-02 京セラ株式会社 Communication device and communication method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5616385B2 (en) * 2012-03-15 2014-10-29 株式会社日立製作所 Power system control apparatus and power system control method
US20140197681A1 (en) * 2012-07-30 2014-07-17 The Boeing Company Electric system stabilizing system for aircraft
JP6706877B2 (en) * 2012-09-12 2020-06-10 ザ・ボーイング・カンパニーThe Boeing Company Power management control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130018516A1 (en) * 2011-07-15 2013-01-17 Simon Chee Real-time photovoltaic power plant control system
JP2015141482A (en) * 2014-01-28 2015-08-03 国立研究開発法人宇宙航空研究開発機構 power management method, and system
JP2016033817A (en) * 2014-07-28 2016-03-10 国立研究開発法人宇宙航空研究開発機構 Power control system and method, and information transmission capacity control system and method
WO2017018344A1 (en) * 2015-07-29 2017-02-02 京セラ株式会社 Communication device and communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
阿久津彗,平田研二,大堀彰大,服部将之,太田快人: "出力抑制指令への対応を目的とした太陽光発電インバータ群の分散制御と実機検証", 第59回自動制御連合講演会, vol. No.16−14, JPN6020038811, 10 November 2016 (2016-11-10), pages 150 - 153, ISSN: 0004364644 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110620380A (en) * 2019-09-05 2019-12-27 深圳供电局有限公司 Virtual power plant control system
CN110620380B (en) * 2019-09-05 2023-06-20 深圳供电局有限公司 Virtual power plant control system
JP2021052542A (en) * 2019-09-26 2021-04-01 東京電力ホールディングス株式会社 Negawatt trading support device and negawatt trading method
JP7288408B2 (en) 2020-02-03 2023-06-07 株式会社東芝 POWER GENERATION SYSTEM AND CONTROL METHOD FOR POWER GENERATION SYSTEM
JP2021125927A (en) * 2020-02-03 2021-08-30 株式会社東芝 Power generation system and control method of the power generation system
GB2607530A (en) * 2020-02-26 2022-12-07 Hitachi Ltd Distributed resource management device and distributed resource management method
WO2021171676A1 (en) * 2020-02-26 2021-09-02 株式会社日立製作所 Distributed resource management device and distributed resource management method
JP7313300B2 (en) 2020-02-26 2023-07-24 株式会社日立製作所 Distributed resource management device and distributed resource management method
JP2021136757A (en) * 2020-02-26 2021-09-13 株式会社日立製作所 Distributed resources management device and distributed resources management method
CN111463834A (en) * 2020-04-08 2020-07-28 合肥阳光新能源科技有限公司 Operation control method of virtual power plant and virtual power plant
CN111463834B (en) * 2020-04-08 2021-12-14 合肥阳光新能源科技有限公司 Operation control method of virtual power plant and virtual power plant
CN113191680A (en) * 2021-05-21 2021-07-30 上海交通大学 Self-adaptive virtual power plant distributed architecture and economic dispatching method thereof
CN113191680B (en) * 2021-05-21 2023-08-15 上海交通大学 Self-adaptive virtual power plant distributed architecture and economic dispatching method thereof
CN113410874A (en) * 2021-06-04 2021-09-17 国网综合能源服务集团有限公司 Load resource optimization control method based on virtual power plant peak regulation auxiliary service
CN113794200A (en) * 2021-08-31 2021-12-14 国网上海市电力公司 Multi-type load resource aggregation method for virtual power plant
CN113794200B (en) * 2021-08-31 2024-04-12 国网上海市电力公司 Multi-type load resource aggregation method for virtual power plant
WO2023062953A1 (en) * 2021-10-14 2023-04-20 株式会社日立製作所 Cooperation management system and cooperation management method
CN115049323A (en) * 2022-08-16 2022-09-13 东方电子股份有限公司 Virtual power plant monitoring system based on distributed resource collaboration
CN115049323B (en) * 2022-08-16 2022-11-15 东方电子股份有限公司 Virtual power plant monitoring system based on distributed resource collaboration

Also Published As

Publication number Publication date
JP2021040484A (en) 2021-03-11
JP6978572B2 (en) 2021-12-08
JP6849177B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP6978572B2 (en) Virtual power plant
JP6790330B2 (en) Power system
JP6828567B2 (en) Grid interconnection system and power system
US9489701B2 (en) Adaptive energy management system
JP6821904B2 (en) Power system
Akagi et al. Multipurpose control and planning method for battery energy storage systems in distribution network with photovoltaic plant
JP6821905B2 (en) Power system
JP2016046922A (en) Energy supply/demand adjustment system, upper community energy management system, and lower community energy management system
Aziz et al. Issues and mitigations of wind energy penetrated network: Australian network case study
Li et al. PV integration in Low-Voltage feeders with Demand Response
JP6892191B2 (en) Power system
Zupančič et al. Advanced peak shaving control strategies for battery storage operation in low voltage distribution network
JP2017046507A (en) System stabilization system
Xie et al. Review on voltage regulation techniques via flexible resources in power distribution systems
Rongali et al. iPlug: Decentralised dispatch of distributed generation
Li et al. Optimal operation of AC/DC hybrid microgrid under spot price mechanism
JP2019122150A (en) Power system and storage battery power conditioner
JP2019165552A (en) Centralized management device
CN114725999B (en) Multi-terminal coordination autonomous method and system for source load storage of micro-grid
Firoozi et al. Active management of distribution networks
US20230369889A1 (en) Power control device, power control method, and power control program
JP2018170884A (en) Power management device, power management method, and power management program
Li et al. PV integration in low-voltage feeders with demand response
de Carvalho et al. Over-voltage disconnection of DER inverters: Assessing customer savings
Han et al. Multi-time Scale Energy Management Strategy for Smart Community Considering Demand Response

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6849177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250