JP2018143014A - Secondary battery system and vehicle system using the same - Google Patents

Secondary battery system and vehicle system using the same Download PDF

Info

Publication number
JP2018143014A
JP2018143014A JP2017034280A JP2017034280A JP2018143014A JP 2018143014 A JP2018143014 A JP 2018143014A JP 2017034280 A JP2017034280 A JP 2017034280A JP 2017034280 A JP2017034280 A JP 2017034280A JP 2018143014 A JP2018143014 A JP 2018143014A
Authority
JP
Japan
Prior art keywords
contactor
secondary battery
coil
voltage
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017034280A
Other languages
Japanese (ja)
Inventor
雄貴 能美
Yuki Nomi
雄貴 能美
昌宏 上田
Masahiro Ueda
昌宏 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2017034280A priority Critical patent/JP2018143014A/en
Publication of JP2018143014A publication Critical patent/JP2018143014A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery system which can detect not only abnormality of contactors but also abnormality of a control circuit and can identify a failure portion.SOLUTION: A secondary battery system 1000 comprises: a secondary battery 100; contactors 200a to 200c for conducting or interrupting power supply between the secondary battery and a load 110; and coils 300a to 300c for driving the contactors. The system also comprises a battery control section 400 for diagnosing a failure of a contactor circuit section from drivers 310a to 310c for driving the contactors to the contactors on the basis of open/close command signals 120a to 120c of the contactors, voltage values and current values of the coils and a voltage value of a high voltage side of the contactors.SELECTED DRAWING: Figure 1

Description

本発明は、二次単電池を用いた二次電池システム及びそれを用いた車両システムに関する。   The present invention relates to a secondary battery system using a secondary cell and a vehicle system using the same.

ハイブリッド電気自動車(HEV)や電気自動車(EV)などの電動車両には、二次電池が用いられており、この
二次電池からの直流出力をインバータにより交流に変換し、交流モータを駆動する。このような電動駆動システムでは、二次電池とインバータの正極、および負極を接続する高電圧回路にコンタクタが接続される。
A secondary battery is used in an electric vehicle such as a hybrid electric vehicle (HEV) or an electric vehicle (EV), and a DC output from the secondary battery is converted into an AC by an inverter to drive an AC motor. In such an electric drive system, the contactor is connected to a high voltage circuit that connects the secondary battery and the positive and negative electrodes of the inverter.

このコンタクタは開閉することにより二次電池とインバータとを接続、もしくは切断する役割を持ち、安全性の高さが重要視される二次電池の取扱いにおいて用いられることが多い。また、安全性を確保する上で、二次電池を用いる際に考慮しなければいけない点は過充電と過放電である。これらの問題を防止するために二次電池の不要な充放電は避けなければならず、コンタクタが故障し、二次電池とインバータとの接続が制御できなくなってしまうと不要な充放電が起きる要因となる。したがって、コンタクタの制御が適切に行われていることを確認するために、コンタクタの故障診断が実施される。   This contactor has a role of connecting or disconnecting the secondary battery and the inverter by opening and closing, and is often used in handling a secondary battery in which high safety is regarded as important. Further, in order to ensure safety, points to be considered when using a secondary battery are overcharge and overdischarge. In order to prevent these problems, unnecessary charging / discharging of the secondary battery must be avoided. If the contactor fails and the connection between the secondary battery and the inverter becomes uncontrollable, factors that cause unnecessary charging / discharging. It becomes. Therefore, in order to confirm that the control of the contactor is appropriately performed, a failure diagnosis of the contactor is performed.

特許文献1には正極コンタクタ、プリチャージコンタクタ、負極コンタクタと、各コンタクタの開閉指令を制御する制御手段を備えており、コンタクタの開閉に伴う、負荷側(高電圧側)の電圧変動を測定することによってコンタクタの溶着診断を実施している。   Patent Document 1 includes a positive contactor, a precharge contactor, a negative contactor, and control means for controlling an opening / closing command of each contactor, and measures voltage fluctuation on the load side (high voltage side) accompanying opening / closing of the contactor. By doing so, contactor welding diagnosis is carried out.

特開2013−169087号公報JP2013-169087A

二次電池の不要な充放電は、過充電、過放電を引き起こす要因となる。したがって、コンタクタによる二次電池と負荷との導通、遮断は確実に実施することが求められる。しかし、特許文献1に記載の内容では、地絡、天絡、断線、ドライバ開放故障、ドライバ短絡故障といった診断を行うことができない。   Unnecessary charging / discharging of the secondary battery causes overcharging and overdischarging. Therefore, it is required to reliably conduct and shut off the secondary battery and the load by the contactor. However, according to the content described in Patent Document 1, it is impossible to make a diagnosis such as a ground fault, a power fault, a disconnection, a driver open fault, or a driver short fault.

そのため、本発明では測定する項目を増やし、診断項目を増やすことによって、できるだけ早く異常を検知し、コンタクタの異常だけでなく、制御回路の異常も検知できるようにし、さらに、故障部位の特定ができる二次電池システムを提供することを課題とする。   Therefore, in the present invention, by increasing the number of items to be measured and increasing the number of diagnostic items, it is possible to detect an abnormality as soon as possible, to detect not only a contactor abnormality but also a control circuit abnormality, and further, it is possible to identify a failure part. It is an object to provide a secondary battery system.

本発明では上記課題を解決するために、本発明の二次電池システム(1000)は、二次電池(100)と、二次電池と負荷(110)との間の電力供給を導通又は遮断するコンタクタ(200)と、コンタクタ(200)を駆動するコイル(300)を備え、コンタクタ(200)の開閉指令信号(120)と、コイル(300)の電圧値および電流値と、コンタクタ(200)の高電圧側の電圧値に基づいて、コンタクタ(200)を駆動するドライバ(310)からコンタクタ(200)までのコンタクタ回路部の故障診断を行う電池制御部(400)を備える。   In the present invention, in order to solve the above problems, the secondary battery system (1000) of the present invention conducts or cuts off the power supply between the secondary battery (100) and the secondary battery and the load (110). A contactor (200) and a coil (300) for driving the contactor (200) are provided. The contactor (200) opening / closing command signal (120), the voltage value and current value of the coil (300), and the contactor (200) A battery control unit (400) that performs failure diagnosis of the contactor circuit unit from the driver (310) that drives the contactor (200) to the contactor (200) based on the voltage value on the high voltage side is provided.

本発明を適用することによって、コンタクタの異常だけでなく、制御回路の異常も検知できるようになり、さらに、故障部位の特定ができ、二次電池システムとしての信頼性が向上する。   By applying the present invention, not only a contactor abnormality but also a control circuit abnormality can be detected, and a failure part can be specified, thereby improving the reliability of the secondary battery system.

本発明に係る車両システムを説明する図。The figure explaining the vehicle system which concerns on this invention. 本発明に係る電圧検出装置を説明する図。The figure explaining the voltage detection apparatus which concerns on this invention. コンタクタ200の電圧値とコイル300の電流値に基づいて診断した際の故障モード判定図。The failure mode determination figure at the time of diagnosing based on the voltage value of the contactor 200, and the electric current value of the coil 300. FIG. コンタクタ200の電圧値とコイル300の電圧値に基づいて診断した際の故障モード判定図。The failure mode determination figure at the time of diagnosing based on the voltage value of the contactor 200, and the voltage value of the coil 300. FIG. 本発明を用いた場合の故障モード判定図。The failure mode determination figure at the time of using this invention.

以下、本発明に係わる組電池の実施形態を図面に基づき説明する。   Hereinafter, an embodiment of an assembled battery according to the present invention will be described with reference to the drawings.

≪実施形態1≫
まず図1を用いて、本発明の二次電池システム1000について説明する。高電圧二次電池100は、自動車を駆動するために必要となる電力を蓄えておく装置であり、複数個の二次電池のセルを直列接続することによって構成されている。負荷110は、高電圧二次電池100に蓄えられている電力を消費するシステムであり、本実施形態においてはインバータを接続し、モータへつながることを想定している。また、負荷110を本実施形態のように想定した場合、高電圧二次電池100に蓄えられた電力を消費するだけでなく、高電圧二次電池100に電力を回生する役割も持つ。
Embodiment 1
First, the secondary battery system 1000 of the present invention will be described with reference to FIG. The high voltage secondary battery 100 is a device that stores electric power necessary for driving an automobile, and is configured by connecting a plurality of secondary battery cells in series. The load 110 is a system that consumes the electric power stored in the high-voltage secondary battery 100, and in the present embodiment, it is assumed that an inverter is connected to lead to a motor. In addition, when the load 110 is assumed as in the present embodiment, not only the power stored in the high voltage secondary battery 100 is consumed, but also the role of regenerating power in the high voltage secondary battery 100 is provided.

高電圧二次電池100と負荷110との電力のやり取りを導通、遮断するものがコンタクタ200であって、コンタクタ200を開閉することによって導通、遮断を行う。コンタクタ200は高電圧二次電池100の正極側に接続される正極コンタクタ200aとプリチャージコンタクタ200b、負極側に接続される負極コンタクタ200cから構成される。   The contactor 200 conducts and shuts off the exchange of power between the high-voltage secondary battery 100 and the load 110. The contactor 200 is opened and closed to open and close. The contactor 200 includes a positive electrode contactor 200a and a precharge contactor 200b connected to the positive electrode side of the high voltage secondary battery 100, and a negative electrode contactor 200c connected to the negative electrode side.

コンタクタ200の開閉動作を担うものがコンタクタ制御回路であり、コンタクタ駆動用電源140、コイル300、コンタクタドライバ310から構成される。コンタクタ200の開閉は、コイル300に流す電流を制御することによって行う。正極コンタクタ200aはコイル300a、プリチャージコンタクタ200bはコイル300b、負極コンタクタ200cはコイル300cの電流を制御することによって駆動する。   The contactor control circuit is responsible for the opening and closing operation of the contactor 200, and includes a contactor driving power supply 140, a coil 300, and a contactor driver 310. The contactor 200 is opened and closed by controlling the current flowing through the coil 300. The positive contactor 200a is driven by controlling the current of the coil 300a, the precharge contactor 200b is controlled by the coil 300b, and the negative contactor 200c is controlled by controlling the current of the coil 300c.

コイル300に流す電流は、MPU130から出力されるコンタクタ開閉指令信号120のON、OFFに応じて、コンタクタドライバ310の出力電圧150を変化させることによって制御する。コイル300aに流す電流は、MPU130から出力されるコンタクタ開閉指令信号120aのON、OFFに応じて、正極コンタクタドライバ310aの出力電圧150aを変化させることによって制御する。コイル300bに流す電流は、MPU130から出力されるコンタクタ開閉指令信号120bのON、OFFに応じて、プリチャージコンタクタドライバ310bの出力電圧150bを変化させることによって制御する。コイル300cに流す電流は、MPU130から出力されるコンタクタ開閉指令信号120cのON、OFFに応じて、負極コンタクタドライバ310cの出力電圧150cを変化させることによって制御する。   The current flowing through the coil 300 is controlled by changing the output voltage 150 of the contactor driver 310 in accordance with ON / OFF of the contactor opening / closing command signal 120 output from the MPU 130. The current flowing through the coil 300a is controlled by changing the output voltage 150a of the positive contactor driver 310a in accordance with ON / OFF of the contactor opening / closing command signal 120a output from the MPU 130. The current flowing through the coil 300b is controlled by changing the output voltage 150b of the precharge contactor driver 310b in accordance with ON / OFF of the contactor opening / closing command signal 120b output from the MPU 130. The current flowing through the coil 300c is controlled by changing the output voltage 150c of the negative contactor driver 310c in accordance with ON / OFF of the contactor opening / closing command signal 120c output from the MPU 130.

これより先、コンタクタドライバ310の出力電圧150(150a、150b、150c)をコイル300の電圧値とする。   Prior to this, the output voltage 150 (150a, 150b, 150c) of the contactor driver 310 is set as the voltage value of the coil 300.

続いて図2を用いて、本発明の電圧検出装置400の説明をする。図1で示した二次電池システム1000における二次電池100から負荷110までの回路には図2に示すような電圧検出装置(Battery Manegement System、図面中のBMS)400が備わっており、総電圧検出装置400a、正極コンタクタ電圧検出装置400b、負極コンタクタ検出装置400cでそれぞれ二次電池100の電圧値を検出している。   Next, the voltage detection device 400 of the present invention will be described with reference to FIG. A circuit from the secondary battery 100 to the load 110 in the secondary battery system 1000 shown in FIG. 1 includes a voltage detection device (Battery Management System, BMS in the drawing) 400 as shown in FIG. The voltage value of the secondary battery 100 is detected by the detection device 400a, the positive contactor voltage detection device 400b, and the negative contactor detection device 400c.

総電圧検出装置400aは常に二次電池100の正極側と負極側に接続されているため常に二次電池100の電圧値を検出できる。   Since the total voltage detection device 400a is always connected to the positive electrode side and the negative electrode side of the secondary battery 100, the voltage value of the secondary battery 100 can always be detected.

正極コンタクタ電圧検出装置400bは正極コンタクタ200a、もしくはプリチャージコンタクタ200bが閉じることによって、二次電池100の正極側と負極側に接続されるため二次電池100の電圧値を検出できるようになる。正極コンタクタ200aとプリチャージコンタクタ200bが開いていると二次電池100の正極側と接続されないため二次電池100の電圧値は検出できない。   Since the positive electrode contactor voltage detection device 400b is connected to the positive electrode side and the negative electrode side of the secondary battery 100 when the positive electrode contactor 200a or the precharge contactor 200b is closed, the voltage value of the secondary battery 100 can be detected. If the positive electrode contactor 200a and the precharge contactor 200b are opened, the voltage value of the secondary battery 100 cannot be detected because it is not connected to the positive electrode side of the secondary battery 100.

負極コンタクタ電圧検出装置400cは負極コンタクタ200cが閉じることによって二次電池100の正極側と負極側に接続されるため二次電池100の電圧値を検出できるようになる。負極コンタクタ200cが開いていると二次電池100の負極側と接続されないため二次電池100の電圧値は検出できない。   Since the negative electrode contactor voltage detection device 400c is connected to the positive electrode side and the negative electrode side of the secondary battery 100 when the negative electrode contactor 200c is closed, the voltage value of the secondary battery 100 can be detected. If the negative electrode contactor 200c is open, it is not connected to the negative electrode side of the secondary battery 100, so the voltage value of the secondary battery 100 cannot be detected.

これより先、正極コンタクタ電圧検出装置400b、負極コンタクタ電圧検出装置400cによって検出された電圧をコンタクタ200の電圧値とする。   Prior to this, the voltage detected by the positive contactor voltage detection device 400b and the negative contactor voltage detection device 400c is used as the voltage value of the contactor 200.

図3は、コンタクタ200の電圧値とコイル300の電流値に基づいて診断した際の故障モード判定表を示し、図4は、コンタクタ200の電圧値とコイル300の電圧値に基づいて診断した際の故障モード判定表を示す。この図3及び図4は従来の方法による判定方法である。なお、図3以降ではいずれのコンタクタ(正極コンタクタ200a、プリチャージコンタクタ200b、負極コンタクタ200c)であっても同様の判断となるため、コンタクタ200と総称して説明を行う。   FIG. 3 shows a failure mode determination table when diagnosing based on the voltage value of the contactor 200 and the current value of the coil 300, and FIG. 4 is when diagnosing based on the voltage value of the contactor 200 and the voltage value of the coil 300. The failure mode judgment table of is shown. 3 and 4 show a determination method according to the conventional method. In FIG. 3 and subsequent figures, any contactor (positive contactor 200a, precharge contactor 200b, negative electrode contactor 200c) is determined in the same manner, and therefore, the contactor 200 will be collectively described.

表の縦軸500番台は診断する故障モードであり、各故障モードについて以下に示す。   The vertical axis 500s in the table are failure modes to be diagnosed, and each failure mode is shown below.

正常500:コンタクタ開閉指令信号120に応じて適切にコンタクタ200を動作させることができる。   Normal 500: The contactor 200 can be appropriately operated according to the contactor opening / closing command signal 120.

地絡510:コンタクタドライバ310からコンタクタコイル300までの経路が地絡状態となり、該当経路の電圧がLowになるためコンタクタ200が常にcloseの状態となってしまう故障(ハーネス故障)。   Ground fault 510: A failure (harness failure) in which the path from the contactor driver 310 to the contactor coil 300 is in a ground fault state, and the voltage of the corresponding path becomes low, so that the contactor 200 is always in a closed state.

天絡520:コンタクタドライバ310からコンタクタコイル300までの経路が天絡状態となり、該当経路の電圧がコンタクタ駆動用電源140の電圧値になるためコンタクタ200が常にopenの状態となってしまう故障(ハーネス故障)。   Skyline 520: A failure (harness) in which the path from the contactor driver 310 to the contactor coil 300 becomes a skyline state, and the voltage of the path becomes the voltage value of the contactor driving power supply 140, so that the contactor 200 is always in an open state. Malfunction).

断線530:コンタクタ制御回路が断線し、コイル300に電流が流れないためコンタクタ200が常にopenの状態となってしまう故障(ハーネス故障)。   Disconnection 530: A failure (harness failure) in which the contactor control circuit is disconnected and no current flows through the coil 300, so that the contactor 200 is always in an open state.

ドライバ解放故障540:コンタクタドライバ回路310が解放状態となり、常にコンタクタドライバ310の出力電圧150(150a、150b、150c)がコンタクタ駆動用電源140の電圧値になる。コンタクタ200が常にopenの状態となってしまう故障(ドライバ故障)。   Driver release failure 540: The contactor driver circuit 310 is released, and the output voltage 150 (150a, 150b, 150c) of the contactor driver 310 is always the voltage value of the contactor drive power supply 140. A failure in which the contactor 200 is always in an open state (driver failure).

ドライバ短絡故障550:コンタクタドライバ回路310が短絡状態となり、常にコンタクタドライバ310の出力電圧150がLowになる。コンタクタ200が常にcloseの状態となってしまう故障(ドライバ故障)。   Driver short-circuit fault 550: The contactor driver circuit 310 is short-circuited, and the output voltage 150 of the contactor driver 310 is always low. A failure (driver failure) in which the contactor 200 is always in a closed state.

コンタクタ溶着560:コンタクタ200が溶着し、常にcloseの状態となってしまう故障(コンタクタ故障)。   Contactor welding 560: A failure (contactor failure) in which the contactor 200 is welded and is always in a closed state.

横軸は診断に用いる測定項目であり、各測定項目の状態を以下に示す。   The horizontal axis is a measurement item used for diagnosis, and the state of each measurement item is shown below.

また、コンタクタ開閉指令信号120のON状態はコンタクタclose要求を意味し、OFF状態はコンタクタopen要求を意味する。これらの要求に対して実際のコンタクタ動作を示したのが、図3中のコンタクタ200の状態である。このコンタクタ200の状態に対応してコンタクタ200の電圧値は変化し、コンタクタ200がcloseのときは高電圧二次電池100と接続されているため総電圧が検出され、openのときは高電圧二次電池100と切り離されているため電圧はLow(0[V]に近い値)となる。また、コイル300の電流値とコイル300の電圧値は、それぞれの故障モードにおいて測定される値を示している。   Further, the ON state of the contactor opening / closing command signal 120 means a contactor close request, and the OFF state means a contactor open request. The actual contactor operation in response to these requests is the state of the contactor 200 in FIG. The voltage value of the contactor 200 changes in accordance with the state of the contactor 200. When the contactor 200 is closed, the total voltage is detected because the contactor 200 is connected to the high voltage secondary battery 100, and when the contactor 200 is open, the high voltage 2 Since the secondary battery 100 is disconnected, the voltage is Low (value close to 0 [V]). In addition, the current value of the coil 300 and the voltage value of the coil 300 indicate values measured in the respective failure modes.

図3及び図4に示す各測定項目の状態に基づいて、故障モード500から560を診断する。   The failure modes 500 to 560 are diagnosed based on the state of each measurement item shown in FIGS.

図3に示すコンタクタ200の電圧値とコイル300の電流値に基づいた診断においては、コンタクタ開閉指令信号120に関わらず断線状態とドライバ開放故障におけるコンタクタ200の高電位側の電圧値とコイル300の電流値の測定結果は同じであるため判断することができない。また、図4に示すコンタクタ200の電圧値とコイル300の電圧値に基づいた診断においては、コンタクタ開閉指令信号120に関わらず地絡とドライバ短絡故障、天絡とドライバ開放故障におけるコンタクタ200の電圧値とコイル300の電流値の測定結果は同じであるため判断することができない。そのため、従来方法では地絡、ドライバ短絡故障、天絡、ドライバ開放故障、断線、コンタクタ溶着のいずれの状態であるか断定できない。   In the diagnosis based on the voltage value of the contactor 200 and the current value of the coil 300 shown in FIG. 3, regardless of the contactor opening / closing command signal 120, the voltage value on the high potential side of the contactor 200 and the coil 300 Since the measurement result of the current value is the same, it cannot be determined. In the diagnosis based on the voltage value of the contactor 200 and the voltage of the coil 300 shown in FIG. 4, regardless of the contactor opening / closing command signal 120, the voltage of the contactor 200 in the ground fault and the driver short circuit fault, the power fault and the driver open fault Since the value and the measurement result of the current value of the coil 300 are the same, it cannot be determined. Therefore, in the conventional method, it cannot be determined whether the state is a ground fault, a driver short circuit fault, a power fault, a driver open fault, a disconnection, or a contactor welding.

一方で本発明の方法を用いれば地絡、ドライバ短絡故障、天絡、ドライバ開放故障、断線、コンタクタ溶着のいずれの状態であるか断定できる。図5は本発明の検出方法を用いた結果を示した表である。本発明の検出方法は、コンタクタ200の電圧値とコイル300の電流値とコイル300の電圧値のすべてを用いてコンタクタの故障を検知するものである。   On the other hand, if the method of this invention is used, it can be determined whether it is a ground fault, a driver short circuit fault, a power fault, a driver open fault, a disconnection, and a contactor welding. FIG. 5 is a table showing the results using the detection method of the present invention. The detection method of the present invention detects contactor failure using all of the voltage value of the contactor 200, the current value of the coil 300, and the voltage value of the coil 300.

なお、図5に示す各故障モードは図3、および図4に記載の故障モードと同様である。図3及び図4同様、図5に示す各測定項目の状態に基づいて、故障モード500から560を診断する。   Each failure mode shown in FIG. 5 is the same as the failure mode described in FIGS. 3 and 4. Similar to FIGS. 3 and 4, failure modes 500 to 560 are diagnosed based on the state of each measurement item shown in FIG.

このように、コンタクタ200の電圧値とコイル300の電流値で各故障モードを検出する場合には、コンタクタ開閉指令信号120のON、OFFにかかわらず断線530の故障モードとドライバ開放故障540の故障モードが同じ判定になるため断線530とドライバ開放故障540の区別がつかなかった。一方で、コンタクタ200の電圧値とコイル300の電圧値で各故障モードを検出する場合には、コンタクタ開閉指令信号120のON、OFFにかかわらず地絡510の故障モードとドライバ短絡故障550の故障モー
ド、天絡520の故障モードとドライバ開放故障540の故障モードがそれぞれ同じ判定になるため地絡510とドライバ短絡故障550、天絡520とドライバ開放故障540のそれぞれの故障モードがそれぞれ区別がつかなかった。
As described above, when each failure mode is detected by the voltage value of the contactor 200 and the current value of the coil 300, the failure mode of the disconnection 530 and the failure of the driver open failure 540 regardless of whether the contactor opening / closing command signal 120 is ON or OFF. Since the mode is determined to be the same, the disconnection 530 and the driver open failure 540 could not be distinguished. On the other hand, when each failure mode is detected by the voltage value of the contactor 200 and the voltage value of the coil 300, the failure mode of the ground fault 510 and the failure of the driver short-circuit failure 550 regardless of whether the contactor opening / closing command signal 120 is ON or OFF. Mode, the failure mode of the power fault 520 and the failure mode of the driver open fault 540 are determined to be the same, so that the fault modes of the ground fault 510 and the driver short fault 550 and the power fault 520 and the driver open fault 540 can be distinguished from each other. There wasn't.

一方で本発明のように、測定項目を合わせる(測定項目をコンタクタ200の電圧値、コイル300の電圧値、コイル300の電流値のすべてを用いて診断を実施する)ことによって、それぞれの診断項目におけるコンタクタ200の電圧、コイル300の電流値、コイル300の電圧値の組み合わせはすべて異なるようになるため、全故障モードを診断することが可能となる。したがって、従来の方法よりもより詳細な診断をすることが可能である。また、本発明のように故障モードが特定できると、下記のような利点がある。   On the other hand, by combining measurement items as in the present invention (diagnosis is performed using all of the voltage values of the contactor 200, the voltage value of the coil 300, and the current value of the coil 300 as the measurement items), Since the combinations of the voltage of the contactor 200, the current value of the coil 300, and the voltage value of the coil 300 are all different, it becomes possible to diagnose all failure modes. Therefore, it is possible to make a more detailed diagnosis than the conventional method. Further, if the failure mode can be specified as in the present invention, there are the following advantages.

(1)コンタクタドライバの故障と制御回路の故障が見分けられないと、故障したときコンタクタドライバと制御回路をどちらも取り替える必要があり、コストが増大する。そのため、本発明を適用することによって、故障モードを特定することによって、故障部位まで特定することができ、修理の際に交換する部品が減るという利点がある。   (1) If the failure of the contactor driver and the failure of the control circuit cannot be distinguished, it is necessary to replace both the contactor driver and the control circuit when a failure occurs, and the cost increases. Therefore, by applying the present invention, it is possible to specify the failure mode by specifying the failure mode, and there is an advantage that the number of parts to be replaced at the time of repair is reduced.

(2)従来文献では診断に用いる入力が、高電圧側の電圧値だけとなっているが、この電圧測定系に異常をきたしてしまうと診断が不可能となる。一方で本発明のように測定系に電圧系と電流系を使用すれば、仮にどちらか一方の測定系に異常が発生しても他の測定系だけで診断できる項目もあるため、信頼性が向上する。   (2) In the conventional literature, the input used for diagnosis is only the voltage value on the high voltage side. However, if this voltage measurement system is abnormal, the diagnosis becomes impossible. On the other hand, if a voltage system and a current system are used in the measurement system as in the present invention, there is an item that can be diagnosed only by the other measurement system even if an abnormality occurs in either one of the measurement systems. improves.

以上、本発明について簡単にまとめる。本発明の車両システムは、二次電池(100)と、負荷(110)と、二次電池(100)と負荷(110)との間の電力供給を導通又は遮断するコンタクタ(200)と、コンタクタ(200)を駆動するコイル(300)を備え、コンタクタ(200)の開閉指令信号(120)と、コイル(300)の電圧値及び電流値と、コンタクタ(200)の高電圧側の電圧値に基づいて、コンタクタ(200)を駆動するドライバ(310)からコンタクタ(200)までのコンタクタ回路部の故障診断を行う。このような構成にすることによって、それぞれの診断項目におけるコンタクタ200の電圧、コイル300の電流値、コイル300の電圧値の組み合わせはすべて異なるようになるため、全故障モードを診断することが可能となる。そのため、コンタクタの異常だけでなく、制御回路の異常も検知できるようなり、さらに、故障部位の特定ができる車両システムや二次電池システムを提供することができる。   The present invention will be briefly described above. A vehicle system of the present invention includes a secondary battery (100), a load (110), a contactor (200) that conducts or cuts off power supply between the secondary battery (100) and the load (110), and a contactor. A coil (300) for driving (200), an open / close command signal (120) of the contactor (200), a voltage value and a current value of the coil (300), and a voltage value on the high voltage side of the contactor (200). Based on this, failure diagnosis of the contactor circuit section from the driver (310) that drives the contactor (200) to the contactor (200) is performed. By adopting such a configuration, the combinations of the voltage of the contactor 200, the current value of the coil 300, and the voltage value of the coil 300 in each diagnosis item are all different, so that all failure modes can be diagnosed. Become. Therefore, not only the abnormality of the contactor but also the abnormality of the control circuit can be detected, and furthermore, a vehicle system and a secondary battery system capable of specifying the failed part can be provided.

また、本発明の二次電池システム(1000)は、二次電池(100)と、二次電池と負荷(110)との間の電力供給を導通又は遮断するコンタクタ(200)と、コンタクタ(200)を駆動するコイル(300)を備え、コンタクタ(200)の開閉指令信号(120)と、コイル(300)の電圧値および電流値と、コンタクタ(200)の高電圧側の電圧値に基づいて、コンタクタ(200)を駆動するドライバ(310)からコンタクタ(200)までのコンタクタ回路部の故障診断を行う電池制御部(400)を備える。このように、二次電池システムの形態をとっていてもよい。 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Further, the secondary battery system (1000) of the present invention includes a secondary battery (100), a contactor (200) that conducts or cuts off power supply between the secondary battery and the load (110), and a contactor (200). ), And a voltage value and a current value of the coil (300), and a voltage value on the high voltage side of the contactor (200). A battery control unit (400) that performs failure diagnosis of the contactor circuit unit from the driver (310) that drives the contactor (200) to the contactor (200). Thus, the form of a secondary battery system may be taken. Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

100 二次電池
110 負荷
120 コンタクタ開閉指令信号
130 MPU
140 コンタクタ駆動用電源
150 出力電圧
200 コンタクタ
300 コイル
400 電圧検出装置
1000 二次電池システム
100 Secondary battery 110 Load 120 Contactor open / close command signal 130 MPU
140 Contactor drive power supply 150 Output voltage 200 Contactor 300 Coil 400 Voltage detector 1000 Secondary battery system

Claims (2)

二次電池と、負荷と、前記二次電池と前記負荷との間の電力供給を導通又は遮断するコンタクタと、前記コンタクタを駆動するコイルを備える車両システムにおいて、
前記コンタクタの開閉指令信号と、前記コイルの電圧値及び電流値と、前記コンタクタの高電圧側の電圧値に基づいて、前記コンタクタを駆動するドライバからコンタクタまでのコンタクタ回路部の故障診断を行うことを特徴とする車両システム。
In a vehicle system comprising: a secondary battery; a load; a contactor that conducts or cuts off power supply between the secondary battery and the load; and a coil that drives the contactor.
Based on the contactor open / close command signal, the voltage value and current value of the coil, and the voltage value on the high voltage side of the contactor, failure diagnosis of the contactor circuit section from the driver that drives the contactor to the contactor is performed. A vehicle system characterized by this.
二次電池と、前記二次電池と負荷との間の電力供給を導通又は遮断するコンタクタと、前記コンタクタを駆動する前記コイルを備える二次電池システムにおいて、
前記コンタクタの開閉指令信号と、前記コイルの電圧値および電流値と、前記コンタクタの高電圧側の電圧値に基づいて、前記コンタクタを駆動するドライバからコンタクタまでのコンタクタ回路部の故障診断を行う電池制御部を備えることを特徴とする二次電池システム。
In a secondary battery system comprising: a secondary battery; a contactor that conducts or cuts off power supply between the secondary battery and a load; and the coil that drives the contactor.
A battery that performs failure diagnosis of the contactor circuit unit from the driver that drives the contactor to the contactor based on the contactor open / close command signal, the voltage value and current value of the coil, and the voltage value on the high voltage side of the contactor A secondary battery system comprising a control unit.
JP2017034280A 2017-02-27 2017-02-27 Secondary battery system and vehicle system using the same Pending JP2018143014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017034280A JP2018143014A (en) 2017-02-27 2017-02-27 Secondary battery system and vehicle system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017034280A JP2018143014A (en) 2017-02-27 2017-02-27 Secondary battery system and vehicle system using the same

Publications (1)

Publication Number Publication Date
JP2018143014A true JP2018143014A (en) 2018-09-13

Family

ID=63528432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017034280A Pending JP2018143014A (en) 2017-02-27 2017-02-27 Secondary battery system and vehicle system using the same

Country Status (1)

Country Link
JP (1) JP2018143014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210059326A (en) * 2019-11-15 2021-05-25 삼성에스디아이 주식회사 Device for maintaining the operating state of a contactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524643A (en) * 2012-07-02 2015-08-24 エルジー・ケム・リミテッド DRIVE CIRCUIT FOR ELECTRIC VEHICLE AND DIAGNOSTIC METHOD FOR DETERMINING EFFECT OF SHORT CIRCUIT TO GROUND VOLTAGE BETWEEN CONTACTOR COIL AND VOLTAGE
WO2017086110A1 (en) * 2015-11-17 2017-05-26 株式会社オートネットワーク技術研究所 Charge/discharge device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524643A (en) * 2012-07-02 2015-08-24 エルジー・ケム・リミテッド DRIVE CIRCUIT FOR ELECTRIC VEHICLE AND DIAGNOSTIC METHOD FOR DETERMINING EFFECT OF SHORT CIRCUIT TO GROUND VOLTAGE BETWEEN CONTACTOR COIL AND VOLTAGE
WO2017086110A1 (en) * 2015-11-17 2017-05-26 株式会社オートネットワーク技術研究所 Charge/discharge device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210059326A (en) * 2019-11-15 2021-05-25 삼성에스디아이 주식회사 Device for maintaining the operating state of a contactor
KR102300707B1 (en) 2019-11-15 2021-09-10 삼성에스디아이 주식회사 Device for maintaining the operating state of a contactor
US11451049B2 (en) 2019-11-15 2022-09-20 Samsung Sdi Co., Ltd. Device for maintaining operating state of contactor

Similar Documents

Publication Publication Date Title
JP5575506B2 (en) Vehicle power supply device and vehicle equipped with the power supply device
KR101616250B1 (en) Traction battery having increased reliability
CN109649216B (en) Automatic connection of drive battery
US20160156258A1 (en) Power source control device and method for detecting relay abnormality
WO2013057820A1 (en) Battery system monitoring device and charge storage device equipped with same
KR101326508B1 (en) Trouble diagnosis method of current sensor for high voltage battery system
CN104730432B (en) Insulation monitoring device
US9817050B2 (en) Detection of welded contactor using ac coupling
KR101806996B1 (en) State diagnosis apparatus and method for relay drive circuit
JP4560825B2 (en) Assembled battery
JP6972027B2 (en) Management device and power storage system
US20130293237A1 (en) Test of a testing device for determining a voltage state of a high-voltage vehicle electrical system
JP6001242B2 (en) Fault handling system
JP2021520502A (en) Battery pack diagnostic device
JP2017079496A (en) Contactor failure determining device and contactor failure determining method
JP2016025794A (en) Battery system monitoring device, and power storage device comprising the same
EP3618218A1 (en) Power supply system, fault diagnosis method for power supply system, and system control device
JP2018143014A (en) Secondary battery system and vehicle system using the same
CN204696641U (en) A kind of equipment for the protection of high-tension battery using electricity system and the vehicle with this equipment
US20240042863A1 (en) Method and Equipment for Monitoring a Failure in a High-Voltage Circuit of a Vehicle, and High-Voltage Circuit System
KR20200111314A (en) System and method for diagnosing high voltage relay of vehicle
CN106300229A (en) A kind of for protecting equipment and the method for high-tension battery electricity system
JP6787208B2 (en) Battery pack charge control device and charge control method
JP2020031513A (en) Failure diagnosis device of electromagnetic switch
CN111381155A (en) Method and system for diagnosing the condition of a contactor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200310