JP2018142745A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit Download PDF

Info

Publication number
JP2018142745A
JP2018142745A JP2018115241A JP2018115241A JP2018142745A JP 2018142745 A JP2018142745 A JP 2018142745A JP 2018115241 A JP2018115241 A JP 2018115241A JP 2018115241 A JP2018115241 A JP 2018115241A JP 2018142745 A JP2018142745 A JP 2018142745A
Authority
JP
Japan
Prior art keywords
integrated circuit
semiconductor integrated
wiring layer
transistor
impurity diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018115241A
Other languages
Japanese (ja)
Other versions
JP6510120B2 (en
Inventor
前野 宗昭
Muneaki Maeno
宗昭 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Devices and Storage Corp filed Critical Toshiba Corp
Priority to JP2018115241A priority Critical patent/JP6510120B2/en
Publication of JP2018142745A publication Critical patent/JP2018142745A/en
Application granted granted Critical
Publication of JP6510120B2 publication Critical patent/JP6510120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor integrated circuit capable of reducing a circuit area.SOLUTION: A semiconductor integrated circuit of an embodiment comprises: a substrate; first and second well regions formed in a surface of the substrate; first and second impurity diffusion regions of a first transistor formed in a surface of the first well region; third and fourth impurity diffusion regions of a second transistor formed in a surface of the second well region; first through third wiring layers; and first through third plugs. The first wiring layer is formed on the first well region between the first and second impurity diffusion regions and on the second well region between the third and fourth impurity diffusion regions. The first and second plugs are formed on the third impurity diffusion region to be isolated from each other. The third plug is formed on the first wiring layer. The second wiring layer connects the first plug and the third plug. The third wiring layer is formed on the second plug and isolate from the second wiring layer.SELECTED DRAWING: Figure 4

Description

実施形態は半導体集積回路に関する。   Embodiments relate to a semiconductor integrated circuit.

Tie−Highセル、Tie−Lowセル、又はデカップリングセルを備えた半導体集積回路が知られている。   A semiconductor integrated circuit including a Tie-High cell, a Tie-Low cell, or a decoupling cell is known.

特開2003−86699号公報JP 2003-86699 A

ESD耐性を向上することが可能な半導体集積回路を提供する。   A semiconductor integrated circuit capable of improving ESD resistance is provided.

実施形態の半導体集積回路は、基板と、基板の表面内に形成された第1及び第2ウェル領域と、第1ウェル領域の表面内に形成された第1トランジスタの第1及び第2不純物拡散領域と、第2ウェル領域の表面内に形成された第2トランジスタの第3及び第4不純物拡散領域と、第1乃至第3配線層と、第1乃至第3プラグと、を備える。第1配線層は、第1及び第2不純物拡散領域間の第1ウェル領域上と、第3及び第4不純物拡散領域間の第2ウェル領域上とに形成される。第1及び第2プラグは、第3不純物拡散領域上に互いに離隔して形成される。第3プラグは、第1配線層上に形成される。第2配線層は、第1プラグと、第3プラグとを接続する。第3配線層は、第2プラグ上に形成され、第2配線層と離隔している。   The semiconductor integrated circuit according to the embodiment includes a substrate, first and second well regions formed in the surface of the substrate, and first and second impurity diffusions of the first transistor formed in the surface of the first well region. A region, a third and fourth impurity diffusion region of the second transistor formed in the surface of the second well region, first to third wiring layers, and first to third plugs. The first wiring layer is formed on the first well region between the first and second impurity diffusion regions and on the second well region between the third and fourth impurity diffusion regions. The first and second plugs are formed apart from each other on the third impurity diffusion region. The third plug is formed on the first wiring layer. The second wiring layer connects the first plug and the third plug. The third wiring layer is formed on the second plug and is separated from the second wiring layer.

第1実施形態に係る半導体集積回路のレイアウト。1 is a layout of a semiconductor integrated circuit according to a first embodiment. 図1のI−I線に沿った断面図。Sectional drawing along the II line | wire of FIG. 図1のII−II線に沿った断面図。Sectional drawing along the II-II line of FIG. 図1のIII−III線に沿った断面図。Sectional drawing along the III-III line of FIG. 第1実施形態に係る半導体集積回路の等価回路図。FIG. 3 is an equivalent circuit diagram of the semiconductor integrated circuit according to the first embodiment. 第2実施形態に係る半導体集積回路のレイアウト。6 is a layout of a semiconductor integrated circuit according to a second embodiment. 図6のIV−IV線に沿った断面図。Sectional drawing along the IV-IV line of FIG. 第2実施形態に係る半導体集積回路の等価回路図。The equivalent circuit diagram of the semiconductor integrated circuit which concerns on 2nd Embodiment. 第3実施形態に係る半導体集積回路のレイアウト。14 is a layout of a semiconductor integrated circuit according to a third embodiment. 図9のV−V線に沿った断面図。Sectional drawing along the VV line of FIG. 図9のVI−VI線に沿った断面図。Sectional drawing along the VI-VI line of FIG. 図9のVII−VII線に沿った断面図。Sectional drawing along the VII-VII line of FIG. 第3実施形態に係る半導体集積回路の等価回路図。The equivalent circuit diagram of the semiconductor integrated circuit which concerns on 3rd Embodiment. 第3実施形態の変形例1に係る半導体集積回路のレイアウト。10 is a layout of a semiconductor integrated circuit according to Modification 1 of the third embodiment. 図14のVIII−VIII線に沿った断面図。Sectional drawing along the VIII-VIII line of FIG. 第3実施形態の変形例1に係る半導体集積回路の等価回路図。The equivalent circuit diagram of the semiconductor integrated circuit which concerns on the modification 1 of 3rd Embodiment. 第3実施形態の変形例2に係る半導体集積回路の等価回路図。The equivalent circuit schematic of the semiconductor integrated circuit which concerns on the modification 2 of 3rd Embodiment. 第3実施形態の変形例3に係る半導体集積回路の等価回路図。The equivalent circuit diagram of the semiconductor integrated circuit which concerns on the modification 3 of 3rd Embodiment.

以下、実施形態について、図面を参照して説明する。尚、以下の説明において、同一の機能及び構成を有する要素については、共通する参照符号を付す。参照符号を構成する数字の後ろの“アルファベット”及び“ハイフンと数字との組み合わせ”は、“同じ数字”又は“同じ数字とアルファベットとの組み合わせ”を含んだ参照符号によって参照され且つ同様の構成を有する要素同士を区別するために用いられている。   Hereinafter, embodiments will be described with reference to the drawings. In the following description, elements having the same function and configuration are denoted by common reference numerals. “Alphabet” and “Combination of hyphen and number” after the number constituting the reference number are referred to by the reference number including “Same number” or “Same number and number combination” and have the same structure. It is used to distinguish the elements they have.

図面は模式的なものである。各実施形態は、この実施形態の技術的思想を具体化するための装置を例示するものであって、実施形態の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものではない。   The drawings are schematic. Each embodiment exemplifies an apparatus for embodying the technical idea of this embodiment. The technical idea of the embodiment specifies the shape, structure, arrangement, etc. of the components as follows. Not what you want.

[1]第1実施形態
以下に、第1実施形態に係る半導体集積回路について説明する。
[1] First Embodiment A semiconductor integrated circuit according to the first embodiment will be described below.

[1−1]半導体集積回路1の構成
まず、図1〜図5を用いて本実施形態に係る半導体集積回路の構成について説明する。図1には半導体集積回路の平面レイアウトを示し、図2〜図4には半導体集積回路の断面構造を示し、図5には半導体集積回路の等価回路の構成を示している。
[1-1] Configuration of Semiconductor Integrated Circuit 1 First, the configuration of the semiconductor integrated circuit according to the present embodiment will be described with reference to FIGS. FIG. 1 shows a planar layout of a semiconductor integrated circuit, FIGS. 2 to 4 show cross-sectional structures of the semiconductor integrated circuit, and FIG. 5 shows a configuration of an equivalent circuit of the semiconductor integrated circuit.

図1及び図5に示すように、本実施形態に係る半導体集積回路1は、半導体基板10上に形成されたNMOSトランジスタ20、PMOSトランジスタ30、及び抵抗素子60を備えている。   As shown in FIGS. 1 and 5, the semiconductor integrated circuit 1 according to the present embodiment includes an NMOS transistor 20, a PMOS transistor 30, and a resistance element 60 formed on a semiconductor substrate 10.

半導体基板10内には、P型ウェル領域11及びN型ウェル領域12がY方向に並んで配置される。P型ウェル領域11内にはn不純物拡散領域13A、13BがY方向に直交するX方向に並んで配置され(図2参照)、N型ウェル領域12内にはp不純物拡散領域14A、14BがX方向に並んで配置される(図3参照)。拡散領域13A、13B間及び拡散領域14A、14B間には、Y方向に沿って延びた配線層40が、それぞれの領域においてゲート絶縁膜41、42を介して配置される。配線層40は、トランジスタ20及び30のゲート電極として機能する。これにより、P型ウェル領域11及びN型ウェル領域12にはそれぞれ、配線層40を共通のゲート電極としたNMOSトランジスタ20及びPMOSトランジスタ30が形成される。 In the semiconductor substrate 10, a P-type well region 11 and an N-type well region 12 are arranged side by side in the Y direction. In the P-type well region 11, n + impurity diffusion regions 13A and 13B are arranged side by side in the X direction orthogonal to the Y direction (see FIG. 2), and in the N-type well region 12, p + impurity diffusion regions 14A, 14B are arranged side by side in the X direction (see FIG. 3). Between the diffusion regions 13A and 13B and between the diffusion regions 14A and 14B, the wiring layer 40 extending along the Y direction is disposed via the gate insulating films 41 and 42 in the respective regions. The wiring layer 40 functions as the gate electrode of the transistors 20 and 30. Thereby, the NMOS transistor 20 and the PMOS transistor 30 using the wiring layer 40 as a common gate electrode are formed in the P-type well region 11 and the N-type well region 12, respectively.

拡散領域13A、13Bはそれぞれ、トランジスタ20のソース及びドレインとして機能する。また拡散領域14A及び14Bはそれぞれ、トランジスタ30のソース及びドレインとして機能する。そして、これらの拡散領域13A、13B、14A、14B上には、それぞれビアコンタクト23、24、33、34が形成され、ビアコンタクト23、24、33、34上にそれぞれ配線層21、22、31、32が形成されている。配線層21、22はそれぞれ、トランジスタ20のソース配線及びドレイン配線として機能し、配線層31、32はそれぞれトランジスタ30のソース配線及びドレイン配線として機能する。   The diffusion regions 13A and 13B function as the source and drain of the transistor 20, respectively. The diffusion regions 14A and 14B function as the source and drain of the transistor 30, respectively. Via contacts 23, 24, 33, and 34 are formed on these diffusion regions 13A, 13B, 14A, and 14B, respectively, and wiring layers 21, 22, and 31 are formed on the via contacts 23, 24, 33, and 34, respectively. , 32 are formed. The wiring layers 21 and 22 function as a source wiring and a drain wiring of the transistor 20, respectively, and the wiring layers 31 and 32 function as a source wiring and a drain wiring of the transistor 30, respectively.

拡散領域13A上には、ビアコンタクト45が更に形成され、ビアコンタクト45上に配線層43が形成されている(図4参照)。配線層21は低電圧電源線(例えば接地線)50と接続され、配線層31は高電圧電源線51と接続されている。また、図4において破線で示したように、配線層40はウェル領域11及び12間の領域を跨ぐようにして設けられ、ウェル領域11とウェル領域12との間の領域において、配線層40上にビアコンタクト44が形成されている。ビアコンタクト44上には配線層43が形成され、配線層43は更にビアコンタクト45と接続されている。尚、ビアコンタクト23、45は、Y方向に沿って配置され、拡散領域13A上で離れている。また、配線層21と配線層43も互いに離隔して配置され、両者はビアコンタクト23、拡散領域13A、及びビアコンタクト45を通る経路によって電気的に接続される。この際、配線層21と配線層43は、拡散領域13Aを経由しない経路によっては接続されない。このビアコンタクト23、45間の拡散領域13Aが、拡散抵抗(抵抗素子60)として機能する。   A via contact 45 is further formed on the diffusion region 13A, and a wiring layer 43 is formed on the via contact 45 (see FIG. 4). The wiring layer 21 is connected to a low voltage power line (for example, a ground line) 50, and the wiring layer 31 is connected to a high voltage power line 51. 4, the wiring layer 40 is provided so as to straddle the region between the well regions 11 and 12, and the region between the well region 11 and the well region 12 is formed on the wiring layer 40. A via contact 44 is formed in the upper surface. A wiring layer 43 is formed on the via contact 44, and the wiring layer 43 is further connected to the via contact 45. The via contacts 23 and 45 are arranged along the Y direction and are separated on the diffusion region 13A. In addition, the wiring layer 21 and the wiring layer 43 are also arranged apart from each other, and both are electrically connected by a route passing through the via contact 23, the diffusion region 13 </ b> A, and the via contact 45. At this time, the wiring layer 21 and the wiring layer 43 are not connected by a route not passing through the diffusion region 13A. The diffusion region 13A between the via contacts 23 and 45 functions as a diffusion resistance (resistance element 60).

上記構成の半導体集積回路1は、等価回路で示すと図5の通りである。すなわち、トランジスタ20は、ソース及びドレインが低電圧電源線50に接続され、ゲートがトランジスタ30のゲートに接続されている。トランジスタ30は、ソースが高電圧電源線51に接続され、ドレインから信号OUTが出力される。抵抗素子60は、一端がトランジスタ20、30の共通ゲート40に接続され、他端がトランジスタ20のソースに接続されている。尚、低電圧電源線50には、例えば接地電圧VSSが印加される。高電圧電源線51には、例えば電源電圧VDDが印加される。   The semiconductor integrated circuit 1 having the above configuration is shown in FIG. 5 as an equivalent circuit. That is, the transistor 20 has a source and a drain connected to the low voltage power supply line 50 and a gate connected to the gate of the transistor 30. The source of the transistor 30 is connected to the high voltage power supply line 51, and the signal OUT is output from the drain. The resistance element 60 has one end connected to the common gate 40 of the transistors 20 and 30 and the other end connected to the source of the transistor 20. For example, the ground voltage VSS is applied to the low voltage power line 50. For example, the power supply voltage VDD is applied to the high voltage power supply line 51.

尚、説明の便宜上トランジスタ20、30のソース及びドレインを上記のように規定したが、これに限定されず、ソースとドレインとを入れ替えても良い。   For convenience of explanation, the sources and drains of the transistors 20 and 30 are defined as described above. However, the present invention is not limited to this, and the source and drain may be interchanged.

[1−2]第1実施形態の効果
次に、本実施形態の効果について説明する。本実施形態に係る半導体集積回路1によれば、半導体集積回路1のESD耐性を向上することが出来る。この詳細について以下に説明する。
[1-2] Effects of the First Embodiment Next, effects of the present embodiment will be described. According to the semiconductor integrated circuit 1 according to the present embodiment, the ESD tolerance of the semiconductor integrated circuit 1 can be improved. This will be described in detail below.

論理演算を行う電気回路及び電子回路である論理回路において、入力端子の電位をハイレベル又はローレベルに固定する場合、入力端子はESD対策のため抵抗素子を介して電源に接続される。このような抵抗素子としては、フローティング状態の共通ゲートを備えたPMOSトランジスタ及びNMOSトランジスタを使用したTie−Highセル及びTie−Lowセルが知られている。このようなTie−High及びTie−Lowセルは、トランジスタに流れるリーク電流を用いてフローティング状態の共通ゲートを充電又は放電し、ドレインが論理回路の入力端子に接続されたトランジスタをオン状態とする。これにより、Tie−Highセル及びTie−Lowセルはそれぞれ、ハイレベル及びローレベルの信号を出力することが出来る。   In a logic circuit that is an electric circuit and an electronic circuit that performs a logical operation, when the potential of the input terminal is fixed to a high level or a low level, the input terminal is connected to a power source through a resistance element for ESD countermeasures. As such a resistance element, a Tie-High cell and a Tie-Low cell using a PMOS transistor and an NMOS transistor having a common gate in a floating state are known. In such Tie-High and Tie-Low cells, a floating common gate is charged or discharged using a leak current flowing through the transistor, and a transistor whose drain is connected to the input terminal of the logic circuit is turned on. Thereby, the Tie-High cell and the Tie-Low cell can output a high level signal and a low level signal, respectively.

しかし、低消費電力化のためにはトランジスタのリーク電流を少なくすることが好ましい。この観点から、Tie−Highセル及びTie−Lowセルを構成するトランジスタには、閾値電圧が高いトランジスタを用いることが多くなっている。このような場合、Tie−Highセル及びTie−Lowセルのフローティング部に供給されるリーク電流が小さくなることにより、抵抗素子として用いるトランジスタがオンし辛くなってしまう。また、半導体集積回路はそれぞれが論理回路を含む複数の領域を有し、低消費電力化のために半導体集積回路の領域毎に電源をオンオフする場合がある。電源が頻繁にオンオフされると、フローティング部の電位を十分に固定する前に電源がオフされてしまうことがある。このような場合、フローティングを使用したTie−Highセル及びTie−Lowセルでは充分な抵抗を得ることが困難になる。   However, it is preferable to reduce the leakage current of the transistor in order to reduce power consumption. From this viewpoint, a transistor having a high threshold voltage is often used as a transistor constituting the Tie-High cell and the Tie-Low cell. In such a case, the leakage current supplied to the floating portions of the Tie-High cell and the Tie-Low cell is reduced, so that the transistor used as the resistance element is difficult to turn on. In addition, each semiconductor integrated circuit has a plurality of regions including logic circuits, and there are cases where the power is turned on and off for each region of the semiconductor integrated circuit in order to reduce power consumption. If the power supply is frequently turned on and off, the power supply may be turned off before the potential of the floating portion is sufficiently fixed. In such a case, it is difficult to obtain sufficient resistance in the Tie-High cell and the Tie-Low cell using floating.

そこで本実施形態に係る半導体集積回路1は、前述したTie−Highセルの共通ゲート(配線層40)を、NMOSトランジスタ20のソース配線(配線層21)が接続された拡散領域13Aに接続する。つまり、共通ゲートがトランジスタ20の拡散領域13A及びソース配線を介して低電圧電源線50に電気的に接続される。そしてその際に、拡散領域13Aが実質的に抵抗素子60として機能する。   Therefore, in the semiconductor integrated circuit 1 according to the present embodiment, the common gate (wiring layer 40) of the Tie-High cell described above is connected to the diffusion region 13A to which the source wiring (wiring layer 21) of the NMOS transistor 20 is connected. That is, the common gate is electrically connected to the low voltage power supply line 50 through the diffusion region 13A of the transistor 20 and the source wiring. At this time, the diffusion region 13A substantially functions as the resistance element 60.

以上の構成により、Tie−Highセルの共通ゲートが抵抗素子60を介して低電圧電源線50に接続されるため、共通ゲートの電位固定に要する充放電の時間が短縮される。また共通ゲートの電位は、抵抗素子60を介して低電圧電源線50に接続されるため、半導体集積回路1を構成するトランジスタの閾値電圧に依存することなく低電圧電源線の電位に安定する。   With the above configuration, since the common gate of the Tie-High cell is connected to the low voltage power supply line 50 via the resistance element 60, the charge / discharge time required for fixing the potential of the common gate is shortened. Further, since the potential of the common gate is connected to the low voltage power supply line 50 via the resistance element 60, the potential of the common gate is stabilized to the potential of the low voltage power supply line without depending on the threshold voltage of the transistors constituting the semiconductor integrated circuit 1.

これにより本実施形態の半導体集積回路1は、論理回路の入力端子の電位をハイレベルに固定するTie−Highセルにおいて、ESD耐性を向上することが出来る。また、拡散領域13Aを利用することで、外部の抵抗素子を使用すること無くTie−Highセルを構成することが出来るため、回路面積を抑制することが出来る。   Thereby, the semiconductor integrated circuit 1 of this embodiment can improve ESD tolerance in the Tie-High cell in which the potential of the input terminal of the logic circuit is fixed at a high level. Further, by using the diffusion region 13A, a Tie-High cell can be configured without using an external resistance element, so that the circuit area can be suppressed.

尚、共通ゲートを低電圧電源線50に接続する方法はこれに限定されず、種々変更が可能である。例えば、共通ゲートをトランジスタ20のドレイン配線(配線層22)が接続された拡散領域13Bに接続してもよい。この場合、共通ゲートはトランジスタ20の拡散領域13B及びドレイン配線を介して低電圧電源線50に電気的に接続され、拡散領域13Bが実質的に抵抗素子60として機能する。また、拡散領域13A、13Bの両方を抵抗素子60として、共通ゲートを低電圧電源線50に接続しても良い。   The method for connecting the common gate to the low voltage power supply line 50 is not limited to this, and various changes can be made. For example, the common gate may be connected to the diffusion region 13B to which the drain wiring (wiring layer 22) of the transistor 20 is connected. In this case, the common gate is electrically connected to the low voltage power supply line 50 via the diffusion region 13B and the drain wiring of the transistor 20, and the diffusion region 13B substantially functions as the resistance element 60. Further, both the diffusion regions 13A and 13B may be the resistance element 60, and the common gate may be connected to the low voltage power supply line 50.

[2]第2実施形態
次に、第2実施形態に係る半導体集積回路について説明する。本実施形態は、上記第1実施形態で説明した構成を、Tie−Lowセルに適用したものである。以下では第1実施形態と異なる点を説明する。
[2] Second Embodiment Next, a semiconductor integrated circuit according to a second embodiment will be described. In the present embodiment, the configuration described in the first embodiment is applied to a Tie-Low cell. Below, a different point from 1st Embodiment is demonstrated.

[2−1]半導体集積回路1の構成
まず、図6〜図8を用いて本実施形態に係る半導体集積回路1の構成について説明する。図6には半導体集積回路1の平面レイアウトを示し、図7には半導体集積回路1の断面構造を示し、図8には半導体集積回路1の等価回路の構成を示している。本実施形態に係る半導体集積回路1は、第1実施形態と各配線の接続関係が異なる。
[2-1] Configuration of Semiconductor Integrated Circuit 1 First, the configuration of the semiconductor integrated circuit 1 according to the present embodiment will be described with reference to FIGS. 6 shows a planar layout of the semiconductor integrated circuit 1, FIG. 7 shows a sectional structure of the semiconductor integrated circuit 1, and FIG. 8 shows a configuration of an equivalent circuit of the semiconductor integrated circuit 1. The semiconductor integrated circuit 1 according to the present embodiment is different from the first embodiment in the connection relationship of each wiring.

図6及び図7に示すように本実施形態に係る半導体集積回路1は、第1実施形態で説明した図1及び図4において拡散領域13A上にビアコンタクト45が形成されていたのに対して、拡散領域14A上にビアコンタクト45を形成したものである。   As shown in FIGS. 6 and 7, in the semiconductor integrated circuit 1 according to the present embodiment, the via contact 45 is formed on the diffusion region 13A in FIGS. 1 and 4 described in the first embodiment. A via contact 45 is formed on the diffusion region 14A.

ビアコンタクト33、45は、Y方向に沿って配置され、拡散領域14A上で離れて配置されている。また、配線層31と配線層43も互いに離隔して配置され、両者はビアコンタクト33、拡散領域14A、及びビアコンタクト45を通る経路によって電気的に接続される。この際、配線層31と配線層43は、拡散領域14Aを経由しない経路によっては接続されない。つまり本実施形態では、このビアコンタクト33、45間の拡散領域14Aが、拡散抵抗(抵抗素子60)として機能する。   The via contacts 33 and 45 are arranged along the Y direction and are arranged apart from each other on the diffusion region 14A. Further, the wiring layer 31 and the wiring layer 43 are also arranged apart from each other, and both are electrically connected by a route passing through the via contact 33, the diffusion region 14 </ b> A, and the via contact 45. At this time, the wiring layer 31 and the wiring layer 43 are not connected by a route not passing through the diffusion region 14A. That is, in this embodiment, the diffusion region 14A between the via contacts 33 and 45 functions as a diffusion resistance (resistance element 60).

上記構成の半導体集積回路1は、等価回路で示すと図8の通りである。すなわち、本実施形態に係る半導体集積回路1は、第1実施形態で説明した図5において拡散抵抗60の他端がトランジスタ20のソースに接続され、トランジスタ20のドレインが低電圧電源線50に接続され、トランジスタ30のドレインから信号OUTが出力されていたのに対して、拡散抵抗60の他端がトランジスタ30のソースに接続され、トランジスタ20のドレインから信号OUTを出力し、トランジスタ30のドレインを高電圧電源線51に接続したものとなる。   The semiconductor integrated circuit 1 having the above configuration is shown in FIG. 8 as an equivalent circuit. That is, in the semiconductor integrated circuit 1 according to this embodiment, the other end of the diffusion resistor 60 is connected to the source of the transistor 20 in FIG. 5 described in the first embodiment, and the drain of the transistor 20 is connected to the low voltage power supply line 50. The signal OUT is output from the drain of the transistor 30, whereas the other end of the diffused resistor 60 is connected to the source of the transistor 30, and the signal OUT is output from the drain of the transistor 20, and the drain of the transistor 30 is connected. It is connected to the high voltage power line 51.

[2−2]第2実施形態の効果
本実施形態によれば、Tie−Lowセルにおいても第1実施形態と同様の効果が得られる。すなわち本実施形態に係る半導体集積回路1は、Tie−Lowセルの共通ゲート(配線層40)を、PMOSトランジスタ30のソース配線(配線層31)が接続されたp不純物拡散領域14Aに接続する。つまり、共通ゲートがトランジスタ30の拡散領域14A及びソース配線を介して高電圧電源線51に電気的に接続される。そして、拡散領域14Aを実質的に抵抗素子60として機能させる。
[2-2] Effects of the Second Embodiment According to the present embodiment, the same effects as those of the first embodiment can be obtained in the Tie-Low cell. That is, in the semiconductor integrated circuit 1 according to the present embodiment, the common gate (wiring layer 40) of the Tie-Low cell is connected to the p + impurity diffusion region 14A to which the source wiring (wiring layer 31) of the PMOS transistor 30 is connected. . That is, the common gate is electrically connected to the high voltage power supply line 51 through the diffusion region 14A of the transistor 30 and the source wiring. Then, the diffusion region 14 </ b> A substantially functions as the resistance element 60.

以上の構成により、Tie−Lowセルの共通ゲートが抵抗素子60を介して高電圧電源線51に接続され、共通ゲートの電位固定に要する充放電の時間が短縮される。また共通ゲートの電位は、抵抗素子60を介して高電圧電源線51に接続されるため、半導体集積回路1を構成するトランジスタの閾値電圧に依存することなく高電圧電源線51の電位に固定される。   With the above configuration, the common gate of the Tie-Low cell is connected to the high voltage power supply line 51 via the resistance element 60, and the charge / discharge time required for fixing the potential of the common gate is shortened. Further, since the potential of the common gate is connected to the high voltage power supply line 51 through the resistance element 60, the potential of the common gate is fixed to the potential of the high voltage power supply line 51 without depending on the threshold voltage of the transistors constituting the semiconductor integrated circuit 1. The

これにより本実施形態の半導体集積回路1は、論理回路の入力端子の電位をローレベルに固定するTie−Lowセルにおいて、第1実施形態と同様の効果を得ることが出来る。   As a result, the semiconductor integrated circuit 1 of the present embodiment can obtain the same effects as those of the first embodiment in the Tie-Low cell that fixes the potential of the input terminal of the logic circuit to a low level.

尚、共通ゲートを高電圧電源線51に接続する方法はこれに限定されず、種々変更が可能である。例えば、共通ゲートをトランジスタ30のドレイン配線(配線層32)が接続された拡散領域14Bに接続してもよい。この場合、共通ゲートはトランジスタ30の拡散領域14B及びドレイン配線を介して高電圧電源線51に電気的に接続され、拡散領域14Bが実質的に抵抗素子60となる。また、拡散領域14A、14Bの両方を抵抗素子60として、共通ゲートを高電圧電源線51に接続しても良い。   The method for connecting the common gate to the high voltage power supply line 51 is not limited to this, and various changes can be made. For example, the common gate may be connected to the diffusion region 14B to which the drain wiring (wiring layer 32) of the transistor 30 is connected. In this case, the common gate is electrically connected to the high voltage power supply line 51 through the diffusion region 14B and the drain wiring of the transistor 30, and the diffusion region 14B substantially becomes the resistance element 60. Further, both of the diffusion regions 14A and 14B may be the resistance element 60, and the common gate may be connected to the high voltage power supply line 51.

[3]第3実施形態
次に、第3実施形態に係る半導体集積回路1について説明する。本実施形態は、上記第1及び第2実施形態で説明した構成を、デカップリングセルに適用したものである。以下では第1及び第2実施形態と異なる点を説明する。
[3] Third Embodiment Next, a semiconductor integrated circuit 1 according to a third embodiment will be described. In the present embodiment, the configuration described in the first and second embodiments is applied to a decoupling cell. Hereinafter, differences from the first and second embodiments will be described.

[3−1]半導体集積回路1の構成
まず、図9〜図13を用いて本実施形態に係る半導体集積回路1の構成について説明する。図9には半導体集積回路1の平面レイアウトを示し、図10〜図12には半導体集積回路1の断面構造を示し、図13には半導体集積回路1の等価回路の構成を示している。本実施形態に係る半導体集積回路1は、ソースを共通とするNMOSトランジスタ20の組と、ソースを共通とするPMOSトランジスタ30の組とを備え、且つ第1実施形態と各配線の接続関係が異なる。
[3-1] Configuration of Semiconductor Integrated Circuit 1 First, the configuration of the semiconductor integrated circuit 1 according to the present embodiment will be described with reference to FIGS. 9 shows a planar layout of the semiconductor integrated circuit 1, FIGS. 10 to 12 show a cross-sectional structure of the semiconductor integrated circuit 1, and FIG. 13 shows a configuration of an equivalent circuit of the semiconductor integrated circuit 1. The semiconductor integrated circuit 1 according to the present embodiment includes a set of NMOS transistors 20 having a common source and a set of PMOS transistors 30 having a common source, and the connection relationship of each wiring is different from that of the first embodiment. .

図9及び図12に示すように、本実施形態に係る半導体集積回路1は、半導体基板10上に形成されたNMOSトランジスタ20−1、20−2、PMOSトランジスタ30−1、30−2、及び抵抗素子60を備えている。   As shown in FIGS. 9 and 12, the semiconductor integrated circuit 1 according to the present embodiment includes NMOS transistors 20-1 and 20-2, PMOS transistors 30-1 and 30-2 formed on the semiconductor substrate 10, and A resistance element 60 is provided.

P型ウェル領域11内にはn不純物拡散領域13B−1、13A、13B−2がX方向に並んで配置され(図10参照)、N型ウェル領域12内にはp不純物拡散領域14B−1、14A、14B−2がX方向に並んで配置される(図11参照)。拡散領域13A、13B−1間及び拡散領域14A、14B−1間には、Y方向に沿って延びた配線層40−1が、それぞれの領域においてゲート絶縁膜41−1、42−1を介して配置される。拡散領域13A、13B−2間及び拡散領域14A、14B−2間には、Y方向に沿って延びた配線層40−2が、それぞれの領域においてゲート絶縁膜41−2及び42−2を介して配置される。配線層40−1は、トランジスタ20−1、30−1のゲート電極として機能し、配線層40−2は、トランジスタ20−2、30−2のゲート電極として機能する。これにより、P型ウェル領域11及びN型ウェル領域12にはそれぞれ、配線層40−1を共通のゲート電極としたNMOSトランジスタ20−1及びPMOSトランジスタ30−1と、配線層40−2を共通のゲート電極としたNMOSトランジスタ20−2及びPMOSトランジスタ30−2が形成される。そして、NMOSトランジスタ20−1、20−2と、PMOSトランジスタ30−1、30−2はそれぞれ、n不純物拡散領域13A及びp不純物拡散領域14Aを共有し、Y方向を対称軸とする線対称の構成となっている。 In the P-type well region 11, n + impurity diffusion regions 13B-1, 13A, and 13B-2 are arranged side by side in the X direction (see FIG. 10), and in the N-type well region 12, a p + impurity diffusion region 14B. -1, 14A, 14B-2 are arranged side by side in the X direction (see FIG. 11). Between the diffusion regions 13A and 13B-1 and between the diffusion regions 14A and 14B-1, the wiring layer 40-1 extending along the Y direction passes through the gate insulating films 41-1 and 42-1 in the respective regions. Arranged. Between the diffusion regions 13A and 13B-2 and between the diffusion regions 14A and 14B-2, a wiring layer 40-2 extending in the Y direction is interposed through the gate insulating films 41-2 and 42-2 in the respective regions. Arranged. The wiring layer 40-1 functions as a gate electrode of the transistors 20-1 and 30-1, and the wiring layer 40-2 functions as a gate electrode of the transistors 20-2 and 30-2. Thereby, the P-type well region 11 and the N-type well region 12 share the wiring layer 40-2 with the NMOS transistor 20-1 and the PMOS transistor 30-1, respectively, using the wiring layer 40-1 as a common gate electrode. The NMOS transistor 20-2 and the PMOS transistor 30-2 are formed as the gate electrodes. The NMOS transistors 20-1 and 20-2 and the PMOS transistors 30-1 and 30-2 share the n + impurity diffusion region 13A and the p + impurity diffusion region 14A, respectively, and are lines with the Y direction as the axis of symmetry. It has a symmetrical configuration.

拡散領域13A、13B−1、13B−2、14A、14B−1、14B−2上には、それぞれビアコンタクト23、24−1、24−2、33、34−1、34−2が形成され、ビアコンタクト23、24−1、24−2、33、34−1、34−2上にそれぞれ配線層21、22−1、22−2、31、32−1、32−2が形成されている。拡散領域13A上には、ビアコンタクト45が更に形成され、ビアコンタクト45上に配線層43が形成されている(図12参照)。   Via contacts 23, 24-1, 24-2, 33, 34-1 and 34-2 are formed on the diffusion regions 13A, 13B-1, 13B-2, 14A, 14B-1 and 14B-2, respectively. The wiring layers 21, 22-1, 22-2, 31, 32-1, and 32-2 are formed on the via contacts 23, 24-1, 24-2, 33, 34-1 and 34-2, respectively. Yes. A via contact 45 is further formed on the diffusion region 13A, and a wiring layer 43 is formed on the via contact 45 (see FIG. 12).

尚、ビアコンタクト23、45は、Y方向に沿って配置され、拡散領域13A上で離れて配置されている。また、配線層21と配線層43も互いに離隔して配置され、両者はビアコンタクト23、拡散領域13A、及びビアコンタクト45を通る経路によって電気的に接続される。この際、配線層21と配線層43は、拡散領域13Aを経由しない経路によっては接続されない。このビアコンタクト23、45間の拡散領域13Aが、拡散抵抗(抵抗素子60)として機能する。   The via contacts 23 and 45 are arranged along the Y direction and are arranged apart on the diffusion region 13A. In addition, the wiring layer 21 and the wiring layer 43 are also arranged apart from each other, and both are electrically connected by a route passing through the via contact 23, the diffusion region 13 </ b> A, and the via contact 45. At this time, the wiring layer 21 and the wiring layer 43 are not connected by a route not passing through the diffusion region 13A. The diffusion region 13A between the via contacts 23 and 45 functions as a diffusion resistance (resistance element 60).

上記構成の半導体集積回路1は、等価回路で示すと図13の通りである。すなわち、トランジスタ20−1、20−2は、ソース及びドレインが低電圧電源線50に接続され、トランジスタ30−1、30−2は、ソース及びドレインが高電圧電源線51に接続されている。トランジスタ20−1、30−1の共通ゲート40−1は、トランジスタ20−2、30−2の共通ゲート40−2に接続されている。抵抗素子60は、一端が共通ゲート40−1、40−2に接続され、他端がトランジスタ20−1、20−2のソースに接続されている。   The semiconductor integrated circuit 1 having the above configuration is shown in FIG. 13 as an equivalent circuit. That is, the sources and drains of the transistors 20-1 and 20-2 are connected to the low voltage power supply line 50, and the sources and drains of the transistors 30-1 and 30-2 are connected to the high voltage power supply line 51. The common gate 40-1 of the transistors 20-1 and 30-1 is connected to the common gate 40-2 of the transistors 20-2 and 30-2. The resistance element 60 has one end connected to the common gates 40-1 and 40-2, and the other end connected to the sources of the transistors 20-1 and 20-2.

尚、説明の便宜上トランジスタ20−1、20−2、30−1、30−2のソース及びドレインを上記のように規定したが、これに限定されず、ソース及びドレインを入れ替えてもよい。つまり、NMOSトランジスタ20の組とPMOSトランジスタ30の組はそれぞれ、ドレインを共有して構成しても良い。   For convenience of explanation, the sources and drains of the transistors 20-1, 20-2, 30-1, and 30-2 are defined as described above. However, the present invention is not limited to this, and the sources and drains may be interchanged. That is, the set of the NMOS transistor 20 and the set of the PMOS transistor 30 may be configured to share the drain.

また、共通ゲート40−1、40−2を低電圧電源線に接続する方法はこれに限定されず、種々変更が可能である。例えば、共通ゲート40−1、40−2を拡散領域13B−1、13B−2に接続してもよい。また、抵抗素子60とする拡散領域の組み合わせはこれに限定されず、拡散領域13A、13B−1、13B−2の全てを抵抗素子60としても良く、最低1つの拡散領域13を抵抗素子60として用いれば良い。   Further, the method of connecting the common gates 40-1 and 40-2 to the low voltage power supply line is not limited to this, and various changes can be made. For example, the common gates 40-1 and 40-2 may be connected to the diffusion regions 13B-1 and 13B-2. Further, the combination of the diffusion regions serving as the resistance element 60 is not limited to this, and all of the diffusion regions 13A, 13B-1, and 13B-2 may be the resistance element 60, and at least one diffusion region 13 is the resistance element 60. Use it.

[3−2]第3実施形態の効果
本実施形態によれば、デカップリングセルにおいても第1実施形態と同等の効果が得られる。この詳細について以下に説明する。
[3-2] Effects of Third Embodiment According to the present embodiment, the same effects as those of the first embodiment can be obtained even in the decoupling cell. This will be described in detail below.

CMOS回路等の半導体集積回路では、動作した際に電源が揺らぐのを抑制するために、高電圧電源線と低電圧電源線との間に容量が挿入される。このような容量としては、フローティング状態の共通ゲートを備えたPMOSトランジスタ及びNMOSトランジスタを使用したデカップリングセルが知られている。このようなデカップリングセルにおいても、第1実施形態の効果で述べた従来のTie−Highセル及びTie−Lowセルと同様の懸念を有している。   In a semiconductor integrated circuit such as a CMOS circuit, a capacitor is inserted between a high voltage power supply line and a low voltage power supply line in order to suppress fluctuation of the power supply during operation. As such a capacitor, a decoupling cell using a PMOS transistor and an NMOS transistor having a common gate in a floating state is known. Such a decoupling cell has the same concerns as the conventional Tie-High cell and Tie-Low cell described in the effect of the first embodiment.

そこで本実施形態に係る半導体集積回路1は、前述したデカップリングセルの共通ゲート(配線層40)を、NMOSトランジスタ20のソース配線(配線層21)が接続されたn不純物拡散領域13Aに接続する。つまり、共有ゲートがトランジスタ20の拡散領域13A及びソース配線を介して低電圧電源線50に電気的に接続される。そして、拡散領域13Aを実質的に抵抗素子60として機能させる。 Therefore, in the semiconductor integrated circuit 1 according to the present embodiment, the common gate (wiring layer 40) of the decoupling cell described above is connected to the n + impurity diffusion region 13A to which the source wiring (wiring layer 21) of the NMOS transistor 20 is connected. To do. That is, the shared gate is electrically connected to the low voltage power supply line 50 via the diffusion region 13A of the transistor 20 and the source wiring. Then, the diffusion region 13A is caused to function substantially as the resistance element 60.

以上の構成により、共通ゲートが抵抗素子60を介して低電圧電源線50に接続され、共通ゲートの電位固定に要する充放電の時間が短縮される。また共通ゲートの電位は、抵抗素子60を介して低電圧電源線50に接続されるため、半導体集積回路1を構成するトランジスタの閾値電圧に依存すること無く低電圧電源線50の電位に固定される。   With the above configuration, the common gate is connected to the low voltage power supply line 50 via the resistance element 60, and the charge / discharge time required for fixing the potential of the common gate is shortened. Further, since the potential of the common gate is connected to the low voltage power supply line 50 through the resistance element 60, the potential of the common gate is fixed to the potential of the low voltage power supply line 50 without depending on the threshold voltage of the transistors constituting the semiconductor integrated circuit 1. The

これにより本実施形態の半導体集積回路1は、電源の揺らぎを抑制するデカップリングセルにおいても、第1及び第2実施形態と同様の効果を得ることが出来る。   Thereby, the semiconductor integrated circuit 1 of the present embodiment can obtain the same effects as those of the first and second embodiments even in a decoupling cell that suppresses fluctuations in the power supply.

尚、本実施形態の半導体集積回路1は、NMOSトランジスタ20の組と、PMOSトランジスタの組とを用いてデカップリングセルを構成しているが、これに限定されない。例えば半導体集積回路1において、デカップリングセルを構成するトランジスタの個数は変更してもよい。例えば、NMOSトランジスタ20とPMOSトランジスタ30を1つずつで構成しても良いし、それぞれを3つ以上で構成しても良い。このようにすることで、デカップリングセルを所望の容量に設計することが出来る。   In the semiconductor integrated circuit 1 of the present embodiment, a decoupling cell is configured using a set of NMOS transistors 20 and a set of PMOS transistors, but the present invention is not limited to this. For example, in the semiconductor integrated circuit 1, the number of transistors constituting the decoupling cell may be changed. For example, the NMOS transistor 20 and the PMOS transistor 30 may be configured by one, or each may be configured by three or more. By doing so, the decoupling cell can be designed to have a desired capacity.

[4]変形例
次に、第3実施形態に係る半導体集積回路1の変形例1〜3について説明する。本変形例は、上記第3実施形態で説明した構成において、組み合わせるトランジスタの構成を変更した物である。以下では第3実施形態と異なる点を説明する。
[4] Modifications Next, Modifications 1 to 3 of the semiconductor integrated circuit 1 according to the third embodiment will be described. This modification is obtained by changing the configuration of the combined transistor in the configuration described in the third embodiment. Hereinafter, differences from the third embodiment will be described.

[4−1]変形例1
まず、図14〜図16を用いて変形例1に係る半導体集積回路1について説明する。図14には半導体集積回路1の平面レイアウトを示し、図15には半導体集積回路1の断面構造を示し、図16には半導体集積回路1の等価回路の構成を示している。
[4-1] Modification 1
First, the semiconductor integrated circuit 1 according to Modification 1 will be described with reference to FIGS. FIG. 14 shows a planar layout of the semiconductor integrated circuit 1, FIG. 15 shows a cross-sectional structure of the semiconductor integrated circuit 1, and FIG. 16 shows a configuration of an equivalent circuit of the semiconductor integrated circuit 1.

図14及び図15に示すように変形例1に係る半導体集積回路1は、第3実施形態で説明した図9及び図12において拡散領域13A上にビアコンタクト45が形成されていたのに対して、拡散領域14A上にビアコンタクト45を形成したものである。つまり変形例1では、ビアコンタクト33、45間の拡散領域14Aが拡散抵抗(抵抗素子60)として機能する。   As shown in FIGS. 14 and 15, in the semiconductor integrated circuit 1 according to the modification 1, the via contact 45 is formed on the diffusion region 13A in FIGS. 9 and 12 described in the third embodiment. A via contact 45 is formed on the diffusion region 14A. That is, in the first modification, the diffusion region 14A between the via contacts 33 and 45 functions as a diffusion resistance (resistance element 60).

上記構成の半導体集積回路1は、等価回路で示すと図16の通りになる。すなわち、本変形例に係る半導体集積回路1は、第3実施形態で説明した図13において抵抗素子60の他端がトランジスタ20−1、20−2のソースに接続されていたのに対して、抵抗素子60の他端をトランジスタ30−1、30−2のソースに接続したものとなる。   The semiconductor integrated circuit 1 having the above configuration is shown in FIG. 16 as an equivalent circuit. That is, in the semiconductor integrated circuit 1 according to this modification, the other end of the resistance element 60 is connected to the sources of the transistors 20-1 and 20-2 in FIG. 13 described in the third embodiment. The other end of the resistance element 60 is connected to the sources of the transistors 30-1 and 30-2.

以上の構成により、本変形例に係る半導体集積回路1は第3実施形態と同様の効果を得ることが出来る。   With the above configuration, the semiconductor integrated circuit 1 according to this modification can obtain the same effects as those of the third embodiment.

[4−2]変形例2
次に、図17を用いて変形例2に係る半導体集積回路1について説明する。図17には半導体集積回路1の等価回路の構成を示している。
[4-2] Modification 2
Next, the semiconductor integrated circuit 1 according to Modification 2 will be described with reference to FIG. FIG. 17 shows a configuration of an equivalent circuit of the semiconductor integrated circuit 1.

変形例2に係る半導体集積回路1は、第3実施形態で説明した図13において、NMOSトランジスタ20−1、20−2を、PMOSトランジスタ30−3、30−4に置き換えたものである。すなわち、変形例2に係る半導体集積回路1は、等価回路で示すと図17に示す構成となる。   The semiconductor integrated circuit 1 according to Modification 2 is obtained by replacing the NMOS transistors 20-1 and 20-2 with PMOS transistors 30-3 and 30-4 in FIG. 13 described in the third embodiment. That is, the semiconductor integrated circuit 1 according to Modification 2 has a configuration shown in FIG.

以上の構成により、変形例2に係る半導体集積回路1は第3実施形態と同様の効果を得ることが出来る。   With the above configuration, the semiconductor integrated circuit 1 according to Modification 2 can obtain the same effects as those of the third embodiment.

[4−3]変形例3
次に、図18を用いて変形例3に係る半導体集積回路1について説明する。図18には半導体集積回路1の等価回路の構成を示している。
[4-3] Modification 3
Next, the semiconductor integrated circuit 1 according to Modification 3 will be described with reference to FIG. FIG. 18 shows a configuration of an equivalent circuit of the semiconductor integrated circuit 1.

変形例2に係る半導体集積回路1は、第3実施形態の変形例1で説明した図16において、PMOSトランジスタ30−1、30−2を、NMOSトランジスタ20−3、20−4に置き換えたものである。すなわち、変形例2に係る半導体集積回路1は、等価回路で示すと図18に示す構成となる。   A semiconductor integrated circuit 1 according to Modification 2 is obtained by replacing PMOS transistors 30-1 and 30-2 with NMOS transistors 20-3 and 20-4 in FIG. 16 described in Modification 1 of the third embodiment. It is. That is, the semiconductor integrated circuit 1 according to Modification 2 has a configuration shown in FIG.

以上の構成により、変形例3に係る半導体集積回路1は第3実施形態と同様の効果を得ることが出来る。   With the above configuration, the semiconductor integrated circuit 1 according to Modification 3 can obtain the same effects as those of the third embodiment.

[5]その他
実施形態の半導体集積回路は、基板≪例えば10、図4≫と、基板の表面内に形成された第1及び第2ウェル領域≪例えば12,11、図1≫と、第1ウェル領域の表面内に形成された第1トランジスタの第1及び第2不純物拡散領域≪例えば14A,14B、図1≫と、第2ウェル領域の表面内に形成された第2トランジスタの第3及び第4不純物拡散領域≪例えば13A,13B、図1≫と、第1乃至第3配線層と、第1乃至第3プラグと、を備える。第1配線層≪例えば40、図4≫は、第1及び第2不純物拡散領域間の第1ウェル領域上と、第3及び第4不純物拡散領域間の第2ウェル領域上とに形成される。第1及び第2プラグ≪例えば45,23、図4≫は、第3不純物拡散領域上に互いに離隔して形成される。第3プラグ≪例えば44、図4≫は、第1配線層上に形成される。第2配線層≪例えば43、図4≫は、第1プラグと、第3プラグとを接続する。第3配線層≪例えば21、図4≫は、第2プラグ上に形成され、第2配線層と離隔している。
[5] Others The semiconductor integrated circuit according to the embodiment includes a substrate << for example 10, FIG. 4 >> and first and second well regions << for example 12, 11, FIG. 1 >> formed in the surface of the substrate; First and second impurity diffusion regions of the first transistor formed in the surface of the well region << for example, 14A and 14B, FIG. 1 >>, and third and third of the second transistor formed in the surface of the second well region. A fourth impurity diffusion region << for example, 13A, 13B, FIG. 1 >>, first to third wiring layers, and first to third plugs are provided. The first wiring layer << for example, 40, FIG. 4 >> is formed on the first well region between the first and second impurity diffusion regions and on the second well region between the third and fourth impurity diffusion regions. . The first and second plugs << 45, 23, FIG. 4 >> are formed on the third impurity diffusion region so as to be separated from each other. The third plug << for example 44, FIG. 4 >> is formed on the first wiring layer. The second wiring layer << eg 43, FIG. 4 >> connects the first plug and the third plug. The third wiring layer << for example 21, FIG. 4 >> is formed on the second plug and is separated from the second wiring layer.

これにより、ESD耐性を向上することが可能な半導体集積回路1を提供することが出来る。   Thereby, the semiconductor integrated circuit 1 which can improve ESD tolerance can be provided.

尚、実施形態は上記第1〜第3実施形態及び第1〜第3変形例に限定されず、種々の変形が可能である。例えば、デカップリングセルを構成するトランジスタの個数は上記実施形態及び変形例に限定されない。デカップリングセルを構成するのには、例えば高電圧電源線に接続されるトランジスタと、低電圧電源線に接続されるトランジスタとが最低一つずつあれば良い。このような構成でも、一方のトランジスタ内の不純物拡散領域をゲート電極と高電圧電源線又は低電圧電源線との間に接続される拡散抵抗として用いることで、上記実施形態と同様の効果を得ることが出来る。   In addition, embodiment is not limited to the said 1st-3rd embodiment and the 1st-3rd modification, A various deformation | transformation is possible. For example, the number of transistors constituting the decoupling cell is not limited to the above embodiment and the modification. In order to configure the decoupling cell, for example, at least one transistor connected to the high-voltage power supply line and one transistor connected to the low-voltage power supply line are required. Even in such a configuration, the same effect as in the above embodiment can be obtained by using the impurity diffusion region in one transistor as a diffusion resistor connected between the gate electrode and the high-voltage power supply line or the low-voltage power supply line. I can do it.

また、拡散領域を抵抗素子として用いる領域は上記実施形態に限定されない。例えば、第1実施形態においてビアコンタクト23、45がゲート幅方向に配置されても良いし、斜めに配置されていても良い。つまり、拡散領域13Aが抵抗として使用できれば良い。尚、ビアコンタクト23、45間の距離は、共通ゲート40を低電圧電源線に接続するのに充分な抵抗値となるように設定される。また、各ビアコンタクトの大きさは異なっていても良い。   Further, the region where the diffusion region is used as the resistance element is not limited to the above embodiment. For example, in the first embodiment, the via contacts 23 and 45 may be arranged in the gate width direction or may be arranged obliquely. That is, it is only necessary that the diffusion region 13A can be used as a resistor. The distance between the via contacts 23 and 45 is set to have a resistance value sufficient to connect the common gate 40 to the low voltage power supply line. Further, the size of each via contact may be different.

また、配線層40と配線層43を接続するビアコンタクトの個数と、各配線と各不純物拡散領域との間を接続するビアコンタクトの個数は、上記実施形態に限定されない。例えば、不純物拡散領域14A上に複数のビアコンタクト33を形成し、不純物拡散領域14Aと配線層31との間を複数のビアコンタクト33を介して電気的に接続するようにしても良い。   Further, the number of via contacts connecting the wiring layer 40 and the wiring layer 43 and the number of via contacts connecting each wiring and each impurity diffusion region are not limited to the above embodiment. For example, a plurality of via contacts 33 may be formed on the impurity diffusion region 14A, and the impurity diffusion region 14A and the wiring layer 31 may be electrically connected via the plurality of via contacts 33.

また、上記実施形態において配線層40は、ゲートを共有するトランジスタ間で分割して形成されても良い。この場合、分割して形成された配線層40上にはそれぞれビアコンタクト44が形成される。そして分割して形成された配線層40は、配線層43を介して電気的に接続される。   In the above embodiment, the wiring layer 40 may be divided between transistors sharing a gate. In this case, the via contacts 44 are formed on the wiring layers 40 formed separately. The divided wiring layer 40 is electrically connected via the wiring layer 43.

また、上記説明において「接続」とは電気的に接続していることを示し、直接接続される場合だけでなく、任意の素子を介して接続される場合も含んでいる。   In the above description, “connection” indicates that the connection is electrically, and includes not only a direct connection but also a connection through an arbitrary element.

尚、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   In addition, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10…半導体基板、11…P型ウェル領域、12…N型ウェル領域、13…n不純物拡散領域、14…p不純物拡散領域、20…NMOSトランジスタ、30…PMOSトランジスタ、40…共通ゲート、50…低電圧電源線、51…高電圧電源線、60…抵抗素子 DESCRIPTION OF SYMBOLS 10 ... Semiconductor substrate, 11 ... P-type well region, 12 ... N-type well region, 13 ... n + impurity diffusion region, 14 ... p + impurity diffusion region, 20 ... NMOS transistor, 30 ... PMOS transistor, 40 ... Common gate, 50 ... Low voltage power supply line, 51 ... High voltage power supply line, 60 ... Resistance

Claims (2)

基板と、
前記基板の表面内に形成された第1及び第2ウェル領域と、
前記第1ウェル領域の表面内に形成された第1トランジスタの第1及び第2不純物拡散領域と、
前記第2ウェル領域の表面内に形成された第2トランジスタの第3及び第4不純物拡散領域と、
前記第1及び第2不純物拡散領域間の前記第1ウェル領域上と、前記第3及び第4不純物拡散領域間の前記第2ウェル領域上とに形成された第1配線層と、
前記第3不純物拡散領域上に互いが離隔して形成された第1及び第2プラグと、
前記第1配線層上に形成された第3プラグと、
前記第1プラグと、前記第3プラグとを接続する第2配線層と、
前記第2プラグ上に形成され、前記第2配線層と離隔した第3配線層と、
を備える、半導体集積回路。
A substrate,
First and second well regions formed in the surface of the substrate;
First and second impurity diffusion regions of a first transistor formed in a surface of the first well region;
Third and fourth impurity diffusion regions of the second transistor formed in the surface of the second well region;
A first wiring layer formed on the first well region between the first and second impurity diffusion regions and on the second well region between the third and fourth impurity diffusion regions;
First and second plugs spaced apart from each other on the third impurity diffusion region;
A third plug formed on the first wiring layer;
A second wiring layer connecting the first plug and the third plug;
A third wiring layer formed on the second plug and spaced apart from the second wiring layer;
A semiconductor integrated circuit comprising:
前記第2及び第3配線層は、前記第3不純物拡散領域を経由しない経路によっては電気的に接続されない、
請求項1に記載の半導体集積回路。
The second and third wiring layers are not electrically connected by a path not passing through the third impurity diffusion region;
The semiconductor integrated circuit according to claim 1.
JP2018115241A 2018-06-18 2018-06-18 Semiconductor integrated circuit Active JP6510120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115241A JP6510120B2 (en) 2018-06-18 2018-06-18 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115241A JP6510120B2 (en) 2018-06-18 2018-06-18 Semiconductor integrated circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016020237A Division JP6407900B2 (en) 2016-02-04 2016-02-04 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JP2018142745A true JP2018142745A (en) 2018-09-13
JP6510120B2 JP6510120B2 (en) 2019-05-08

Family

ID=63528387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115241A Active JP6510120B2 (en) 2018-06-18 2018-06-18 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP6510120B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11309333B2 (en) 2019-12-24 2022-04-19 Kioxia Corporation Semiconductor integrated circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197843U (en) * 1984-12-03 1986-06-23
JPS61144056A (en) * 1984-12-18 1986-07-01 Sanyo Electric Co Ltd Semiconductor integrated circuit device
JPH0669422A (en) * 1992-08-19 1994-03-11 Nec Ic Microcomput Syst Ltd Semiconductor integrated circuit
JP2001250951A (en) * 2000-03-03 2001-09-14 Takehide Shirato Gate array
JP2008041992A (en) * 2006-08-08 2008-02-21 Denso Corp Semiconductor circuit device
US20130248957A1 (en) * 2012-03-23 2013-09-26 Yoshiharu Kito Decoupling capacitor cell, cell-based ic, cell-based ic layout system and method, and portable device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197843U (en) * 1984-12-03 1986-06-23
JPS61144056A (en) * 1984-12-18 1986-07-01 Sanyo Electric Co Ltd Semiconductor integrated circuit device
US4862241A (en) * 1984-12-18 1989-08-29 Sanyo Electric Co. Ltd. Semiconductor integrated circuit device
JPH0669422A (en) * 1992-08-19 1994-03-11 Nec Ic Microcomput Syst Ltd Semiconductor integrated circuit
JP2001250951A (en) * 2000-03-03 2001-09-14 Takehide Shirato Gate array
JP2008041992A (en) * 2006-08-08 2008-02-21 Denso Corp Semiconductor circuit device
US20130248957A1 (en) * 2012-03-23 2013-09-26 Yoshiharu Kito Decoupling capacitor cell, cell-based ic, cell-based ic layout system and method, and portable device
JP2013201158A (en) * 2012-03-23 2013-10-03 Rohm Co Ltd Decoupling capacitor cell, cell base ic, layout system of cell base ic, and layout method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11309333B2 (en) 2019-12-24 2022-04-19 Kioxia Corporation Semiconductor integrated circuit

Also Published As

Publication number Publication date
JP6510120B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP6407900B2 (en) Semiconductor integrated circuit
US7443224B2 (en) Multi-threshold MIS integrated circuit device and circuit design method thereof
US9576947B2 (en) Semiconductor integrated circuit device
JP5564818B2 (en) Power clamp circuit
JP5190913B2 (en) Semiconductor integrated circuit device
TWI628447B (en) Semiconductor integrated circuit device
KR20130012565A (en) Semiconductor integrated circuit
US9035389B2 (en) Layout schemes for cascade MOS transistors
US9929135B2 (en) Apparatuses and methods for semiconductor circuit layout
JP2010010419A (en) Semiconductor device
JP6510120B2 (en) Semiconductor integrated circuit
KR20130072090A (en) Semiconductor integrated circuit
US10389359B1 (en) Buffer circuit
JP2006313814A (en) Semiconductor device
US20160086935A1 (en) Semiconductor device
JP2008021852A (en) Semiconductor device
US11508716B2 (en) Integrated circuit and electrostatic discharge protection method
US20220359496A1 (en) Antenna diode circuit
KR101867510B1 (en) Electrostatic discharging circuit
TWI441450B (en) Filler circuit cell
JP2009071007A (en) Method for layout of integrated circuit
JP2019165074A (en) Protection circuit
JP2000236065A (en) Semiconductor integrated circuit
JP2013222872A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190403

R150 Certificate of patent or registration of utility model

Ref document number: 6510120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150