JP2018142200A - 状態推定方法、及び状態推定装置 - Google Patents

状態推定方法、及び状態推定装置 Download PDF

Info

Publication number
JP2018142200A
JP2018142200A JP2017036439A JP2017036439A JP2018142200A JP 2018142200 A JP2018142200 A JP 2018142200A JP 2017036439 A JP2017036439 A JP 2017036439A JP 2017036439 A JP2017036439 A JP 2017036439A JP 2018142200 A JP2018142200 A JP 2018142200A
Authority
JP
Japan
Prior art keywords
parameter
model
gas turbine
target
reduction model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017036439A
Other languages
English (en)
Inventor
謙一 ▲濱▼口
謙一 ▲濱▼口
Kenichi Hamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2017036439A priority Critical patent/JP2018142200A/ja
Publication of JP2018142200A publication Critical patent/JP2018142200A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

【課題】パラメータの数を減らした動特性モデルを用いた場合であっても、対象装置における推定対象とするパラメータを精度よく推定する。
【解決手段】ガスタービンの状態推定方法は、複数のヘルスパラメータを用いてガスタービンモデルを作成する動特性モデル作成工程S101と、ガスタービンモデルからリダクションモデルを作成するリダクションモデル作成工程S104と、リダクションモデルを用いて、ガスタービンの推定対象とする高圧部のヘルスパラメータを推定する推定工程S102と、を含む。リダクションモデル作成工程では、ガスタービンの高圧部のヘルスパラメータが変化した場合、低圧部のヘルスパラメータが変化した場合に比べて、リダクションモデルの対応パラメータが変化し、対応パラメータは変化したガスタービンの高圧部のヘルスパラメータに追従するようにリダクションモデルを作成する。
【選択図】図4

Description

本発明は、状態推定方法、及び状態推定装置に関する。
例えばガスタービン等の対象装置において、センサが設置されていない場所の物理量(推力、温度、圧力等)及びヘルスパラメータ(対象装置の健全性(状態)を表すパラメータ)を、対象装置の動特性モデル及びセンサ計測値を用いて推定することが行われている。この推定には、カルマンフィルタ、及びH∞フィルタ等のフィルタが用いられている。
特許5046104号公報
ここで、例えば、ガスタービンにおいては、センサの数がヘルスパラメータの数よりも少ないことがある。この場合、推定システムの可検出性が満たされず、カルマンフィルタ等によってヘルスパラメータ等を推定できないことが知られている。このため、いくつかのヘルスパラメータは変動しないものと仮定して、ヘルスパラメータの数を減らした動特性モデルを用いて、状態推定装置が推定対象とするヘルスパラメータの推定を行うこと等が考えられる。しかしながら、単にヘルスパラメータの数を減らしただけでは、状態推定装置がヘルスパラメータを精度良く推定できないことがある。
そこで、本発明は、対象装置の状態を表すパラメータの数を減らした動特性モデルを用いた場合であっても、対象装置における推定対象とするパラメータを精度よく推定することが可能な状態推定方法、及び状態推定装置を提供することを目的とする。
本発明の一側面は、対象装置の状態を推定する状態推定方法であって、対象装置の状態を表す複数のパラメータを用いて、対象装置の動特性を示す動特性モデルを作成する動特性モデル作成工程と、動特性モデルを変換することにより、動特性モデルよりも少ない数のパラメータによって対象装置の動特性を示すリダクションモデルを作成するリダクションモデル作成工程と、リダクションモデルを用いてフィルタ処理を行うことにより、対象装置の複数のパラメータのうち推定対象となる対象パラメータの推定値を算出する推定工程と、を含み、リダクションモデル作成工程では、対象パラメータが変化した場合、対象パラメータ以外のパラメータが変化した場合に比べて、対象パラメータに対応するリダクションモデルのパラメータである対応パラメータが変化し、対応パラメータは、変化した対象パラメータに追従するようにリダクションモデルを作成する。
この状態推定方法では、対象装置の動特性モデルから、パラメータの数を少なくしたリダクションモデルが作成される。このリダクションモデルは、対象装置の対象パラメータが変化した場合、対象パラメータ以外のパラメータが変化した場合に比べて、リダクションモデルの対応パラメータが変化し、対応パラメータは、変化した対象パラメータに追従するモデルである。そして、作成されたリダクションモデルに基づいて、対象装置の対象パラメータが推定される。このように、リダクションモデルは、対象装置の対象パラメータが変化した場合には、変化した対象パラメータに対して、リダクションモデルの対応パラメータが追従するモデルである。反対に、このリダクションモデルは、対象装置の対象パラメータ以外のパラメータが変化した場合には、対象パラメータが変化した場合に比べて、リダクションモデルの対応パラメータが変動しないモデルである。これにより、この状態推定方法では、対象装置の状態を表すパラメータの数を減らした動特性モデル(リダクションモデル)を用いた場合であっても、対象装置における推定対象とするパラメータを精度よく推定することができる。
本発明の他の一側面は、対象装置の動特性を示すリダクションモデルを用いて、対象装置の状態を表す複数のパラメータのうち推定対象となる対象パラメータの推定値を算出する状態推定装置であって、リダクションモデルは、対象装置の複数のパラメータを用いて作成された動特性モデルを変換することにより、動特性モデルよりも少ない数のパラメータによって対象装置の動特性を示すように作成され、且つ、対象パラメータが変化した場合、対象パラメータ以外のパラメータが変化した場合に比べて、対象パラメータに対応するリダクションモデルのパラメータである対応パラメータが変化し、対応パラメータは、変化した対象パラメータに追従するように作成されている。
この状態推定装置は、リダクションモデルを用いて対象装置の対象パラメータを推定する。このリダクションモデルは、対象装置の動特性を示す動特性モデルに対して、少ない数のパラメータによって対象装置の動特性を示すように作成されている。また、リダクションモデルは、対象装置の対象パラメータが変化した場合、対象パラメータ以外のパラメータが変化した場合に比べて、リダクションモデルの対応パラメータが変化し、対応パラメータは、変化した対象パラメータに追従するモデルである。このように、リダクションモデルは、対象装置の対象パラメータが変化した場合には、変化した対象パラメータに対して、リダクションモデルの対応パラメータが追従するモデルである。反対に、このリダクションモデルは、対象装置の対象パラメータ以外のパラメータが変化した場合には、対象パラメータが変化した場合に比べて、リダクションモデルの対応パラメータが変動しないモデルである。これにより、この状態推定装置は、対象装置の状態を表すパラメータの数を減らした動特性モデル(リダクションモデル)を用いた場合であっても、対象装置における推定対象とするパラメータを精度よく推定することができる。
本発明の種々の側面によれば、対象装置の状態を表すパラメータの数を減らした動特性モデルを用いた場合であっても、対象装置における推定対象とするパラメータを精度よく推定することができる。
実施形態に係る状態推定装置を含む状態推定システムの概略構成を示す図である。 図1のガスタービンエンジンの各要素を模式的に示す図である。 図1の状態推定装置のハードウェア構成図である。 リダクションモデルの設計手順を示すフローチャートである。 状態推定装置に実装された定常カルマンフィルタのブロック線図である。 高圧部のヘルスパラメータの推定値を算出する処理を示すフローチャートである。
以下、本発明の実施形態について図面を参照しながら説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
図1に示される状態推定システム1は、推定対象の装置である対象装置に設けられる複数のセンサによって計測されたセンサ計測値に基づいて、対象装置の状態を推定するシステムである。以下、対象装置の一例として、航空機に搭載されるガスタービン(ガスタービンエンジン)10を用いて説明する。状態推定システム1は、ガスタービン10と、状態推定装置20と、を備えている。
図2に示されるように、ガスタービン10は、ファン(FAN)11と、低圧圧縮機(LPC)12と、高圧圧縮機(HPC)13と、燃焼器(COMB)14と、高圧タービン(HPT)15と、低圧タービン(LPT)16と、ロータ17と、ロータ18と、を備えている。
ファン11は、ガスタービン10の外部から空気を吸い込んで、吸い込んだ空気の一部を低圧圧縮機12に供給する。低圧圧縮機12は、ファン11から供給された空気を圧縮して圧縮空気を生成し、圧縮空気を高圧圧縮機13に供給する。高圧圧縮機13は、低圧圧縮機12から供給された圧縮空気をさらに圧縮して圧力をさらに高くして高圧空気を生成し、高圧空気を燃焼器14に供給する。燃焼器14は、高圧圧縮機13から供給された高圧空気に燃料を混ぜ合わせてこれらを燃焼させる。燃焼器14は、燃焼して得られた高温高圧の燃焼ガスを高圧タービン15に供給する。
高圧タービン15は、燃焼器14から供給された高温高圧の燃焼ガスによって回転し、ロータ18を回転させる。低圧タービン16は、高圧タービン15を通過した燃焼ガスによって回転し、ロータ17を回転させる。ロータ17は、ファン11、低圧圧縮機12及び低圧タービン16を一体的に回転可能に接続している。ロータ18は、高圧圧縮機13及び高圧タービン15を一体的に回転可能に接続している。
ガスタービン10には、複数のセンサ(不図示)が設けられている。ガスタービン10は、エンジン制御器(不図示)によって制御される。ガスタービン10は、ある時刻kにおいて、エンジン制御器から出力される制御入力値を入力し、ガスタービン10に設けられているセンサによって検知されるセンサ計測値を出力する。
状態推定装置20は、図3に示すように、物理的には、1又は複数のプロセッサ21、主記憶装置であるRAM(Random Access Memory)及びROM(Read Only Memory)等の記憶装置22、ハードディスク装置等の補助記憶装置23、キーボード等の入力装置24、ディスプレイ等の出力装置25、並びに、データ送受信デバイスである通信装置26等のハードウェアを備えるコンピュータとして構成され得る。状態推定装置20の各機能は、プロセッサ21、記憶装置22等のハードウェアに1又は複数の所定のコンピュータプログラムを読み込ませることにより、1又は複数のプロセッサ21の制御のもとで各ハードウェアを動作させるとともに、記憶装置22及び補助記憶装置23におけるデータの読み出し及び書き込みを行うことで実現される。
状態推定装置20は、ガスタービン10の状態を表すパラメータの推定値を算出する。本実施形態において状態推定装置20は、ガスタービン10の状態を表すパラメータとして、ガスタービン10のヘルスパラメータを用いる。また、状態推定装置20は、ガスタービン10の複数のヘルスパラメータのうち、推定対象となるヘルスパラメータ(以下「対象パラメータ」ともいう)の推定値を算出する。ヘルスパラメータは、ガスタービン10の各部の所定の性能を表す。
状態推定装置20は、対象パラメータを推定する際に、ガスタービン10の動特性を示すリダクションモデルを用いる。リダクションモデルは、複数のヘルスパラメータを用いて作成されたガスタービン10のガスタービンモデル(動特性モデル)を変換することによって作成される。また、リダクションモデルは、ガスタービンモデルよりも少ない数のヘルスパラメータによって、ガスタービン10の動特性を示している。
以下、リダクションモデルの作成手順について、図4のフローチャートを用いて説明する。リダクションモデルは、ガスタービン10等の設計者によって作成される。図4に示すように、ガスタービン10等の設計者は、ガスタービンモデルを作成する(S101:動特性モデル作成工程)。ガスタービンモデルは、次の式(1)によって表される。この線形モデルは、例えば非線形のガスタービンモデルをシステム同定することによって得られる。
Figure 2018142200
ここで、k=0,1,2,・・・は、離散時間である。xは、ガスタービン10の物理量を表す状態量(温度、圧力など)である。uは、制御入力(制御変数)及び環境変数(ガスタービン10の入口の温度及び圧力など)である。yは、センサから得られるセンサ計測値である。zは、補助モデル出力(auxiliary model outputs)である。補助モデル出力zは、一般に非観測の変数であり、設計者が推定したい変数(例えばガスタービン10の推力やセンサがない箇所の温度など)を表す。ベクトルhは、ヘルスパラメータである。ヘルスパラメータhは、性能が劣化も上昇もしていないときは0の値とする。wは[x,h]に対するプロセスノイズである。vは、観測ノイズである。w及びvは、ともにガウス白色雑音ベクトルとする。w及びvの平均値は、0とする。共分散は、次の式(2)とする。
Figure 2018142200
但し、k及びlは、ともに時刻を表す。δklは、クロネッカーのデルタとする。Qxh及びRは、ノイズ情報であり、半正定行列とする。行列A,B,C,D,F,G,L,M,N,Qxh,Rは、それぞれ適切なサイズの行列とする。
設計者は、xxh,kを[x ,h と定義する(xxh,k=[x ,h )。なお、文字の右上に付した「T」は、ベクトル又は行列の転置を表す。この定義を用い、設計者は、式(1)に対して改めて次の式(3)のように記号を定義する。
Figure 2018142200

以下、設計者は、ノイズ情報である行列Qxh及びRを含めて、式(3)のシステムを拡大系Σxhと定義する。
次に、設計者は、ガスタービン10の複数のヘルスパラメータのうち推定対象とする対象パラメータを決定する(S102)。ここで、上述のように、センサ数がヘルスパラメータの数よりも少ない場合、推定システムの可検出性が満たされない。このため、状態推定装置20は、ヘルスパラメータhのすべてをセンサ計測値yから推定することができない。例えば、定常カルマンフィルタを設計しようとすると、対応する代数リカッチ方程式は安定化解をもたない。また、非定常カルマンフィルタによって推定すると、カルマンフィルタは発散してしまう。
そこで、状態推定装置20は、ヘルスパラメータの一部の状態を推定する。すなわち、設計者は、次の2つの要求を満たす状態推定装置20を設計する。
要求1:劣化検出対象(推定対象)であるヘルスパラメータが変動した場合、状態推定装置20は、その変動を検出できること(正検出すること)。
要求2:劣化検出対象でないヘルスパラメータが変動した場合、劣化検出対象のヘルスパラメータの推定値は、その変動の影響を受けないこと(誤検出しないこと)。
例えば、設計者は、ガスタービン10の高圧部のヘルスパラメータを推定すると決定する。すなわち、対象パラメータは、高圧部のヘルスパラメータである。なお、ガスタービン10のヘルスパラメータhの各成分は、それぞれ次のヘルスパラメータの変動量を表すとする。
h(1):FAN効率
h(2):FAN流動容量
h(3):LPC効率
h(4):LPC流動容量
h(5):HPC効率
h(6):HPC流動容量
h(7):HPT効率
h(8):HPT流動容量
h(9):LPT効率
h(10):LPT流動容量
なお、h(5)、h(6)、h(7)、及びh(8)が高圧部のヘルスパラメータである。
ここで、設計者は、V を、次の式(4)と定義する。なお、「V 」の表記では「T」が「H」の右上に位置しているが、「V 」と式(4)の左辺とは同じ意味である。他の「T」の表記についても同様とする。
Figure 2018142200

この場合、高圧部のヘルスパラメータhは、次の式(5)によって定義される。
Figure 2018142200
また、設計者は、V を、次の式(6)と定義する。
Figure 2018142200

この場合、低圧部のヘルスパラメータhは、次の式(7)によって定義される。
Figure 2018142200
本実施形態の目的は、上述の要求1及び要求2を満たすように状態推定装置20がヘルスパラメータhを推定することである。
次に、設計者は、ヘルスパラメータhの推定に使用する推定アルゴリズムを決定する(S103)。ここで、使用される推定アルゴリズムによって、次のS104で得られる最適なガスタービンのリダクションモデルが変わってくる。このため、設計者は、予め使用する推定アルゴリズムを決定する。ここでは一例として、設計者は、使用する推定アルゴリズムをカルマンフィルタと決定する。
次に、設計者は、推定に最適なガスタービン10のリダクションモデルを作成する(S104:リダクションモデル作成工程)。まず、設計者は、VV=Iとなる行列Vとヘルスパラメータhとを用いて、q=Vhと定義する。但し、Iは、適切な単位行列である。設計者は、ベクトルqを、チューニングパラメータと定義する。但し、qの次元は、hの次元よりも小さい。設計者は、この行列Vを最適化することによって、上述の要求1及び要求2を満たすようにヘルスパラメータhを推定するという目的を達成させる。
このため、設計者は、式(1)にq=Vhを適用して次の式(8)のモデルを得る。
Figure 2018142200
設計者は、xxq,kを[x ,q と定義する(xxq,k=[x ,q )。この定義を用い、設計者は、式(8)を次の式(9)のように定義する。
Figure 2018142200
この拡大系(式(9))に対するプロセスノイズwxq,kは、次の式(10)によって表される。
Figure 2018142200
プロセスノイズwxq,kの共分散行列Qxqは、次の式(11)で表される。
Figure 2018142200
設計者は、式(11)に示す共分散行列Qxq及び式(2)で定義された行列Rを含めて、式(9)で表されるモデルをリダクションモデルΣxqと定義する。設計者は、このリダクションモデルΣxqに対して定常カルマンフィルタを作成する。設計者は、リダクションモデルΣxqの可検出性は満たされると仮定して、次の式(12)で表されるリカッチ代数方程式の安定化解Pxq>0を求める。
Figure 2018142200
設計者は、得られた安定化解Pxqを用いて次の式(13)に示すようにカルマンゲインKxqを作成する。
Figure 2018142200

このときの定常カルマンフィルタは、次の式(14)によって与えられる。
Figure 2018142200
設計者は、状態量の推定値x^xq,kからチューニングパラメータの推定値q^を求める。なお、「x^xq,k」の表記では「^」が「x」の右上に位置しているが、「x^xq,k」と式(14)の左辺とは同じ意味である。他の「^」の表記についても同様とする。次に、設計者は、ヘルスパラメータの推定値h^を、h^=Vq^によって得る。なお、本明細書において記号「^」は、推定値を意味する。
以下、定常状態における推定値x^xh,kのバイアス誤差について説明する。但し、定常状態における制御量uは、0(制御量が変動していない状態)とする。設計者は、定常状態における各変数に対し、次の式(15)のように変数を定義する。
Figure 2018142200
設計者は、推定対象のシステムである式(1)に対して、定常状態における期待値をとり、次の式(16)を得る。
Figure 2018142200
式(16)は、次の式(17)のように整理される。
Figure 2018142200
また、拡大系Σxhの状態量xxh,kの定常状態は、次の式(18)によって表される。
Figure 2018142200
次に、設計者は、式(14)の定常状態に対して期待値をとり、次の式(19)を得る。
Figure 2018142200
設計者は、次の式(20)を式(19)に代入して、式(21)を得る。
Figure 2018142200

Figure 2018142200
設計者は、定常バイアス誤差x xh,ssを、次の式(22)のように定義する。なお、「x xh,ss」の表記では「」が「x」の右上に位置しているが、「x xh,ss」と式(22)の左辺とは同じ意味である。他の「」の表記についても同様とする。なお、本明細書において記号「」は、推定誤差を意味する。
Figure 2018142200
なお、x^xh,ssは、次の式(23)によって表される。
Figure 2018142200

設計者は、式(18)、式(21)及び式(22)の定義を用いて、次の式(24)を得る。
Figure 2018142200
但し、設計者は、Gxhを次の式(25)のように定義した。
Figure 2018142200
設計者は、行列Gxhにおいて、状態量xに対応する部分をG、ヘルスパラメータhに対応する部分をGと定義する。すなわち、式(24)は、次の式(26)のように表現される。
Figure 2018142200

ここで、x ss及びh ssは、それぞれ状態量x及びヘルスパラメータhの定常バイアス誤差である。
次に、設計者は、行列Gを用いて、上述した要求1及び要求2を満たすための評価関数を作成する。まず、設計者は、次の式(27)〜式(30)のように各変数を定義する。
Figure 2018142200

Figure 2018142200

Figure 2018142200

Figure 2018142200
L,ss及びhH,ssは、それぞれ、ガスタービン10の低圧部及び高圧部のヘルスパラメータの定常状態における期待値を表す。h L,ss及びh H,ssは、それぞれ、ガスタービン10の低圧部及び高圧部のヘルスパラメータの定常バイアス誤差を表す。
ss=Gssが成立し、さらにV及びVの定義からV +V =Iが成立することを考慮すると、式(26)から次の式(31)が導出される。
Figure 2018142200
式(31)を簡単にするため、設計者は、次の式(32)のように記号を定義する。
Figure 2018142200

式(31)は、式(32)に基づいて次の式(33)のように書き換えられる。
Figure 2018142200

式(33)は、低圧部及び高圧部のそれぞれのヘルスパラメータの変動が、低圧部及び高圧部のそれぞれのヘルスパラメータの推定誤差に与える影響を表している。
また、G22=0は、上述した要求1(正検出すること)に対応している。G21=0は、上述した要求2(誤検出しないこと)に対応している。しかし、ガスタービン10に設けられたセンサの数が不足する場合は、厳密にG21=0及びG22=0とならない。このため、設計者は、次の式(34)で表される評価関数を最小化する。
Figure 2018142200

ここで、w及びwは、重みであり、非負の定数とする。なお、設計者は、誤検出を防ぐこと(要求2)を重視する場合には、wをwより大きく設定し、正検出(要求1)を重視する場合には、wをwより大きく設定する。
設計者は、式(34)のJが最小となるように行列Vを最適化させる。以下、上述した行列Vの最適化の手順について、再度まとめて説明する。
手順1:ヘルスパラメータの数(hの次元)をl(英文字の小文字のエル)とする。設計者は、チューニングパラメータの次数(qの次元)をpと決定する。
手順2:設計者は、次の式(35)で示される行列Vを作成する。
Figure 2018142200

但し、VV=Iである。
手順3:設計者は、元の拡大系Σxhから、リダクションモデルΣxqを作成する。
手順4:設計者は、リダクションモデルΣxqに対し、定常カルマンフィルタゲインKxqを計算する。
手順5:設計者は、式(31)及び式(32)で定義される行列G21及びG22を作成する。
手順6:設計者は、式(34)で定義される評価関数Jを計算する。
手順7:設計者は、非線形計画法のアルゴリズムによって、評価関数が小さくなるような行列Vを新しく作成して、手順3に戻る。評価関数Jの値がこれ以上下がらない、或いは行列Vが収束した等、アルゴリズムの終了条件を満たした場合、設計者は、その行列Vを最適解Vと決定する。また、設計者は、最適解Vによって得られるリダクションモデルΣxqを、推定に最適なリダクションモデル(推定に最適なガスタービンモデル)として決定する。
すなわち、推定に最適なリダクションモデルとは、S101において作成されたガスタービンモデルを変換することにより、このガスタービンモデルよりも少ない数のヘルスパラメータによってガスタービン10の動特性を示すように作成されたモデルである。
また、この推定に最適なリダクションモデルとは、上述した要求1及び要求2を満たすように作成されたモデルである。すなわち、ガスタービン10の推定対象とする高圧部のヘルスパラメータが変化した場合、ガスタービン10の低圧部のヘルスパラメータが変化した場合に比べて、リダクションモデルの対応パラメータが、変化したガスタービン10のヘルスパラメータに追従するように作成されている。なお、リダクションモデルの対応パラメータとは、ガスタービン10の複数のパラメータのうち推定対象とするパラメータ(本実施形態では高圧部のヘルスパラメータ)に対応するリダクションモデルのヘルスパラメータである。なお、追従とは、対応パラメータが推定対象のヘルスパラメータの値そのものになることに限定されず、推定対象のヘルスパラメータの変化に応じて変化することも含むものである。対応パラメータと推定対象のヘルスパラメータとの一致度の精度については、本実施形態の適用先の要求レベルに応じて、適宜定められ得るものである。精度の調整については、評価関数Jを用いて後述される。
すなわち、推定に最適なリダクションモデルは、ガスタービン10の高圧部のヘルスパラメータが変化した場合(低圧部のヘルスパラメータの変化を問わず)、リダクションモデルの対応パラメータが、変化したガスタービン10の高圧部のヘルスパラメータに追従する(要求1)。一方、推定に最適なリダクションモデルは、ガスタービン10の低圧部のヘルスパラメータが変化した場合(且つ高圧部のヘルスパラメータが変化していないとき)、リダクションモデルの対応パラメータは変動し難い(要求2)。要求2は、リダクションモデルの対応パラメータが、推定対象以外(ここでは低圧部)のヘルスパラメータが変化しても変化し難いことを意味し、対応パラメータは対象パラメータに追従し続けているともいえる。
そして、この推定に最適なリダクションモデルとは、評価関数Jを用いて、要求1及び要求2を満たす度合いのバランスを考慮して作成されたモデルである。設計者は、評価関数Jの重みw及びwを変更することで、要求1及び要求2を満たす度合いのバランスを変更することができる。つまり、要求1に関する重みwを大きくすれば、対応パラメータと、変化したガスタービン10の高圧部のヘルスパラメータとの一致度の精度が向上する。また、要求2に関する重みwを大きくすれば、対応パラメータは、低圧部のヘルスパラメータが変化しても変動し難くなる。
次に、設計者は、最適解Vによって得られるリダクションモデルΣxq(推定に最適なリダクションモデル)を、状態推定装置20における推定アルゴリズムに組み込む(S105)。ここでは、一例として、最適解Vによって得られるリダクションモデルΣxqを定常カルマンフィルタとして状態推定装置20に実装した場合を示す。図5は、状態推定装置20に実装された定常カルマンフィルタのブロック線図である。
以上のように、最適解Vによって得られるリダクションモデルΣxqが推定アルゴリズムに組み込まれることにより、状態推定装置20によってガスタービン10の高圧部のヘルスパラメータの推定値を算出する準備が完了する。このように、図4のフローチャートを用いて説明した処理は、ガスタービン10の高圧部のヘルスパラメータの推定値を算出する状態推定方法のうち、推定に用いるリダクションモデルを作成する工程である。
次に、状態推定装置20がガスタービン10の高圧部のヘルスパラメータの推定値を算出する処理について、図6を用いて説明する。すなわち、以下で説明する処理は、ガスタービン10の高圧部のヘルスパラメータの推定値を算出する状態推定方法のうち、推定に最適なリダクションモデルを用いて高圧部のヘルスパラメータの推定値を算出する工程である。
状態推定装置20は、推定に最適なリダクションモデルを用いてフィルタ処理を行うことにより、ガスタービン10の複数のパラメータのうち推定対象となる高圧部のヘルスパラメータの推定値を算出する(S201:推定工程)。
具体的には、状態量x及びチューニングパラメータqの初期推定値は、それぞれx^及びq^とする。x^xq,0は、[x^ ,q^ とする(x^xq,0=[x^ ,q^ )。状態推定装置20は、カルマンフィルタを用いた処理として各時刻k=1,2,・・・において、次の処理1〜処理3の処理を行う。
処理1:状態推定装置20は、次の式(36)に示すように、リダクションモデルΣxqによって1ステップ先の状態の予測を行う。
Figure 2018142200
処理2:状態推定装置20は、ガスタービン10に設けられたセンサからセンサ計測値yを取得する。
処理3:状態推定装置20は、次の式(37)に示すように、カルマンゲインによるフィルタリングを行う。
Figure 2018142200
状態推定装置20は、カルマンフィルタによって得られたチューニングパラメータの推定値q^に行列Vをかけることによって、ヘルスパラメータの推定値h^=Vq^を算出する。さらに、状態推定装置20は、h^に行列Vをかけることにより、高圧部のヘルスパラメータの推定値h^H,k=V h^を算出する(図5参照)。
状態推定装置20は、算出された高圧部のヘルスパラメータの推定値を、ディスプレイ等の出力装置25を介して出力する(S202)。状態推定装置20は、算出された高圧部のヘルスパラメータの推定値を、通信装置26を介して外部に出力してもよい。
本実施形態は以上のように構成され、図4及び図6のフローチャートを用いて説明した状態推定方法では、ガスタービン10のガスタービンモデルから、ヘルスパラメータの数を少なくしたリダクションモデルが作成される。このリダクションモデルは、ガスタービン10の高圧部のヘルスパラメータが変化した場合、ガスタービン10の低圧部のヘルスパラメータが変化した場合に比べて、リダクションモデルの対応パラメータが変化し、対応パラメータは、変化した対象パラメータに追従するモデルである。そして、作成されたリダクションモデルに基づいて、ガスタービン10の高圧部のヘルスパラメータが推定される。このように、リダクションモデルは、ガスタービン10の高圧部のヘルスパラメータが変化した場合には、変化した高圧部のヘルスパラメータに対して、リダクションモデルの対応パラメータが追従するモデルである。反対に、このリダクションモデルは、ガスタービン10の低圧部のヘルスパラメータが変化した場合には、高圧部のヘルスパラメータが変化した場合に比べて、リダクションモデルの対応パラメータが変動しないモデルである。これにより、この状態推定方法では、ガスタービン10の状態を表すヘルスパラメータの数を減らしたリダクションモデル(ガスタービン10の動特性モデル)を用いた場合であっても、ガスタービン10における推定対象とするヘルスパラメータを精度よく推定することができる。
同様に、状態推定装置20は、上記の状態推定方法によって作成されたリダクションモデルを用いてガスタービン10における推定対象とするヘルスパラメータを推定する。これにより、状態推定装置20は、ガスタービン10の状態を表すヘルスパラメータの数を減らしたリダクションモデル(ガスタービン10の動特性モデル)を用いた場合であっても、ガスタービン10における推定対象とするヘルスパラメータを精度よく推定することができる。
以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されるものではない。例えば、図4のS105において、最適解Vによって得られるリダクションモデルΣxqを定常カルマンフィルタとして状態推定装置20に実装した場合を示したが、他のカルマンフィルタが用いられてもよい。例えば他のカルマンフィルタとして、非定常カルマンフィルタ、又は一定ゲイン拡張カルマンフィルタが用いられてもよい。
また、実施形態では、カルマンフィルタを例に状態推定装置20の設計を行ったが、カルマンフィルタに代えてH∞フィルタが用いられてもよい。H∞フィルタを用いる場合、設計者は、S104の最適化計算において、式(12)に代えて次の式(38)を用いてもよい。
Figure 2018142200

なお、式(38)におけるγパラメータは、設計者によって与えられる正の定数である。この場合、状態推定装置20への実装には、定常H∞フィルタ、又は非定常H∞フィルタが用いられる。
ヘルスパラメータの他に推定したい変数(推力など)が存在した場合、設計者は、評価関数JにGのノルムを加えるとよい。但し、行列Gは、z^ss−zss=Gssを満たす行列である。ここで、zssは、定常状態におけるzの期待値であり、z^ssは、その推定値である。
実施形態では、ガスタービン10の高圧部分のヘルスパラメータの推定を行ったが、推定するヘルスパラメータは高圧部分のヘルスパラメータに限定されない。また、ガスタービン10の状態推定は現地(ガスタービン10の設置場所)で行われてもよく、現地以外の場所で行われてもよい。ガスタービン10の状態推定は、実機のセンサ計測値と同期してリアルタイムで行われてもよく、過去のセンサ計測値を用いてオフラインで行われてもよい。
状態推定装置20が設計された後は、状態推定装置20によって繰り返しガスタービン10の状態推定を行うことができる。このため、状態推定装置20の設計はガスタービン10の設計者が行い、状態推定装置20を用いた状態推定は、ガスタービン10の使用者が行ってもよい。状態推定の対象装置をガスタービン10としたが、ガスタービン10以外の装置の状態推定が行われてもよい。
図4を用いて説明した各工程は、設計者によって行われる場合を例に説明したが、一部又は全部がコンピュータ等によって自動で行われてもよい。また、図4に示す処理と、図6に示す処理は、本発明の趣旨を逸脱しない限り、上述した工程以外の工程を含んでもよい。
1 状態推定システム
10 ガスタービン(対象装置)
20 状態推定装置

Claims (2)

  1. 対象装置の状態を推定する状態推定方法であって、
    前記対象装置の状態を表す複数のパラメータを用いて、前記対象装置の動特性を示す動特性モデルを作成する動特性モデル作成工程と、
    前記動特性モデルを変換することにより、前記動特性モデルよりも少ない数の前記パラメータによって前記対象装置の動特性を示すリダクションモデルを作成するリダクションモデル作成工程と、
    前記リダクションモデルを用いてフィルタ処理を行うことにより、前記対象装置の複数の前記パラメータのうち推定対象となる対象パラメータの推定値を算出する推定工程と、を含み、
    前記リダクションモデル作成工程では、
    前記対象パラメータが変化した場合、前記対象パラメータ以外の前記パラメータが変化した場合に比べて、前記対象パラメータに対応する前記リダクションモデルの前記パラメータである対応パラメータが変化し、
    前記対応パラメータは、変化した前記対象パラメータに追従する
    ように前記リダクションモデルを作成する、状態推定方法。
  2. 対象装置の動特性を示すリダクションモデルを用いて、前記対象装置の状態を表す複数のパラメータのうち推定対象となる対象パラメータの推定値を算出する状態推定装置であって、
    前記リダクションモデルは、
    前記対象装置の複数の前記パラメータを用いて作成された動特性モデルを変換することにより、前記動特性モデルよりも少ない数の前記パラメータによって前記対象装置の動特性を示すように作成され、
    且つ、
    前記対象パラメータが変化した場合、前記対象パラメータ以外の前記パラメータが変化した場合に比べて、前記対象パラメータに対応する前記リダクションモデルの前記パラメータである対応パラメータが変化し、
    前記対応パラメータは、変化した前記対象パラメータに追従する
    ように作成されている、状態推定装置。
JP2017036439A 2017-02-28 2017-02-28 状態推定方法、及び状態推定装置 Pending JP2018142200A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017036439A JP2018142200A (ja) 2017-02-28 2017-02-28 状態推定方法、及び状態推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036439A JP2018142200A (ja) 2017-02-28 2017-02-28 状態推定方法、及び状態推定装置

Publications (1)

Publication Number Publication Date
JP2018142200A true JP2018142200A (ja) 2018-09-13

Family

ID=63528112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036439A Pending JP2018142200A (ja) 2017-02-28 2017-02-28 状態推定方法、及び状態推定装置

Country Status (1)

Country Link
JP (1) JP2018142200A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543279A (zh) * 2018-11-16 2019-03-29 上海交通大学 一种基于动态模型的燃气轮机气路故障诊断方法
KR20200036767A (ko) * 2018-09-28 2020-04-07 미츠비시 히타치 파워 시스템즈 가부시키가이샤 열기기의 내부 상태 추정 방법 및 장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200036767A (ko) * 2018-09-28 2020-04-07 미츠비시 히타치 파워 시스템즈 가부시키가이샤 열기기의 내부 상태 추정 방법 및 장치
CN110967192A (zh) * 2018-09-28 2020-04-07 三菱日立电力系统株式会社 热设备的内部状态估计方法以及装置
KR102354253B1 (ko) * 2018-09-28 2022-01-21 미츠비시 파워 가부시키가이샤 열기기의 내부 상태 추정 방법 및 장치
CN110967192B (zh) * 2018-09-28 2022-05-03 三菱重工业株式会社 热设备的内部状态估计方法以及装置
US11428525B2 (en) 2018-09-28 2022-08-30 Mitsubishi Heavy Industries, Ltd. Method and apparatus for estimating internal state of thermal component
CN109543279A (zh) * 2018-11-16 2019-03-29 上海交通大学 一种基于动态模型的燃气轮机气路故障诊断方法

Similar Documents

Publication Publication Date Title
Tsoutsanis et al. A component map tuning method for performance prediction and diagnostics of gas turbine compressors
WO2018138880A9 (ja) モデルパラメータ値推定装置及び推定方法、プログラム、プログラムを記録した記録媒体、モデルパラメータ値推定システム
JP5583455B2 (ja) タービン部品にサージ保護を与えるためのシステム及び方法
JP6919997B2 (ja) 制御装置、制御方法、および制御プログラム
JP7029362B2 (ja) 異常検出装置、異常検出方法、及びプログラム
US7890296B2 (en) Method of analyzing the performance of gas turbine engines
EP3255512B1 (en) Adaptive model-based method to quantify degradation of a power generation system
JP2010277577A (ja) 制御及び推定のための線形モデルのリアルタイムスケジューリング
US20070260424A1 (en) Methods and apparatus for estimating engine thrust
JP2006127079A (ja) 制御対象モデル生成装置および生成方法
US10436124B2 (en) Signal processing for auto-tuning a gas turbine engine
JP2018142200A (ja) 状態推定方法、及び状態推定装置
Chiu et al. On the steady-state performance of the Poisson double GWMA control chart
US20200410042A1 (en) Abnormality detection device, abnormality detection method, and non-transitory computer-readable medium
US6931857B2 (en) Rotor inlet temperature control for turbo machine
CN114962318B (zh) 压缩机喘振的控制方法、装置、存储介质及计算机设备
EP3373083A1 (en) Power generation system control through adaptive learning
Huang et al. Gas path deterioration observation based on stochastic dynamics for reliability assessment of aeroengines
JP6483571B2 (ja) 性能推定装置及び性能推定方法
CN115702288A (zh) 发动机的异常诊断方法、发动机的异常诊断程序及发动机的异常诊断系统
JP6347771B2 (ja) 異常診断装置、異常診断方法及び異常診断プログラム
JP6816646B2 (ja) ゲイン決定装置、ゲイン決定方法、及び性能推定装置
Egorov et al. Stochastic Optimization of Parameters and Control Laws of the Aircraft Gas-Turbine Engines–a Step to a Robust Design
KR20200127483A (ko) 매트랩을 활용한 모델링 자동화 장치 및 방법
Jarrett et al. Validation of a Gas Turbine Thermodynamic Model Without Accurate Component Maps

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210209