JP2018141707A - Camber amount measurement method of steel plate, camber amount measurement device of steel plate and calibration method of camber amount measurement device of steel plate - Google Patents

Camber amount measurement method of steel plate, camber amount measurement device of steel plate and calibration method of camber amount measurement device of steel plate Download PDF

Info

Publication number
JP2018141707A
JP2018141707A JP2017036280A JP2017036280A JP2018141707A JP 2018141707 A JP2018141707 A JP 2018141707A JP 2017036280 A JP2017036280 A JP 2017036280A JP 2017036280 A JP2017036280 A JP 2017036280A JP 2018141707 A JP2018141707 A JP 2018141707A
Authority
JP
Japan
Prior art keywords
steel plate
plate
image
camera
camber amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017036280A
Other languages
Japanese (ja)
Other versions
JP6665813B2 (en
Inventor
嵩史 桐野
Takashi Kirino
嵩史 桐野
広章 小松原
Hiroaki Komatsubara
広章 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017036280A priority Critical patent/JP6665813B2/en
Publication of JP2018141707A publication Critical patent/JP2018141707A/en
Application granted granted Critical
Publication of JP6665813B2 publication Critical patent/JP6665813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a camber amount measurement method of a steel plate which can exactly measure a camber amount of the steel plate by enhancing the synthesizing accuracy of a photographed image, a camber amount measurement device of the steel plate and a calibration method of the camber amount measurement device of the steel plate.SOLUTION: In a camber amount measurement method of a steel plate for photographing an upper face of the steel plate a plurality of times by dividing photographed images to a transportation direction, acquiring a synthesized image by combining the obtained photographed images, and calculating a camber amount of the steel plate from the synthesized image, the camber amount measurement method performs photographing so that an overlapped range exists in an n-th photographed image (here, N is a positive integer), and in an (N+1)th photographed image, and makes a reference line of the steel plate in the overlapped range of the N-th photographed image and a reference line of the steel plate in the overlapped range of the (N+1)th photographed image overlap on each other, thus acquiring the synthesized image.SELECTED DRAWING: Figure 3

Description

本発明は、鋼板の搬送ラインにおいて、鋼板のキャンバー量を精度よく測定することのできる鋼板のキャンバー量測定方法、鋼板のキャンバー量測定装置、及び該鋼板のキャンバー量測定装置の校正方法に関する。   The present invention relates to a steel plate camber amount measuring method, a steel plate camber amount measuring device, and a method for calibrating the steel plate camber amount measuring device capable of accurately measuring a steel plate camber amount in a steel sheet conveying line.

製鉄所において、スラブ、厚板等の鋼板は、テーブルロール上を搬送されながら圧延等の処理を受ける。この際、圧延不良等によって、鋼板が略円弧状に湾曲する曲がり(キャンバー)が生じることがある。鋼板の曲げ量(キャンバー量)が特に大きいと、搬送される鋼板と搬送ラインの外側に位置するガイド部材等とが干渉する通板異常が発生し、搬送ラインの運転を停止せざるを得ないこともある。そこで、搬送ラインの上方からカメラを用いて鋼板の上面を撮影し、鋼板のキャンバー量を測定して、通板異常を未然に防ぐことが行われている。   In steelworks, steel plates such as slabs and thick plates are subjected to processing such as rolling while being conveyed on a table roll. Under the present circumstances, the bending (camber) which a steel plate curves in a substantially circular arc shape by rolling failure etc. may arise. If the bending amount (camber amount) of the steel plate is particularly large, a passing plate abnormality that interferes with the steel plate to be transported and a guide member located outside the transport line occurs, and the operation of the transport line has to be stopped. Sometimes. Therefore, an upper surface of a steel plate is photographed from above the transfer line using a camera, and the camber amount of the steel plate is measured to prevent a plate passing abnormality.

カメラによる撮影画像を用いて鋼板のキャンバー量を測定する技術を開示した文献として特許文献1が挙げられる。特許文献1では、カメラの撮影により得られた撮影画像中における鋼板部とそれ以外の部分との輝度の差から、鋼板の板幅方向両端の側辺を認識し、2つの側辺の中心線と本来あるべき板幅方向中心線とのずれ量をもとにオフセンター量を求める方法が開示されている(明細書[0016]、図2)。しかし特許文献1の技術は、スラブ等に代表される板長方向長さの小さい鋼板を撮影対象とし、1フレームで鋼板全体を撮影することを前提としており、複数の撮影画像から合成画像を取得することについては記載されていない。   Patent document 1 is mentioned as literature which disclosed the technique which measures the camber amount of a steel plate using the picked-up image by a camera. In Patent Document 1, the sides of the steel plate in the width direction of the steel plate are recognized from the difference in luminance between the steel plate portion and the other portions in the photographed image obtained by the camera, and the center lines of the two side sides are recognized. And a method for obtaining the off-center amount based on the deviation amount from the center line in the plate width direction (specification [0016], FIG. 2). However, the technique of Patent Document 1 is based on the premise that the entire steel sheet is photographed in one frame, taking a steel sheet with a small length in the plate length represented by a slab or the like, and a composite image is obtained from a plurality of photographed images. There is no mention of what to do.

鋼板をカメラにて撮影する際、鋼板の板長方向の全長をカメラの1フレームの視野内に入れることができれば、確実に鋼板の上面形状を把握することができる。しかし、鋼板の板長方向長さが大きい場合、1フレーム内に鋼板の上面全体を撮影することは現実には難しい。そこで、鋼板が搬送される際に複数回に分けて撮影を行い、得られた撮影画像を板長方向に繋ぎ合わせた合成画像を作成することで、鋼板の上面形状を把握することが行われる。次いで、得られた合成画像を用いて、鋼板のキャンバー量が算出される。尚、個々の撮影画像から合成画像を作成する際、及び合成画像において鋼板のキャンバー量を算出する際には、種々の演算処理が行われる。   When photographing a steel plate with a camera, if the entire length in the plate length direction of the steel plate can be included in the field of view of one frame of the camera, the top surface shape of the steel plate can be reliably grasped. However, when the length of the steel plate in the plate length direction is large, it is actually difficult to photograph the entire top surface of the steel plate in one frame. Therefore, when the steel sheet is transported, the image is divided into a plurality of times, and the upper surface shape of the steel sheet is grasped by creating a composite image obtained by joining the obtained captured images in the plate length direction. . Next, the camber amount of the steel sheet is calculated using the obtained composite image. In addition, when creating a composite image from individual photographed images and calculating a camber amount of a steel plate in the composite image, various arithmetic processes are performed.

特許文献では開示されていないものの、従来、複数の撮影画像を組み合わせて合成画像を取得するには、後述する図3(a)のようにN回目の撮影画像の重複範囲と、(N+1)回目の重複範囲とを単に重ね合わせることが行われている。   Although not disclosed in the patent literature, conventionally, in order to obtain a composite image by combining a plurality of captured images, as shown in FIG. 3A described later, the overlap range of the Nth captured image and the (N + 1) th captured image are obtained. The overlapping range is simply overlapped.

特開2016−097431号公報JP 2006-097431 A

本発明者らは、従来行われている複数の撮影画像の重複範囲を単に重ね合わせる方法では、鋼板の上面形状を正確に把握できないことがあることを見出した。詳細については後述するが、特に鋼板が回転又は蛇行した場合に、合成画像で観察される鋼板の上面形状と実際の鋼板の上面形状との間の誤差が大きいという問題がある。合成画像において鋼板の上面形状を正確に把握できないと、鋼板のキャンバー量の測定値についても誤差が大きくなる。   The present inventors have found that the top surface shape of a steel sheet may not be accurately grasped by a conventional method of simply overlapping overlapping ranges of a plurality of captured images. Although details will be described later, there is a problem that an error between the upper surface shape of the steel plate observed in the composite image and the actual upper surface shape of the steel plate is large particularly when the steel plate rotates or meanders. If the upper surface shape of the steel plate cannot be accurately grasped in the composite image, an error also increases in the measured value of the camber amount of the steel plate.

本発明は、上記の問題点に鑑みて完成されたものであり、撮影画像の合成精度を高めることにより、鋼板のキャンバー量を正確に測定することのできる鋼板のキャンバー量測定方法、キャンバー量測定装置、及び該鋼板のキャンバー量測定装置の校正方法を提供することを課題とする。   The present invention has been completed in view of the above problems, and by increasing the synthesis accuracy of the captured image, the camber amount measuring method and the camber amount measurement of the steel plate can accurately measure the camber amount of the steel plate. It is an object of the present invention to provide a calibration method for an apparatus and a camber amount measuring apparatus for the steel sheet.

本発明の手段は、次の通りである。
[1]鋼板の上面を搬送方向に分けて複数回撮影し、得られた撮影画像を組み合わせて合成画像を取得し、該合成画像から鋼板のキャンバー量を算出する鋼板のキャンバー量測定方法であって、鋼板を撮影する際に、N回目の撮影画像(但し、Nは正の整数とする。)と、(N+1)回目の撮影画像とにおいて重複範囲があるように撮影を行い、N回目の撮影画像の重複範囲における鋼板の基準線と、(N+1)回目の撮影画像の重複範囲における鋼板の基準線とを重ね合わせることにより、合成画像を取得する鋼板のキャンバー量測定方法。
[2]合成画像を取得する際に、一方の基準線の傾きと他方の基準線の傾きとが一致するようにN回目の撮影画像及び(N+1)回目の撮影画像の少なくとも一方を回転させるとともに、2つの基準線の搬送方向位置及び板幅方向位置が一致するように、N回目の撮影画像及び(N+1)回目の撮影画像の少なくとも一方を平行移動させる[1]に記載の鋼板のキャンバー量測定方法。
[3]合成画像中における鋼板の搬送方向と平行な基準平行線と、合成画像の鋼板部における板長方向に沿った板長平行線との板幅方向のずれ量を測定することによって、鋼板のキャンバー量を算出する[1]又は[2]に記載の鋼板のキャンバー量測定方法。
[4]鋼板の上面を搬送方向に分けて複数回撮影するカメラと、該カメラから撮影画像を受信し、複数の撮影画像を組み合わせて合成画像を取得し、該合成画像から鋼板のキャンバー量を算出する演算装置と、を備えた鋼板のキャンバー量測定装置であって、前記カメラは、鋼板を撮影する際に、N回目の撮影画像(但し、Nは正の整数とする。)と、(N+1)回目の撮影画像とにおいて重複範囲があるように撮影を行い、前記演算装置は、N回目の撮影画像の重複範囲における鋼板の基準線と、(N+1)回目の撮影画像の重複範囲における鋼板の基準線とを重ね合わせることにより、合成画像を取得する鋼板のキャンバー量測定装置。
[5]前記演算装置は、合成画像を取得する際に、一方の基準線の傾きと他方の基準線の傾きとが一致するように、N回目の撮影画像及び(N+1)回目の撮影画像の少なくとも一方を回転させるとともに、2つの基準線の搬送方向位置及び板幅方向位置が一致するように、N回目の撮影画像及び(N+1)回目の撮影画像の少なくとも一方を平行移動させる[4]に記載の鋼板のキャンバー量測定装置。
[6]前記演算装置は、合成画像中において鋼板の搬送方向と平行な基準平行線と、合成画像の鋼板部における板長方向に沿った板長平行線との板幅方向のずれ量を測定することによって、鋼板のキャンバー量を算出する[4]又は[5]に記載の鋼板のキャンバー量測定装置。
[7][4]から[6]までのいずれか一つに記載の鋼板のキャンバー量測定装置において、カメラに由来する測定誤差を校正する鋼板のキャンバー量測定装置の校正方法であって、前記カメラによって通板中の鋼板を撮影し、撮影画像における鋼板の前端部の板幅の相対値に基づいて、鋼板の板幅の算出値W1を求め、撮影画像における鋼板の後端部の板幅の相対値に基づいて、鋼板の板幅の算出値W2を求め、鋼板の板幅の真値、前記W1、及び前記W2に基づいて、カメラに由来する測定誤差を校正する鋼板のキャンバー量測定装置の校正方法。
[8]前記W1と前記W2との差の絶対値が閾値を超える場合には、カメラの設置角度を校正し、次いで、前記W1及びW2の少なくともいずれか一方と鋼板の板幅の真値との差の絶対値が閾値を超える場合には、カメラの高さを校正する[7]に記載の鋼板のキャンバー量測定装置の校正方法。
Means of the present invention are as follows.
[1] A method for measuring the amount of camber on a steel sheet, in which the upper surface of the steel sheet is imaged a plurality of times in the conveying direction, a composite image is obtained by combining the obtained captured images, and the camber amount of the steel sheet is calculated from the composite image. When the steel plate is photographed, photographing is performed so that there is an overlapping range between the N-th photographed image (where N is a positive integer) and the (N + 1) -th photographed image. A method for measuring a camber amount of a steel sheet, wherein a composite image is obtained by superimposing a reference line of a steel sheet in an overlapping range of captured images and a reference line of a steel plate in an overlapping range of (N + 1) th captured images.
[2] At the time of acquiring the composite image, at least one of the N-th captured image and the (N + 1) -th captured image is rotated so that the inclination of one reference line and the inclination of the other reference line coincide with each other. The camber amount of the steel plate according to [1], in which at least one of the N-th captured image and the (N + 1) -th captured image is translated so that the transport direction position and the sheet width direction position of the two reference lines coincide with each other. Measuring method.
[3] By measuring the deviation in the plate width direction between the reference parallel line parallel to the conveying direction of the steel plate in the composite image and the plate length parallel line along the plate length direction in the steel plate portion of the composite image, The method for measuring the camber amount of a steel sheet according to [1] or [2], wherein the camber amount is calculated.
[4] A camera that shoots the upper surface of a steel sheet in a conveying direction and captures a plurality of times, receives a captured image from the camera, obtains a composite image by combining a plurality of captured images, and determines a camber amount of the steel sheet from the composite image An apparatus for calculating the amount of camber of a steel plate provided with a calculating device, wherein the camera captures an N-th shot image (where N is a positive integer) when shooting the steel plate. N + 1) images are taken so that there is an overlapping range in the captured image of the (N + 1) th time, and the arithmetic unit is configured to detect the reference line of the steel plate in the overlapping range of the Nth time captured image and the steel plate in the overlapping range of the (N + 1) th captured image. An apparatus for measuring the amount of camber on a steel plate that obtains a composite image by superimposing the reference line with the reference line.
[5] The arithmetic unit obtains the N-th captured image and the (N + 1) -th captured image so that the inclination of one reference line matches the inclination of the other reference line when acquiring a composite image. At least one of the N-th shot image and the (N + 1) -th shot image is moved in parallel so that at least one of them is rotated and the conveyance direction position and the plate width direction position of the two reference lines coincide with each other. The apparatus for measuring the amount of camber on the steel sheet.
[6] The arithmetic unit measures a shift amount in the plate width direction between a reference parallel line parallel to the conveying direction of the steel plate in the composite image and a plate length parallel line along the plate length direction in the steel plate portion of the composite image. The steel plate camber amount measuring device according to [4] or [5], wherein the steel plate camber amount is calculated.
[7] The steel plate camber amount measuring device according to any one of [4] to [6], wherein the steel plate camber amount measuring device calibrates a measurement error derived from a camera, A steel plate is photographed with a camera, a calculated value W1 of the steel plate width is obtained based on the relative value of the front width of the steel plate in the photographed image, and the rear width of the steel plate in the photographed image is obtained. The calculated value W2 of the sheet width of the steel sheet is obtained based on the relative value of the steel sheet, and the camber amount measurement of the steel sheet is performed to calibrate the measurement error derived from the camera based on the true value of the sheet width of the steel sheet, the W1 and the W2. Device calibration method.
[8] When the absolute value of the difference between W1 and W2 exceeds a threshold value, the camera installation angle is calibrated, and then at least one of W1 and W2 and the true value of the plate width of the steel plate If the absolute value of the difference between the two exceeds the threshold value, the calibration method for the steel plate camber amount measuring device according to [7], wherein the camera height is calibrated.

本発明によると、板長方向長さの大きい鋼板を測定対象とする場合であっても、鋼板の上面形状を正確に把握することができ、鋼板のキャンバー量の測定精度を高めることができる。   According to the present invention, even when a steel plate having a large length in the plate length direction is to be measured, the top surface shape of the steel plate can be accurately grasped, and the measurement accuracy of the camber amount of the steel plate can be increased.

図1は、本発明に係る鋼板のキャンバー量測定方法が適用される搬送ラインのフロー図である。FIG. 1 is a flow diagram of a conveyance line to which a steel plate camber amount measuring method according to the present invention is applied. 図2は、搬送途中の鋼板の形状又は位置に関する異常の具体例を示す説明図であり、(a)は鋼板の回転を示し、(b)は鋼板の蛇行を示し、(c)は鋼板のキャンバーを示す。FIG. 2 is an explanatory view showing a specific example of an abnormality related to the shape or position of a steel plate in the middle of conveyance, (a) showing the rotation of the steel plate, (b) showing the meandering of the steel plate, and (c) showing the steel plate. Indicates camber. 図3は、複数の撮影画像を合成する方法を示す説明図であり、(a)は従来例であり、(b)は本発明例である。3A and 3B are explanatory diagrams showing a method of combining a plurality of captured images, where FIG. 3A is a conventional example and FIG. 3B is an example of the present invention. 図4は、複数の撮影画像を合成する方法を示すフロー図である。FIG. 4 is a flowchart showing a method of combining a plurality of captured images. 図5は、合成画像からキャンバー量を測定する方法を説明する説明図であり、(a)は合成画像の一例を示し、(b)は(a)を用いて計算される鋼板の板幅方向のずれ量を示すグラフである。FIG. 5 is an explanatory diagram for explaining a method for measuring the camber amount from a composite image, where (a) shows an example of the composite image, and (b) is a sheet width direction of the steel sheet calculated using (a). It is a graph which shows the deviation | shift amount. 図6は、本発明例及び比較例における2枚の撮影画像である。FIG. 6 shows two captured images in the present invention example and the comparative example. 図7は、本発明例及び比較例において合成画像から計算される鋼板の板幅方向のずれ量を示すグラフである。FIG. 7 is a graph showing the shift amount in the sheet width direction of the steel sheet calculated from the composite image in the present invention example and the comparative example. 図8は、カメラ7と鋼板1との位置関係を示す図であり、(a)は平面図であり、(b)は側面図である。FIGS. 8A and 8B are views showing the positional relationship between the camera 7 and the steel plate 1, wherein FIG. 8A is a plan view and FIG. 8B is a side view. 図9は、カメラを用いて鋼板の上面を撮影した際の撮影画像である。FIG. 9 is a photographed image when the top surface of the steel sheet is photographed using a camera. 図10は、横軸に板長方向の位置を設定し、縦軸に板幅の算出値を設定したグラフのイメージ図である。FIG. 10 is an image diagram of a graph in which the position in the plate length direction is set on the horizontal axis and the calculated value of the plate width is set on the vertical axis.

まず、図1を用いて、本発明が適用される搬送ラインの概要を説明する。図1では、熱間圧延設備の一部を示す。   First, the outline of a conveyance line to which the present invention is applied will be described with reference to FIG. In FIG. 1, a part of hot rolling facility is shown.

スラブ等の鋼板1は、粗ミル3及び仕上げミル4によって所定の形状、大きさまで圧延された後に、シートバーとしてコイル状に巻き取られる。鋼板1の搬送は、鋼板の搬送方向に複数配列されたテーブルロール5によって行われる。尚、図示は省略しているが、粗ミル3及び仕上げミル4は、それぞれ必要に応じて複数基設けることができる。図1の例では、粗ミル3の入側から最後段の仕上げミル4の出側までの間を鋼板の搬送ラインとする。   A steel plate 1 such as a slab is rolled up to a predetermined shape and size by a rough mill 3 and a finishing mill 4 and then wound into a coil as a sheet bar. The conveyance of the steel plate 1 is performed by a plurality of table rolls 5 arranged in the conveyance direction of the steel plate. In addition, although illustration is abbreviate | omitted, the rough mill 3 and the finishing mill 4 can each be provided with two or more sets as needed. In the example of FIG. 1, the steel sheet conveying line is from the entry side of the coarse mill 3 to the exit side of the final finishing mill 4.

搬送ラインの一部には、鋼板1の上面を撮影可能なカメラ7が設けられる。図1の例でカメラ7は、仕上げミル4の前段に設けられている。カメラ7は、図1に示される以外の位置、例えば粗ミル3の前段や、仕上げミル4の後段に設けることもできる。   A camera 7 capable of photographing the upper surface of the steel plate 1 is provided in a part of the transport line. In the example of FIG. 1, the camera 7 is provided in front of the finishing mill 4. The camera 7 can also be provided at a position other than that shown in FIG. 1, for example, at the front stage of the rough mill 3 or at the rear stage of the finishing mill 4.

カメラ7は、その視野範囲内に赤熱状態の鋼板1が写り込むと、撮影を開始する。具体的にカメラ7は、視野内に閾値以上の輝度が測定された場合に、鋼板1が写り込んだと判定し、撮影を開始する。カメラ7は、視野内に閾値以上の輝度が測定されなくなるまで、つまり鋼板1が視野内から消えたと判定されるまで、所定の間隔で断続的に撮影を行い複数の撮影画像データを取得する。個々の撮影画像には、鋼板1の板長方向における一部が写りこむ。この際、予め求めておいた鋼板1の通板速度をもとに、N回目(Nは任意の正の整数とする。)の撮影画像と(N+1)回目の撮影画像とのそれぞれ少なくとも一部において、互いに同じ範囲(重複範囲)を撮影するように、カメラ7による撮影間隔を調整する。カメラ7から送られた複数の撮影画像データは、演算装置8にて受信される。   The camera 7 starts photographing when the red hot steel plate 1 is reflected within the field of view. Specifically, the camera 7 determines that the steel plate 1 has been captured when luminance equal to or greater than the threshold is measured within the field of view, and starts photographing. The camera 7 shoots intermittently at a predetermined interval until a luminance equal to or higher than the threshold value is not measured in the field of view, that is, until it is determined that the steel plate 1 has disappeared from the field of view, and acquires a plurality of photographed image data. A part in the plate length direction of the steel plate 1 is reflected in each photographed image. At this time, at least a part of each of the Nth (N + 1) -th shot image and the (N + 1) -th shot image based on the plate passing speed of the steel plate 1 obtained in advance. , The shooting interval by the camera 7 is adjusted so that the same range (overlapping range) is shot. A plurality of captured image data sent from the camera 7 is received by the arithmetic device 8.

演算装置8は、複数の撮影画像について演算処理(詳細については後述する。)を行うことで、鋼板1の上面全体を写した合成画像を取得し、次いで該合成画像を元にスラブのキャンバー量を測定する。さらに演算装置8は、スラブのキャンバー量が過大である場合、通板異常と判断して各種の操業条件を調節することもできる。具体的には、搬送ラインを一次停止させる、或いは粗ミル3や仕上げミル4の圧延条件を変更することができる。   The calculation device 8 performs a calculation process (details will be described later) on a plurality of photographed images, thereby obtaining a composite image in which the entire upper surface of the steel plate 1 is copied, and then, based on the composite image, a slab camber amount Measure. Further, when the slab camber amount is excessive, the arithmetic unit 8 can determine that the plate is abnormal and adjust various operating conditions. Specifically, the conveying line can be temporarily stopped, or the rolling conditions of the rough mill 3 and the finishing mill 4 can be changed.

搬送ラインにおいて、鋼板1の形状や位置等については種々の異常が生じうる。具体例を、図2(a)〜(c)における鋼板1の上面図を用いて説明する。図2(a)では通板の途中で鋼板1がその角度を変える回転の例を示し、図2(b)では鋼板1が角度を変えずに幅方向位置を変える蛇行の例を示し、図2(c)では鋼板が湾曲するように変形する曲がり(キャンバー)の例を示す。(a)の回転及び(b)の蛇行では、鋼板1の形状に異常が生じているわけではないものの、その位置に異常が生じている。(c)のキャンバーでは、鋼板1の形状に異常が生じている。   In the conveyance line, various abnormalities may occur with respect to the shape and position of the steel plate 1. A specific example will be described with reference to the top view of the steel plate 1 in FIGS. 2A shows an example of rotation in which the steel plate 1 changes its angle in the middle of the passing plate, and FIG. 2B shows an example of meandering in which the steel plate 1 changes its position in the width direction without changing the angle. 2 (c) shows an example of bending (camber) that deforms so that the steel plate is curved. In the rotation of (a) and the meandering of (b), although the abnormality of the shape of the steel plate 1 does not occur, an abnormality occurs in the position. In the camber of (c), the shape of the steel plate 1 is abnormal.

上述のように、搬送ラインにおいて鋼板を複数回撮影する間に図2(a)〜(c)で示すような異常が生じうる。合成画像における鋼板の上面形状と実際の鋼板の上面形状との誤差を小さくするためには、合成画像を作成するための演算処理を行う際に、これらの異常をそれぞれ区別することが望まれる。特に、鋼板自体に変形が生じているキャンバーと、鋼板自体に変形が生じているわけではない回転及び蛇行とを、それぞれ区別して合成画像に反映させることが好ましい。本発明では、合成画像における回転及び蛇行の影響を排し、キャンバー量のみを精度よく測定することができる。   As described above, abnormalities such as those shown in FIGS. 2A to 2C may occur while the steel plate is imaged a plurality of times on the transport line. In order to reduce the error between the upper surface shape of the steel sheet and the actual upper surface shape of the steel sheet in the composite image, it is desirable to distinguish these abnormalities when performing arithmetic processing for creating the composite image. In particular, it is preferable that the camber in which the steel plate itself is deformed and the rotation and meandering in which the steel plate itself is not deformed are distinguished from each other and reflected in the composite image. In the present invention, the influence of rotation and meandering in the composite image can be eliminated, and only the camber amount can be accurately measured.

具体的には、図3を用いて複数の撮影画像の合成方法について説明する。まずは、図3(a)を用いて従来の合成方法の問題点について説明する。   Specifically, a method for combining a plurality of captured images will be described with reference to FIG. First, the problem of the conventional synthesis method will be described with reference to FIG.

図3(a)では、鋼板が図面の左側から右側に向かって通板される。通板の途中で、鋼板の先端側(図の右側)から順にN回目、次いで(N+1)回目の撮影が行われる。カメラの視野範囲、つまり撮影画像として得られる範囲は、N回目の撮影では点線四角で示される範囲、(N+1)回目の撮影では実線四角で示される範囲である。図の例では、N回目における撮影と、(N+1)回目における撮影との間で、鋼板の回転が生じている。   In FIG. 3A, a steel plate is passed from the left side to the right side of the drawing. In the middle of the plate passing, the N-th shooting and then the (N + 1) -th shooting are sequentially performed from the front end side (the right side of the drawing) of the steel plate. The field-of-view range of the camera, that is, a range obtained as a captured image is a range indicated by a dotted square in the N-th shooting, and a range indicated by a solid square in the (N + 1) -th shooting. In the example shown in the figure, the steel plate rotates between the N-th shooting and the (N + 1) -th shooting.

N回目と(N+1)回目とでは、その撮影画像中の少なくとも一部に重複範囲が設けられる。具体的には、N回目の撮影画像における通板方向の後端側(図の左側)と、(N+1)回目の撮影画像における通板方向の先端側(図の右側)とで、同一の範囲を撮影しているようにする。図3(a)では、この重複範囲にハッチングを付す。   In the Nth time and the (N + 1) th time, an overlapping range is provided in at least a part of the captured image. Specifically, the same range on the rear end side (left side in the drawing) of the Nth shot image and the front end side (right side of the drawing) in the (N + 1) th shot image. Make sure you are shooting. In FIG. 3A, this overlapping range is hatched.

図3(a)に示す従来の演算処理では、前述した2つの重複範囲をそのまま重ね合わせて、N回目の撮影画像と(N+1)回目の撮影画像とを合成する。図3(a)の最下段において合成画像を示す。この例では、実際の鋼板は変形(キャンバー)ではなく回転をしているにも関わらず、得られた合成画像では、重複範囲を境に鋼板に変形が生じていることになってしまう。このように、連続する撮影画像の重複範囲を単に重ね合わせる処理を行う従来の方法では、鋼板に回転(又は蛇行)が生じた場合にも、鋼板にキャンバー等の変形が生じたものと誤判定してしまう。よって、鋼板のキャンバー量を正確に測定することが難しい。   In the conventional arithmetic processing shown in FIG. 3A, the above-described two overlapping ranges are directly overlapped to synthesize the Nth captured image and the (N + 1) th captured image. A composite image is shown in the lowermost part of FIG. In this example, although the actual steel plate is not deformed (camber) but rotated, the obtained composite image shows that the steel plate is deformed at the boundary of the overlapping range. As described above, in the conventional method in which the overlapping range of consecutive captured images is simply overlapped, even when rotation (or meandering) occurs in the steel plate, it is erroneously determined that deformation such as camber has occurred in the steel plate. Resulting in. Therefore, it is difficult to accurately measure the camber amount of the steel plate.

次に、図3(b)を用いて、本発明で用いられる撮影画像の合成方法について説明する。   Next, with reference to FIG. 3B, a method for synthesizing a captured image used in the present invention will be described.

まず、従来例と同様に、それぞれの画像中に重複範囲が含まれるように、N回目の撮影画像と(N+1)回目の撮影画像とを取得する。さらに、撮影画像中において輝度が閾値を越える部分を鋼板として認識する。図面中では、鋼板として認識される部分の着色を変えて表示している。   First, as in the conventional example, the Nth captured image and the (N + 1) th captured image are acquired so that the overlapping range is included in each image. Furthermore, the part in which a brightness | luminance exceeds a threshold value in a picked-up image is recognized as a steel plate. In the drawing, the color of the portion recognized as a steel plate is changed and displayed.

次いで、それぞれの撮影画像の重複範囲における鋼板部分から基準線を抽出する。基準線は、N回目の画像と(N+1)回目の画像とで、前述した重複範囲における鋼板の同一の位置を示す点(同一点)を結んだ線とする。図3(a)及び(b)の例では、鋼板の板幅方向の中心線(幅中心線)を基準線とする。その他にも、鋼板の板幅方向両端の側辺(エッジ辺)のいずれか一方を基準線とすることもできる。   Next, a reference line is extracted from the steel plate portion in the overlapping range of each captured image. The reference line is a line connecting the points (the same points) indicating the same position of the steel plates in the overlapping range described above in the Nth image and the (N + 1) th image. In the example of FIGS. 3A and 3B, the center line (width center line) in the sheet width direction of the steel sheet is used as the reference line. In addition, any one of the sides (edge sides) at both ends in the plate width direction of the steel plate can be used as the reference line.

さらに、N回目の撮影画像の重複範囲に位置する基準線(1)に、(N+1)回目の撮影画像の重複範囲に位置する基準線(2)を重ね合わせる。つまり、基準線(1)と基準線(2)とを重ね合わせるように、N回目の撮影画像と(N+1)回目の撮影画像とを合成することで、鋼板の撮影画像が板長方向に繋ぎ合わされる。   Further, the reference line (2) positioned in the overlapping range of the (N + 1) th captured image is superimposed on the reference line (1) positioned in the overlapping range of the Nth captured image. That is, by combining the Nth captured image and the (N + 1) th captured image so that the reference line (1) and the reference line (2) overlap, the captured image of the steel plate is connected in the plate length direction. Combined.

より具体的に、基準線(1)と基準線(2)とを重ね合わせる際には、基準線の傾きと位置とに注目して画像処理を行うことができる。   More specifically, when the reference line (1) and the reference line (2) are overlapped, image processing can be performed while paying attention to the inclination and position of the reference line.

まず、基準線(1)の傾きと基準線(2)の傾きとが一致するように、2枚の撮影画像の少なくともいずれか一方を回転させる。尚、基準線の傾きを算出する際には、撮影画像の視野を形成する矩形のいずれか一方の方向(例えば図3では搬送方向)の直線をX軸とし、他方の方向(例えば図3では板幅方向)の直線をY軸として計算を行えばよい。また、基準線が完全に直線とならない場合には、線形近似を行えばよい。   First, at least one of the two captured images is rotated so that the inclination of the reference line (1) matches the inclination of the reference line (2). When calculating the inclination of the reference line, the straight line in one direction (for example, the conveyance direction in FIG. 3) forming the field of view of the captured image is taken as the X axis, and the other direction (for example, in FIG. 3). The calculation may be performed with the straight line in the plate width direction as the Y axis. If the reference line is not completely a straight line, linear approximation may be performed.

さらに、基準線の搬送方向及び板幅方向の位置が一致するように、2枚の撮影画像のいずれかを平行移動させる。この平行移動の際には、撮影画像を回転させることなく、搬送方向及び板幅方向に沿って画像を移動させる処理を行う。尚、基準線同士の位置を合わせるには、全ての同一点の位置を完全に一致させる必要はなく、基準線に含まれる少なくとも一点(いずれかの同一点)の搬送方向位置及び板幅方向位置を同一とすればよい。   Further, one of the two captured images is translated so that the positions of the reference line in the conveyance direction and the plate width direction coincide. At the time of this parallel movement, a process of moving the image along the transport direction and the plate width direction is performed without rotating the captured image. In order to align the positions of the reference lines, it is not necessary to completely match the positions of all the same points. At least one point (any one of the same points) included in the reference line and the sheet width direction position Should be the same.

図3(b)の例では、鋼板の回転が発生しているので、(N+1)回目の撮影画像における基準線(2)の傾きと基準線(1)の傾きが同一となるように、(N+1)回目の撮影画像を回転させる。さらに、基準線(1)と、基準線(2)の搬送方向位置及び板幅方向位置が同一となるように、(N+1)回目の撮影画像を平行移動させる。   In the example of FIG. 3B, since the rotation of the steel plate has occurred, the inclination of the reference line (2) and the inclination of the reference line (1) in the (N + 1) th captured image are the same ( N + 1) Rotate the captured image. Further, the (N + 1) th captured image is translated so that the transport direction position and the plate width direction position of the reference line (1) and the reference line (2) are the same.

図3(b)の最下段で示すように、本発明例で得られる合成画像では、基準線の傾き及び位置のずれを補正することにより、撮影と撮影との間に鋼板が回転及び蛇行した場合であっても、回転及び蛇行の前後で鋼板に曲がりが生じていると誤判定することがない。これにより、鋼板の回転量や蛇行量の影響を排して、鋼板の変形量(曲げ量)のみを正確に測定することができる。   As shown at the bottom of FIG. 3B, in the composite image obtained in the example of the present invention, the steel plate was rotated and meandered between the photographings by correcting the inclination and the positional deviation of the reference line. Even in this case, it is not erroneously determined that the steel plate is bent before and after rotation and meandering. Thereby, it is possible to accurately measure only the deformation amount (bending amount) of the steel sheet without the influence of the rotation amount and the meandering amount of the steel sheet.

尚、搬送ラインの上に設置されたカメラは、鉛直方向に対して斜め向きに設けられることがある。この場合には、鋼板の上面が台形状に歪んだ撮影画像が得られる。このように鋼板の上面形状が歪んだ撮影画像が得られる場合には、鉛直方向と平行にカメラを設置した場合に得られる撮影画像と同等の画像となるように、撮影画像に射影変換を施せばよい。   The camera installed on the transport line may be provided obliquely with respect to the vertical direction. In this case, a captured image in which the upper surface of the steel plate is distorted in a trapezoidal shape is obtained. When a photographed image with a distorted upper surface shape of the steel sheet is obtained in this way, projective transformation is applied to the photographed image so that the image is equivalent to the photographed image obtained when the camera is installed parallel to the vertical direction. That's fine.

次に、図4のフロー図を用いて、演算装置において行われる撮影画像の合成方法について説明する。   Next, a method for synthesizing captured images performed in the arithmetic device will be described with reference to the flowchart of FIG.

まず、ステップ1のように、鋼板の搬送速度及びカメラの撮影間隔等から計算して、2つの撮影画像における重複範囲を抽出する。次に、ステップ2において、撮影画像から閾値を越える輝度を示す領域を鋼板と認識し、前記重複範囲に位置する鋼板の一部から基準線を抽出する。ステップ3では、2つの撮影画像の基準線の傾きが等しいか否かを判定し、等しくないと判定された場合には、ステップ4において基準線の傾きが等しくなるまでいずれか一方の撮影画像を回転する。次いで、ステップ5では、2つの基準線の搬送方向位置及び板幅方向位置が同一か否かを判定し、同一ではないと判定された場合には、ステップ6においていずれかの撮影画像の平行移動が行われる。ステップ5において基準線の位置が同一であると判定された場合には、2枚の撮影画像の合成を完了する。鋼板の搬送方向に沿って3枚以上の撮影画像を取得した場合には、図3に示される合成ステップを複数回行うことで合成画像が取得される。   First, as in step 1, the overlapping range in the two photographed images is extracted by calculating from the conveyance speed of the steel plate and the photographing interval of the camera. Next, in step 2, a region showing luminance exceeding a threshold value from the captured image is recognized as a steel plate, and a reference line is extracted from a part of the steel plate located in the overlapping range. In step 3, it is determined whether or not the slopes of the reference lines of the two photographed images are equal. If it is determined that they are not equal, in step 4, either one of the photographed images is displayed until the slopes of the reference lines are equal. Rotate. Next, in step 5, it is determined whether or not the transport direction position and the plate width direction position of the two reference lines are the same. If it is determined that they are not the same, in step 6, one of the captured images is translated. Is done. If it is determined in step 5 that the positions of the reference lines are the same, the synthesis of the two captured images is completed. When three or more photographed images are acquired along the conveying direction of the steel plate, the combined image is acquired by performing the combining step shown in FIG. 3 a plurality of times.

合成画像を取得すると、演算装置において鋼板のキャンバー量の測定が行われる。以下で、図5を用いて合成画像における鋼板のキャンバー量の測定方法について説明する。   When the composite image is acquired, the camber amount of the steel sheet is measured in the arithmetic device. Below, the measuring method of the camber amount of the steel plate in a synthesized image is demonstrated using FIG.

図5(a)では、合成画像として、板長方向の全長に亘る鋼板の上面形状が示されている。図5(a)の例では搬送方向に沿って鋼板にキャンバーが生じている。尚、合成画像中で、理想状態において鋼板が搬送される方向を搬送方向とし、該搬送方向と直角の関係にある方向を板幅方向とする。また、鋼板の上面形状の長手方向に沿った方向を板長方向とする。図5(a)のように鋼板に曲げが生じている場合には、この曲げに沿った方向を板長方向とする。前述した搬送方向は、理想状態における方向であるので鋼板の異常によっても変わらないが、板長方向は鋼板の変形(例えば曲げ)によって変わりうる。   In Fig.5 (a), the upper surface shape of the steel plate covering the full length of a plate length direction is shown as a synthesized image. In the example of FIG. 5A, camber is generated in the steel sheet along the conveying direction. In the composite image, the direction in which the steel sheet is transported in the ideal state is defined as the transport direction, and the direction perpendicular to the transport direction is defined as the sheet width direction. Moreover, let the direction along the longitudinal direction of the upper surface shape of a steel plate be a plate length direction. When the steel plate is bent as shown in FIG. 5A, the direction along the bending is defined as the plate length direction. The conveying direction described above is a direction in an ideal state, and thus does not change due to abnormality of the steel plate, but the plate length direction can be changed by deformation (for example, bending) of the steel plate.

合成画像では、搬送方向に平行な基準平行線と、板長方向に平行な板長平行線とが抽出される。そして、基準平行線に対する板長平行線の、板幅方向におけるずれ量が算出される。鋼板の板長方向全長に亘って、基準平行線に対する板長平行線のずれ量の変化量によって鋼板のキャンバー量を評価することができる。図5(a)の例では、合成画像中の板幅方向中央部を通る直線(画像中心線)を基準平行線として抽出し、鋼板部の板幅方向中央部を通る曲線(幅中心線)を板長平行線として抽出している。   In the composite image, a reference parallel line parallel to the transport direction and a plate length parallel line parallel to the plate length direction are extracted. And the deviation | shift amount in the board width direction of the plate length parallel line with respect to a reference | standard parallel line is calculated. The camber amount of the steel sheet can be evaluated by the change amount of the shift amount of the plate length parallel line with respect to the reference parallel line over the entire length in the plate length direction of the steel sheet. In the example of FIG. 5A, a straight line (image center line) passing through the central part in the plate width direction in the composite image is extracted as a reference parallel line, and a curve (width center line) passing through the central part in the plate width direction of the steel plate part. Are extracted as plate-length parallel lines.

図5(b)には、図5(a)で示した鋼板の搬送方向位置(横軸)と、画像中心線に対する幅中心線の板幅方向におけるずれ量(縦軸)とをプロットしたグラフを示す。グラフ中におけるずれ量の最大値と最小値との差(キャンバー量)が大きいほど鋼板の変形の程度が大きく、該キャンバー量が小さいほど鋼板の変形の程度が小さいと判定される。   FIG. 5B is a graph in which the conveyance direction position (horizontal axis) of the steel plate shown in FIG. 5A and the shift amount (vertical axis) in the width direction of the width center line with respect to the image center line are plotted. Indicates. It is determined that the degree of deformation of the steel sheet is larger as the difference (camber amount) between the maximum value and the minimum value of the deviation amount in the graph is larger, and the degree of deformation of the steel sheet is smaller as the camber amount is smaller.

尚、基準平行線として、前述した画像中心線の代わりに、合成画像中において鋼板の搬送方向と平行な任意の直線を用いることができる。また、板長平行線として、前述した幅中心線の代わりに、鋼板の側辺のいずれか一方を用いることもできる。但し、測定誤差を抑えるという観点からは、板長平行線として幅中心線を用いることが好ましい。   As the reference parallel line, an arbitrary straight line parallel to the conveying direction of the steel plate in the composite image can be used instead of the above-described image center line. Further, as the plate length parallel line, any one of the side edges of the steel plate can be used instead of the width center line described above. However, from the viewpoint of suppressing the measurement error, it is preferable to use the width center line as the plate length parallel line.

上述では、鋼板の上面を撮影し合成画像を取得する方法について説明してきたが、鋼板の下面についても同様の技術を適用することが可能である。   In the above description, the method of photographing the upper surface of the steel plate and acquiring the composite image has been described, but the same technique can be applied to the lower surface of the steel plate.

次に、本発明に係る鋼板のキャンバー量測定装置の校正方法について説明する。   Next, a calibration method of the steel plate camber amount measuring apparatus according to the present invention will be described.

具体的には、図8を用いて説明する。図8(a)はカメラ7と鋼板1とを上面から見た平面図、図8(b)は側面図である。図8(a)に示すように、カメラ7は水平方向に画角φxの視野を確保する。   Specifically, this will be described with reference to FIG. FIG. 8A is a plan view of the camera 7 and the steel plate 1 viewed from above, and FIG. 8B is a side view. As shown in FIG. 8A, the camera 7 ensures a field of view angle φx in the horizontal direction.

また、図8(b)に示すように、カメラ7は高さhの位置に、カメラの設置角度θの大きさ分だけ傾けられた状態で設けられる。カメラの設置角度は、カメラの中心軸線と水平線との間でなす角度をいう。カメラ7は、鉛直方向にφy(±φy/2)の画角(視野角度)を備える。鋼板1のうち、カメラ7の視野内に写り込む最も搬送方向の前方側の限界位置を前端部11、カメラ7の視野内に写り込む最も搬送方向の後方側の限界位置を後端部12とする。図8(a)のように鋼板1の前端部11において、少なくとも板幅方向の全長が撮影できるように、φxやカメラの撮影条件等は設定される。尚、詳細については後述するが、図8で示す符号Wは、鋼板の板幅の真値である。   Further, as shown in FIG. 8B, the camera 7 is provided at a height h in a state where it is tilted by the size of the camera installation angle θ. The camera installation angle is an angle formed between the central axis of the camera and the horizontal line. The camera 7 has a field angle (viewing angle) of φy (± φy / 2) in the vertical direction. Of the steel plate 1, the limit position on the most forward side in the transport direction reflected in the field of view of the camera 7 is the front end portion 11, and the limit position on the most rear side in the transport direction reflected in the field of view of the camera 7 is the rear end portion 12. To do. As shown in FIG. 8 (a), φx, camera shooting conditions, and the like are set so that at least the entire length in the plate width direction can be shot at the front end portion 11 of the steel plate 1. In addition, although mentioned later for details, the code | symbol W shown in FIG. 8 is a true value of the board width of a steel plate.

図8に示すカメラ7を用いて、鋼板1の上面を撮影した際の(斜影変換前の)撮影画像を図9に示す。図9のように撮影画像中において、鋼板1の前端部11の板幅w1は、鋼板1の後端部12の板幅w2よりも大きい。前記板幅w1及び前記w2はそれぞれ相対値によって示すことができ、より具体的には撮影画像全体の幅wと前記w1又は前記w2との比、(w1/w)又は(w2/w)を相対値として採用することができる。これらの比は、撮影画像の画素数等を利用することによって算出することができ、単位は無次元とする。   FIG. 9 shows a captured image (before oblique conversion) when the upper surface of the steel plate 1 is captured using the camera 7 shown in FIG. In the captured image as shown in FIG. 9, the plate width w1 of the front end portion 11 of the steel plate 1 is larger than the plate width w2 of the rear end portion 12 of the steel plate 1. The plate widths w1 and w2 can be represented by relative values, and more specifically, the ratio between the width w of the entire captured image and the w1 or the w2, (w1 / w) or (w2 / w). It can be adopted as a relative value. These ratios can be calculated by using the number of pixels of the captured image, and the unit is dimensionless.

上述した板幅w1及びw2の相対値に基づき、以下の式(1)及び式(2)によって鋼板1の板幅の算出値W1(mm)、W2(mm)を求めることができる。より具体的には、w1及びw2の相対値の他、鋼板1のプロフィール(板厚)、カメラの設置状態(カメラの高さ及び設置角度)、並びにカメラの視野設定(水平方向の画角及び鉛直方向の画角)を用いて、鋼板1の板幅を算出する。   Based on the relative values of the plate widths w1 and w2 described above, the calculated values W1 (mm) and W2 (mm) of the plate width of the steel plate 1 can be obtained by the following formulas (1) and (2). More specifically, in addition to the relative values of w1 and w2, the profile (plate thickness) of the steel plate 1, the camera installation state (camera height and installation angle), and the camera field of view setting (horizontal field angle and The plate width of the steel plate 1 is calculated using the angle of view in the vertical direction).



但し、t:鋼板の板厚(mm)、h:カメラの高さ(mm)、φx:カメラの水平方向の画角(rad)、φy:カメラの鉛直方向の角度(rad)、θ:カメラの設置角度(rad)とする。尚、板幅W1及びW2を算出するには、射影変換前の撮影画像を用いてもよいし、射影変換後の撮影画像を用いてもよい。


Where, t: plate thickness (mm) of steel plate, h: height of camera (mm), φx: horizontal angle of view (rad) of camera, φy: angle of camera vertical direction (rad), θ: camera The installation angle (rad). In order to calculate the plate widths W1 and W2, a photographed image before projective transformation may be used, or a photographed image after projective transformation may be used.

実際には、撮影画像から得られた板幅の相対値(w1/w)及び(w2/w)、既知の値であるt、φx,φy、並びにhの値を式(1)及び式(2)に代入することで、板幅の算出値W1及びW2を求めることができる。一方で、通板中の鋼板1の板幅の真値Wも既知の値である。本発明では、鋼板1を通板中に図9のような撮影画像を断続的に取得し、式(1)及び式(2)を用いてW1及びW2を算出する。板幅の真値(W)と算出値(W1やW2)との間の誤差が大きい場合、カメラの撮影画像を用いて鋼板の板幅方向の長さを正確に測ることができていないと考えられる。このような場合、撮影画像から得られるキャンバー量の測定結果の誤差も大きくなってしまう。板幅の真値と算出値との間の誤差が小さい場合には、キャンバー量が正確に測定されていると判断して通板を継続すればよい。一方で、誤差が大きい場合には、誤差の原因を解消することが望ましい。   Actually, the relative values (w1 / w) and (w2 / w) of the plate width obtained from the photographed image, the known values t, φx, φy, and h are expressed by the equations (1) and ( By substituting in 2), the calculated values W1 and W2 of the plate width can be obtained. On the other hand, the true value W of the plate width of the steel plate 1 in the passing plate is also a known value. In the present invention, captured images as shown in FIG. 9 are intermittently acquired while the steel plate 1 is being passed through, and W1 and W2 are calculated using the equations (1) and (2). When the error between the true value (W) of the plate width and the calculated value (W1 or W2) is large, the length of the steel plate in the plate width direction cannot be measured accurately using the captured image of the camera. Conceivable. In such a case, an error in the measurement result of the camber amount obtained from the captured image also increases. When the error between the true value of the plate width and the calculated value is small, it is determined that the camber amount is accurately measured and the plate passing is continued. On the other hand, when the error is large, it is desirable to eliminate the cause of the error.

本発明者らの検討によると、板幅の真値と算出値との間の誤差は、主にカメラ7の高さhのずれ及び/又はカメラ7の設置角度θのずれによって生じることが見出された。カメラ7の高さhや設置角度θは、設備の振動等によって、初期値(理想値)から徐々にずれが生じうる。そこで、板幅の真値と算出値との間の誤差が大きい場合には、カメラの高さ及び設置角度を校正して初期値に戻すことが望ましい。   According to the study by the present inventors, it can be seen that the error between the true value of the plate width and the calculated value is mainly caused by the deviation of the height h of the camera 7 and / or the deviation of the installation angle θ of the camera 7. It was issued. The height h and the installation angle θ of the camera 7 may gradually deviate from the initial values (ideal values) due to equipment vibrations and the like. Therefore, when the error between the true value of the plate width and the calculated value is large, it is desirable to calibrate the camera height and installation angle and return them to the initial values.

より具体的には、まず前端部の算出値W1と後端部の算出値W2とを比較する。これらの誤差が大きい場合、具体的にはW1とW2との差の絶対値が閾値を超える場合には、カメラ7の設置角度θに誤差があると判定される。このような場合、カメラ7の設置角度が初期値(理想値)となるように角度の校正を行えばよい。尚、上記閾値の一例としては3mmを挙げることができる。   More specifically, the calculated value W1 at the front end is first compared with the calculated value W2 at the rear end. When these errors are large, specifically, when the absolute value of the difference between W1 and W2 exceeds the threshold value, it is determined that there is an error in the installation angle θ of the camera 7. In such a case, the angle may be calibrated so that the installation angle of the camera 7 becomes an initial value (ideal value). An example of the threshold value is 3 mm.

具体的には、図10(a)を用いて説明する。図10(a)及び(b)は、横軸に1枚の撮影画像中における板長方向(長手方向)の位置を設定し、縦軸に板幅の算出値を設定したグラフのイメージ図である。尚、縦軸と横軸とが交わる高さが、鋼板の真値を示すものとする。図10(a)のように、カメラ7の設置角度θのずれが大きいと、鋼板の板長方向位置によって板幅の算出値にばらつきが生じる。   Specifically, this will be described with reference to FIG. 10A and 10B are image diagrams of graphs in which the position in the plate length direction (longitudinal direction) in one photographed image is set on the horizontal axis and the calculated value of the plate width is set on the vertical axis. . Note that the height at which the vertical axis and the horizontal axis intersect represents the true value of the steel sheet. As shown in FIG. 10A, when the deviation of the installation angle θ of the camera 7 is large, the calculated value of the plate width varies depending on the plate length direction position of the steel plate.

一方で、W1とW2との間の誤差は小さいものの、W1及びW2の少なくとも一方と真値Wとの間の誤差が大きい(W1及びW2の少なくともいずれか一方と真値Wとの差の絶対値が閾値を超える)場合には、カメラ7の高さhに誤差が生じていると判定される。このような場合、カメラ7の高さが初期値(理想値)となるように高さの校正を行えばよい。具体的に、図10(b)のように、カメラ7の高さhのずれが大きいと、長手方向の位置に関わらず、板幅の算出値と真値との間に一定の誤差が生じる。尚、上記閾値の一例としては3mmを挙げることができる。   On the other hand, although the error between W1 and W2 is small, the error between at least one of W1 and W2 and the true value W is large (the absolute difference between at least one of W1 and W2 and the true value W) If the value exceeds the threshold value), it is determined that an error has occurred in the height h of the camera 7. In such a case, the height may be calibrated so that the height of the camera 7 becomes an initial value (ideal value). Specifically, as shown in FIG. 10B, if the deviation of the height h of the camera 7 is large, a certain error occurs between the calculated value of the plate width and the true value regardless of the position in the longitudinal direction. . An example of the threshold value is 3 mm.

カメラ7の校正を行う場合には、まず傾きの校正を完了し、次いで高さの校正を行うことにより、確実にカメラに由来した板幅方向長さの測定誤差を解消することができる。尚、カメラの傾きに誤差がない場合には、傾きの校正を行わず、高さの校正のみを行うこともできる。このように、カメラに由来した板幅方向長さの測定誤差を解消することにより、操業中のカメラのズレによってキャンバー量を正確に測定できなくなることを防止することができる。   When the camera 7 is calibrated, first, the calibration of the tilt is completed, and then the height is calibrated, so that the measurement error of the length in the plate width direction originating from the camera can be surely eliminated. If there is no error in the tilt of the camera, it is possible to perform only height calibration without performing tilt calibration. Thus, by eliminating the measurement error of the length in the plate width direction derived from the camera, it is possible to prevent the camber amount from being accurately measured due to the deviation of the camera in operation.

尚、カメラの水平方向の設置角度の誤差(図8(a)に示す画角φx方向のずれ)によっても、板幅の真値と算出値との誤差が生じうる。しかし、水平方向の角度の誤差によるキャンバー量測定結果への影響は小さいので、定修時等に水平方向の設置角度の誤差を校正することで、操業上の問題は生じない。   An error between the true value of the plate width and the calculated value can also occur due to an error in the installation angle of the camera in the horizontal direction (deviation in the angle of view φx shown in FIG. 8A). However, since the influence of the horizontal angle error on the camber amount measurement result is small, there is no operational problem by calibrating the horizontal installation angle error during regular repairs.

本発明に係る鋼板のキャンバー量測定装置では、カメラは板幅方向に1台設けられることが好ましい。カメラを1台とすると、板幅方向に複数台のカメラを設置する場合に比べて、カメラの設置スペースや、カメラの設置コスト及び維持コスト等が少なくてすむ。また、スラブの2つのエッジ辺をそれぞれ1台ずつのカメラで検出するように、板幅方向に2台のカメラを設置する場合、通板するスラブの板幅が変わると、スラブの板幅に追従してカメラを移動させる必要がある。一方で、1台のカメラを用いて、視野内にスラブの板幅方向の全体が入るようにすると、通板するスラブの板幅が変わっても視野の広さを変化させるだけでよく、板幅の追従性が向上する。   In the steel plate camber amount measuring apparatus according to the present invention, one camera is preferably provided in the plate width direction. When one camera is used, the installation space for the camera, the installation cost and the maintenance cost of the camera, and the like can be reduced as compared with the case where a plurality of cameras are installed in the plate width direction. In addition, when two cameras are installed in the plate width direction so that the two edge sides of the slab are detected by one camera each, if the plate width of the slab to pass through changes, It is necessary to follow and move the camera. On the other hand, if one camera is used so that the entire width of the slab enters the field of view, the width of the field of view only needs to be changed even if the width of the slab to be passed changes. The followability of the width is improved.

一方で、1台のカメラを用いる場合には、カメラの高さや角度等のずれにより、キャンバー量の測定誤差が生じやすくなるという欠点もある。そこで、1台のカメラを用いてキャンバー量を測定する場合には、カメラの高さや角度等の誤差を頻繁に検出し、校正することが求められる。   On the other hand, when one camera is used, there is a drawback that a measurement error of the camber amount is likely to occur due to a deviation in the height, angle, or the like of the camera. Therefore, when measuring the camber amount using one camera, it is required to frequently detect and calibrate errors such as the height and angle of the camera.

しかし、従来知られている方法では、ラインの操業中に頻繁にカメラの高さや角度等の誤差を検出、校正することは難しい。具体的に、従来のカメラ7の校正方法は、スラブとは異なる校正板を別途通板、撮影し、校正板の撮影画像に基づいてカメラ7の校正を行っている。しかしこの方法では、輝度の著しく高い鋼板を撮影する場合と、輝度の低い校正板を撮影する場合とでは、カメラの撮影条件(例えば絞り条件等)が異なる。そこで校正板を行う方法では、校正を行う度にカメラの撮影条件等を調節する必要がある。しかし実際には、カメラが設置されている場所はラインの稼動中は容易に立ち入れないことが多く、従来の方法では操業中にはカメラの誤差を検出するタイミングが限られてしまう。   However, with the conventionally known methods, it is difficult to detect and calibrate errors such as camera height and angle frequently during line operation. Specifically, in the conventional calibration method of the camera 7, a calibration plate different from the slab is separately passed and photographed, and the camera 7 is calibrated based on the photographed image of the calibration plate. However, in this method, the shooting conditions (for example, aperture conditions) of the camera differ between when shooting a steel plate with extremely high brightness and when shooting a calibration board with low brightness. Therefore, in the method of performing the calibration plate, it is necessary to adjust the shooting conditions of the camera each time calibration is performed. In practice, however, the location where the camera is installed is often not easily accessible while the line is in operation, and the conventional method limits the timing for detecting camera errors during operation.

一方で、本発明では、ラインの操業中であっても鋼板の撮影画像を用いていつでもカメラの高さや角度の誤差を検知することができる。よって、操業中にカメラの高さや角度にズレが起こったことに気づかないまま操業を継続し、誤差の生じたキャンバー量の測定を続けることを防止することができる。   On the other hand, in the present invention, it is possible to detect an error in the height and angle of the camera at any time using a photographed image of a steel plate even during line operation. Therefore, it is possible to prevent the operation from being continued without noticing that the camera height or angle has been shifted during the operation, and the measurement of the camber amount in which the error has occurred can be prevented.

尚、上述のように、ラインの操業中であっても頻繁にカメラの高さや角度の誤差を検出、校正することができるという効果は、特に板幅方向に1台のカメラが設置された例で大きいものではあるが、板幅方向に2台以上のカメラが設置された例であっても同様の効果を奏する。   In addition, as described above, the effect of being able to frequently detect and calibrate the camera height and angle errors even during line operation is an example in which one camera is installed in the plate width direction. Although it is large, the same effect can be obtained even in an example in which two or more cameras are installed in the plate width direction.

図6の写真で示すように、鋼板の先端から後端にかけてキャンバーが生じている鋼板について、2枚の撮影画像から合成画像を取得し、板長平行線の基準平行線からのずれ量を求めた。具体的に、図3(b)にて説明した演算処理を行った例を本発明例とし、図3(a)にて説明した演算処理を行った例を比較例とした。尚、1枚目(上側)の撮影画像と2枚目(下側)の撮影画像との間では、鋼板に回転が生じていた。   As shown in the photograph of FIG. 6, a composite image is acquired from two photographed images for a steel plate in which camber is generated from the front end to the rear end of the steel plate, and the deviation amount of the plate length parallel line from the reference parallel line is obtained. It was. Specifically, an example in which the arithmetic processing described in FIG. 3B is performed is an example of the present invention, and an example in which the arithmetic processing described in FIG. 3A is performed is a comparative example. Note that the steel sheet was rotated between the first (upper) photographed image and the second (lower) photographed image.

結果を図7のグラフで示す。グラフの縦軸における「板中心位置」が、画像中心線(基準平行線)に対する幅中心線(板長平行線)の板幅方向におけるずれ量を示し、グラフの横軸における「測定点数」が鋼板の搬送方向における位置を示す。本発明例では、グラフの曲線の形状と、鋼板の上面における側辺の形状とが対応しており、正確に鋼板のキャンバー量を測定できることが示された。一方比較例では、回転が生じた後の鋼板尾端側において、実際の側辺の形状とグラフの曲線の形状との間の乖離が大きく、正確に鋼板のキャンバー量を測定することはできなかった。   The results are shown in the graph of FIG. The “plate center position” on the vertical axis of the graph indicates the amount of deviation in the plate width direction of the width center line (plate length parallel line) relative to the image center line (reference parallel line), and the “measurement point” on the horizontal axis of the graph is The position in the conveyance direction of a steel plate is shown. In the example of the present invention, the shape of the curve of the graph corresponds to the shape of the side on the upper surface of the steel plate, and it was shown that the camber amount of the steel plate can be accurately measured. On the other hand, in the comparative example, on the tail end side of the steel plate after the rotation has occurred, the difference between the actual side shape and the curve shape of the graph is large, and the camber amount of the steel plate cannot be accurately measured. It was.

1 鋼板
2 加熱炉
3 粗ミル
4 仕上げミル
5 テーブルロール
7 カメラ
8 演算装置
11 前端部
12 後端部
φx 水平方向の画角
φy 鉛直方向の画角
θ カメラの設置角度
h カメラの高さ
t 鋼板の板厚
W 鋼板の板幅の真値
W1 前端部の板幅の算出値
W2 後端部の板幅の算出値
w 撮影画像全体の幅
w1 撮影画像における前端部の板幅
w2 撮影画像における前端部の板幅
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Heating furnace 3 Coarse mill 4 Finishing mill 5 Table roll 7 Camera 8 Computing device 11 Front end part 12 Rear end part φx Horizontal field angle φy Vertical field angle θ Camera installation angle h Camera height t Steel sheet Thickness W of sheet steel True value W1 of plate width Calculated value of front end plate width W2 Calculated value of rear end plate width w1 Overall width of photographed image w1 Front end plate width w2 of photographed image Front end of photographed image Board width

Claims (8)

鋼板の上面を搬送方向に分けて複数回撮影し、得られた撮影画像を組み合わせて合成画像を取得し、該合成画像から鋼板のキャンバー量を算出する鋼板のキャンバー量測定方法であって、
鋼板を撮影する際に、N回目の撮影画像(但し、Nは正の整数とする。)と、(N+1)回目の撮影画像とにおいて重複範囲があるように撮影を行い、
N回目の撮影画像の重複範囲における鋼板の基準線と、(N+1)回目の撮影画像の重複範囲における鋼板の基準線とを重ね合わせることにより、合成画像を取得する鋼板のキャンバー量測定方法。
A method for measuring the amount of camber of a steel sheet, wherein the upper surface of the steel sheet is imaged a plurality of times in the conveying direction, a composite image is obtained by combining the obtained captured images, and the camber amount of the steel sheet is calculated from the composite image,
When photographing the steel sheet, photographing is performed so that there is an overlapping range between the N-th photographed image (where N is a positive integer) and the (N + 1) -th photographed image,
A method for measuring a camber amount of a steel sheet, wherein a composite image is obtained by superimposing a reference line of a steel plate in an overlapping range of N-th captured images and a reference line of a steel plate in an overlapping range of (N + 1) -th captured images.
合成画像を取得する際に、
一方の基準線の傾きと他方の基準線の傾きとが一致するようにN回目の撮影画像及び(N+1)回目の撮影画像の少なくとも一方を回転させるとともに、
2つの基準線の搬送方向位置及び板幅方向位置が一致するように、N回目の撮影画像及び(N+1)回目の撮影画像の少なくとも一方を平行移動させる請求項1に記載の鋼板のキャンバー量測定方法。
When acquiring a composite image,
Rotating at least one of the Nth captured image and the (N + 1) th captured image so that the inclination of one reference line and the inclination of the other reference line coincide,
The measurement of the camber amount of a steel sheet according to claim 1, wherein at least one of the Nth photographed image and the (N + 1) th photographed image is translated so that the transport direction position and the sheet width direction position of the two reference lines coincide. Method.
合成画像中における鋼板の搬送方向と平行な基準平行線と、合成画像の鋼板部における板長方向に沿った板長平行線との板幅方向のずれ量を測定することによって、鋼板のキャンバー量を算出する請求項1又は2に記載の鋼板のキャンバー量測定方法。   By measuring the amount of deviation in the plate width direction between the reference parallel line parallel to the conveying direction of the steel plate in the composite image and the plate length parallel line along the plate length direction in the steel plate portion of the composite image, the camber amount of the steel plate The method for measuring the amount of camber of a steel sheet according to claim 1 or 2, wherein 鋼板の上面を搬送方向に分けて複数回撮影するカメラと、該カメラから撮影画像を受信し、複数の撮影画像を組み合わせて合成画像を取得し、該合成画像から鋼板のキャンバー量を算出する演算装置と、を備えた鋼板のキャンバー量測定装置であって、
前記カメラは、鋼板を撮影する際に、N回目の撮影画像(但し、Nは正の整数とする。)と、(N+1)回目の撮影画像とにおいて重複範囲があるように撮影を行い、
前記演算装置は、N回目の撮影画像の重複範囲における鋼板の基準線と、(N+1)回目の撮影画像の重複範囲における鋼板の基準線とを重ね合わせることにより、合成画像を取得する鋼板のキャンバー量測定装置。
A camera that shoots the upper surface of the steel sheet in the conveying direction multiple times, receives a captured image from the camera, obtains a composite image by combining the multiple captured images, and calculates a camber amount of the steel plate from the composite image A steel plate camber amount measuring device comprising:
When shooting the steel sheet, the camera performs shooting so that there is an overlapping range between the Nth shot image (where N is a positive integer) and the (N + 1) th shot image,
The computing device includes a steel plate camber that obtains a composite image by superimposing a steel plate reference line in the overlapping range of the Nth captured image and a steel plate reference line in the (N + 1) th overlapping range of the captured image. Quantity measuring device.
前記演算装置は、合成画像を取得する際に、一方の基準線の傾きと他方の基準線の傾きとが一致するように、N回目の撮影画像及び(N+1)回目の撮影画像の少なくとも一方を回転させるとともに、
2つの基準線の搬送方向位置及び板幅方向位置が一致するように、N回目の撮影画像及び(N+1)回目の撮影画像の少なくとも一方を平行移動させる請求項4に記載の鋼板のキャンバー量測定装置。
The arithmetic unit obtains at least one of the N-th captured image and the (N + 1) -th captured image so that the inclination of one reference line and the inclination of the other reference line coincide when acquiring the composite image. While rotating
5. The camber amount measurement of a steel sheet according to claim 4, wherein at least one of the N-th captured image and the (N + 1) -th captured image is translated so that the transport direction position and the plate width direction position of the two reference lines coincide. apparatus.
前記演算装置は、合成画像中において鋼板の搬送方向と平行な基準平行線と、合成画像の鋼板部における板長方向に沿った板長平行線との板幅方向のずれ量を測定することによって、鋼板のキャンバー量を算出する請求項4又は5に記載の鋼板のキャンバー量測定装置。   The arithmetic unit measures a deviation amount in a plate width direction between a reference parallel line parallel to the conveyance direction of the steel plate in the composite image and a plate length parallel line along the plate length direction in the steel plate portion of the composite image. The steel plate camber amount measuring device according to claim 4, wherein the steel plate camber amount is calculated. 請求項4から6までのいずれか一項に記載の鋼板のキャンバー量測定装置において、カメラに由来する測定誤差を校正する鋼板のキャンバー量測定装置の校正方法であって、
前記カメラによって通板中の鋼板を撮影し、
撮影画像における鋼板の前端部の板幅の相対値に基づいて、鋼板の板幅の算出値W1を求め、
撮影画像における鋼板の後端部の板幅の相対値に基づいて、鋼板の板幅の算出値W2を求め、
鋼板の板幅の真値、前記W1、及び前記W2に基づいて、カメラに由来する測定誤差を校正する鋼板のキャンバー量測定装置の校正方法。
The steel plate camber amount measuring device according to any one of claims 4 to 6, wherein the steel plate camber amount measuring device calibrates a measurement error derived from a camera,
Take a picture of the steel plate through the plate with the camera,
Based on the relative value of the plate width of the front end of the steel plate in the photographed image, the calculated value W1 of the plate width of the steel plate is obtained,
Based on the relative value of the plate width of the rear end of the steel plate in the captured image, the calculated value W2 of the plate width of the steel plate is obtained,
A calibration method for a camber amount measuring apparatus for a steel sheet, which calibrates a measurement error derived from a camera based on the true value of the sheet width of the steel sheet, the W1 and the W2.
前記W1と前記W2との差の絶対値が閾値を超える場合には、カメラの設置角度を校正し、次いで、前記W1及びW2の少なくともいずれか一方と鋼板の板幅の真値との差の絶対値が閾値を超える場合には、カメラの高さを校正する請求項7に記載の鋼板のキャンバー量測定装置の校正方法。   If the absolute value of the difference between W1 and W2 exceeds the threshold, the camera installation angle is calibrated, and then the difference between at least one of W1 and W2 and the true value of the plate width of the steel plate The calibration method of the apparatus for measuring a camber amount of a steel sheet according to claim 7, wherein the height of the camera is calibrated when the absolute value exceeds the threshold value.
JP2017036280A 2017-02-28 2017-02-28 Steel plate camber amount measurement method, steel plate camber amount measurement device, and calibration method of steel plate camber amount measurement device Active JP6665813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017036280A JP6665813B2 (en) 2017-02-28 2017-02-28 Steel plate camber amount measurement method, steel plate camber amount measurement device, and calibration method of steel plate camber amount measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036280A JP6665813B2 (en) 2017-02-28 2017-02-28 Steel plate camber amount measurement method, steel plate camber amount measurement device, and calibration method of steel plate camber amount measurement device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019228759A Division JP2020052060A (en) 2019-12-19 2019-12-19 Camber amount measurement method of steel plate, camber amount measurement device of steel plate and calibration method of camber amount measurement device of steel plate

Publications (2)

Publication Number Publication Date
JP2018141707A true JP2018141707A (en) 2018-09-13
JP6665813B2 JP6665813B2 (en) 2020-03-13

Family

ID=63527850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036280A Active JP6665813B2 (en) 2017-02-28 2017-02-28 Steel plate camber amount measurement method, steel plate camber amount measurement device, and calibration method of steel plate camber amount measurement device

Country Status (1)

Country Link
JP (1) JP6665813B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6736798B1 (en) * 2020-02-14 2020-08-05 ヤマザキマザック株式会社 Work setting method for work device, work setting support system, and work setting support program
JP7447874B2 (en) 2021-07-02 2024-03-12 Jfeスチール株式会社 Method for generating a model for estimating the amount of meandering in a steel plate, method for estimating the amount of meandering in a steel plate, method for controlling meandering in a steel plate, and method for manufacturing a steel plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118840A (en) * 1991-09-02 1993-05-14 Kobe Steel Ltd Camber measuring apparatus for rolled steel plate
JPH06147856A (en) * 1992-10-30 1994-05-27 Mitsubishi Heavy Ind Ltd Steel plate camber detector for steel manufacture hot rolling line
JPH08105725A (en) * 1994-10-06 1996-04-23 Kobe Steel Ltd Calibration method of image deformation for shape measuring apparatus
WO2012169592A1 (en) * 2011-06-07 2012-12-13 株式会社プロスパークリエイティブ Measurement device, measurement system, measurement position alignment method using this, and measurement position alignment program
US20130004080A1 (en) * 2011-06-29 2013-01-03 Infosys Limited System and method for measuring camber on a surface
JP2016097431A (en) * 2014-11-25 2016-05-30 Jfeスチール株式会社 Steel plate shape detecting device and method, steel plate rolling method, and steel plate manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118840A (en) * 1991-09-02 1993-05-14 Kobe Steel Ltd Camber measuring apparatus for rolled steel plate
JPH06147856A (en) * 1992-10-30 1994-05-27 Mitsubishi Heavy Ind Ltd Steel plate camber detector for steel manufacture hot rolling line
JPH08105725A (en) * 1994-10-06 1996-04-23 Kobe Steel Ltd Calibration method of image deformation for shape measuring apparatus
WO2012169592A1 (en) * 2011-06-07 2012-12-13 株式会社プロスパークリエイティブ Measurement device, measurement system, measurement position alignment method using this, and measurement position alignment program
US20130004080A1 (en) * 2011-06-29 2013-01-03 Infosys Limited System and method for measuring camber on a surface
JP2016097431A (en) * 2014-11-25 2016-05-30 Jfeスチール株式会社 Steel plate shape detecting device and method, steel plate rolling method, and steel plate manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6736798B1 (en) * 2020-02-14 2020-08-05 ヤマザキマザック株式会社 Work setting method for work device, work setting support system, and work setting support program
WO2021161530A1 (en) * 2020-02-14 2021-08-19 ヤマザキマザック株式会社 Workpiece mounting method for machining apparatus, workpiece mounting support system, and workpiece mounting support program
CN115066313A (en) * 2020-02-14 2022-09-16 山崎马扎克公司 Workpiece mounting method, workpiece mounting support system, and workpiece mounting support program for machining device
JP7447874B2 (en) 2021-07-02 2024-03-12 Jfeスチール株式会社 Method for generating a model for estimating the amount of meandering in a steel plate, method for estimating the amount of meandering in a steel plate, method for controlling meandering in a steel plate, and method for manufacturing a steel plate

Also Published As

Publication number Publication date
JP6665813B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
US8107064B2 (en) Disc wafer inspecting device and inspecting method
TWI531876B (en) Method for correcting alignment errors of substrate to be exposed and exposure apparatus
JP4837095B2 (en) Method and apparatus for controlling roll gap
JP6665813B2 (en) Steel plate camber amount measurement method, steel plate camber amount measurement device, and calibration method of steel plate camber amount measurement device
JP2020052060A (en) Camber amount measurement method of steel plate, camber amount measurement device of steel plate and calibration method of camber amount measurement device of steel plate
CN114126776A (en) Hot rolled steel strip meandering control method, meandering control device, and hot rolling facility
JP6624121B2 (en) Steel plate shape straightening device
JP2010025586A (en) Configuration determination method and configuration determination apparatus
JP2016065863A (en) Steel sheet shape measurement device and its method, as well as steel sheet manufacturing apparatus using the same and its method
JP3724720B2 (en) Warpage shape measuring method and apparatus
JP4829066B2 (en) Method for measuring the three-dimensional shape of a tire
KR101290424B1 (en) Apparatus for measuring warp and camber of rolled material using thermal image and controlling method therefor
JPH05118840A (en) Camber measuring apparatus for rolled steel plate
KR102045633B1 (en) Apparatus for tracking slab
JPH02194307A (en) Curvature shape measuring instrument for plate-like body
JP6837723B2 (en) Plane shape measuring device
JP6339493B2 (en) Method for measuring plate width of continuum and method for producing steel plate
JP6079072B2 (en) Hot length measuring method and apparatus
JP5598583B2 (en) Automatic straightening control device for differential steel plate
JP6172124B2 (en) Steel plate shape detection device and method, steel plate rolling method, steel plate manufacturing method
JP2008100260A (en) Method of continuously straightening steel sheet
JP2018027560A (en) Shape measurement device and rolling system including the same
JP6089798B2 (en) Steel plate continuous straightening method and apparatus
JP2015017823A (en) Hot long object length measurement method
JP5380879B2 (en) Automatic correction control method for differential thickness steel sheet and manufacturing method for differential thickness steel sheet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250