JP2018141411A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2018141411A
JP2018141411A JP2017036335A JP2017036335A JP2018141411A JP 2018141411 A JP2018141411 A JP 2018141411A JP 2017036335 A JP2017036335 A JP 2017036335A JP 2017036335 A JP2017036335 A JP 2017036335A JP 2018141411 A JP2018141411 A JP 2018141411A
Authority
JP
Japan
Prior art keywords
fuel
amount
exhaust
addition
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017036335A
Other languages
Japanese (ja)
Inventor
雄貴 鈴木
Yuki Suzuki
雄貴 鈴木
土屋 富久
Tomihisa Tsuchiya
富久 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017036335A priority Critical patent/JP2018141411A/en
Publication of JP2018141411A publication Critical patent/JP2018141411A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine capable of suppressing occurence of HC slip even when cooling addition processing is performed during execution of desorption processing.SOLUTION: A control device 80 of an exhaust emission control device executes desorption processing for desorbing a sulfur compound accumulated on a NSR catalyst by making an air fuel ratio of an exhaust gas flowing into the NSR catalyst 20 in a state of increasing a temperature of the NSR catalyst 20 to a desorption temperature to desorb the sulfur compound accumulated on the NSR catalyst 20, richer than a theoretical air fuel ratio, and cooling addition processing for cooling an addition valve 35 by injecting an engine fuel from the addition valve 35 disposed on an exhaust passage 14. The control device 80 adjusts an amount of the fuel injected from a cylinder injection valve 11 so that the sum of the amount of the fuel supplied to the exhaust gas from the cylinder injection valve 11 and an amount of the fuel injected from the addition valve 35 becomes smaller than an amount of the fuel causing occurrence of HC slip in the NSR catalyst 20 when executing the cooling addition processing during executing the desorption processing.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関の排気浄化装置としてNOx吸蔵還元型触媒を備えたものがある。こうした排気浄化装置は、内燃機関において理論空燃比よりもリーンな空燃比で燃焼が行われている間は、排気中のNOxを上記触媒に吸蔵し、内燃機関で燃焼する混合気の空燃比が一時的にリッチな空燃比とされたときには、上記触媒が吸蔵したNOxを還元浄化することで、外気へのNOxの排出を抑えている。   Some exhaust gas purification apparatuses for internal combustion engines are equipped with a NOx storage reduction catalyst. In such an exhaust purification device, while combustion is being performed at an air-fuel ratio leaner than the stoichiometric air-fuel ratio in the internal combustion engine, NOx in the exhaust is occluded in the catalyst, and the air-fuel ratio of the air-fuel mixture combusted in the internal combustion engine is reduced. When the air-fuel ratio is temporarily rich, the NOx occluded by the catalyst is reduced and purified, thereby suppressing NOx discharge to the outside air.

上記NOx吸蔵還元型触媒には、NOxと共に排気中の硫黄酸化物(SOx)が、硫化塩などの硫黄化合物のかたちで吸蔵される。そして、硫黄化合物の堆積に応じて触媒のNOx吸蔵能力の低下、いわゆる硫黄被毒が発生する。そのため、上記のような排気浄化装置では、触媒に堆積した硫黄化合物を脱離させる被毒回復制御が行われる。この被毒回復制御では、触媒の温度を硫黄化合物の脱離に必要な温度(例えば600°C)に高めた状態で、触媒に流入する排気の空燃比を理論空燃比よりもリッチ化することによって硫黄化合物の脱離反応に必要な還元剤を触媒に供給する脱離処理が行われる(例えば特許文献1等)。   In the NOx occlusion reduction type catalyst, NOx and sulfur oxide (SOx) in the exhaust gas are occluded in the form of sulfur compounds such as sulfides. As the sulfur compound is deposited, the NOx occlusion capacity of the catalyst decreases, so-called sulfur poisoning occurs. For this reason, in the exhaust purification apparatus as described above, poisoning recovery control is performed to desorb sulfur compounds deposited on the catalyst. In this poisoning recovery control, the air-fuel ratio of the exhaust gas flowing into the catalyst is made richer than the stoichiometric air-fuel ratio in a state where the temperature of the catalyst is raised to a temperature necessary for desorption of sulfur compounds (for example, 600 ° C). Is performed to supply a reducing agent necessary for the sulfur compound elimination reaction to the catalyst (for example, Patent Document 1).

上記脱離処理では、気筒内に燃料を直接噴射する筒内噴射弁の燃料噴射量や、排気通路に設けられて排気に燃料を添加する添加弁の燃料噴射量を調量することによって、触媒に流入する排気の空燃比が理論空燃比よりもリッチ化される。   In the desorption process, the catalyst is adjusted by adjusting the fuel injection amount of the in-cylinder injection valve that directly injects fuel into the cylinder and the fuel injection amount of the addition valve that is provided in the exhaust passage and adds fuel to the exhaust. The air-fuel ratio of the exhaust gas flowing into the engine is made richer than the stoichiometric air-fuel ratio.

ここで、上記脱離処理の実行中は、硫黄化合物の脱離に必要な温度にまで排気の温度が高められるため、排気通路に設けられた添加弁が高温化し、同添加弁に熱害が生じるおそれがある。そこで、例えば特許文献2に記載されているように、添加弁の高温化が懸念されるときには、添加弁から燃料を噴射することにより当該添加弁の冷却を行う、いわゆる冷却添加処理を上記排気浄化装置において実行することが考えられる。   Here, during the execution of the desorption treatment, the temperature of the exhaust gas is raised to a temperature necessary for desorption of the sulfur compound, so that the addition valve provided in the exhaust passage is heated and the heat damage is caused to the addition valve. May occur. Therefore, for example, as described in Patent Document 2, when there is a concern about a high temperature of the addition valve, a so-called cooling addition process is performed in which the addition valve is cooled by injecting fuel from the addition valve. It is conceivable to execute in the apparatus.

国際公開第2010/116535号International Publication No. 2010/116535 特許第4922899号公報Japanese Patent No. 4922899

しかしながら、脱離処理の実行中に上記の冷却添加処理が実行されると、排気に含まれる未燃燃料の量が過剰になり、その結果、排気中の未燃燃料が触媒をすり抜ける現象、いわゆるHCスリップが発生するおそれがある。   However, if the above cooling addition process is performed during the desorption process, the amount of unburned fuel contained in the exhaust gas becomes excessive, and as a result, a phenomenon in which the unburned fuel in the exhaust gas slips through the catalyst, a so-called phenomenon. HC slip may occur.

本発明は、こうした実情に鑑みてなされたものであり、脱離処理の実行中に冷却添加処理を行ってもHCスリップの発生を抑えることのできる内燃機関の排気浄化装置を提供することにある。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide an exhaust gas purification apparatus for an internal combustion engine that can suppress the occurrence of HC slip even if a cooling addition process is performed during the desorption process. .

上記課題を解決する内燃機関の排気浄化装置は、気筒内に燃料を直接噴射する筒内噴射弁を備える内燃機関に適用される。この排気浄化装置は、前記内燃機関の排気通路に設けられたNOx吸蔵還元型の触媒と、前記触媒よりも上流側の排気通路に設けられて排気に機関燃料を添加する添加弁と、を備えており、前記触媒に堆積した硫黄化合物が脱離する脱離可能温度に同触媒の温度を高めた状態で前記触媒に流入する排気の空燃比を理論空燃比よりもリッチ化することによって前記触媒に堆積した硫黄化合物を脱離させる脱離処理と、前記添加弁から機関燃料を噴射することにより同添加弁を冷却する冷却添加処理と、を実行する。そして、この排気浄化装置は、前記脱離処理の実行中に前記冷却添加処理を実行するときには、前記筒内噴射弁から排気に供給される燃料量と前記添加弁から排気に添加される燃料量との和が、前記触媒においてHCスリップの生じる燃料量よりも少なくなるように前記筒内噴射弁から噴射される燃料量を調量する。   An exhaust gas purification apparatus for an internal combustion engine that solves the above problems is applied to an internal combustion engine that includes an in-cylinder injection valve that directly injects fuel into a cylinder. The exhaust emission control device includes a NOx storage reduction type catalyst provided in an exhaust passage of the internal combustion engine, and an addition valve provided in an exhaust passage upstream of the catalyst to add engine fuel to the exhaust. And by enriching the air-fuel ratio of the exhaust gas flowing into the catalyst with a temperature higher than the stoichiometric air-fuel ratio in a state where the temperature of the catalyst is raised to a desorbable temperature at which the sulfur compound deposited on the catalyst is desorbed A desorption process for desorbing the sulfur compound deposited on the engine and a cooling addition process for cooling the addition valve by injecting engine fuel from the addition valve are executed. When the cooling addition process is executed during the desorption process, the exhaust gas purification apparatus is configured to supply the fuel amount supplied from the in-cylinder injection valve to the exhaust gas and the fuel amount added from the addition valve to the exhaust gas. The amount of fuel injected from the in-cylinder injection valve is adjusted so that the sum of the above and the amount of fuel that causes HC slip in the catalyst becomes smaller.

同構成によれば、脱離処理の実行中に冷却添加処理を実行するときには、触媒に流入する排気に含まれる未燃燃料の量が、HCスリップの生じる燃料量よりも少なくなるように筒内噴射弁から噴射される燃料量が調量される。従って、脱離処理と冷却添加処理とを同時に行っても、HCスリップの発生を抑えることができるようになる。   According to this configuration, when the cooling addition process is performed during the desorption process, the amount of unburned fuel contained in the exhaust gas flowing into the catalyst is reduced so that the amount of unburned fuel is smaller than the amount of fuel causing HC slip. The amount of fuel injected from the injection valve is metered. Therefore, even if the desorption process and the cooling addition process are performed simultaneously, the occurrence of HC slip can be suppressed.

内燃機関の排気浄化装置の一実施形態の構成を示す模式図。The schematic diagram which shows the structure of one Embodiment of the exhaust gas purification apparatus of an internal combustion engine. 同実施形態における被毒回復制御の実施態様を示すタイムチャート。The time chart which shows the embodiment of the poisoning recovery | restoration control in the embodiment. 同実施形態における添加弁の駆動信号を示すタイムチャート。The time chart which shows the drive signal of the addition valve in the embodiment. 同実施形態において脱離処理を行う際に実施される一連の処理手順を示すフローチャート。The flowchart which shows a series of processing procedures implemented when performing the detachment | desorption process in the embodiment. 同実施形態の脱離処理実行中における触媒前排気空燃比の推移を示すタイムチャート。6 is a time chart showing the transition of the pre-catalyst exhaust air-fuel ratio during execution of the desorption process of the same embodiment. 同実施形態の変形例における脱離処理実行中の触媒前排気空燃比の推移を示すタイムチャート。The time chart which shows transition of the before-catalyst exhaust air-fuel ratio in execution of the desorption process in the modification of the embodiment.

以下、内燃機関の排気浄化装置の一実施形態を、図1〜図5を参照して説明する。本実施形態の排気浄化装置は、気筒内に噴射した燃料を圧縮による自己着火により燃焼させる圧縮着火式の内燃機関、いわゆるディーゼルエンジンに適用されるものとなっている。   Hereinafter, an embodiment of an exhaust gas purification apparatus for an internal combustion engine will be described with reference to FIGS. The exhaust purification device of this embodiment is applied to a compression ignition type internal combustion engine that burns fuel injected into a cylinder by self-ignition by compression, so-called diesel engine.

図1に示すように、本実施形態の排気浄化装置が適用される内燃機関10には、気筒内に燃料を直接噴射する筒内噴射弁11が複数設けられている。また、内燃機関10の吸気通路には、気筒内に吸入される空気の量を調整する吸気絞り弁が設けられている。   As shown in FIG. 1, an internal combustion engine 10 to which the exhaust purification system of this embodiment is applied is provided with a plurality of in-cylinder injection valves 11 that directly inject fuel into the cylinder. The intake passage of the internal combustion engine 10 is provided with an intake throttle valve that adjusts the amount of air taken into the cylinder.

内燃機関10の排気通路14には、NOx吸蔵還元型触媒(以下、NSR触媒という)20が設けられている。このNSR触媒20は、酸化雰囲気下において周囲の窒素酸化物を吸蔵する一方でその吸蔵した窒素酸化物を還元雰囲気下において放出して還元浄化する。   The exhaust passage 14 of the internal combustion engine 10 is provided with a NOx storage reduction catalyst (hereinafter referred to as NSR catalyst) 20. The NSR catalyst 20 stores surrounding nitrogen oxides in an oxidizing atmosphere, while releasing the stored nitrogen oxides in a reducing atmosphere for reduction purification.

排気通路14におけるNSR触媒20よりも上流側の部分には、内燃機関10の燃料を排気に添加する電磁駆動式の添加弁35が設置されている。添加弁35には、内燃機関10の冷却水を共用する水冷式の冷却装置60が設けられている。   An electromagnetically driven addition valve 35 for adding the fuel of the internal combustion engine 10 to the exhaust is installed in a portion of the exhaust passage 14 upstream of the NSR catalyst 20. The addition valve 35 is provided with a water-cooling type cooling device 60 that shares the cooling water of the internal combustion engine 10.

排気通路14におけるNSR触媒20の排気流入口の近傍の部分には、NSR触媒20に流入する排気の温度(以下、排気温度THEという)を検出する温度センサ73や、NSR触媒20に流入する排気の空燃比(以下、触媒前排気空燃比AF1という)を検出する空燃比センサ74が設置されている。   In the vicinity of the exhaust inlet of the NSR catalyst 20 in the exhaust passage 14, a temperature sensor 73 that detects the temperature of exhaust gas flowing into the NSR catalyst 20 (hereinafter referred to as exhaust temperature THE) and exhaust gas flowing into the NSR catalyst 20. An air-fuel ratio sensor 74 for detecting the air-fuel ratio (hereinafter referred to as pre-catalyst exhaust air-fuel ratio AF1) is installed.

内燃機関10には、上記センサ以外にも各種のセンサが設けられている。例えば、吸入空気量GAを検出するエアフロメータ70や、機関回転速度NEを検出するクランク角センサ71や、内燃機関10を冷却する冷却水の温度である冷却水温THWを検出する水温センサ72などが設けられている。   The internal combustion engine 10 is provided with various sensors in addition to the above sensors. For example, an air flow meter 70 that detects the intake air amount GA, a crank angle sensor 71 that detects the engine rotational speed NE, a water temperature sensor 72 that detects the cooling water temperature THW that is the temperature of the cooling water that cools the internal combustion engine 10, and the like. Is provided.

内燃機関10は制御装置80を備えている。この制御装置80は、各種演算処理を行う中央演算処理装置、制御用のプログラムやデータが記憶された読出専用メモリ、中央演算処理装置の演算結果などを一時的に記憶するメモリ、入力ポート及び出力ポートなどを備えている。制御装置80の入力ポートには、上述した各種センサの出力信号が入力される。また、制御装置80の出力ポートには、筒内噴射弁11や添加弁35などといった各種デバイス用の駆動回路が接続されている。   The internal combustion engine 10 includes a control device 80. The control device 80 includes a central processing unit that performs various types of arithmetic processing, a read-only memory that stores control programs and data, a memory that temporarily stores arithmetic results of the central processing unit, an input port, and an output. It has a port. The output signals of the various sensors described above are input to the input port of the control device 80. In addition, a drive circuit for various devices such as the in-cylinder injection valve 11 and the addition valve 35 is connected to the output port of the control device 80.

制御装置80は、筒内噴射弁11の燃料噴射量や燃料噴射時期を制御する燃料噴射制御や、NSR触媒20による排気浄化を好適に行うための排気浄化制御といった各種制御を実行する。   The control device 80 performs various controls such as fuel injection control for controlling the fuel injection amount and fuel injection timing of the in-cylinder injection valve 11 and exhaust purification control for suitably performing exhaust purification by the NSR catalyst 20.

こうした内燃機関10において、混合気の空燃比が理論空燃比STよりも大きい状態で燃焼が行われている間は、触媒前排気空燃比AF1の値が理論空燃比STの値よりも大きい値となり、このときのNSR触媒20では、排気中のNOxが吸蔵されることにより、外気へのNOxの放出が抑えられる。ただし、NSR触媒20に吸蔵可能なNOxの量には限界がある。そのため、本実施形態の排気浄化装置では、NSR触媒20のNOxの吸蔵量が限界に達する前に、筒内噴射弁11からポスト噴射を行って同筒内噴射弁11から排気に燃料を供給することにより、NSR触媒20に流入する排気の空燃比を理論空燃比STよりもリッチ化させてNSR触媒20に還元剤(燃料)を供給する。そして、この供給された還元剤を利用して、吸蔵したNOxをNSR触媒20から放出させて還元浄化するNOx還元処理を行う。なお、ポスト噴射による排気への燃料供給が不足する場合には、添加弁35からの燃料添加も併用される。   In such an internal combustion engine 10, while combustion is being performed in a state where the air-fuel ratio of the air-fuel mixture is larger than the stoichiometric air-fuel ratio ST, the value of the pre-catalyst exhaust air-fuel ratio AF1 becomes a value larger than the value of the stoichiometric air-fuel ratio ST. In the NSR catalyst 20 at this time, NOx in the exhaust is occluded, so that release of NOx to the outside air is suppressed. However, the amount of NOx that can be stored in the NSR catalyst 20 is limited. Therefore, in the exhaust purification device of the present embodiment, before the NOx storage amount of the NSR catalyst 20 reaches the limit, post injection is performed from the in-cylinder injection valve 11 and fuel is supplied from the in-cylinder injection valve 11 to the exhaust. As a result, the air-fuel ratio of the exhaust gas flowing into the NSR catalyst 20 is made richer than the stoichiometric air-fuel ratio ST, and the reducing agent (fuel) is supplied to the NSR catalyst 20. Then, using the supplied reducing agent, the stored NOx is released from the NSR catalyst 20 to perform NOx reduction processing for reduction purification. In addition, when the fuel supply to the exhaust by post injection is insufficient, the fuel addition from the addition valve 35 is also used.

他方、燃料中には硫黄酸化物(SOx)が含まれており、NSR触媒20は、酸化雰囲気下においてNOxと共に燃料由来の硫黄酸化物(SOx)も吸蔵する。このときのSOxは、硫酸塩などの硫黄化合物のかたちでNSR触媒20に吸蔵される。NSR触媒20に吸蔵された硫黄化合物は、NOx還元処理時の条件では、NSR触媒20から脱離しない。そのため、NSR触媒20には、硫黄化合物が次第に堆積していき、これを放置すれば、NSR触媒20のNOx吸蔵能力が低下する現象、いわゆる硫黄被毒が発生してしまう。そこで、制御装置80は、NSR触媒20に堆積した硫黄化合物を脱離させるための硫黄回復制御を実施する。   On the other hand, sulfur oxide (SOx) is contained in the fuel, and the NSR catalyst 20 also stores fuel-derived sulfur oxide (SOx) together with NOx in an oxidizing atmosphere. The SOx at this time is stored in the NSR catalyst 20 in the form of a sulfur compound such as sulfate. The sulfur compound stored in the NSR catalyst 20 is not desorbed from the NSR catalyst 20 under the conditions during the NOx reduction treatment. Therefore, sulfur compounds gradually accumulate on the NSR catalyst 20, and if left untreated, a phenomenon in which the NOx storage capacity of the NSR catalyst 20 decreases, so-called sulfur poisoning, occurs. Therefore, the control device 80 performs sulfur recovery control for desorbing the sulfur compound deposited on the NSR catalyst 20.

図2に、硫黄回復制御の実施態様を示す。
制御装置80は、排気に供給された燃料量、排気温度THE等から求められたNSR触媒20の温度、吸入空気量GAなどから求められた排気流量などに基づいてNSR触媒20に堆積している硫黄化合物の量(以下、硫黄堆積量という)を算出している。
FIG. 2 shows an embodiment of sulfur recovery control.
The control device 80 accumulates on the NSR catalyst 20 based on the amount of fuel supplied to the exhaust, the temperature of the NSR catalyst 20 determined from the exhaust temperature THE, the exhaust flow rate determined from the intake air amount GA, and the like. The amount of sulfur compound (hereinafter referred to as sulfur deposition amount) is calculated.

そして、同図の時刻t1において、硫黄堆積量Sが予め定められた開始判定値S1に達すると、被毒回復制御が開始される。被毒回復制御が開始されると、まず、添加弁35からの燃料添加が実行されることにより、NSR触媒20に堆積した硫黄化合物が脱離する脱離可能温度にNSR触媒20の温度を高めるための昇温処理が実施される。   When the sulfur accumulation amount S reaches a predetermined start determination value S1 at time t1 in the same figure, poisoning recovery control is started. When poisoning recovery control is started, first, fuel addition from the addition valve 35 is executed, so that the temperature of the NSR catalyst 20 is raised to a detachable temperature at which the sulfur compound deposited on the NSR catalyst 20 is desorbed. For this purpose, a temperature raising process is performed.

時刻t2において、NSR触媒20の温度が上記脱離可能温度以上になって昇温処理が終了すると、引き続き脱離処理が開始される。この脱離処理は、予め定められた実行時間DTが経過する時刻t3に一旦終了する。そしてその後、予め定められた休止期間RTが経過した時刻t4に、再び脱離処理が開始される。以後、脱離処理は、被毒回復制御が終了するまで、休止期間RTを挟んで繰り返し実行される。   At time t2, when the temperature of the NSR catalyst 20 becomes equal to or higher than the desorbable temperature and the temperature raising process is completed, the desorption process is started. This desorption process ends once at time t3 when a predetermined execution time DT elapses. Thereafter, the desorption process is started again at time t4 when a predetermined rest period RT has elapsed. Thereafter, the desorption process is repeatedly executed with the rest period RT until the poisoning recovery control is completed.

上記脱離処理が開始されると、筒内噴射弁11からのポスト噴射が実行されることにより、上記昇温処理によってNSR触媒20の温度が上記脱離可能温度にまで高められた状態にて触媒前排気空燃比AF1が理論空燃比STよりもリッチ化され、NSR触媒20に還元剤としての燃料が供給される。そしてこうしたNSR触媒20への燃料供給により、NSR触媒20からの硫黄化合物の脱離が開始される。   When the desorption process is started, post injection from the in-cylinder injection valve 11 is executed, so that the temperature of the NSR catalyst 20 is increased to the desorbable temperature by the temperature increase process. The pre-catalyst exhaust air-fuel ratio AF1 is made richer than the theoretical air-fuel ratio ST, and fuel as a reducing agent is supplied to the NSR catalyst 20. The fuel supply to the NSR catalyst 20 starts desorption of sulfur compounds from the NSR catalyst 20.

なお、脱離処理の実行中において、触媒前排気空燃比AF1のリッチ化度合を高めるほど、NSR触媒20に供給する燃料量を増やすことができる。しかし、触媒前排気空燃比AF1を過剰にリッチ化すると、NSR触媒20においてHCスリップが発生するようになり、例えば排気通路14の末端から外気へと白煙が放出されるおそれがある。そのため、NSR触媒20においてHCスリップの発生を抑えることのできる空燃比の最小値を限界空燃比LTとしたときに、脱離処理の実行中は、そうした限界空燃比LTを超えて排気の空燃比がリッチ化しないように、排気に含まれる未燃燃料の量を調量する必要がある。そこで本実施形態では、NSR触媒20に流入する排気の空燃比が限界空燃比LTになるときの基本ポスト噴射量QPbが予めの実験等を通じて求められており、そうして求められた基本ポスト噴射量QPbが、脱離処理実行中のポスト噴射量として設定される。   Note that, during the desorption process, the amount of fuel supplied to the NSR catalyst 20 can be increased as the degree of enrichment of the pre-catalyst exhaust air-fuel ratio AF1 is increased. However, if the pre-catalyst exhaust air-fuel ratio AF1 is excessively enriched, HC slip occurs in the NSR catalyst 20, and white smoke may be discharged from the end of the exhaust passage 14 to the outside air, for example. Therefore, when the minimum air-fuel ratio that can suppress the occurrence of HC slip in the NSR catalyst 20 is the limit air-fuel ratio LT, the exhaust air-fuel ratio exceeds the limit air-fuel ratio LT during the desorption process. Therefore, it is necessary to adjust the amount of unburned fuel contained in the exhaust gas so that the fuel does not become rich. Therefore, in this embodiment, the basic post-injection amount QPb when the air-fuel ratio of the exhaust gas flowing into the NSR catalyst 20 becomes the limit air-fuel ratio LT is obtained through a preliminary experiment or the like, and the basic post-injection thus obtained is obtained. The amount QPb is set as the post injection amount during execution of the desorption process.

そして、各脱離処理の実行期間(t2〜t3、t4〜t5、t6〜t7、t8〜t9)には、NSR触媒20からの硫黄化合物の脱離量に応じて硫黄堆積量Sの値は減少される。そして、硫黄堆積量Sの値が終了判定値S3(例えば本実施形態では「0」に設定)まで減少する時刻t9において、被毒回復制御は終了される。   Then, during the execution period of each desorption process (t2 to t3, t4 to t5, t6 to t7, t8 to t9), the value of the sulfur accumulation amount S depends on the desorption amount of the sulfur compound from the NSR catalyst 20. Will be reduced. Then, at the time t9 when the value of the sulfur accumulation amount S decreases to the end determination value S3 (for example, set to “0” in the present embodiment), the poisoning recovery control is ended.

他方、上述したように添加弁35は排気通路14に設けられているため、排気に曝されることにより高温化する。そして、過度に高温化すると添加弁35に熱害が生じるおそれがある。そこで、制御装置80は、添加弁35の高温化を抑えるための冷却添加処理を実行する。   On the other hand, since the addition valve 35 is provided in the exhaust passage 14 as described above, the temperature of the addition valve 35 increases due to exposure to the exhaust. If the temperature is excessively high, the addition valve 35 may be thermally damaged. Therefore, the control device 80 performs a cooling addition process for suppressing the temperature increase of the addition valve 35.

図3に示すように、こうした冷却添加処理の実行時には、添加弁35から排気に対して燃料を周期的に繰り返し噴射する間欠添加が実施される。この間欠添加の実行時には、添加弁35の温度状態に応じて可変設定される駆動インターバル時間Tint毎に、予め定められた駆動時間τの間だけ添加弁35には通電が行われる。なお、駆動時間τは、制御装置80から添加弁35の駆動回路に向けて出力される駆動信号を「ON」状態に保持することにより添加弁35に開弁動作を行わせる時間であり、添加弁35の冷却効果を確保しつつ燃料の消費量をできる限り抑えることの可能な時間(例えば添加弁35の駆動時間として設定可能な最小値など)が設定されている。また、添加弁35の冷却要求の度合が高いほど駆動インターバル時間Tintの値は短くされることにより、単位時間あたりに添加弁35から噴射される燃料量は多くなり、これにより燃料添加による添加弁35の冷却効果が高まるようになっている。   As shown in FIG. 3, when such cooling addition processing is performed, intermittent addition is performed in which fuel is periodically and repeatedly injected from the addition valve 35 to the exhaust. When this intermittent addition is performed, the addition valve 35 is energized only during a predetermined drive time τ for each drive interval time Tint that is variably set according to the temperature state of the addition valve 35. The drive time τ is a time for causing the addition valve 35 to perform the valve opening operation by holding the drive signal output from the control device 80 toward the drive circuit of the addition valve 35 in the “ON” state. A time (for example, a minimum value that can be set as the drive time of the addition valve 35) that can suppress the fuel consumption as much as possible while ensuring the cooling effect of the valve 35 is set. Further, as the degree of cooling request of the addition valve 35 is higher, the value of the drive interval time Tint is shortened, so that the amount of fuel injected from the addition valve 35 per unit time increases, and thereby the addition valve 35 due to fuel addition. The cooling effect is enhanced.

ところで、上述した脱離処理の実行中に添加弁35の冷却添加処理を実行すると、ポスト噴射の燃料及び冷却添加処理の燃料がともに排気に供給されるため、排気に含まれる未燃燃料の量が過剰になり、その結果、HCスリップが発生するおそれがある。そこで、本実施形態の排気浄化装置は、図4に示す一連の処理手順を制御装置80によって実行することにより、そうした不都合の発生を抑えるようにしている。なお、制御装置80は、図4に示す処理手順を、内燃機関10の始動時に開始して同内燃機関10が停止するまで実施する。   By the way, if the cooling addition process of the addition valve 35 is executed during the above-described desorption process, both the post-injection fuel and the cooling addition process fuel are supplied to the exhaust gas, so the amount of unburned fuel contained in the exhaust gas As a result, HC slip may occur. Therefore, the exhaust purification apparatus of this embodiment is configured to suppress the occurrence of such inconvenience by executing a series of processing procedures shown in FIG. Note that the control device 80 performs the processing procedure shown in FIG. 4 until the internal combustion engine 10 is started after the internal combustion engine 10 is started.

図4に示すように、本処理が開始されるとまず、被毒回復制御の実行要求があるか否かが判定される(S100)。このステップS100では、硫黄堆積量Sが上記開始判定値S1に達している場合に、被毒回復制御の実行要求があると判定される。そして、被毒回復制御の実行要求がないときには(S100:NO)、ステップS100の処理が繰り返し実行される。   As shown in FIG. 4, when this process is started, it is first determined whether or not there is a request for execution of poisoning recovery control (S100). In this step S100, when the sulfur accumulation amount S has reached the start determination value S1, it is determined that there is a request for execution of poisoning recovery control. And when there is no execution request | requirement of poisoning recovery control (S100: NO), the process of step S100 is repeatedly performed.

一方、被毒回復制御の実行要求があるときには(S100:YES)、上述した昇温処理が終了しているか否かが判定される(S110)。このステップS110では、NSR触媒20の温度が上記脱離可能温度以上になっている場合に、昇温処理が終了していると判定される。そして、昇温処理が終了していないときには(S110:NO)、ステップS110の処理が繰り返し実行される。   On the other hand, when there is a request for execution of poisoning recovery control (S100: YES), it is determined whether or not the above-described temperature raising process has ended (S110). In this step S110, when the temperature of the NSR catalyst 20 is equal to or higher than the desorbable temperature, it is determined that the temperature raising process has been completed. When the temperature raising process is not completed (S110: NO), the process of step S110 is repeatedly executed.

一方、昇温処理が終了しているときには(S110:YES)、上記脱離処理の実行に先立って、同脱離処理の実行中における添加弁35の予測最高温度Tmが算出される(S120)。このステップS120では、現在の冷却水温THW、現在の排気温度THE、現在の吸入空気量、脱離処理実行中の目標排気温度、脱離処理実行中の目標吸入空気量などから上記予測最高温度Tmが算出される。   On the other hand, when the temperature raising process is completed (S110: YES), the predicted maximum temperature Tm of the addition valve 35 during the execution of the desorption process is calculated (S120). . In step S120, the predicted maximum temperature Tm is calculated from the current cooling water temperature THW, the current exhaust temperature THE, the current intake air amount, the target exhaust temperature during the desorption process, the target intake air amount during the desorption process, and the like. Is calculated.

次に、算出された予測最高温度Tmが許容上限温度Tcを超えているか否かが判定される(S130)。この許容上限温度Tcは、添加弁35の高温化による熱害の発生を抑えることのできる最高温度が設定されている。そして、予測最高温度Tmが許容上限温度Tcを超えているときには(S130:YES)、脱離処理実行中の総冷却添加量CATが設定される(S140)。この総冷却添加量CATは、脱離処理の実行中に上述した冷却添加処理を実行することにより、脱離処理中の添加弁35の最高温度を上記許容上限温度Tcに抑えようとするときに必要となる、脱離処理1回当たりの冷却添加量の総量である。そして予測最高温度Tmが高いほど総冷却添加量CATが多くなるように、同総冷却添加量CATと予測最高温度Tmとの関係が予めの実験等を通じて求められている。なお、このようにして総冷却添加量CATが設定されると、上記駆動時間τ内に添加弁35から噴射される燃料量(以下、単発燃料量CQという)で総冷却添加量CATを除することにより、脱離処理中の燃料添加回数が求められる。そして、上記実行時間DTを燃料添加回数で除した値が、脱離処理実行中の冷却添加実行時における上記駆動インターバル時間Tintとして設定される。   Next, it is determined whether or not the calculated predicted maximum temperature Tm exceeds the allowable upper limit temperature Tc (S130). The allowable upper limit temperature Tc is set to a maximum temperature at which the occurrence of heat damage due to the high temperature of the addition valve 35 can be suppressed. When the predicted maximum temperature Tm exceeds the allowable upper limit temperature Tc (S130: YES), the total cooling addition amount CAT during the desorption process is set (S140). The total cooling addition amount CAT is obtained when the above-described cooling addition process is performed during the desorption process, thereby suppressing the maximum temperature of the addition valve 35 during the desorption process to the allowable upper limit temperature Tc. This is the total amount of cooling addition required per desorption treatment. The relationship between the total cooling addition amount CAT and the predicted maximum temperature Tm is obtained through a prior experiment or the like so that the total cooling addition amount CAT increases as the predicted maximum temperature Tm increases. When the total cooling addition amount CAT is set in this way, the total cooling addition amount CAT is divided by the amount of fuel injected from the addition valve 35 within the driving time τ (hereinafter referred to as a single fuel amount CQ). Thus, the number of times of fuel addition during the desorption process is obtained. A value obtained by dividing the execution time DT by the number of times of fuel addition is set as the drive interval time Tint when the cooling addition is executed during the desorption process.

次に、冷却添加の燃料量に基づいて減量時ポスト噴射量QPDが算出される(S150)。このステップS150では、次のようにして減量時ポスト噴射量QPDが算出される。   Next, the post-injection amount QPD at the time of reduction is calculated based on the fuel amount of cooling addition (S150). In step S150, the post-injection amount QPD at the time of reduction is calculated as follows.

図5に示すように、冷却添加実行時の1回の駆動時間τに相当する時間T1の間、基本ポスト噴射量QPbによるポスト噴射を行った場合に排気に供給される燃料量を第1燃料量Q1とし、この第1燃料量Q1から冷却添加時の上記単発燃料量CQを減じた量の燃料量を第2燃料量Q2とする。そして、上記時間T1内において排気に上記第2燃料量Q2を供給することのできるポスト噴射量が予め求められており、その第2燃料量Q2に対応するポスト噴射量が減量時ポスト噴射量QPDとして設定される。   As shown in FIG. 5, the amount of fuel supplied to the exhaust when the post-injection with the basic post-injection amount QPb is performed for the time T1 corresponding to one drive time τ when the cooling addition is performed is the first fuel. An amount Q1 is set, and a fuel amount obtained by subtracting the single fuel amount CQ at the time of cooling addition from the first fuel amount Q1 is set as a second fuel amount Q2. Then, a post injection amount that can supply the second fuel amount Q2 to the exhaust gas within the time T1 is obtained in advance, and the post injection amount corresponding to the second fuel amount Q2 is the post-reduction amount QPD when decreasing. Set as

次に、算出された減量時ポスト噴射量QPDによる脱離処理が1回実行される(S160)。本実施形態では、先の図5に示すように、脱離処理の実行期間中におけるポスト噴射量が減量時ポスト噴射量QPDに固定される。そして、脱離処理の実行中は添加弁35の冷却添加が併せて実行される(S170)。   Next, the desorption process based on the calculated post-injection amount QPD during reduction is executed once (S160). In the present embodiment, as shown in FIG. 5, the post-injection amount during the execution period of the desorption process is fixed to the post-injection amount QPD when decreasing. Then, during the desorption process, cooling addition of the addition valve 35 is also performed (S170).

先のステップS130にて、予測最高温度Tmが許容上限温度Tc以下であるときには(S130:NO)、上記基本ポスト噴射量QPbによる脱離処理が実行される(S220)。   In the previous step S130, when the predicted maximum temperature Tm is equal to or lower than the allowable upper limit temperature Tc (S130: NO), the desorption process with the basic post injection amount QPb is executed (S220).

上記ステップS170の処理、または上記ステップS220の処理が実行されると、次に、被毒回復制御が終了したか否かが判定される(S180)。このステップS180では、硫黄堆積量Sが上記終了判定値S3にまで減少している場合に、被毒回復制御が終了したと判定される。そして、被毒回復制御が終了したと判定されるときには(S180:YES)、上記ステップS100の処理に戻る。   When the process of step S170 or the process of step S220 is executed, it is next determined whether or not the poisoning recovery control is completed (S180). In this step S180, it is determined that the poisoning recovery control has ended when the sulfur accumulation amount S has decreased to the end determination value S3. When it is determined that the poisoning recovery control has ended (S180: YES), the process returns to step S100.

一方、被毒回復制御が終了していないときには(S180:NO)、脱離処理が予め定められた規定回数Nだけ実行されたか否かが判定される(S190)。この規定回数Nとしては、上述した予測最高温度Tmの算出に影響を与える程度に冷却水温THWが変化するのに要する時間に相当する脱離処理の実行回数が設定されている。   On the other hand, when the poisoning recovery control has not ended (S180: NO), it is determined whether or not the desorption process has been executed a predetermined number of times N (S190). As the specified number N, the number of executions of the desorption process corresponding to the time required for the coolant temperature THW to change to such an extent that the calculation of the predicted maximum temperature Tm is affected is set.

そして、脱離処理がまだ規定回数Nだけ実行されていないときには(S190:NO)、脱離処理を上記休止期間RTの間だけ停止した後に(S200)、ステップS160以降の処理が再び実行される。つまり、この場合には、現在設定されている減量時ポスト噴射量QPDによる脱離処理と冷却添加とが再び実行される。   Then, when the desorption process has not been executed for the specified number N yet (S190: NO), the desorption process is stopped only during the pause period RT (S200), and then the processes after step S160 are executed again. . That is, in this case, the desorption process and the cooling addition based on the currently set post-injection amount QPD at the time of reduction are performed again.

一方、脱離処理が規定回数Nだけ実行されたときには(S190:YES)、脱離処理を上記休止期間RTの間だけ停止した後に(S210)、ステップS120以降の処理が再び実行される。つまり、この場合には、予測最高温度Tmの算出が再度行われ、算出された予測最高温度Tmが許容上限温度Tc以下であるときには(S130:NO)、基本ポスト噴射量QPbによる脱離処理が実行される一方で、添加弁35の冷却添加処理は実行されない。また、算出された予測最高温度Tmが許容上限温度Tcを超えているときには(S130:YES)、新たに算出された予測最高温度Tmに基づいて総冷却添加量CATや減量時ポスト噴射量QPDの更新が行われ、その更新された減量時ポスト噴射量QPDによる脱離処理や、更新された総冷却添加量CATによる添加弁35の冷却添加が実行される。   On the other hand, when the desorption process is executed for the specified number N (S190: YES), the desorption process is stopped only during the pause period RT (S210), and then the processes after step S120 are executed again. That is, in this case, the predicted maximum temperature Tm is calculated again, and when the calculated predicted maximum temperature Tm is equal to or lower than the allowable upper limit temperature Tc (S130: NO), the desorption process using the basic post injection amount QPb is performed. On the other hand, the cooling addition process of the addition valve 35 is not executed. Further, when the calculated predicted maximum temperature Tm exceeds the allowable upper limit temperature Tc (S130: YES), the total cooling addition amount CAT and the post-injection amount QPD at the time of reduction are set based on the newly calculated predicted maximum temperature Tm. The renewal is performed, and the desorption process by the updated post injection amount QPD at the time of the decrease and the cooling addition of the addition valve 35 by the updated total cooling addition amount CAT are executed.

以上説明した本実施形態によれば、以下の作用及び効果を得ることができる。
(1)先の図5に示したように、脱離処理の実行中に添加弁35の冷却添加処理を実行するときには、筒内噴射弁11から排気に供給される燃料量(第2燃料量Q2)と添加弁35から排気に添加される燃料量(単発燃料量CQ)との和が、NSR触媒20においてHCスリップの生じる燃料量(第1燃料量Q1を超える量)よりも少なくなるように、筒内噴射弁11から噴射される燃料量(ポスト噴射量)が調量される。このように、脱離処理の実行中に冷却添加処理を実行するときには、NSR触媒20に流入する排気に含まれる未燃燃料の量が、HCスリップの生じる燃料量よりも少なくなるように筒内噴射弁11から噴射される燃料量(ポスト噴射量)が調量される。従って、脱離処理と冷却添加処理とを同時に行っても、HCスリップの発生を抑えることができるようになる。
According to this embodiment described above, the following operations and effects can be obtained.
(1) As shown in FIG. 5 above, when the cooling addition process of the addition valve 35 is executed during the desorption process, the amount of fuel supplied from the in-cylinder injection valve 11 to the exhaust gas (second fuel quantity) The sum of Q2) and the amount of fuel added to the exhaust from the addition valve 35 (single fuel amount CQ) is smaller than the amount of fuel that causes HC slip in the NSR catalyst 20 (amount exceeding the first fuel amount Q1). In addition, the amount of fuel injected from the in-cylinder injection valve 11 (post injection amount) is adjusted. As described above, when the cooling addition process is performed during the desorption process, the amount of unburned fuel contained in the exhaust gas flowing into the NSR catalyst 20 is reduced so that the amount of unburned fuel is smaller than the amount of fuel causing HC slip. The amount of fuel injected from the injection valve 11 (post injection amount) is adjusted. Therefore, even if the desorption process and the cooling addition process are performed simultaneously, the occurrence of HC slip can be suppressed.

(2)脱離処理中の触媒前排気空燃比AF1が過剰にリッチ化すると、NSR触媒20から硫黄化合物を脱離させる効率が低下するおそれがある。この点、本実施形態によれば、脱離処理と冷却添加処理とを同時に行っても、触媒前排気空燃比AF1が上記限界空燃比LTを超えて過剰にリッチ化することは抑えられる。そのため、NSR触媒20から硫黄化合物を脱離させる効率が低下することも抑制できる。   (2) If the pre-catalyst exhaust air-fuel ratio AF1 during the desorption process is excessively rich, the efficiency of desorbing the sulfur compound from the NSR catalyst 20 may be reduced. In this regard, according to the present embodiment, even if the desorption process and the cooling addition process are performed at the same time, the pre-catalyst exhaust air-fuel ratio AF1 is prevented from being excessively enriched beyond the limit air-fuel ratio LT. Therefore, it is possible to suppress a decrease in the efficiency of desorbing the sulfur compound from the NSR catalyst 20.

(3)脱離処理が規定回数Nだけ実行されていないときには(図5のS190:NO)、ステップS160以降の処理が再び実行される。つまり、現在設定されている減量時ポスト噴射量QPDを維持して脱離処理が再び実行される。従って、脱離処理を1回行う毎に減量時ポスト噴射量QPDを算出する場合と比較して、制御装置80の演算負荷を低減することができる。   (3) When the desorption process has not been executed the specified number N (S190: NO in FIG. 5), the processes after step S160 are executed again. That is, the detachment process is performed again while maintaining the currently set post-injection amount QPD during reduction. Therefore, the calculation load of the control device 80 can be reduced as compared with the case of calculating the post-injection amount QPD during reduction every time the desorption process is performed once.

なお、上記実施形態は、以下のように変更して実施することもできる。
・先の図5に示したステップS190及びステップS200の処理を省略する。そして、ステップS180にて否定判例されるときには、ステップS210以降の処理を実行するようにしてもよい。つまり、脱離処理を1回実行する毎に減量時ポスト噴射量QPDを算出してもよい。この場合でも、上記(3)以外の作用効果を得ることができる。
In addition, the said embodiment can also be changed and implemented as follows.
-The process of step S190 and step S200 shown in previous FIG. 5 is abbreviate | omitted. Then, when a negative judgment is made at step S180, the processing after step S210 may be executed. That is, the post-injection amount QPD at the time of reduction may be calculated every time the desorption process is executed once. Even in this case, effects other than the above (3) can be obtained.

・上記実施形態では、脱離処理の実行時間DT内において、添加弁35から総冷却添加量CATに相当する分の燃料を噴射するために、当該総冷却添加量CATに応じて駆動インターバル時間Tintを変化させるようにした。この他、総冷却添加量CATに応じて添加弁35の駆動時間τを変化させることにより、脱離処理の実行時間DT内において、添加弁35から総冷却添加量CATに相当する分の燃料が噴射されるようにしてもよい。   In the above-described embodiment, in order to inject fuel corresponding to the total cooling addition amount CAT from the addition valve 35 within the desorption processing execution time DT, the drive interval time Tint is determined according to the total cooling addition amount CAT. Was changed. In addition, by changing the drive time τ of the addition valve 35 according to the total cooling addition amount CAT, the fuel corresponding to the total cooling addition amount CAT is added from the addition valve 35 within the execution time DT of the desorption process. You may make it be injected.

・上記実施形態のステップS160において、減量時ポスト噴射量QPDによる脱離処理を実行する場合には、先の図5に示したように、脱離処理の実行期間中におけるポスト噴射量を減量時ポスト噴射量QPDに固定した。   In step S160 of the above embodiment, when the desorption process based on the post-injection amount QPD during reduction is executed, as shown in FIG. 5, the post injection amount during the execution period of the desorption process is reduced. The post injection amount was fixed to QPD.

この他、図6に示すように、脱離処理の実行期間中において、冷却添加による添加弁35の燃料噴射が実行されているときには、ポスト噴射量を減量時ポスト噴射量QPDに設定する。一方、冷却添加による添加弁35の燃料噴射が実行されていないとき(先の図3に示した駆動インターバル時間Tint内において駆動時間τを除く期間)には、ポスト噴射量を基本ポスト噴射量QPbに設定するようにしてもよい。この場合には、脱離処理の実行期間中における触媒前排気空燃比AF1が限界空燃比LTに維持されるため、脱離処理の実行期間中におけるポスト噴射量を減量時ポスト噴射量QPDに固定する場合と比較して、触媒前排気空燃比AF1の変動を抑えることができる。   In addition, as shown in FIG. 6, when the fuel injection of the addition valve 35 by the cooling addition is being executed during the execution of the desorption process, the post injection amount is set to the post injection amount QPD at the time of reduction. On the other hand, when the fuel injection of the addition valve 35 by cooling addition is not executed (a period excluding the drive time τ within the drive interval time Tint shown in FIG. 3), the post injection amount is changed to the basic post injection amount QPb. You may make it set to. In this case, since the pre-catalyst exhaust air-fuel ratio AF1 is maintained at the limit air-fuel ratio LT during the desorption process execution period, the post-injection amount during the desorption process execution period is fixed to the post-deceleration amount QPD during reduction. Compared with the case where it does, the fluctuation | variation of the before-catalyst exhaust air-fuel ratio AF1 can be suppressed.

・上記実施形態では、脱離処理の実行に際して、NSR触媒20に流入する排気の空燃比を理論空燃比よりもリッチ化するために、ポスト噴射を実施した。この他、混合気の空燃比を一時的にリッチ化するリッチスパイクなどを実施してもよい。この場合でも、筒内噴射弁11から排気に供給される燃料量と添加弁35から噴射される燃料量との和が、NSR触媒20においてHCスリップの生じる燃料量よりも少なくなるように筒内噴射弁11から噴射される燃料量を調量することにより、上記(1)の作用効果を得ることができる。   In the above embodiment, post-injection is performed in order to make the air-fuel ratio of the exhaust gas flowing into the NSR catalyst 20 richer than the stoichiometric air-fuel ratio when performing the desorption process. In addition, a rich spike that temporarily enriches the air-fuel ratio of the air-fuel mixture may be implemented. Even in this case, the sum of the amount of fuel supplied from the in-cylinder injection valve 11 to the exhaust and the amount of fuel injected from the addition valve 35 is smaller than the amount of fuel causing HC slip in the NSR catalyst 20. By adjusting the amount of fuel injected from the injection valve 11, the effect (1) can be obtained.

10…内燃機関、11…筒内噴射弁、14…排気通路、20…NOx吸蔵還元型触媒(NSR触媒)、35…添加弁、60…冷却装置、70…エアフロメータ、71…クランク角センサ、72…水温センサ、73…温度センサ、74…空燃比センサ、80…制御装置。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 11 ... In-cylinder injection valve, 14 ... Exhaust passage, 20 ... NOx occlusion reduction type catalyst (NSR catalyst), 35 ... Addition valve, 60 ... Cooling device, 70 ... Air flow meter, 71 ... Crank angle sensor, 72 ... Water temperature sensor, 73 ... Temperature sensor, 74 ... Air-fuel ratio sensor, 80 ... Control device.

Claims (1)

気筒内に燃料を直接噴射する筒内噴射弁を備える内燃機関に適用されて、前記内燃機関の排気通路に設けられたNOx吸蔵還元型の触媒と、前記触媒よりも上流側の排気通路に設けられて排気に機関燃料を添加する添加弁と、を備えており、
前記触媒に堆積した硫黄化合物が脱離する脱離可能温度に同触媒の温度を高めた状態で前記触媒に流入する排気の空燃比を理論空燃比よりもリッチ化することによって前記触媒に堆積した硫黄化合物を脱離させる脱離処理と、前記添加弁から機関燃料を噴射することにより同添加弁を冷却する冷却添加処理と、を実行する排気浄化装置であって、
前記脱離処理の実行中に前記冷却添加処理を実行するときには、前記筒内噴射弁から排気に供給される燃料量と前記添加弁から排気に添加される燃料量との和が、前記触媒においてHCスリップの生じる燃料量よりも少なくなるように前記筒内噴射弁から噴射される燃料量を調量する
内燃機関の排気浄化装置。
Applied to an internal combustion engine having an in-cylinder injection valve that directly injects fuel into a cylinder, a NOx occlusion reduction type catalyst provided in an exhaust passage of the internal combustion engine, and provided in an exhaust passage upstream of the catalyst. And an addition valve for adding engine fuel to the exhaust,
The sulfur compound deposited on the catalyst was deposited on the catalyst by making the air-fuel ratio of the exhaust gas flowing into the catalyst richer than the stoichiometric air-fuel ratio in a state where the temperature of the catalyst was raised to the desorbable temperature. An exhaust purification device that performs a desorption process for desorbing a sulfur compound and a cooling addition process for cooling the addition valve by injecting engine fuel from the addition valve,
When the cooling addition process is performed during the desorption process, the sum of the amount of fuel supplied from the in-cylinder injection valve to the exhaust and the amount of fuel added from the addition valve to the exhaust is determined by the catalyst. An exhaust emission control device for an internal combustion engine, wherein the amount of fuel injected from the in-cylinder injection valve is adjusted so that the amount of fuel generated by HC slip becomes smaller.
JP2017036335A 2017-02-28 2017-02-28 Exhaust emission control device of internal combustion engine Pending JP2018141411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017036335A JP2018141411A (en) 2017-02-28 2017-02-28 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036335A JP2018141411A (en) 2017-02-28 2017-02-28 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2018141411A true JP2018141411A (en) 2018-09-13

Family

ID=63527907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036335A Pending JP2018141411A (en) 2017-02-28 2017-02-28 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2018141411A (en)

Similar Documents

Publication Publication Date Title
US7454900B2 (en) Catalyst recovery method
US6792751B2 (en) Exhaust gas purification device and method for diesel engine
JP4816599B2 (en) Exhaust gas purification system for internal combustion engine
EP3054120B1 (en) Exhaust gas purification system and exhaust gas purification method
JP2005048715A (en) Exhaust emission control device for internal combustion engine
US10443525B2 (en) Exhaust emission control system of engine
JP2014066154A (en) Control device of internal combustion engine
JP6663126B2 (en) Engine exhaust purification device
JP6270247B1 (en) Engine exhaust purification system
JP6230006B1 (en) Engine exhaust purification system
JP6590140B2 (en) Engine exhaust purification system
JP2018141411A (en) Exhaust emission control device of internal combustion engine
JP6597683B2 (en) Control device for internal combustion engine
JP6230007B1 (en) Engine exhaust purification system
JP6230008B1 (en) Engine exhaust purification system
JP2008063968A (en) Exhaust emission control device for internal combustion engine
JP2006307679A (en) Exhaust emission control device for internal combustion engine using hydrogen
JP6617865B2 (en) Engine exhaust purification system
JP2004308525A (en) Exhaust emission cleaning device for internal combustion engine
JP2010106770A (en) Compression ignition internal combustion engine
US10329980B2 (en) Exhaust emission control system of engine
JP2007285156A (en) Exhaust emission control device of internal combustion engine
JP6232749B2 (en) Engine control apparatus and control method
JP6270245B1 (en) Engine exhaust purification system
JPH11257052A (en) Exhaust emission control device for internal combustion engine