JP2018140553A - Composite materials and devices using such composite materials - Google Patents

Composite materials and devices using such composite materials Download PDF

Info

Publication number
JP2018140553A
JP2018140553A JP2017036227A JP2017036227A JP2018140553A JP 2018140553 A JP2018140553 A JP 2018140553A JP 2017036227 A JP2017036227 A JP 2017036227A JP 2017036227 A JP2017036227 A JP 2017036227A JP 2018140553 A JP2018140553 A JP 2018140553A
Authority
JP
Japan
Prior art keywords
sound absorbing
absorbing material
heat insulating
foam
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017036227A
Other languages
Japanese (ja)
Inventor
一摩 及川
Kazuma Oikawa
一摩 及川
崇 鶴田
Takashi Tsuruta
崇 鶴田
享 和田
Susumu Wada
享 和田
大道 光明寺
Daido Komyoji
大道 光明寺
茂昭 酒谷
Shigeaki Sakatani
茂昭 酒谷
秀規 宮川
Hideki Miyagawa
秀規 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017036227A priority Critical patent/JP2018140553A/en
Publication of JP2018140553A publication Critical patent/JP2018140553A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide composite materials with high sound-absorbing properties capable of effectively cutting off noises and at the same time with high heat-insulating properties capable of offering warmth/coldness keeping functions and heat-flow control functions, and also to provide devices using such composite materials.SOLUTION: The present invention relates to a composite material in which a form-type sound-absorbing material with an uneven structure on one side and a heat-insulating material are layered one on the other. The invention also relates to a composite material in which a form-type sound-absorbing material with a porous structure on one side and a heat-insulating material are layered one on the other. The invention further relates to a device with one of the abovementioned composite materials arranged between a heat source and a housing.SELECTED DRAWING: Figure 1

Description

本発明は、複合材料およびその複合材料を用いた機器に関する。特に、効果的な吸音構造を有する吸音材と高性能断熱材からなる複合材料およびそれを用いた機器に関する。   The present invention relates to a composite material and a device using the composite material. In particular, the present invention relates to a composite material composed of a sound absorbing material having an effective sound absorbing structure and a high-performance heat insulating material, and a device using the same.

近年、自動車や産業機器分野において、限られた狭い空間において保温・保冷性と吸音性を同時に確立する必要がある。スペースに制限がなければ、熱伝導率が高くとも厚みを稼ぐことで、一定の断熱性を確保することができる。   In recent years, in the field of automobiles and industrial equipment, it is necessary to simultaneously establish heat insulation / cold insulation and sound absorption in a limited narrow space. If the space is not limited, a certain heat insulating property can be secured by increasing the thickness even if the thermal conductivity is high.

また、吸音性を満足するように、フォームの厚みを増やしていくことで吸音性も確保することができる。しかしながら、十分な空間がない場合は、厚みを増やしていくというやり方は物理的な限界があり通用しなかった。そこで、理想的には断熱性と吸音性の双方をなるべく高いレベルで具備する材料を選ぶことが望ましい。ところが、薄さに加えて、断熱性および吸音性を兼備する材料はこれまで存在しなかった。このため、薄くても効果的に熱を遮ることができる優れた断熱性と、防音性とを併せ持つような従来にない複合材料が要求されている。   Moreover, sound absorption can also be ensured by increasing the thickness of the foam so as to satisfy sound absorption. However, when there was not enough space, the method of increasing the thickness was not effective due to physical limitations. Therefore, ideally, it is desirable to select a material that has both heat insulating properties and sound absorbing properties as high as possible. However, there has been no material that has both heat insulation and sound absorption in addition to thinness. For this reason, there is a demand for an unprecedented composite material that has both excellent heat insulating properties that can effectively block heat even if it is thin, and soundproofing properties.

ここで、断熱性の高い材料としてシリカエアロゲルが知られている。シリカリカエアロゲルは、数10nmオーダーのシリカ粒子が点接触で繋がったネットワーク構造からなり、平均細孔径が空気の平均自由工程68nm以下である。このため静止空気の熱伝導率よりも低い。特許文献1では、エアロゲル粒子とエアロゲル粒子を結合する結合剤と柔軟性構造体とを含み、断熱性と防音性とを有する複合材料が開示されている。   Here, silica airgel is known as a material with high heat insulation. Silica liquid aerogel has a network structure in which silica particles of the order of several tens of nm are connected by point contact, and the average pore diameter is 68 nm or less in the mean free path of air. For this reason, it is lower than the thermal conductivity of still air. Patent Document 1 discloses a composite material that includes airgel particles, a binder that binds the airgel particles, and a flexible structure, and has heat insulating properties and soundproofing properties.

特願2014−77195号公報Japanese Patent Application No. 2014-77195

しかし、特許文献1では、断熱性は優れるが、吸音性が十分でなかった。このように優れた吸音性と断熱性を同時に併せ持つ材料が存在しないという課題があった。   However, in patent document 1, although heat insulation is excellent, sound-absorbing property was not enough. Thus, there was a problem that there was no material having both excellent sound absorption and heat insulation properties.

よって、本願課題は、吸音性と断熱性を同時に併せ持つ複合材料およびその複合材料を用いた機器を提供することを課題とする。   Therefore, an object of the present application is to provide a composite material having both sound absorption properties and heat insulation properties and a device using the composite material.

上記課題を解決するため、凹凸構造を有するフォーム状の吸音材と、断熱材と、が積層された複合材料を用いる。   In order to solve the above problems, a composite material in which a foam-like sound absorbing material having an uneven structure and a heat insulating material are stacked is used.

また、凹凸構造を有するフォーム状の吸音材と、凹凸構造を有さないフォーム状の吸音材と、断熱材と、が積層された複合材料を用いる。   Further, a composite material in which a foam-like sound absorbing material having an uneven structure, a foam-like sound absorbing material not having an uneven structure, and a heat insulating material is used is used.

また、第1凹凸構造を有するフォーム状の第1の吸音材と、第2凹凸構造を有するフォーム状の第2の吸音材と、上記第1の吸音材と上記第2の吸音材との間に位置する断熱材と、を含み、上記第1凹凸と上記第2凹凸が、上記断熱材と異なる側に形成されている複合材料を用いる。   Further, the foam-shaped first sound absorbing material having the first concavo-convex structure, the foam-shaped second sound absorbing material having the second concavo-convex structure, and the first sound absorbing material and the second sound absorbing material. A composite material in which the first unevenness and the second unevenness are formed on a different side from the heat insulating material.

また、有孔構造を有するフォーム状の吸音材と、断熱材と、が積層された複合材料。
有孔構造を有するフォーム状の吸音材と、有孔構造を有さないフォーム状の吸音材と、
断熱材と、が積層された複合材料を用いる。
A composite material in which a foam-like sound absorbing material having a perforated structure and a heat insulating material are laminated.
A foam-like sound absorbing material having a perforated structure, and a foam-like sound absorbing material having no perforated structure;
A composite material in which a heat insulating material is laminated is used.

また、凹凸構造を有するフォーム状の吸音材と、有孔構造を有するフォーム状の吸音材と、断熱材と、が積層された複合材料を用いる。   Further, a composite material in which a foam-like sound absorbing material having an uneven structure, a foam-like sound absorbing material having a perforated structure, and a heat insulating material are stacked is used.

また、熱源と筐体との間に、上記いずれかの複合材料を配置した機器を用いる。   Moreover, the apparatus which has arrange | positioned one of the said composite materials between a heat source and a housing | casing is used.

本発明の複合材によれば、優れた吸音性および断熱性を有することから、騒音低減のみならず保温あるいは熱流制御といった熱対策が同時に求められる用途において著しく効果的な作用を提供する。優れた吸音性が吸音構造を有する吸音材、断熱性はエアロゲルに基づいており、これらの利点が相殺されないように両者は複合化されている。   According to the composite material of the present invention, since it has excellent sound absorbing properties and heat insulating properties, it provides a remarkably effective action not only for noise reduction but also for applications where heat countermeasures such as heat retention or heat flow control are required at the same time. The sound absorbing material having excellent sound absorbing properties has a sound absorbing structure, and the heat insulating property is based on airgel, and both are combined so that these advantages are not offset.

実施の形態1の複合部材の断面図Sectional drawing of the composite member of Embodiment 1 実施の形態2の複合部材の断面図Sectional drawing of the composite member of Embodiment 2 実施の形態3の複合部材の断面図Sectional drawing of the composite member of Embodiment 3 実施の形態4の複合部材の断面図Sectional drawing of the composite member of Embodiment 4 実施の形態5の複合部材の断面図Sectional drawing of the composite member of Embodiment 5 実施の形態6の複合部材の断面図Sectional drawing of the composite member of Embodiment 6 実施の形態7の複合部材の断面図Sectional drawing of the composite member of Embodiment 7

次に好ましい発明の一実施の形態を挙げて本実施の形態を説明する。 Next, this embodiment will be described with reference to an embodiment of a preferred invention.

(実施の形態1)
実施の形態1の複合部材103を、図1の断面図で示す。
複合部材103は、表面に凹凸構造を有する吸音材101と、断熱材102とを含む。吸音材101が断熱材102を挟み込むようなかたちで積層された3層構造からなる。
(Embodiment 1)
A composite member 103 according to Embodiment 1 is shown in a cross-sectional view in FIG.
The composite member 103 includes a sound absorbing material 101 having a concavo-convex structure on the surface and a heat insulating material 102. The sound absorbing material 101 has a three-layer structure in which the heat insulating material 102 is sandwiched therebetween.

この構造は、上下面に位置する吸音材101の表面が、凹凸構造を有している。このため、効果的に音響を多重反射し、また、透過する音波を効率的に熱エネルギーへと変換できる。このことから、図1の複合部材103は、周波数に依存せず音圧レベルが高く、尚且つ断熱が必要とされる部位に好適に用いられる。   In this structure, the surface of the sound absorbing material 101 located on the upper and lower surfaces has an uneven structure. For this reason, the sound can be effectively multiple-reflected, and the transmitted sound wave can be efficiently converted into thermal energy. Therefore, the composite member 103 in FIG. 1 is suitably used for a portion that has a high sound pressure level and does not depend on the frequency and requires heat insulation.

各層の役割について説明する。   The role of each layer will be described.

吸音材101は、複合部材103の主層であり一番厚い。この層は、フォーム形状(樹脂発泡体)が主構成要素であり、複合部材103の吸音性能を決定する層である。フォーム形状とは、樹脂などが発泡した後の形状である。   The sound absorbing material 101 is the main layer of the composite member 103 and is the thickest. This layer is a layer that has a foam shape (resin foam) as a main component and determines the sound absorption performance of the composite member 103. The foam shape is a shape after foaming of resin or the like.

断熱材102は、複合部材103の断熱性能を決定する層である。断熱材102は吸音材101よりも厚みは薄い。   The heat insulating material 102 is a layer that determines the heat insulating performance of the composite member 103. The heat insulating material 102 is thinner than the sound absorbing material 101.

<吸音材101の表面凹凸構造>
吸音材101は表面で音響を多重反射させるために凹凸構造を有している。凹凸構造としては、円錐形状、四面体形状、円柱形状、三角錐形状、稜線形状などの突起形状が表面に付与されていればよい。これらの突起形状は並列配列、交互配列どちらでもよいが、全面にあることが好ましく、10cm四方あたり25個を下限として、400個を上限とする範囲で付与されていることが好ましい。すなわち、ひとつあたりの突起形状の大きさは、0.5cm四方から2cm四方の大きさである。
<Surface uneven structure of the sound absorbing material 101>
The sound absorbing material 101 has a concavo-convex structure for multiple reflection of sound on the surface. As the concavo-convex structure, a protrusion shape such as a cone shape, a tetrahedron shape, a columnar shape, a triangular pyramid shape, or a ridge line shape may be provided on the surface. These protrusions may be arranged in parallel or alternately, but are preferably on the entire surface, and are preferably provided in a range where 25 is the lower limit and 10 is the upper limit per 10 cm square. That is, the size of the protrusion shape per one is from 0.5 cm square to 2 cm square.

<吸音材101の材質>
吸音材101は、100℃の耐熱性を有するという観点から材質としては、熱可塑性樹脂の場合、ポリプロピレン(PP)、ポリカーボネート(PC)、PVDC、熱硬化性樹脂の場合は、メラミン(MF)、フェノール(PF)が好ましい。なお、以下の吸音材104、107も同様である。
<Material of sound absorbing material 101>
From the viewpoint of having a heat resistance of 100 ° C., the sound absorbing material 101 is made of a thermoplastic resin, polypropylene (PP), polycarbonate (PC), PVDC, thermosetting resin, melamine (MF), Phenol (PF) is preferred. The same applies to the following sound absorbing materials 104 and 107.

<吸音材101の骨格構造>
吸音材101は、音響を効果的に減衰させて熱エネルギーに変換させるため、いずれも樹脂の発泡体である。その骨格構造としては、50nmから3μm範囲内の細孔分布を有することが好ましい。なお、以下の吸音材104、107も同様である。
<Skeleton structure of sound absorbing material 101>
The sound absorbing material 101 is a resin foam in order to effectively attenuate sound and convert it into heat energy. The skeleton structure preferably has a pore distribution in the range of 50 nm to 3 μm. The same applies to the following sound absorbing materials 104 and 107.

<吸音材101の厚み>
吸音材101の厚みは、内部に積層される断熱材102の厚みにもよるが、断熱材102よりも厚いことが好ましく、3mm〜50mmが用いられる。なお、以下の吸音材104、107も同様である。
<Thickness of sound absorbing material 101>
The thickness of the sound absorbing material 101 depends on the thickness of the heat insulating material 102 laminated inside, but is preferably thicker than the heat insulating material 102, and 3 mm to 50 mm is used. The same applies to the following sound absorbing materials 104 and 107.

<断熱材102の材質および熱伝導率>
断熱材102は少なくとも1種類のシリカエアロゲルを有し、効果的に断熱するために熱伝導率は0.024W/mK以下が好ましい。材料形態としては、バルク、ビーズ、パウダー、シート、ブランケットなどが用いられる。
<Material and thermal conductivity of heat insulating material 102>
The heat insulating material 102 has at least one type of silica airgel, and in order to effectively insulate, the thermal conductivity is preferably 0.024 W / mK or less. As the material form, bulk, beads, powder, sheet, blanket, etc. are used.

断熱材102は少なくとも1種類のエアロゲルを有しており、単体でもエアロゲルと不織布繊維との複合体でもいいです。   The heat insulating material 102 has at least one type of aerogel, and may be a single body or a composite of aerogel and non-woven fiber.

<断熱材102の厚さ>
断熱材102の厚みは、複合部材として要求される断熱性能もしくは厚みにもよるが、吸音材101よりも薄いことが好ましく、0.5〜10mmが用いられる。
<Thickness of heat insulating material 102>
The thickness of the heat insulating material 102 depends on the heat insulating performance or thickness required for the composite member, but is preferably thinner than the sound absorbing material 101, and 0.5 to 10 mm is used.

<複合部材103の製造方法>
吸音材101は、表面に凹凸構造を有する金型にて、熱可塑性樹脂あるいは熱硬化性樹脂を発砲させる。すなわち、熱可塑性樹脂の場合は、ポリプロピレン(PP)、ポリカーボネート(PC)、PVDCであり、熱硬化性樹脂の場合は、メラミン(MF)、フェノール(PF)を発泡成型させる。有孔構造とは、表面に孔が空いた構造であり、孔形状としては、円形、四角形、六角形、三角形、台形などの構造を指す。これらの孔形状は並列配列、交互配列どちらでもよいが、全面にあることが好ましく、10cm四方あたり25個を下限として、400個を上限とする範囲で付与されていることが好ましい。すなわち、ひとつあたりの孔形状の大きさは、0.5cm四方から2cm四方の大きさである。
<Method for Manufacturing Composite Member 103>
The sound absorbing material 101 fires a thermoplastic resin or a thermosetting resin with a mold having an uneven structure on the surface. That is, in the case of a thermoplastic resin, it is polypropylene (PP), polycarbonate (PC), or PVDC, and in the case of a thermosetting resin, melamine (MF) or phenol (PF) is foam-molded. The perforated structure is a structure in which holes are formed on the surface, and the hole shape indicates a structure such as a circle, a rectangle, a hexagon, a triangle, and a trapezoid. These hole shapes may be either a parallel arrangement or an alternating arrangement, but are preferably provided on the entire surface, and are preferably provided in a range where 25 per 10 cm square is the lower limit and 400 is the upper limit. That is, the size of each hole shape is from 0.5 cm square to 2 cm square.

断熱材102は、吸音材101で挟み込むように積層させた後、吸音材101の端を熱プレスして溶着させることで接合する。繊維が一部溶けて接着できる。断熱材102は、基本的には公知の製造方法であれば何でもよく、シリカエアロゲルであれば、アルコキシシラン、水ガラスを原料としたゾルゲル反応にてヒドロゲルを合成した後、ヘキサメチルジシラザンやトリメチルクロロシランなどで疎水化を行い、超臨界乾燥あるいは常圧乾燥で製造される。シリカエアロゲルに不織布繊維を複合化させる場合は、シリカエアロゲルのパウダーおよびビーズをバインダーと混合し不織布繊維に塗布して乾燥させてもよいし、原料を不織繊維に含浸させてからゾルゲル反応を進行させ、疎水化、乾燥を行ってもよい。   After the heat insulating material 102 is laminated so as to be sandwiched between the sound absorbing materials 101, the ends of the sound absorbing material 101 are joined by hot pressing and welding. Some fibers melt and can be bonded. The heat insulating material 102 may be basically any known manufacturing method, and if it is a silica airgel, a hydrogel is synthesized by a sol-gel reaction using alkoxysilane and water glass as a raw material, and then hexamethyldisilazane or trimethyl. Hydrophobized with chlorosilane or the like, and manufactured by supercritical drying or normal pressure drying. When combining non-woven fiber with silica aerogel, silica aerogel powder and beads may be mixed with a binder and applied to the non-woven fiber and dried, or the sol-gel reaction proceeds after impregnating the non-woven fiber with the raw material And may be hydrophobized and dried.

以下の複合部材105、108、109の製造方法も同様である。   The manufacturing method of the following composite members 105, 108, and 109 is the same.

(実施の形態2)
図2は、実施の形態2の複合部材105の断面図である。説明しない事項は実施の形態1と同様である。
(Embodiment 2)
FIG. 2 is a cross-sectional view of the composite member 105 according to the second embodiment. Matters not described are the same as those in the first embodiment.

複合部材105は、表面に凹凸構造を有する吸音材101と、断熱材102と、平滑な表面を有する吸音材104とからなる。   The composite member 105 includes a sound absorbing material 101 having a concavo-convex structure on the surface, a heat insulating material 102, and a sound absorbing material 104 having a smooth surface.

この構造は、断熱材102の上下面に吸音材101が積層されているものの、一方のみが表面凹凸構造を有しているため、音圧レベルが実施の形態1よりも低い。しかし、表面凹凸が無い分、断熱材102が厚くでき、より断熱特性が高くなる。例えば、自動車のエンジンルーム周辺などに使用される。一方のみ平坦であることの利点は、接着剤などで平滑面に接合させやすい点にある。   In this structure, although the sound absorbing material 101 is laminated on the upper and lower surfaces of the heat insulating material 102, only one of them has a surface uneven structure, so that the sound pressure level is lower than that in the first embodiment. However, since there is no surface irregularity, the heat insulating material 102 can be made thicker, and the heat insulating properties are further improved. For example, it is used around the engine room of a car. The advantage of being flat only is that it is easy to bond to a smooth surface with an adhesive or the like.

(実施の形態3)
図3は、実施の形態3の複合部材106の断面図である。説明しない事項は実施の形態1と同様である。
(Embodiment 3)
FIG. 3 is a cross-sectional view of the composite member 106 according to the third embodiment. Matters not described are the same as those in the first embodiment.

複合部材106は、表面に凹凸構造を有する吸音材101と、断熱材102とからなる。この構造は、図1,2とは異なり1つの吸音材101と、1つの断熱材102のみからなる。音圧レベルが図1、図2よりも低く、尚且つ断熱が必要とされる広範な部位に好適に用いられる。吸音材101が片方に無い分、断熱材102が厚くでき、断熱特性が高くなる。   The composite member 106 includes a sound absorbing material 101 having a concavo-convex structure on the surface and a heat insulating material 102. 1 and 2, this structure is composed of only one sound absorbing material 101 and one heat insulating material 102. The sound pressure level is preferably lower than those in FIGS. 1 and 2 and is preferably used in a wide range of areas where heat insulation is required. Since the sound absorbing material 101 is not present on one side, the heat insulating material 102 can be made thicker and the heat insulating properties are improved.

<複合部材106の製造方法>
吸音材101は、表面に凹凸構造もしくは有効構造を形成させるため金型にて、熱可塑性樹脂あるいは熱硬化性樹脂を発砲させる。すなわち、熱可塑性樹脂の場合は、ポリプロピレン(PP)、ポリカーボネート(PC)、PVDCであり、熱硬化性樹脂の場合は、メラミン(MF)、フェノール(PF)を発泡成型させる。
<Method for Manufacturing Composite Member 106>
The sound absorbing material 101 is fired with a thermoplastic resin or a thermosetting resin with a mold in order to form an uneven structure or an effective structure on the surface. That is, in the case of a thermoplastic resin, it is polypropylene (PP), polycarbonate (PC), or PVDC, and in the case of a thermosetting resin, melamine (MF) or phenol (PF) is foam-molded.

断熱材102は、繊維とシリカエアロゲルとの複合体を用いることができる。断熱材102は、基本的には公知の製造方法であれば何でもよく、シリカエアロゲルであれば、アルコキシシラン、水ガラスを原料としたゾルゲル反応にてヒドロゲルを合成した後、ヘキサメチルジシラザンやトリメチルクロロシランなどで疎水化を行い、超臨界乾燥あるいは常圧乾燥で製造される。シリカエアロゲルに不織布繊維を複合化させる場合は、シリカエアロゲルのパウダーおよびビーズをバインダーと混合し不織布繊維に塗布して乾燥させてもよいし、原料を不織繊維に含浸させてからゾルゲル反応を進行させ、疎水化、乾燥を行ってもよい。   As the heat insulating material 102, a composite of fibers and silica airgel can be used. The heat insulating material 102 may be basically any known manufacturing method, and if it is a silica airgel, a hydrogel is synthesized by a sol-gel reaction using alkoxysilane and water glass as a raw material, and then hexamethyldisilazane or trimethyl. Hydrophobized with chlorosilane or the like, and manufactured by supercritical drying or normal pressure drying. When combining non-woven fiber with silica aerogel, silica aerogel powder and beads may be mixed with a binder and applied to the non-woven fiber and dried, or the sol-gel reaction proceeds after impregnating the non-woven fiber with the raw material And may be hydrophobized and dried.

吸音材101と断熱材102とを重ねて、熱プレスして溶着させることで接合させてもよい。また、シリカエアロゲルの原料のゲル液体を、吸音材101に部分的に含浸させた後、乾燥させ、エアロゲルの断熱材102としてもよい。   The sound absorbing material 101 and the heat insulating material 102 may be overlapped and bonded by hot pressing and welding. Alternatively, a gel liquid, which is a raw material of silica airgel, may be partially impregnated into the sound-absorbing material 101 and then dried to obtain the heat insulating material 102 of the airgel.

この場合、複合部材106は、吸音材101とシリカエアロゲルの断熱材102との一体化された複合体となる。なお、以下の複合部材110の製造方法も同様である。   In this case, the composite member 106 is an integrated composite of the sound absorbing material 101 and the silica airgel heat insulating material 102. The following manufacturing method of the composite member 110 is also the same.

(実施の形態4)
図4は、実施の形態4の複合部材108の断面図である。説明しない事項は実施の形態1と同様である。
(Embodiment 4)
FIG. 4 is a cross-sectional view of the composite member 108 according to the fourth embodiment. Matters not described are the same as those in the first embodiment.

複合部材108は、表面に有孔構造を有する吸音材120と、断熱材102からなり、吸音材120が断熱材102を挟み込むようなかたちで積層された3層構造からなる。   The composite member 108 includes a sound absorbing material 120 having a perforated structure on the surface and a heat insulating material 102, and has a three-layer structure in which the sound absorbing material 120 is stacked so as to sandwich the heat insulating material 102 therebetween.

この構造は、上下面の吸音材120の表面が有孔構造を有しているため、効果的に音響を多重反射し、また透過する音波を効率的に熱エネルギーへと変換する。有孔構造とは、発泡材料と同様、大小の孔がある構造である。円柱形状、四面形状、円柱形状、三角錐形状などの孔形状で、孔の径は1mm〜10mm程度である。   In this structure, since the upper and lower surfaces of the sound absorbing material 120 have a perforated structure, the sound is effectively multiple-reflected and the transmitted sound wave is efficiently converted into thermal energy. The perforated structure is a structure having large and small holes as in the foamed material. It is a hole shape such as a columnar shape, a four-sided shape, a columnar shape, or a triangular pyramid shape, and the diameter of the hole is about 1 mm to 10 mm.

このことから、周波数に依存せず音圧レベルが高く、尚且つ断熱が必要とされる部位に好適に用いられる。用いる有孔構造にもよるが、基本的には凹凸構造と同等の音波の多重反射性能を有することから、凹凸構造、有孔構造のどちらを用いるかは、適用部位の形状やスペース、経済性や組み付け性などを鑑みて選択することが好ましい。   Therefore, the sound pressure level is high regardless of the frequency, and it is preferably used for a portion where heat insulation is required. Although it depends on the perforated structure used, it has basically the same multiple reflection performance of sound waves as the concavo-convex structure, so whether to use the concavo-convex structure or the perforated structure depends on the shape, space and economics of the application site. It is preferable to select it in view of assembly property and the like.

各層の役割について説明する。   The role of each layer will be described.

吸音材120は、複合部材108の主層であり一番厚い。この層は、フォーム(樹脂発泡体)が主構成要素であり、複合部材108の吸音性能を決定する層である。   The sound absorbing material 120 is the main layer of the composite member 108 and is the thickest. In this layer, foam (resin foam) is a main component, and is a layer that determines the sound absorption performance of the composite member 108.

断熱材102は、複合部材108の断熱性能を決定する層である。断熱材102は吸音材120よりも厚みは薄い。   The heat insulating material 102 is a layer that determines the heat insulating performance of the composite member 108. The heat insulating material 102 is thinner than the sound absorbing material 120.

吸音材120の表面の有孔構造は音響を多重反射して透過率を低減するためにある。   The perforated structure on the surface of the sound-absorbing material 120 is for reducing the transmittance by multiple reflection of sound.

(実施の形態5)
図5は、実施の形態5の複合部材109の断面図である。説明しない事項は実施の形態1と同様である。
(Embodiment 5)
FIG. 5 is a cross-sectional view of the composite member 109 according to the fifth embodiment. Matters not described are the same as those in the first embodiment.

複合部材109は、表面に有孔構造を有する吸音材120と、断熱材102と、平滑な表面を有する吸音材104からなる複合部材109である。   The composite member 109 is a composite member 109 composed of a sound absorbing material 120 having a perforated structure on the surface, a heat insulating material 102, and a sound absorbing material 104 having a smooth surface.

この構造は、上下面に吸音材120が積層されているものの、一方のみが表面有孔構造を有しているため、音圧レベルが図4よりも低く、尚且つ断熱が必要とされる部位に適用される。   In this structure, although the sound absorbing material 120 is laminated on the upper and lower surfaces, only one of them has a surface perforated structure, so that the sound pressure level is lower than that in FIG. 4 and heat insulation is required. Applies to

(実施の形態6)
図6は、実施の形態6の複合部材110の断面図である。説明しない事項は実施の形態1と同様である。
(Embodiment 6)
FIG. 6 is a cross-sectional view of the composite member 110 according to the sixth embodiment. Matters not described are the same as those in the first embodiment.

複合部材110は、表面に有孔構造を有する吸音材120と、断熱材102とからなる2層構造の複合部材110である。   The composite member 110 is a two-layer composite member 110 including a sound absorbing material 120 having a perforated structure on the surface and a heat insulating material 102.

この構造は、図4,5とは異なり吸音材120と断熱材102のみからなる。音圧レベルが図4、図5よりも低く、尚且つ断熱が必要とされる広範な部位に好適に用いられる。吸音材120が少ない分、断熱材102を厚くできる。   This structure is composed of only the sound absorbing material 120 and the heat insulating material 102, unlike FIGS. The sound pressure level is preferably lower than those in FIGS. 4 and 5 and is preferably used in a wide range of areas where heat insulation is required. The heat insulating material 102 can be made thicker because the sound absorbing material 120 is less.

(実施の形態7)
図7は、実施の形態7の複合部材111の断面図である。説明しない事項は実施の形態1と同様である。
(Embodiment 7)
FIG. 7 is a cross-sectional view of the composite member 111 according to the seventh embodiment. Matters not described are the same as those in the first embodiment.

複合部材111は、表面に凹凸構造を有する吸音材101と、断熱材102と、表面に有孔構造を有する吸音材120とからなる3層構造の複合部材111である。   The composite member 111 is a composite member 111 having a three-layer structure including a sound absorbing material 101 having an uneven structure on the surface, a heat insulating material 102, and a sound absorbing material 120 having a perforated structure on the surface.

上下面の吸音材は種類が異なるのでより広い範囲の音を吸音できる
(全体として)
上記実施の形態は組み合わせることができる。
The sound absorbers on the upper and lower surfaces are different in type, so they can absorb a wider range of sounds (as a whole)
The above embodiments can be combined.

電子機器などの機器において、熱源と筐体との間に、上記いずれかの複合材料を配置できる。   In a device such as an electronic device, any one of the above composite materials can be disposed between a heat source and a housing.

本実施の形態の断熱材は、電子機器、車載機器、産業機器内の狭いスペースにおいても十分に断熱および吸音効果を発揮し得ることから広く利用される。情報機器、携帯機器、ディスプレイ、電装品など、熱に関わる全ての製品へ応用される。   The heat insulating material of the present embodiment is widely used because it can sufficiently exhibit heat insulating and sound absorbing effects even in a narrow space in electronic equipment, in-vehicle equipment, and industrial equipment. It is applied to all products related to heat, such as information equipment, portable equipment, displays, and electrical components.

101 吸音材
102 断熱材
103 複合部材
104 吸音材
105 複合部材
106 複合部材
108 複合部材
109 複合部材
110 複合部材
111 複合部材
120 吸音材
DESCRIPTION OF SYMBOLS 101 Sound absorbing material 102 Heat insulating material 103 Composite member 104 Sound absorbing material 105 Composite member 106 Composite member 108 Composite member 109 Composite member 110 Composite member 111 Composite member 120 Sound absorbing material

Claims (10)

凹凸構造を有するフォーム状の吸音材と、
断熱材と、が積層された複合材料。
A foam-like sound absorbing material having an uneven structure;
A composite material in which insulation is laminated.
凹凸構造を有するフォーム状の吸音材と、
凹凸構造を有さないフォーム状の吸音材と、
断熱材と、が積層された複合材料。
A foam-like sound absorbing material having an uneven structure;
A foam-like sound-absorbing material that does not have an uneven structure;
A composite material in which insulation is laminated.
第1凹凸構造を有するフォーム状の第1の吸音材と、
第2凹凸構造を有するフォーム状の第2の吸音材と、
前記第1の吸音材と前記第2の吸音材との間に位置する断熱材と、
を含み、前記第1凹凸と前記第2凹凸が、前記断熱材と異なる側に形成されている複合材料。
A foam-like first sound-absorbing material having a first uneven structure;
A foam-like second sound absorbing material having a second uneven structure;
A heat insulating material positioned between the first sound absorbing material and the second sound absorbing material;
A composite material in which the first unevenness and the second unevenness are formed on a different side from the heat insulating material.
有孔構造を有するフォーム状の吸音材と、
断熱材と、が積層された複合材料。
A foam-like sound absorbing material having a perforated structure;
A composite material in which insulation is laminated.
有孔構造を有するフォーム状の吸音材と、
有孔構造を有さないフォーム状の吸音材と、
断熱材と、が積層された複合材料。
A foam-like sound absorbing material having a perforated structure;
A foam-like sound absorbing material that does not have a perforated structure;
A composite material in which insulation is laminated.
凹凸構造を有するフォーム状の吸音材と、
有孔構造を有するフォーム状の吸音材と、
断熱材と、が積層された複合材料。
A foam-like sound absorbing material having an uneven structure;
A foam-like sound absorbing material having a perforated structure;
A composite material in which insulation is laminated.
前記吸音材は、ポリプロピレンフォーム、ポリカーボネートフォーム、メラミンフォーム、フェノールフォームのいずれかからなる請求項1から6のいずれか1項に記載の複合材料。 The composite material according to any one of claims 1 to 6, wherein the sound absorbing material is made of any one of polypropylene foam, polycarbonate foam, melamine foam, and phenol foam. 前記断熱材は、シリカエアロゲルを含む請求項1から7のいずれか1項に記載の複合材料。 The said heat insulating material is a composite material of any one of Claim 1 to 7 containing a silica airgel. 前期断熱材は、前記シリカエアロゲルと繊維とを含む請求8記載の複合材料。 The composite material according to claim 8, wherein the heat insulating material includes the silica airgel and fibers. 熱源と筐体との間に、請求項1〜9のいずれか1項に記載の複合材料を配置した機器。
The apparatus which has arrange | positioned the composite material of any one of Claims 1-9 between the heat source and the housing | casing.
JP2017036227A 2017-02-28 2017-02-28 Composite materials and devices using such composite materials Pending JP2018140553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017036227A JP2018140553A (en) 2017-02-28 2017-02-28 Composite materials and devices using such composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036227A JP2018140553A (en) 2017-02-28 2017-02-28 Composite materials and devices using such composite materials

Publications (1)

Publication Number Publication Date
JP2018140553A true JP2018140553A (en) 2018-09-13

Family

ID=63526257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036227A Pending JP2018140553A (en) 2017-02-28 2017-02-28 Composite materials and devices using such composite materials

Country Status (1)

Country Link
JP (1) JP2018140553A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430927U (en) * 1990-07-09 1992-03-12
JP2003518538A (en) * 1999-12-24 2003-06-10 バイエル アクチェンゲゼルシャフト Polymer foam moldings with improved sound absorption
JP2017007097A (en) * 2015-06-16 2017-01-12 シーシーアイ株式会社 Heat insulation sound absorption material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430927U (en) * 1990-07-09 1992-03-12
JP2003518538A (en) * 1999-12-24 2003-06-10 バイエル アクチェンゲゼルシャフト Polymer foam moldings with improved sound absorption
JP2017007097A (en) * 2015-06-16 2017-01-12 シーシーアイ株式会社 Heat insulation sound absorption material

Similar Documents

Publication Publication Date Title
JP4975744B2 (en) Translucent perforated laminated sound absorbing plate and translucent sound absorbing panel
JP6510653B2 (en) Soundproof structure
EP2779158B1 (en) Honeycomb panel stacked body manufacturing method and honeycomb panel stacked body
JP2010517864A5 (en)
CN110562156A (en) Vehicle sound insulating material and wire harness assembly
JP2004126487A (en) Sound absorbing structure having honeycomb material layer made of composite structure layer of air layer and foam layer
WO2015115143A1 (en) Acoustic insulator and wire harness with acoustic insulator
JP2017007097A (en) Heat insulation sound absorption material
JP2015197662A (en) Heat insulating and sound absorbing material and pipe
JP2006137160A (en) Sound absorbing material for vehicle
CN105546279A (en) Vacuum heat insulating member and heat insulating box
WO2019004153A1 (en) Soundproof covering material and engine unit
JP2018140553A (en) Composite materials and devices using such composite materials
EP1299878B1 (en) Sound absorbing material
CN210658813U (en) Low-frequency broadband sound insulation light wood structure wall
JP6754724B2 (en) Soundproof coating and engine unit
KR20160089060A (en) Heat insulator with advanced performance
CN113799449A (en) Composite damping plate for low-medium frequency noise reduction and switching
JP6929532B2 (en) Soundproof panel
CN220101546U (en) Soundproof cotton, compressor assembly and heating ventilation equipment
CN215552970U (en) Enclose outer thermal-insulated pad that gives sound insulation before car
JP5813290B2 (en) Sound absorption structure
WO2020059460A1 (en) Layered body
JP3089061B2 (en) Manufacturing method of heat insulating sound absorber
JP6878771B2 (en) Vacuum heat insulating material and its manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210427