JP2018140334A - Sludge dehydration method - Google Patents

Sludge dehydration method Download PDF

Info

Publication number
JP2018140334A
JP2018140334A JP2017034903A JP2017034903A JP2018140334A JP 2018140334 A JP2018140334 A JP 2018140334A JP 2017034903 A JP2017034903 A JP 2017034903A JP 2017034903 A JP2017034903 A JP 2017034903A JP 2018140334 A JP2018140334 A JP 2018140334A
Authority
JP
Japan
Prior art keywords
sludge
solid
liquid separator
fine bubbles
dewatering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017034903A
Other languages
Japanese (ja)
Other versions
JP6635270B2 (en
Inventor
高裕 三田
Takahiro Mita
高裕 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP2017034903A priority Critical patent/JP6635270B2/en
Publication of JP2018140334A publication Critical patent/JP2018140334A/en
Application granted granted Critical
Publication of JP6635270B2 publication Critical patent/JP6635270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sludge dehydration method in which external pressure is applied to sludge in a solid-liquid separator to dehydrate in a state in which the sludge contains micro bubbles.SOLUTION: Micro bubbles generated in a micro bubble generating portion 5 are mixed into sludge, and the sludge is dehydrated in a solid-liquid separator 4 in a state in which the sludge contains the micro bubbles. Thus, the micro bubbles form a filtrate passage within the sludge, and improve dehydration efficiency, and a dehydrated cake with a low moisture content is generated. The dehydrated cake with a low moisture content can be generated without using a dehydration auxiliary and a chemical, and post treatment and secondary use of the dehydrated cake become easy.SELECTED DRAWING: Figure 1

Description

この発明は、汚泥を固液分離して脱水ケーキを生成する方法において、汚泥に微細気泡を包含させた状態で固液分離装置にて脱水する汚泥の脱水方法に関する。   The present invention relates to a sludge dewatering method in which sludge is solid-liquid separated to produce a dehydrated cake, and the sludge is dehydrated by a solid-liquid separator in a state where fine bubbles are included.

従来、上水等の無機性汚泥や、下水、し尿、食品生産加工排水等の有機性汚泥を濃縮・脱水する固液分離装置は知られている。無機性汚泥はフィルタープレスで加圧脱水し、有機性汚泥は高分子凝集剤で凝集した後にベルトプレスやスクリュープレスで加圧脱水して脱水ケーキとろ液とに分離している。 2. Description of the Related Art Conventionally, solid-liquid separators that concentrate and dehydrate inorganic sludge such as tap water and organic sludge such as sewage, human waste, and food production processing wastewater are known. Inorganic sludge is pressure-dehydrated with a filter press, and organic sludge is agglomerated with a polymer flocculant and then pressure-dehydrated with a belt press or screw press to separate a dehydrated cake and a filtrate.

そして、脱水ケーキの水分をさらに低下させる技術として、ろ板のろ液の排出口から高圧空気を供給して脱水ケーキ中に高圧空気を通過させ、機械的な圧搾圧力では押出しが困難な脱水ケーキ粒子間の水分を高圧空気で同伴排除するエアーブロー装置は、例えば特許文献1に記載されているように公知である。その他、同様の技術にてケーキ洗浄を目的としてエアーあるいは洗浄水を通水させている技術もある。 And as a technique to further reduce the moisture of the dehydrated cake, high pressure air is supplied from the filtrate outlet of the filter plate to pass the high pressure air through the dehydrated cake, and it is difficult to extrude with mechanical pressing pressure An air blow device that excludes moisture between particles with high-pressure air is known as described in Patent Document 1, for example. In addition, there is a technique in which air or washing water is passed for the purpose of cake washing by the same technique.

また、微細気泡を利用して固液分離を行う技術として、汚泥処理槽に微細気泡を供給し、微細気泡の付着により汚泥を浮上させて濃縮する方法が特許文献2に記載されている。その他、汚泥処理分野では汚泥の改質、洗浄、あるいは生物処理等に微細気泡が用いられている。 Further, as a technique for performing solid-liquid separation using fine bubbles, Patent Document 2 discloses a method of supplying fine bubbles to a sludge treatment tank and floating and concentrating sludge by attaching fine bubbles. In addition, in the sludge treatment field, fine bubbles are used for sludge reforming, washing, biological treatment, and the like.

特公平2−24567号公報JP-B-2-24567 実開平5−009700号公報Japanese Utility Model Publication No. 5-009700

一般的に、固液分離装置で加圧・圧搾等の外圧が付与された際に、固形物は圧密され、固形物(粒子)間に介在する水分が押し出され、ろ過面を透過して外部に排出される。しかし、ろ過面から離れた位置に供給された汚泥は、その場で圧密されて固形物と水分とに分離されるが、圧搾により汚泥の粒子間は圧密されており、水分がろ過面へと移動する間隙がなく、十分に含水率を低下させることができないこともある。 In general, when an external pressure such as pressurization or squeezing is applied by a solid-liquid separator, the solids are consolidated, moisture intervening between the solids (particles) is pushed out, permeates through the filtration surface, and externally To be discharged. However, the sludge supplied to the position away from the filtration surface is compacted on the spot and separated into solids and moisture.However, the sludge particles are compacted by pressing, and the moisture is transferred to the filtration surface. There is no gap to move, and the water content may not be sufficiently reduced.

特許文献1は、エアーブローにてケーキ粒子間の水分を高圧空気で同伴排除するものであるが、圧密されたケーキ間に高圧空気が通過できる間隙がなく、十分にケーキ間の水分を排出できないことがある。また、ケーキ間の隙間が狭いと、通過させるために高圧の空気が必要で、大型のコンプレッサーや電気代が必要となる。 Patent Document 1 is designed to exclude moisture between cake particles by high-pressure air by air blow, but there is no gap through which high-pressure air can pass between consolidated cakes, and moisture between cakes cannot be discharged sufficiently. Sometimes. Also, if the gap between the cakes is narrow, high-pressure air is required to pass through, and a large compressor and electricity bill are required.

特許文献2は、微細気泡を利用して固液分離を行うものであるが、含水率が高い浮上濃縮への適用であるため、汚泥処理の前処理としては有効であるが、含水率が高いため2次処理、3次処理が必要となる。 Although patent document 2 performs solid-liquid separation using a microbubble, since it is an application to the floating concentration with a high moisture content, it is effective as a pretreatment of sludge treatment, but the moisture content is high. Therefore, secondary processing and tertiary processing are required.

この発明は、汚泥に微細気泡を包含させた状態で固液分離装置にて脱水することにより、微細気泡により汚泥間にろ液通路を形成し、脱水効率を向上させ低含水率の脱水ケーキを生成する汚泥の脱水方法を提供する。   In the present invention, the sludge is dehydrated by a solid-liquid separator in a state in which fine bubbles are included, thereby forming a filtrate passage between the sludges by the fine bubbles, thereby improving the dewatering efficiency and reducing the dehydrated cake having a low water content. A method for dewatering generated sludge is provided.

この発明は、微細気泡発生部で生成した微細気泡を汚泥に混合し、汚泥に微細気泡を包含させた状態で固液分離装置に供給し、固液分離装置により脱水ケーキとろ液とに分離するもので、固液分離装置のろ過室内のケーキ粒子間にろ液通路が形成され、ろ液通路を通して内部の水分が排出され、脱水効率が向上する。   In the present invention, fine bubbles generated in the fine bubble generation unit are mixed with sludge, supplied to the solid-liquid separator in a state where the fine bubbles are included in the sludge, and separated into dehydrated cake and filtrate by the solid-liquid separator. Thus, a filtrate passage is formed between cake particles in the filtration chamber of the solid-liquid separator, and moisture inside the filtrate is discharged through the filtrate passage, thereby improving dehydration efficiency.

固液分離装置から排出されるろ液を、微細気泡発生部に返送すると、微細気泡発生部の水分を外部から供給する必要がない。また、ろ液中には未凝集状態の高分子凝集剤が残留しており、微細気泡とともに汚泥に混合させることで、汚泥の凝集性が向上する。   When the filtrate discharged from the solid-liquid separator is returned to the fine bubble generating unit, it is not necessary to supply moisture from the fine bubble generating unit from the outside. Moreover, the polymer aggregating agent in an unaggregated state remains in the filtrate, and the coagulation property of the sludge is improved by mixing the sludge together with the fine bubbles.

微細気泡を凝集混和槽に供給して汚泥と混合すると、汚泥の凝集効率を向上させ、高分子凝集剤の使用量を削減できる。   When fine bubbles are supplied to the coagulation mixing tank and mixed with sludge, the coagulation efficiency of the sludge can be improved and the amount of the polymer coagulant used can be reduced.

固液分離装置を、加圧式、減圧式、あるいは遠心式とすると、加圧式ではフィルタープレス、ベルトプレス、スクリュープレスが適用でき、減圧式では真空脱水機が適用でき、遠心式では遠心脱水機が適用できる。   If the solid-liquid separator is a pressure type, a pressure reduction type, or a centrifugal type, a filter press, a belt press, or a screw press can be applied to the pressure type, a vacuum dehydrator can be applied to the pressure type, and a centrifugal dehydrator can be applied to the centrifugal type. Applicable.

加圧式の固液分離装置による脱水後、ろ過室内にて脱水ケーキに高圧空気を供給、あるいは、固液分離装置による脱水後、ろ過室内にて脱水ケーキを減圧すると、微細気泡により脱水ケーキ間に通気路が形成されており空気が通りやすく、この通気路から容易に水分が排出され、さらに含水率を低下させることができる。   After dehydration by a pressurized solid-liquid separator, high-pressure air is supplied to the dehydrated cake in the filtration chamber, or after dehydration by the solid-liquid separator, the dehydrated cake is depressurized in the filtration chamber, resulting in fine bubbles between the dehydrated cakes. An air passage is formed so that air can easily pass through, moisture is easily discharged from the air passage, and the moisture content can be further reduced.

この発明によれば、汚泥を固液分離する際に、汚泥に微細気泡を包含させた状態で固液分離装置に供給し、汚泥に外圧を付与して脱水することにより、ろ過室内のケーキ粒子間にろ液通路が形成され、ろ液通路を通して内部の水分が排出され、脱水効率が向上する。
また、脱水後のケーキ粒子間には微細気泡によるろ液通路が形成されているので、外部からのエアーブローによりケーキ粒子間の水分を排除し易くなる。
According to the present invention, when the sludge is separated into solid and liquid, it is supplied to the solid-liquid separation device in a state where fine bubbles are included in the sludge, and the sludge is dehydrated by applying an external pressure to thereby remove cake particles in the filtration chamber. A filtrate passage is formed between them, moisture inside is discharged through the filtrate passage, and dewatering efficiency is improved.
Moreover, since the filtrate channel | path by a fine bubble is formed between the cake particles after spin-drying | dehydration, it becomes easy to exclude the water | moisture content between cake particles by the air blow from the outside.

本発明に係る汚泥の脱水方法のフロー図である。It is a flowchart of the dehydration method of the sludge which concerns on this invention. 本発明に係る他の実施例1の汚泥の脱水方法のフロー図である。It is a flowchart of the dehydration method of the sludge of the other Example 1 which concerns on this invention. 同じく、他の実施例2の汚泥の脱水方法のフロー図である。Similarly, it is the flowchart of the dehydration method of the sludge of other Example 2. FIG. 本発明に係る固液分離装置のろ過室内の断面図である。It is sectional drawing in the filtration chamber of the solid-liquid separator which concerns on this invention. 本発明に係る脱水ケーキをエアーブローする概略図である。It is the schematic which air blows the dewatering cake which concerns on this invention. 同じく、脱水ケーキを減圧する概略図である。Similarly, it is the schematic which decompresses the dewatering cake.

図1は汚泥の脱水方法のフロー図である。
無機性汚泥や、下水、し尿、食品生産加工排水等の有機性汚泥(以下「汚泥」という。)を一時的に貯留している汚泥貯留槽1から汚泥供給ポンプ2により汚泥供給管3を介して固液分離装置4に汚泥を移送する。
FIG. 1 is a flowchart of a sludge dewatering method.
Inorganic sludge, organic sludge such as sewage, human waste, and food production processing wastewater (hereinafter referred to as “sludge”) is temporarily stored in the sludge supply tank 2 through a sludge supply pipe 3 by a sludge supply pump 2. Then, the sludge is transferred to the solid-liquid separator 4.

微細気泡発生部5では、水を供給した微細気泡混合槽6で微細気泡発生装置7により微細気泡を生成する。微細気泡は微細気泡供給ポンプ8により微細気泡供給管9を介して汚泥供給管3に移送する。 In the fine bubble generating unit 5, fine bubbles are generated by the fine bubble generating device 7 in the fine bubble mixing tank 6 supplied with water. The fine bubbles are transferred to the sludge supply pipe 3 through the fine bubble supply pipe 9 by the fine bubble supply pump 8.

固液分離装置4の前段の汚泥供給管3にて汚泥と微細気泡を混合させ、微細気泡を含有した汚泥を固液分離装置4に供給する。固液分離装置4では微細気泡を含有した汚泥を固液分離しており、ろ液と脱水ケーキとに分離する。 Sludge and fine bubbles are mixed in the sludge supply pipe 3 in the previous stage of the solid-liquid separator 4, and the sludge containing fine bubbles is supplied to the solid-liquid separator 4. In the solid-liquid separator 4, sludge containing fine bubbles is subjected to solid-liquid separation, and separated into a filtrate and a dehydrated cake.

なお、微細気泡を汚泥内に拡散し易くするために、汚泥と微細気泡を混合した後、固液分離装置4の前段にラインミキサーを配設してもよい。 In order to facilitate the diffusion of the fine bubbles into the sludge, a line mixer may be disposed in front of the solid-liquid separator 4 after mixing the sludge and the fine bubbles.

<微細気泡発生装置>
微細気泡発生装置7は、およそ50ミクロン以下の気泡を発生させる装置であって、薬液法、過飽和法、気液2相流旋回法等の公知の装置が存在するが、汚泥性状や固液分離装置4の仕様に応じて適宜選択できる。本実施例では、外部からエアーを取り込み、取り込んだエアーを装置内の回転機構による乱流生成及び攪拌せん断によって微細気泡化して放出する気液2相流旋回法を用いている。
<Microbubble generator>
The fine bubble generation device 7 is a device that generates bubbles of about 50 microns or less, and there are known devices such as a chemical solution method, a supersaturation method, and a gas-liquid two-phase flow swirl method. It can be appropriately selected according to the specifications of the device 4. In this embodiment, a gas-liquid two-phase flow swirling method is used in which air is taken in from the outside, and the taken-in air is made into fine bubbles by turbulent flow generation and stirring shearing by a rotating mechanism in the apparatus.

固液分離装置4は、水分を含有した汚泥を固液分離して、ろ液と脱水ケーキとを生成するもので、固液分離装置4が備える圧力可変手段により汚泥にかかる圧力を調整して汚泥から水分を分離するものをいう。 The solid-liquid separation device 4 performs solid-liquid separation of the sludge containing moisture to generate a filtrate and a dehydrated cake. The pressure applied to the sludge is adjusted by the pressure variable means included in the solid-liquid separation device 4. This means that water is separated from sludge.

固液分離装置4としては、例えば、加圧式ではフィルタープレス、ベルトプレス、スクリュープレス等の脱水機が適用できる。また、例えば減圧式では真空脱水機が適用でき、遠心式では遠心脱水機が適用できる。 As the solid-liquid separator 4, for example, a dehydrator such as a filter press, a belt press, a screw press, or the like can be applied in a pressurization type. Further, for example, a vacuum dehydrator can be applied to the reduced pressure type, and a centrifugal dehydrator can be applied to the centrifugal type.

ここでいう脱水ケーキとは、固液分離装置4の脱水作用により生成した脱水ケーキを強固に圧密した結果、およそ60〜90%の含水率を有する固形物質としたものであって、固形物濃度が1〜4%の濃縮汚泥(スラリー)とは相違する。 The dehydrated cake here is a solid substance having a moisture content of about 60 to 90% as a result of firmly compacting the dehydrated cake produced by the dehydrating action of the solid-liquid separator 4, and having a solid content concentration Is different from 1 to 4% concentrated sludge (slurry).

図2は他の実施例1の汚泥の脱水方法のフロー図である。
固液分離装置2からろ液供給管10を介してろ液を微細気泡混合槽6に返送し、微細気泡を生成している。固液分離装置4から排出されるろ液を再利用でき、微細気泡発生部5の水分を外部から供給する必要がない。
FIG. 2 is a flowchart of the sludge dewatering method according to another embodiment.
The filtrate is returned from the solid-liquid separator 2 to the fine bubble mixing tank 6 through the filtrate supply pipe 10 to generate fine bubbles. The filtrate discharged from the solid-liquid separator 4 can be reused, and there is no need to supply moisture from the fine bubble generating unit 5 from the outside.

図3は他の実施例2の汚泥の脱水方法のフロー図である。
固液分離装置4の前段に凝集混和槽11を配設し、微細気泡発生部5で生成した微細気泡を凝集混和槽11に移送している。凝集混和槽11は攪拌翼12により汚泥と高分子凝集剤を攪拌し、汚泥を凝集させる装置である。微細気泡は凝集混和槽11にて適度に攪拌され、効率よく汚泥の凝集フロックに付着し、微細気泡を包含している状態で凝集汚泥供給管13にて固液分離装置4に供給される。微細気泡は負の電荷を帯びているため、汚泥の凝集効率を向上させ、高分子凝集剤の使用量を削減できる。
FIG. 3 is a flow chart of the sludge dewatering method of another embodiment 2.
A coagulation / mixing tank 11 is disposed in the front stage of the solid-liquid separation device 4, and the fine bubbles generated by the fine bubble generating unit 5 are transferred to the coagulation / mixing tank 11. The agglomeration mixing tank 11 is an apparatus for aggregating sludge by stirring the sludge and the polymer flocculant with the stirring blade 12. The fine bubbles are moderately agitated in the flocculation / mixing tank 11, efficiently attached to the sludge flocculation flocs, and supplied to the solid-liquid separation device 4 through the flocculation sludge supply pipe 13 in a state of including the fine bubbles. Since the fine bubbles are negatively charged, the sludge aggregation efficiency can be improved and the amount of the polymer flocculant used can be reduced.

また、図2のように固液分離装置4からろ液を微細気泡混合槽に返送すれば、ろ液中に残存する未凝集の高分子凝集剤を有効に再利用できる。
なお、微細気泡発生装置7を凝集混和槽11に並設あるいは内設し、凝集混和槽11にて直接的に微細気泡を生成してもよい。
In addition, when the filtrate is returned from the solid-liquid separator 4 to the fine bubble mixing tank as shown in FIG. 2, the non-aggregated polymer flocculant remaining in the filtrate can be effectively reused.
In addition, the fine bubble generating device 7 may be provided in parallel or in the coagulation / mixing tank 11, and the fine bubbles may be directly generated in the coagulation / mixing tank 11.

図4は固液分離装置のろ過室内の断面図である。
本実施例では、固液分離装置4として加圧式のフィルタープレスを用いている。フィルタープレスのろ過室14に供給された微細気泡を含有した汚泥は、圧入圧力あるいは圧搾等による1次脱水に伴って小さな汚泥粒子が互いに圧密され、粒子間の水分がろ過面15へと移動して排出される。
FIG. 4 is a cross-sectional view of the filtration chamber of the solid-liquid separator.
In this embodiment, a pressure type filter press is used as the solid-liquid separation device 4. In the sludge containing fine bubbles supplied to the filtration chamber 14 of the filter press, small sludge particles are compacted together with primary dehydration by press-fitting pressure or squeezing, etc., and moisture between the particles moves to the filtration surface 15. Discharged.

微細気泡は負の電荷を帯びているため、汚泥粒子の表面に付着しやすく、汚泥粒子が圧密された際に、付着した微細気泡が汚泥粒子間に空隙を形成して水分の通路となる。したがって、ろ過室14内部で圧密された汚泥粒子間から水分が効率よくろ過面へと排出され、脱水効率が向上する。 Since the fine bubbles are negatively charged, they easily adhere to the surface of the sludge particles, and when the sludge particles are consolidated, the adhering fine bubbles form voids between the sludge particles and serve as a moisture passage. Therefore, moisture is efficiently discharged from between the sludge particles consolidated in the filtration chamber 14 to the filtration surface, and the dehydration efficiency is improved.

また、微細気泡を含有することで汚泥の密度が低下し、汚泥粒子間の水分の表面張力が低下する。その結果、汚泥粒子間あるいは汚泥粒子内部に残存する水分が外部に排出され易くなり、脱水効率が向上する。 Moreover, the density of sludge falls by containing a fine bubble, and the surface tension of the water | moisture content between sludge particles falls. As a result, moisture remaining between the sludge particles or inside the sludge particles is easily discharged to the outside, and the dewatering efficiency is improved.

加圧式のベルトプレス、スクリュープレスも、ろ過室14に供給された微細気泡を含有した汚泥が加圧により圧密され、汚泥粒子間から水分が効率よくろ過面15へと排出される。 In the pressurizing belt press and screw press, the sludge containing fine bubbles supplied to the filtration chamber 14 is consolidated by pressurization, and moisture is efficiently discharged from the sludge particles to the filtration surface 15.

減圧式の真空脱水機では、ろ過面15から吸引された微細気泡を含有した汚泥がろ過面15上で圧密堆積され、汚泥粒子間から水分が効率よくろ過面15へと吸引排出される。 In the vacuum type vacuum dehydrator, sludge containing fine bubbles sucked from the filtration surface 15 is consolidated on the filtration surface 15, and moisture is efficiently sucked and discharged from between the sludge particles to the filtration surface 15.

遠心式の遠心脱水機では、遠心作用により回転筒内壁に微細気泡を含有した汚泥が圧密堆積され、汚泥粒子間から水分が効率よく排出される。 In the centrifugal centrifugal dehydrator, sludge containing fine bubbles is consolidated and accumulated on the inner wall of the rotating cylinder by centrifugal action, and moisture is efficiently discharged between the sludge particles.

図5は脱水ケーキをエアーブローする概略図である。
固液分離装置による1次脱水後、脱水ケーキの一方から高圧空気(エアーブロー)を供給し、脱水ケーキ中に高圧空気を通過させ、汚泥粒子間の水分をろ過面15から同伴排出する。汚泥粒子間に微細気泡を含有した状態で脱水ケーキ化しているため、通気路が形成されており空気が通りやすく、この通気路から容易に水分が排出され、さらに含水率を低下させることができる。
FIG. 5 is a schematic view of air blowing the dehydrated cake.
After the primary dehydration by the solid-liquid separator, high-pressure air (air blow) is supplied from one side of the dehydrated cake, the high-pressure air is passed through the dehydrated cake, and moisture between the sludge particles is entrained and discharged from the filtration surface 15. Since the dehydrated cake is formed with fine bubbles between the sludge particles, an air passage is formed and air easily passes through, moisture is easily discharged from the air passage, and the moisture content can be further reduced. .

他の方式の固液分離装置4でも同様の技術を適用でき、特にフィルタープレスの圧入圧力あるいは圧搾等による1次脱水後に適用すると高い効果を得られる。
また、前記技術は脱水ケーキを生成したろ過室14に洗浄水を高圧供給するケーキ洗浄技術にも適用できる。
The same technique can be applied to the solid-liquid separator 4 of another type, and a high effect can be obtained particularly when it is applied after primary dehydration by press-fitting pressure or squeezing of a filter press.
The technique can also be applied to a cake washing technique for supplying washing water at a high pressure to the filtration chamber 14 that has produced a dehydrated cake.

図6は脱水ケーキを減圧する概略図である。
固液分離装置による1次脱水後、ろ過室14の一方から吸引し、脱水ケーキを減圧することにより、汚泥粒子間の水分をろ過面15から排出する。汚泥粒子間に微細気泡を含有した状態で脱水ケーキ化しているため、通気路が形成されており水分が通りやすく、この通気路から容易に水分が排出され、さらに含水率を低下させることができる。
他の方式の固液分離装置4でも同様の技術を適用でき、特にベルトプレスの圧搾等による1次脱水後に適用すると高い効果を得られる。
FIG. 6 is a schematic view for depressurizing the dehydrated cake.
After primary dehydration by the solid-liquid separator, the water between the sludge particles is discharged from the filtration surface 15 by suction from one side of the filtration chamber 14 and decompressing the dehydrated cake. Since the dehydrated cake is formed with fine bubbles between the sludge particles, an air passage is formed, moisture easily passes through, moisture is easily discharged from the air passage, and the moisture content can be further reduced. .
The same technique can be applied to the solid-liquid separator 4 of another type, and a high effect can be obtained particularly when applied after the primary dehydration by squeezing the belt press.

この発明に係る汚泥の脱水方法は、汚泥を固液分離装置で圧搾する際に、汚泥に微細気泡を包含させた状態で脱水することにより汚泥の脱水効率を向上させることができる優れた方法である。固形物の脱水助材を用いないので、脱水助材の在庫管理や保管場所の心配がなく、脱水ケーキの排出量も増加せず、脱水ケーキの後処理に負担がかからない。また、特別な薬品を用いないので、コスト的にも負担が軽く、脱水ケーキの2次使用も多方面に適用可能である。   The sludge dewatering method according to the present invention is an excellent method capable of improving the sludge dewatering efficiency by dewatering in a state in which fine bubbles are included in the sludge when the sludge is squeezed by a solid-liquid separator. is there. Since solid dehydration aids are not used, there is no need to worry about inventory management and storage location of dehydration aids, the amount of dehydrated cake discharged does not increase, and there is no burden on post-treatment of the dehydrated cake. Moreover, since no special chemicals are used, the cost is light and the secondary use of the dehydrated cake can be applied in many ways.

4 固液分離装置
5 微細気泡発生部
11 凝集混和槽
14 ろ過室
4 Solid-Liquid Separator 5 Fine Bubble Generation Unit 11 Coagulation Mixing Tank 14 Filtration Chamber

Claims (6)

微細気泡発生部(5)で生成した微細気泡を汚泥に混合し、
汚泥に微細気泡を包含させた状態で固液分離装置(4)に供給し、
固液分離装置(4)により脱水ケーキとろ液とに分離する
ことを特徴とする汚泥の脱水方法。
The fine bubbles generated in the fine bubble generation part (5) are mixed with sludge,
Supply the solid-liquid separator (4) with fine bubbles in the sludge,
A method for dewatering sludge, characterized in that it is separated into a dehydrated cake and a filtrate by a solid-liquid separator (4).
前記固液分離装置(4)から排出されるろ液を、微細気泡発生部(5)に返送する
ことを特徴とする請求項1に記載の汚泥の脱水方法。
The sludge dewatering method according to claim 1, wherein the filtrate discharged from the solid-liquid separation device (4) is returned to the fine bubble generating section (5).
前記微細気泡を凝集混和槽(11)に供給して汚泥と混合する
ことを特徴とする請求項1に記載の汚泥の脱水方法。
The sludge dewatering method according to claim 1, wherein the fine bubbles are supplied to the coagulation mixing tank (11) and mixed with the sludge.
前記固液分離装置(4)を、加圧式、減圧式、あるいは遠心式とする
ことを特徴とする請求項1〜3の何れか1項に記載の汚泥の脱水方法。
The sludge dewatering method according to any one of claims 1 to 3, wherein the solid-liquid separator (4) is a pressure type, a pressure reduction type, or a centrifugal type.
前記加圧式の固液分離装置(4)による脱水後、ろ過室内にて脱水ケーキに高圧空気を供給する
ことを特徴とする請求項4に記載の汚泥の脱水方法。
The method for dewatering sludge according to claim 4, wherein high-pressure air is supplied to the dewatered cake in the filtration chamber after dewatering by the pressurized solid-liquid separator (4).
前記固液分離装置(4)による脱水後、ろ過室(14)内にて脱水ケーキを減圧する
ことを特徴とする請求項4に記載の汚泥の脱水方法。
The dewatering method for sludge according to claim 4, wherein after the dehydration by the solid-liquid separator (4), the dewatered cake is decompressed in the filtration chamber (14).
JP2017034903A 2017-02-27 2017-02-27 Sludge dewatering method Active JP6635270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017034903A JP6635270B2 (en) 2017-02-27 2017-02-27 Sludge dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017034903A JP6635270B2 (en) 2017-02-27 2017-02-27 Sludge dewatering method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019203645A Division JP2020019020A (en) 2019-11-11 2019-11-11 Sludge dewatering method

Publications (2)

Publication Number Publication Date
JP2018140334A true JP2018140334A (en) 2018-09-13
JP6635270B2 JP6635270B2 (en) 2020-01-22

Family

ID=63526263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017034903A Active JP6635270B2 (en) 2017-02-27 2017-02-27 Sludge dewatering method

Country Status (1)

Country Link
JP (1) JP6635270B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794589A (en) * 2020-12-30 2021-05-14 韩臻 Efficient coal slime dissolved gas dehydration process
JP2021166975A (en) * 2020-04-13 2021-10-21 株式会社石垣 Cleaning method for dewatering cake
WO2022201730A1 (en) * 2021-03-24 2022-09-29 正佳 近藤 Vacuum consolidation method, vacuum consolidation dredging method, system for vacuum consolidation test, vertical drain placer, and airtight load box

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267150A (en) * 1975-12-02 1977-06-03 Susumu Hashimoto Sludge treating method
JPS5367173A (en) * 1976-11-29 1978-06-15 Mitsubishi Heavy Ind Ltd Filter press
JPS6044085A (en) * 1983-08-22 1985-03-08 Shinryo Air Conditioning Co Ltd Concentrating method of sludge
JPH02258005A (en) * 1989-03-30 1990-10-18 Nagao Kogyo:Kk Dehydration treatment
JPH07112199A (en) * 1993-10-18 1995-05-02 Ee Double Eng:Kk Dehydrator
JPH07303882A (en) * 1994-05-13 1995-11-21 Saitama Pref Gov Gesuido Koushiya Scum removing and treating equipment
JP2001224910A (en) * 2000-02-17 2001-08-21 Ishigaki Co Ltd Method for releasing stuck cake in filter press
JP2014004502A (en) * 2012-06-21 2014-01-16 Unozawa Gumi Iron Works Ltd Method for designing slurry treatment plant and slurry treatment plant
JP2016087578A (en) * 2014-11-07 2016-05-23 株式会社ピーシーエス Contaminant separation volume reduction system and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267150A (en) * 1975-12-02 1977-06-03 Susumu Hashimoto Sludge treating method
JPS5367173A (en) * 1976-11-29 1978-06-15 Mitsubishi Heavy Ind Ltd Filter press
JPS6044085A (en) * 1983-08-22 1985-03-08 Shinryo Air Conditioning Co Ltd Concentrating method of sludge
JPH02258005A (en) * 1989-03-30 1990-10-18 Nagao Kogyo:Kk Dehydration treatment
JPH07112199A (en) * 1993-10-18 1995-05-02 Ee Double Eng:Kk Dehydrator
JPH07303882A (en) * 1994-05-13 1995-11-21 Saitama Pref Gov Gesuido Koushiya Scum removing and treating equipment
JP2001224910A (en) * 2000-02-17 2001-08-21 Ishigaki Co Ltd Method for releasing stuck cake in filter press
JP2014004502A (en) * 2012-06-21 2014-01-16 Unozawa Gumi Iron Works Ltd Method for designing slurry treatment plant and slurry treatment plant
JP2016087578A (en) * 2014-11-07 2016-05-23 株式会社ピーシーエス Contaminant separation volume reduction system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021166975A (en) * 2020-04-13 2021-10-21 株式会社石垣 Cleaning method for dewatering cake
JP7255073B2 (en) 2020-04-13 2023-04-11 株式会社石垣 How to wash the dehydrated cake
CN112794589A (en) * 2020-12-30 2021-05-14 韩臻 Efficient coal slime dissolved gas dehydration process
WO2022201730A1 (en) * 2021-03-24 2022-09-29 正佳 近藤 Vacuum consolidation method, vacuum consolidation dredging method, system for vacuum consolidation test, vertical drain placer, and airtight load box
JP2022151445A (en) * 2021-03-24 2022-10-07 正佳 近藤 Vacuum consolidation method, vacuum consolidation dredge method, vacuum consolidation test system, vertical drain driving machine, and air tight loading caisson
JP7325701B2 (en) 2021-03-24 2023-08-15 正佳 近藤 Vacuum Consolidation Method, Vacuum Consolidation Dredging Method, Vacuum Consolidation Test System, Vertical Drain Driving Machine, and Airtight Loading Box
CN116917575A (en) * 2021-03-24 2023-10-20 近藤正佳 Vacuum compaction construction method, vacuum compaction dredging construction method, vacuum compaction test system, vertical discharge pile driver and airtight loading box body
CN116917575B (en) * 2021-03-24 2024-02-09 近藤正佳 Vacuum compaction construction method, vacuum compaction dredging construction method, vacuum compaction test system, vertical discharge pile driver and airtight loading box body

Also Published As

Publication number Publication date
JP6635270B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
JP5383157B2 (en) Dynamic treatment system for water purification and method for dynamic treatment in water purification
JP2018140334A (en) Sludge dehydration method
CN202744428U (en) River sediment sieving, oxidation reducing and deep dewatering device
CN103785198A (en) Efficient deep cone sludge thickener
KR20160090343A (en) Method and device for treating liquid sludge and filter cakes obtained by said method
JP6514207B2 (en) Method and apparatus for organic wastewater treatment
JP2011200811A (en) System and method for reducing volume of sludge
WO2009087921A1 (en) Method for treating oil-containing waste water and apparatus for treating oil-containing waste water
KR101938024B1 (en) Sludge-concentrating method and apparatus
JP2007000734A (en) Method for treating organic waste water, and system therefor
JP2020019020A (en) Sludge dewatering method
JP2637325B2 (en) Sludge dewatering method and apparatus
JP6146665B2 (en) Sludge treatment method
CN202961994U (en) High-efficiency deep cone sludge thickening device
JP2018099658A (en) Sludge dehydration system and method
JP2013000712A (en) Dehydration method and apparatus for organic sludge
JP4973461B2 (en) Waste water treatment apparatus and waste water treatment method
JP2014069145A (en) Dewatering method of sludge
Hussain et al. Enhancement of dewatering properties of kaolin suspension by using cationic polyacrylamide (PAM-C) flocculant and surfactants
JP5745897B2 (en) Sludge dewatering method
JP2012135736A (en) Sludge dehydration system and sludge dehydration method
CN206103496U (en) Solid -liquid separation device
JPH06343999A (en) Dehydration process for sludge
CN219637068U (en) Sludge organic matter and inorganic matter separation system
KR101162768B1 (en) Sludge dewatering and enrichment using differential pressure drainage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191203

R150 Certificate of patent or registration of utility model

Ref document number: 6635270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250