JP2018137297A - Piezoelectric element - Google Patents

Piezoelectric element Download PDF

Info

Publication number
JP2018137297A
JP2018137297A JP2017029541A JP2017029541A JP2018137297A JP 2018137297 A JP2018137297 A JP 2018137297A JP 2017029541 A JP2017029541 A JP 2017029541A JP 2017029541 A JP2017029541 A JP 2017029541A JP 2018137297 A JP2018137297 A JP 2018137297A
Authority
JP
Japan
Prior art keywords
diaphragm
region
thin film
diaphragms
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017029541A
Other languages
Japanese (ja)
Other versions
JP6894719B2 (en
Inventor
王義 山崎
Kimiyoshi Yamazaki
王義 山崎
尚己 桝本
Naomi Masumoto
尚己 桝本
博行 口地
Hiroyuki Kouchi
博行 口地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2017029541A priority Critical patent/JP6894719B2/en
Publication of JP2018137297A publication Critical patent/JP2018137297A/en
Application granted granted Critical
Publication of JP6894719B2 publication Critical patent/JP6894719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-sensitive piezoelectric element which has an improved signal-to-noise ratio and is suitable for mass-production by preventing, in a case where cantilever beam-structured diaphragms are adopted, degradation in characteristics caused by a gap between the diaphragms or between the diaphragms and a substrate.SOLUTION: A cantilever beam-type piezoelectric MEMS microphone comprises diaphragms (12 and 14) each including: piezoelectric thin films 7a and 7b; and an electrode thin film 8. The microphone is configured such that one end of each of the diaphragms is supported by a substrate 1. An open end-side region II on the diaphragm is made thicker than a supported end-side region I so that an elastic modulus of the open end-side region II on the diaphragm may be greater than that of the supported end-side region I. In addition, the elastic modulus of the open end side of the diaphragm can be made greater by providing an opening in the region I or by making an elastic modulus of a material for the region II on the diaphragm greater than that of a material for the region I.SELECTED DRAWING: Figure 3

Description

本発明は圧電素子、特に高感度・低雑音となる圧電型MEMSマイクロフォン等の圧電素子の構成に関する。   The present invention relates to a configuration of a piezoelectric element, particularly a piezoelectric element such as a piezoelectric MEMS microphone having high sensitivity and low noise.

近年、巨大な需要のあるスマートフォンには、小型で薄くかつハンダフロー時の高温処理耐性を有するMEMS(Micro Electro Mechanical System)が多く使われている。その大部分は、音響圧力による振動板の振動変位を対向する固定板との間の容量の変化を電圧変化に変換して出力する容量型MEMSマイクロフォン(音響トランスデューサ)である。しかし、この容量型は、振動板と固定板との隙間の空気の流動で生じる音響的抵抗のために、信号雑音比を改善することが困難になりつつある。そこで注目されているのが、圧電薄膜が用いられ基本的に単一となる振動板の歪により、音響振動を電圧変化として取り出す圧電型MEMSマイクロフォンである。   2. Description of the Related Art In recent years, MEMS (Micro Electro Mechanical System) that is small and thin and has high-temperature processing resistance during solder flow is often used for smartphones that are in great demand. Most of them are capacitive MEMS microphones (acoustic transducers) that convert a change in capacitance between a diaphragm and an opposing fixed plate due to acoustic pressure into a voltage change and output the change. However, in this capacitive type, it is becoming difficult to improve the signal-to-noise ratio due to acoustic resistance generated by the air flow in the gap between the diaphragm and the fixed plate. Therefore, attention is focused on a piezoelectric MEMS microphone that uses a piezoelectric thin film and extracts acoustic vibration as a voltage change due to distortion of a single diaphragm.

この圧電型MEMSマイクロフォンとしては、例えば図8,図9に示されるような片持ち梁構造のものがあり、図8は四角形振動板を持つマイクロフォン、図9は三角形振動板を持つマイクロフォンである。
図8において、符号2は基板に一端が支持され圧電薄膜を有する振動板、3は基板の中央部に開けられた空孔であり、この振動板2は、その一端が基板の空孔3の図の左右端に支持される形で、2つ設けられる。従って、このマイクロフォンの2つの振動板2は、四角形の3辺において開放され、1辺が基板に支持された状態の片持ち梁構造となる。
This piezoelectric MEMS microphone has a cantilever structure as shown in FIGS. 8 and 9, for example. FIG. 8 shows a microphone having a square diaphragm, and FIG. 9 shows a microphone having a triangular diaphragm.
In FIG. 8, reference numeral 2 denotes a diaphragm having one end supported by a substrate and having a piezoelectric thin film, 3 is a hole opened in the center of the substrate, and this diaphragm 2 has one end of the hole 3 of the substrate. Two are provided so as to be supported at the left and right ends of the figure. Accordingly, the two diaphragms 2 of the microphone have a cantilever structure in which the three sides of the quadrangle are opened and one side is supported by the substrate.

図9において、符号4は、三角形の振動板であり、この振動板4は、その一端が基板の空孔3の左右端及び上下端に支持される形で、4つ設けられる。従って、このマイクロフォンの4つの振動板4は、三角形の2辺において開放され、1辺がシリコン基板に支持された状態の片持ち梁構造となる。   In FIG. 9, reference numeral 4 denotes a triangular diaphragm, and four diaphragms 4 are provided such that one end thereof is supported by the left and right ends and the upper and lower ends of the hole 3 of the substrate. Accordingly, the four diaphragms 4 of the microphone have a cantilever structure in which the two sides of the triangle are open and one side is supported by the silicon substrate.

特許第5707323号公報Japanese Patent No. 5707323 特許第5936154号公報Japanese Patent No. 5936154

しかしながら、上記圧電型MEMSマイクロフォンでは、片持ち梁構造を採用することによって、容量型MEMSマイクロフォンに相当する感度や信号雑音比が得られているが、それ以上の特性向上を図るまでには至っていない。
上記片持ち梁構造のマイクロフォンでは、図8において、2つの振動板2の間と振動板−基板間にギャップ(g)があり、図9において、4つの振動板4のそれぞれの間にギャップ(g)があり、これらのギャップを介して音響圧力信号が漏れるために、振動板2,4に対する音響インピーダンスと並列に入るギャップ部分の音響抵抗が小さくなる。このギャップ音響抵抗の低下は、低周波ロールオフ周波数の増大、つまり低周波数での感度劣化をもたらすという不都合があり、更には、信号雑音比を劣化させる要因ともなっている。
However, in the piezoelectric MEMS microphone, the sensitivity and signal-to-noise ratio corresponding to the capacitive MEMS microphone can be obtained by adopting the cantilever structure, but no further improvement in characteristics has been achieved. .
In the cantilever microphone, the gap (g) is present between the two diaphragms 2 and between the diaphragm and the substrate in FIG. 8, and the gap (g) between each of the four diaphragms 4 is illustrated in FIG. g), and since the acoustic pressure signal leaks through these gaps, the acoustic resistance of the gap portion in parallel with the acoustic impedance to the diaphragms 2 and 4 is reduced. This decrease in the gap acoustic resistance has the disadvantage of increasing the low-frequency roll-off frequency, that is, degrading the sensitivity at low frequencies, and is also a factor that degrades the signal-to-noise ratio.

図9の三角形の振動板4では、4つのそれぞれの先端が一箇所に集まるような構造を採用することにより、ギャップに起因する問題がある程度改善されるが、十分ではない。
また、このギャップ(g)の幅は、製作時の加工精度と振動板2,4を構成する薄膜の残留応力の面内均一性によって決まり、例えばギャップを挟んで相対する開放端が高さ方向に変形してギャップの幅が広がること等が生じ、量産レベルでマイクロフォンの特性に影響のない範囲に抑えることは容易ではない。
上記のような問題点は、圧電型マイクロフォン以外でも圧力、振動、変位等を扱うデバイスに使用される他の圧電素子において同様に生じる。
In the triangular diaphragm 4 of FIG. 9, the problem caused by the gap is improved to some extent by adopting a structure in which the four tips are gathered in one place, but it is not sufficient.
The width of the gap (g) is determined by the processing accuracy at the time of manufacture and the in-plane uniformity of the residual stress of the thin film constituting the diaphragms 2 and 4, and for example, the open ends facing each other across the gap are in the height direction. Therefore, it is not easy to reduce the gap to a range that does not affect the characteristics of the microphone at the mass production level.
The above-mentioned problems similarly occur in other piezoelectric elements used in devices that handle pressure, vibration, displacement, etc., other than piezoelectric microphones.

本発明は上記問題点に鑑みてなされたものであり、その目的は、片持ち梁構造の振動板を採用する場合に、各振動板間又は振動板−基板間のギャップによって生じる特性の劣化を解消し、信号雑音比を改善した高感度の量産性に適した圧電素子を提供することにある。   The present invention has been made in view of the above problems, and its object is to reduce the deterioration of characteristics caused by a gap between each diaphragm or between a diaphragm and a substrate when a cantilever structure diaphragm is employed. An object of the present invention is to provide a piezoelectric element suitable for high-sensitivity mass-productivity that has been solved and improved in signal-to-noise ratio.

上記目的を達成するために、請求項1の発明は、圧電薄膜及びこの圧電薄膜を挟んで配置された一対の電極を含む振動板を備え、この振動板の一端が基板に支持されてなる圧電素子において、上記振動板の開放端側の弾性係数を、該振動板の支持端側の弾性係数より大きくしたことを特徴とする。
請求項2の発明は、上記振動板の開放端側を上記支持端側より厚くすることにより、上記振動板の開放端側の弾性係数を大きくしたことを特徴とする。
請求項3の発明は、上記振動板の支持端側に開孔を設けることにより、上記振動板の開放端側の弾性係数を大きくしたことを特徴とする。
請求項4の発明は、上記振動板の開放端側を構成する材料の弾性係数を、上記支持端側を構成する材料の弾性係数より大きくすることにより、上記振動板の開放端側の弾性係数を大きくしたことを特徴とする。
請求項5の発明の上記振動板は、音響圧力によって振動する振動板であることを特徴とする。
In order to achieve the above object, a first aspect of the present invention is a piezoelectric device comprising a diaphragm including a piezoelectric thin film and a pair of electrodes arranged with the piezoelectric thin film interposed therebetween, and one end of the diaphragm supported by a substrate. In the element, the elastic coefficient on the open end side of the diaphragm is made larger than the elastic coefficient on the support end side of the diaphragm.
The invention according to claim 2 is characterized in that the elastic coefficient on the open end side of the diaphragm is increased by making the open end side of the diaphragm thicker than the support end side.
The invention according to claim 3 is characterized in that an elastic coefficient on the open end side of the diaphragm is increased by providing an opening on the support end side of the diaphragm.
According to a fourth aspect of the present invention, the elastic coefficient of the material constituting the open end side of the diaphragm is made larger than the elastic coefficient of the material constituting the support end side, so that the elastic coefficient of the open end side of the diaphragm is increased. It is characterized by having increased.
The diaphragm according to a fifth aspect of the invention is a diaphragm that vibrates by acoustic pressure.

以上の構成によれば、振動板の一端が基板に支持された片持ち梁構造において、開放端側の振動板を支持端側より厚くすること等により、振動板の支持端側の弾性係数に対して開放端側の弾性係数を大きくしたので、ギャップによる音響抵抗の低下が小さくなる。
特に、製造における残留応力による変形も問題であり、隣接する振動板同士又は振動板と基板のギャップの幅は、支持固定端から離れる程、つまり振動板の開放端へ行く程大きくなるが、本発明では、この開放端側の弾性係数を大きくするので、残留応力に起因して変形の大きくなる開放端間のギャップの広がりやバラツキが効果的に抑制される。
According to the above configuration, in the cantilever structure in which one end of the diaphragm is supported by the substrate, the elastic coefficient on the support end side of the diaphragm is increased by making the diaphragm on the open end side thicker than the support end side. On the other hand, since the elastic coefficient on the open end side is increased, the decrease in acoustic resistance due to the gap is reduced.
In particular, deformation due to residual stress in manufacturing is also a problem, and the width of the gap between adjacent diaphragms or between the diaphragm and the substrate increases as they move away from the support fixing end, that is, toward the open end of the diaphragm. In the invention, since the elastic coefficient on the open end side is increased, the spread and variation of the gap between the open ends, which are greatly deformed due to the residual stress, are effectively suppressed.

本発明によれば、片持ち構造の振動板を採用する場合に、各振動板間又は振動板−基板間のギャップによって生じる音響抵抗の低下を抑えることができ、これによって制限される低周波ロールオフ周波数の増大、つまり低周波数での感度劣化を効果的に抑制することが可能となる。また、ギャップ音響抵抗の低下による信号雑音比の劣化が抑制され、高感度の量産性に適した圧電素子、圧電型MEMSマイクロフォンが得られるという効果がある。
更に、量産製造時の残留応力によるギャップ幅の広がりに伴う特性劣化が解消されると共に、加工精度と振動板を構成する薄膜の残留応力の面内均一性に対する要求条件が緩和されることにより、製造歩留まりの向上も期待できるという利点がある。
According to the present invention, when a cantilever diaphragm is employed, a decrease in acoustic resistance caused by a gap between the diaphragms or between the diaphragm and the substrate can be suppressed, and the low-frequency roll limited thereby An increase in off frequency, that is, sensitivity deterioration at a low frequency can be effectively suppressed. In addition, the deterioration of the signal-to-noise ratio due to the decrease in the gap acoustic resistance is suppressed, and there is an effect that a piezoelectric element and a piezoelectric MEMS microphone suitable for mass production with high sensitivity can be obtained.
Furthermore, the characteristic deterioration due to the widening of the gap width due to the residual stress at the time of mass production is eliminated, and the requirements for the processing accuracy and the in-plane uniformity of the residual stress of the thin film constituting the diaphragm are relaxed, There is an advantage that an improvement in manufacturing yield can be expected.

本発明の実施例に係る圧電型マイクロフォンの四角形振動板タイプの概略構成を示す平面図である。It is a top view which shows schematic structure of the square diaphragm type of the piezoelectric microphone which concerns on the Example of this invention. 実施例に係る圧電型マイクロフォンの三角形振動板タイプの概略構成を示す平面図である。It is a top view which shows schematic structure of the triangular diaphragm type of the piezoelectric microphone which concerns on an Example. 第1実施例の圧電型マイクロフォンの構成を示す断面図である。It is sectional drawing which shows the structure of the piezoelectric microphone of 1st Example. 第2実施例の圧電型マイクロフォンの構成を示す平面図である。It is a top view which shows the structure of the piezoelectric microphone of 2nd Example. 第3実施例の圧電型マイクロフォンの構成を示す断面図である。It is sectional drawing which shows the structure of the piezoelectric microphone of 3rd Example. 実施例における最大応力等のシミュレーション値を従来と比較して示したグラフ図である。It is the graph which showed the simulation value, such as the maximum stress in an Example, compared with the past. 実施例における規格化されたギャップ音響抵抗軸を示すグラフ図である。It is a graph which shows the gap acoustic resistance axis normalized in the Example. 従来の圧電型マイクロフォンの四角形振動板タイプの概略構成を示す平面図である。It is a top view which shows schematic structure of the square diaphragm type of the conventional piezoelectric microphone. 従来の圧電型マイクロフォンの三角形振動板タイプの概略構成を示す平面図である。It is a top view which shows schematic structure of the triangular diaphragm type of the conventional piezoelectric microphone.

図1に、実施例の圧電型MEMSマイクロフォンの四角形振動板タイプ、図2に、三角形振動板タイプの概略が示されており、符号12は圧電薄膜を有し中央で2つに分割された振動板、3は基板に開けられた空孔である。この図1のマイクロフォンの2つの振動板12は、四角形の3辺において開放され、1辺(支持端)が基板に支持された状態の片持ち梁構造である。
また、図2の符号14は、四角形を対角線で分離した三角形の振動板であり、この振動板14は、その一端が基板の空孔3の左右端及び上下端に支持される形で、4つ設けられており、このマイクロフォンの4つの振動板14は、三角形の2辺において開放され、1辺(支持端)が基板に支持された状態の片持ち梁構造である。
FIG. 1 shows a rectangular diaphragm type of the piezoelectric MEMS microphone of the embodiment, and FIG. 2 shows an outline of a triangular diaphragm type. Reference numeral 12 denotes a vibration having a piezoelectric thin film and divided into two at the center. Plates 3 are holes formed in the substrate. The two diaphragms 12 of the microphone of FIG. 1 have a cantilever structure in a state in which one side (support end) is supported by a substrate with three sides of a square open.
Further, reference numeral 14 in FIG. 2 is a triangular diaphragm obtained by separating a quadrilateral with a diagonal line. The diaphragm 14 is supported by the left and right ends and upper and lower ends of the holes 3 of the substrate. The four diaphragms 14 of this microphone have a cantilever structure in which two sides of a triangle are open and one side (support end) is supported by a substrate.

図3に、第1実施例の圧電型MEMSマイクロフォンの断面の構成(この図3は概念図であり、厚さ方向の縮尺と横方向の縮尺は異なっている)が示されている。符号1はシリコン(Si)からなる基板であり、上述した振動板12,14は、シリコン酸化膜(SiO)からなる絶縁膜6を挟んで基板1上に作製される。図3において、符号7aは、下層の圧電薄膜、7bは上層の圧電薄膜、8は電極薄膜、9は配線電極、15は付加薄膜であり、これらによって振動板12,14が構成される。上記圧電薄膜7a,7bは、窒化アルミニウム等、電極薄膜8はモリブデン(Mo)等からなり、圧電薄膜7a,7bは3層の電極薄膜8で上下に挟まれる。なお、各電極薄膜8は、各層の電極薄膜8毎に図示しない接続手段により、それぞれ接続されている。 FIG. 3 shows a cross-sectional configuration of the piezoelectric MEMS microphone of the first embodiment (this FIG. 3 is a conceptual diagram, and the scale in the thickness direction is different from the scale in the horizontal direction). Reference numeral 1 denotes a substrate made of silicon (Si), and the above-described diaphragms 12 and 14 are formed on the substrate 1 with an insulating film 6 made of a silicon oxide film (SiO 2 ) interposed therebetween. In FIG. 3, reference numeral 7 a is a lower piezoelectric thin film, 7 b is an upper piezoelectric thin film, 8 is an electrode thin film, 9 is a wiring electrode, and 15 is an additional thin film, and these constitute diaphragms 12 and 14. The piezoelectric thin films 7a and 7b are made of aluminum nitride or the like, the electrode thin film 8 is made of molybdenum (Mo) or the like, and the piezoelectric thin films 7a and 7b are sandwiched between three layers of the electrode thin films 8. Each electrode thin film 8 is connected to each layer of electrode thin film 8 by connection means (not shown).

ここで、圧電型マイクロフォンの基本的な動作原理を説明する。
例えば、図3(或いは図5)の下方の基板1に開けられた空孔3から音響圧力(説明のため準直流的圧力を考える)が加わったときには、圧電薄膜7a,7bを含む振動板12,14は上方に湾曲変位する。その結果、下層の圧電薄膜7aには引張応力が、上層の圧電薄膜7bには圧縮応力が発生する。2層の圧電薄膜の圧電性を示す結晶配向を薄膜の延伸方向に垂直で同一向き(例えば図5で上向き)とすると、横圧電効果によって、下層の圧電薄膜7aと上層の圧電薄膜7bに極性の異なる電圧が発生し、3層の電極薄膜8とそれに接続した配線電極9によって外部に取り出すことができる。そして、音響圧力によって発生する応力は、振動板(又は梁)12,14の支持端に近づく程大きく、その先端では、開放端であるため応力は開放されて0となる。従って、電極薄膜8は応力の大きい振動板12,14の支持端近傍にのみ支持端から延伸させ、その延伸長を、音響圧力によって電極薄膜8間に発生させる信号エネルギー(電圧の自乗×静電容量/2)を最大化するように設定することで、マイクロフォンとしての信号雑音比を最大化することができる。
Here, the basic operation principle of the piezoelectric microphone will be described.
For example, when an acoustic pressure (considering a quasi-direct current pressure for the sake of explanation) is applied from the hole 3 formed in the substrate 1 below in FIG. 3 (or FIG. 5), the diaphragm 12 including the piezoelectric thin films 7a and 7b. , 14 are curvedly displaced upward. As a result, tensile stress is generated in the lower piezoelectric thin film 7a, and compressive stress is generated in the upper piezoelectric thin film 7b. When the crystal orientation indicating the piezoelectricity of the two layers of piezoelectric thin film is the same as the direction perpendicular to the stretching direction of the thin film (for example, upward in FIG. 5), the lateral piezoelectric effect causes the lower piezoelectric thin film 7a and the upper piezoelectric thin film 7b to Are generated and can be taken out by the three-layered electrode thin film 8 and the wiring electrode 9 connected thereto. The stress generated by the acoustic pressure increases as it approaches the support ends of the diaphragms (or beams) 12 and 14, and the stress is released and becomes zero at the tip because it is an open end. Accordingly, the electrode thin film 8 is stretched from the support end only in the vicinity of the support ends of the diaphragms 12 and 14 having high stress, and the signal energy (voltage square × electrostatic force) generated between the electrode thin films 8 by the acoustic pressure is extended from the support end. By setting so as to maximize the capacity / 2), the signal-to-noise ratio as a microphone can be maximized.

音響圧力以外に、振動板(梁)12,14を構成する圧電薄膜等の薄膜の残留応力の製造上の意図的或いは意図しないアンバランスによっても振動板(梁)12,14は変形する。例えば、上層の圧電薄膜7bに対して下層の圧電薄膜7aの圧縮応力がより大きい場合には、振動板12,14は上向きに変形する。そのため、振動板−支持基板間のギャップ(g)は実質的に大きくなる。また、残留応力の製造上の意図しない不均一性によって、隣接振動板間の変形の大きさは異なり、その結果として隣接振動板間のギャップ(g)も実効的に大きくなる。当然のことながら、振動板12,14の先端程、残留応力による変形は大きい。ギャップ音響抵抗はギャップの幅の3乗に反比例して低下することが知られている。低周波感度の劣化を示す低周波ロールオフ周波数はギャップ抵抗に反比例して大きく、つまりギャップの3乗に比例して大きくなる。   In addition to the acoustic pressure, the diaphragms (beams) 12 and 14 are also deformed by an intentional or unintentional imbalance in manufacturing residual stresses of thin films such as piezoelectric thin films constituting the diaphragms (beams) 12 and 14. For example, when the compressive stress of the lower piezoelectric thin film 7a is larger than that of the upper piezoelectric thin film 7b, the diaphragms 12 and 14 are deformed upward. Therefore, the gap (g) between the diaphragm and the support substrate is substantially increased. Further, due to unintended non-uniformity in manufacturing residual stress, the magnitude of deformation between adjacent diaphragms differs, and as a result, the gap (g) between adjacent diaphragms also effectively increases. As a matter of course, the deformation due to the residual stress is larger at the tips of the diaphragms 12 and 14. It is known that the gap acoustic resistance decreases in inverse proportion to the cube of the gap width. The low-frequency roll-off frequency indicating the deterioration of the low-frequency sensitivity increases in inverse proportion to the gap resistance, that is, increases in proportion to the cube of the gap.

そこで、振動板12,14において信号を取り出す領域と変形の大きな領域が異なることを利用し、実施例では、図1,図2に示されるように、片持ち梁構造の支持端側の領域Iと支持端の対極にある開放端(先端)側の領域IIを設定し、支持端側の領域Iに対し変形の大きい領域IIの弾性係数(弾性率)を実質的に異なる値にすることによって、信号エネルギーとギャップを最適化するようにしている。後述の実施例に示されるように、信号を取り出す領域Iは相対的に曲がり易く(実効的弾性率を相対的に小さく)して音響信号による応力を大きく保ち、ギャップに悪影響を与える領域IIは湾曲しづらく(実効的弾性係数を相対的に大きく〕することにより、両者の最適化を図ることが可能となる。   Therefore, by utilizing the fact that the signal extraction region and the large deformation region are different in the diaphragms 12 and 14, in the embodiment, as shown in FIGS. 1 and 2, the region I on the support end side of the cantilever structure is used. By setting the region II on the open end (tip) side at the counter electrode and the support end, and making the elastic modulus (elastic modulus) of the region II with large deformation with respect to the region I on the support end side substantially different , Trying to optimize the signal energy and gap. As shown in the examples described later, the region I from which the signal is extracted is relatively easy to bend (the effective elastic modulus is relatively small) to keep the stress due to the acoustic signal large, and the region II that adversely affects the gap is By making it difficult to bend (relatively increasing the effective elastic modulus), it is possible to optimize both.

まず、図3の第1実施例では、振動板12,14に上述のように付加薄膜15を形成し、領域IIの膜厚を領域Iの膜厚より厚くすることにより、領域IIの実効的な弾性係数を増大させる。湾曲のバネ定数は、振動板12,14を構成する薄膜の2次モーメント、つまり膜厚の3乗に比例して増大する。仮に、領域Iと領域IIの膜厚が等しいとすると、弾性係数が膜厚比の3乗(同じ材料を仮定した場合)に比例して増大したことと等価である。第1実施例では、領域IIの上層圧電薄膜7bの上に、付加薄膜15を堆積加工することにより、上記弾性係数の増大を実現している。このようにして、製造時の残留応力によるギャップ(g)の広がりをなくすと共に、ギャップの音響抵抗を大きくすることができる。   First, in the first embodiment of FIG. 3, the additional thin film 15 is formed on the diaphragms 12 and 14 as described above, and the film thickness of the area II is made larger than the film thickness of the area I. Increase the elastic modulus. The spring constant of the curve increases in proportion to the second moment of the thin film constituting the diaphragms 12 and 14, that is, the cube of the film thickness. If the film thicknesses of the region I and the region II are equal, it is equivalent to the elastic modulus increasing in proportion to the cube of the film thickness ratio (assuming the same material). In the first embodiment, the elastic modulus is increased by depositing the additional thin film 15 on the upper piezoelectric thin film 7b of the region II. In this way, the gap (g) can be prevented from expanding due to residual stress during manufacturing, and the acoustic resistance of the gap can be increased.

図6には、ギャップ音響抵抗の増大を試算した結果が示されており、これは、図2に示すような三角形の片持ち梁構造の振動板14について、振動板14の長さに対する厚膜の領域IIの長さを変数にして、領域IIがない場合を基準(値1.0)とし、最大応力、共振周波数及び残留応力による変形がどのように変化するかについて、3次元シミュレーター等を使って計算したものである。なお、振動板14を構成する材料は同一とし、領域IIの膜厚を領域Iの膜厚の2倍の厚さにしている。領域IIの長さが長くなるにつれて期待通り残留応力による変形は減少する結果となった。但し、振動板14の支持端付近の最大応力は漸減し、共振周波数は最初は付加薄膜15の質量効果によって下がるが、領域IIの長さが長くなると厚膜化によって全体のバネ定数が大きくなり共振周波数が逆に高くなるとの特性を示す。   FIG. 6 shows a result of a trial calculation of an increase in the gap acoustic resistance, which is a thick film with respect to the length of the diaphragm 14 for the diaphragm 14 having a triangular cantilever structure as shown in FIG. Using the length of region II as a variable, the case where region II does not exist is set as a reference (value 1.0), and how the deformation due to the maximum stress, resonance frequency and residual stress changes is determined using a 3D simulator, etc. It is calculated by using. The material constituting the diaphragm 14 is the same, and the thickness of the region II is set to twice the thickness of the region I. As expected, as the length of region II increased, the deformation due to residual stress decreased as expected. However, the maximum stress near the support end of the diaphragm 14 gradually decreases, and the resonance frequency initially decreases due to the mass effect of the additional thin film 15. However, as the length of the region II increases, the overall spring constant increases due to the increase in thickness. In contrast, the resonance frequency is increased.

ところで、領域Iの膜厚を一定に保った状態で、出力電圧に相当する最大応力やギャップ音響抵抗に相当するギャップの変化を比較することは必ずしも適当でない。実用上は、共振周波数を一定に保ち(音声の場合は20kHz程度)、かつ信号雑音比を表す電極薄膜間の信号エネルギーとギャップ音響抵抗に相当するギャップの幅の3乗を規格化して比較するのが好ましい。共振数周波数は、領域Iと領域IIの膜厚比を一定に保ったまま、領域Iの膜厚を調整することによって領域IIの長さの比率に関わらず一定に保つことが可能である。その上で、ギャップ音響抵抗と信号雑音比の積を性能指数(規格化された音響抵抗)として計算し、領域IIの長さの比率に対してプロットしたものが図7に示されている。図6と同様に、領域IIがない場合を基準(値1)とした。この性能指数は領域IIの長さの割合が0.5を超えた辺りから増加し始め、0.7で略3となる。ギャップ音響抵抗をいたずらに大きくする必要はないので、実用上は領域IIの長さの比率を0.6〜0.8程度とすればよい。   By the way, it is not always appropriate to compare the maximum stress corresponding to the output voltage and the change in the gap corresponding to the gap acoustic resistance in a state where the film thickness of the region I is kept constant. In practice, the resonance frequency is kept constant (about 20 kHz in the case of speech), and the signal energy between the electrode thin films representing the signal-to-noise ratio and the third power of the gap width corresponding to the gap acoustic resistance are normalized and compared. Is preferred. The resonance frequency can be kept constant regardless of the ratio of the length of region II by adjusting the film thickness of region I while keeping the film thickness ratio of region I and region II constant. Then, the product of the gap acoustic resistance and the signal-to-noise ratio is calculated as a figure of merit (standardized acoustic resistance) and plotted against the ratio of the length of region II is shown in FIG. As in FIG. 6, the case where there was no region II was set as a reference (value 1). This figure of merit starts to increase when the ratio of the length of the region II exceeds 0.5, and becomes approximately 3 at 0.7. Since it is not necessary to unnecessarily increase the gap acoustic resistance, the length ratio of the region II may be practically set to about 0.6 to 0.8.

以上のように、第1実施例では、領域IIの膜厚を厚くすることによって、実効的な弾性係数を大きくし、残留応力によるギャップの広がり、ギャップ音響抵抗の低下を抑制することができ、低周波数でのロールオフ周波数の増大が抑えられ、信号雑音比を高く保つと共に、量産時のバラツキを抑制することも可能となる。   As described above, in the first embodiment, by increasing the thickness of the region II, the effective elastic modulus can be increased, and the spread of the gap due to the residual stress and the decrease in the gap acoustic resistance can be suppressed. An increase in the roll-off frequency at a low frequency can be suppressed, the signal to noise ratio can be kept high, and variations during mass production can be suppressed.

以下に、図2の三角形振動板タイプの設計例を示す。各支持端の長さは900μmで、圧電薄膜7a、7bとしてそれぞれ0.6μmで2層の窒化アルミニウム薄膜を用い、電極薄膜8にはそれぞれ厚さ50nmのモリブデン薄膜を用いる。付加薄膜15としては、膜厚1.2μmの窒化アルミニウムを用い、領域IIの長さをそれぞれ360μmとする。薄膜は全てスパッタリング法にて堆積させる。また、ギャップ(g)のパターン幅(残留応力がない場合のギャップの幅)を0.6μmとする。これにより、共振周波数は約20kHz、ロールオフ周波数は100Hz以下にすることができる。但し、残留応力の隣接振動板間のバラツキは20MPa程度に抑える必要があるが、これは現状の製造技術で十分達成可能である。なお、圧電薄膜7a,7bとして、窒化アルミニウムに代えてスカンジウムを添加した横圧電歪係数の大きな窒化スカンジウムアルミニウム(Al1−xScN)を用いれば、性能はさらに向上する。なお、電極薄膜8の材料は、モリブデン薄膜以外に、プラチナ(Pt)薄膜、チタン(Ti)膜膜、イリジウム(Ir)薄膜、ルテニウム(Ru)薄膜を用いることもできる。 The design example of the triangular diaphragm type shown in FIG. 2 is shown below. The length of each support end is 900 μm, each of the piezoelectric thin films 7a and 7b is 0.6 μm, two aluminum nitride thin films are used, and each electrode thin film 8 is a 50 nm thick molybdenum thin film. As the additional thin film 15, aluminum nitride having a film thickness of 1.2 μm is used, and the length of each region II is set to 360 μm. All thin films are deposited by sputtering. The pattern width of the gap (g) (the width of the gap when there is no residual stress) is 0.6 μm. Thereby, the resonance frequency can be about 20 kHz, and the roll-off frequency can be 100 Hz or less. However, the variation in residual stress between adjacent diaphragms needs to be suppressed to about 20 MPa, which can be sufficiently achieved by the current manufacturing technology. Note that the performance is further improved by using scandium aluminum nitride (Al 1-x Sc x N) having a large transverse piezoelectric strain coefficient in which scandium is added instead of aluminum nitride as the piezoelectric thin films 7a and 7b. The material of the electrode thin film 8 may be a platinum (Pt) thin film, a titanium (Ti) film, an iridium (Ir) thin film, or a ruthenium (Ru) thin film in addition to the molybdenum thin film.

図4に、第2実施例の構成が示されており、この第2実施例は、領域Iの振動板12に開孔を設けたものである。図4において、領域Iと領域IIを持つ振動板12は、付加薄膜15が設けられない図3の構成と同様であり、この振動板12の領域Iに空孔3まで貫通する多くの開孔16、或いは圧電薄膜や電極薄膜の一部を薄膜化した貫通しない孔を設けることによって、領域Iの弾性係数を領域IIよりも下げ、この領域IIの実効弾性係数を領域Iより高くする。なお、開孔16の直径を0.5μm程度と小さくすることにより、開孔16を介したギャップ音響抵抗の低下を軽微に抑えることができる。また、第1実施例の構成と併用することも可能であり、その場合には、領域Iと領域IIの実効的弾性係数の比をより大きくすることが可能となる。なお、この第2実施例の構成は、三角形振動板(14)の場合でも同様となる。   FIG. 4 shows the configuration of the second embodiment. In the second embodiment, the diaphragm 12 in the region I is provided with an opening. In FIG. 4, the diaphragm 12 having the region I and the region II is the same as the structure of FIG. 3 in which the additional thin film 15 is not provided, and many openings that penetrate to the hole 3 in the region I of the diaphragm 12. 16 or by providing a non-penetrating hole in which a part of the piezoelectric thin film or electrode thin film is thinned, the elastic modulus of region I is lowered from region II, and the effective elastic modulus of region II is made higher than region I. Note that, by reducing the diameter of the opening 16 to about 0.5 μm, the decrease in the gap acoustic resistance through the opening 16 can be suppressed to a slight level. Further, it can be used in combination with the configuration of the first embodiment, and in that case, the ratio of the effective elastic modulus between the region I and the region II can be increased. The configuration of the second embodiment is the same even in the case of the triangular diaphragm (14).

図5に、第3実施例の構成(この図5も概念図であり、厚さ方向の縮尺と横方向の縮尺は異なっている)が示されており、この第3実施例は、振動板の領域IIを高弾性係数の材料で構成したものである。図5において、振動板12,14の領域Iの構成は第1実施例と同様であるが、この領域Iの圧電薄膜7a,7bに例えば酸化亜鉛(ZnO)を用い、領域IIの振動板部分の材料として窒化シリコン、窒化アルミニウム或いは金属のモリブデンやタングステン等、酸化亜鉛に比べて2〜4倍の弾性係数(弾性率)を有する高弾性率薄膜18を使用することによって、領域IIの弾性係数を領域Iより大きくしている。なお、図5に示した振動板12,14の領域Iと領域IIの膜厚は等しいが、第1又は第2の実施例と併用することにより実効的弾性係数の比を大きくすることが可能である。また、領域IIとして、下層の電極薄膜8、下層の圧電薄膜7a及び高弾性率薄膜18を誘電体支持薄膜の上に堆積させたものを用いてもよい。   FIG. 5 shows the configuration of the third embodiment (this FIG. 5 is also a conceptual diagram, the scale in the thickness direction is different from the scale in the horizontal direction). The region II is composed of a material having a high elastic modulus. In FIG. 5, the structure of the region I of the diaphragms 12 and 14 is the same as that of the first embodiment. For example, zinc oxide (ZnO) is used for the piezoelectric thin films 7a and 7b in the region I, and the diaphragm part of the region II By using a high modulus thin film 18 having a modulus of elasticity (modulus of elasticity) 2 to 4 times that of zinc oxide, such as silicon nitride, aluminum nitride, or metal molybdenum or tungsten Is larger than region I. Although the thicknesses of the regions I and II of the diaphragms 12 and 14 shown in FIG. 5 are equal, the effective elastic modulus ratio can be increased by using the diaphragms 12 and 14 together with the first or second embodiment. It is. Further, as the region II, a material obtained by depositing the lower electrode thin film 8, the lower piezoelectric thin film 7a, and the high modulus thin film 18 on the dielectric support thin film may be used.

以上のように、実施例によれば、片持ち梁構造の圧電型MEMSマイクロフォン等において、各振動板間又は振動板−基板間のギャップ幅の残留応力による増大に伴う特性の劣化を解消し、高感度で信号雑音比を改善し、量産性に適した構造とすることができる。   As described above, according to the embodiment, in the piezoelectric MEMS microphone having a cantilever structure, the deterioration of characteristics due to the increase in the gap width between the diaphragms or between the diaphragm and the substrate due to the residual stress is eliminated, With high sensitivity, the signal to noise ratio can be improved, and a structure suitable for mass production can be obtained.

なお、実施例では、三角形振動板又は四角形振動板の片持ち梁構造の例を示したが、平面の外周形状が六角形や円形となる振動板を複数に分割した振動板を片持ち構造としたものに対しても、上記実施例を同様に適用することができる。   In the embodiment, an example of a cantilever structure of a triangular diaphragm or a quadrangular diaphragm has been shown. The above-described embodiment can be similarly applied to the above.

1…基板、 2,4,12,14…振動板、
3…空孔、 6…絶縁膜、
7a,7b…圧電薄膜、 8…電極薄膜、
9…配線電極、 15…付加薄膜、
16…開孔、 18…高弾性率薄膜、
g…ギャップ。
1 ... substrate, 2, 4, 12, 14 ... diaphragm,
3 ... hole, 6 ... insulating film,
7a, 7b ... piezoelectric thin film, 8 ... electrode thin film,
9 ... Wiring electrode, 15 ... Additional thin film,
16 ... opening, 18 ... high modulus thin film,
g ... Gap.

Claims (5)

圧電薄膜及びこの圧電薄膜を挟んで配置された一対の電極を含む振動板を備え、この振動板の一端が基板に支持されてなる圧電素子において、
上記振動板の開放端側の弾性係数を、該振動板の支持端側の弾性係数より大きくしたことを特徴とする圧電素子。
In a piezoelectric element comprising a diaphragm including a piezoelectric thin film and a pair of electrodes arranged with the piezoelectric thin film interposed therebetween, and one end of the diaphragm supported by a substrate,
A piezoelectric element characterized in that the elastic coefficient on the open end side of the diaphragm is larger than the elastic coefficient on the support end side of the diaphragm.
上記振動板の開放端側を上記支持端側より厚くすることにより、上記振動板の開放端側の弾性係数を大きくしたことを特徴とする請求項1記載の圧電素子。   2. The piezoelectric element according to claim 1, wherein the elastic coefficient on the open end side of the diaphragm is increased by making the open end side of the diaphragm thicker than the support end side. 上記振動板の支持端側に開孔を設けることにより、上記振動板の開放端側の弾性係数を大きくしたことを特徴とする請求項1又は2記載の圧電素子。   3. The piezoelectric element according to claim 1, wherein an elastic coefficient on the open end side of the diaphragm is increased by providing an opening on the support end side of the diaphragm. 上記振動板の開放端側を構成する材料の弾性係数を、上記支持端側を構成する材料の弾性係数より大きくすることにより、上記振動板の開放端側の弾性係数を大きくしたことを特徴とする請求項1乃至3のいずれかに記載の圧電素子。   The elastic coefficient of the material constituting the open end side of the diaphragm is made larger than the elastic coefficient of the material constituting the support end side, thereby increasing the elastic coefficient of the open end side of the diaphragm. The piezoelectric element according to any one of claims 1 to 3. 上記振動板は、音響圧力によって振動する振動板であることを特徴とする請求項1乃至4のいずれかに記載の圧電素子。

The piezoelectric element according to claim 1, wherein the diaphragm is a diaphragm that vibrates due to an acoustic pressure.

JP2017029541A 2017-02-21 2017-02-21 Piezoelectric element Active JP6894719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017029541A JP6894719B2 (en) 2017-02-21 2017-02-21 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017029541A JP6894719B2 (en) 2017-02-21 2017-02-21 Piezoelectric element

Publications (2)

Publication Number Publication Date
JP2018137297A true JP2018137297A (en) 2018-08-30
JP6894719B2 JP6894719B2 (en) 2021-06-30

Family

ID=63366170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017029541A Active JP6894719B2 (en) 2017-02-21 2017-02-21 Piezoelectric element

Country Status (1)

Country Link
JP (1) JP6894719B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587613A (en) * 2018-12-31 2019-04-05 瑞声声学科技(深圳)有限公司 Piezoelectric microphone
CN109803217A (en) * 2018-12-31 2019-05-24 瑞声声学科技(深圳)有限公司 Piezoelectric microphone
CN110475191A (en) * 2019-08-29 2019-11-19 武汉大学 A kind of low air damping MEMS piezoelectric microphone
JP2020136385A (en) * 2019-02-15 2020-08-31 新日本無線株式会社 Piezoelectric element
JP2020178109A (en) * 2019-04-23 2020-10-29 新日本無線株式会社 Piezoelectric element
IT201900007317A1 (en) * 2019-05-27 2020-11-27 St Microelectronics Srl MICROELECTROMECHANICAL PIEZOELECTRIC ACOUSTIC TRANSDUCER WITH IMPROVED CHARACTERISTICS AND RELATED MANUFACTURING PROCESS
CN112584289A (en) * 2020-11-30 2021-03-30 瑞声新能源发展(常州)有限公司科教城分公司 Piezoelectric microphone and manufacturing method thereof
JP2021061345A (en) * 2019-10-08 2021-04-15 新日本無線株式会社 Manufacturing method of piezoelectric element
WO2021131311A1 (en) * 2019-12-25 2021-07-01 株式会社デンソー Piezoelectric element, piezoelectric device, and method for manufacturing piezoelectric element
JPWO2021131528A1 (en) * 2019-12-25 2021-07-01
CN113141565A (en) * 2020-01-17 2021-07-20 深圳市韶音科技有限公司 Microphone device
WO2022007002A1 (en) * 2020-07-06 2022-01-13 瑞声声学科技(深圳)有限公司 Piezoelectric mems microphone
US11350219B2 (en) 2019-08-13 2022-05-31 Skyworks Solutions, Inc. Piezoelectric MEMS microphone
US11553280B2 (en) 2019-06-05 2023-01-10 Skyworks Global Pte. Ltd. Piezoelectric MEMS diaphragm microphone
US11605775B2 (en) 2019-08-22 2023-03-14 Murata Manufacturing Co., Ltd. Piezoelectric device
WO2023092489A1 (en) * 2021-11-26 2023-06-01 深圳市韶音科技有限公司 Vibration assembly and voice transmission device
WO2024087648A1 (en) * 2022-10-25 2024-05-02 华为技术有限公司 Piezoelectric accelerometer, piezoelectric sensor, and smart device
JP7484069B2 (en) 2020-05-26 2024-05-16 日清紡マイクロデバイス株式会社 Manufacturing method of piezoelectric element
JP7494011B2 (en) 2020-05-26 2024-06-03 日清紡マイクロデバイス株式会社 Manufacturing method of piezoelectric element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211748A (en) * 1998-01-20 1999-08-06 Matsushita Electric Ind Co Ltd Machine-electricity conversion element and its manufacture and acceleration sensor
JP2002029049A (en) * 2000-07-14 2002-01-29 Brother Ind Ltd Ink jet head and its manufacturing method
JP2010252509A (en) * 2009-04-15 2010-11-04 Seiko Epson Corp Piezoelectric generator
JP2011171335A (en) * 2010-02-16 2011-09-01 Seiko Epson Corp Method of manufacturing piezoelectric actuator, piezoelectric actuator, liquid ejecting head and liquid ejecting device
JP2012029079A (en) * 2010-07-23 2012-02-09 Nec Corp Oscillation device
JP2014077776A (en) * 2012-09-24 2014-05-01 Sekisui Chem Co Ltd Leakage detector
JP2014515214A (en) * 2011-03-31 2014-06-26 バクル−コーリング,インコーポレイテッド Acoustic transducer having gap control structure and method of manufacturing acoustic transducer
WO2015041152A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Oscillation device and manufacturing method therefore

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211748A (en) * 1998-01-20 1999-08-06 Matsushita Electric Ind Co Ltd Machine-electricity conversion element and its manufacture and acceleration sensor
JP2002029049A (en) * 2000-07-14 2002-01-29 Brother Ind Ltd Ink jet head and its manufacturing method
JP2010252509A (en) * 2009-04-15 2010-11-04 Seiko Epson Corp Piezoelectric generator
JP2011171335A (en) * 2010-02-16 2011-09-01 Seiko Epson Corp Method of manufacturing piezoelectric actuator, piezoelectric actuator, liquid ejecting head and liquid ejecting device
JP2012029079A (en) * 2010-07-23 2012-02-09 Nec Corp Oscillation device
JP2014515214A (en) * 2011-03-31 2014-06-26 バクル−コーリング,インコーポレイテッド Acoustic transducer having gap control structure and method of manufacturing acoustic transducer
JP2014077776A (en) * 2012-09-24 2014-05-01 Sekisui Chem Co Ltd Leakage detector
WO2015041152A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Oscillation device and manufacturing method therefore

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587613A (en) * 2018-12-31 2019-04-05 瑞声声学科技(深圳)有限公司 Piezoelectric microphone
CN109803217A (en) * 2018-12-31 2019-05-24 瑞声声学科技(深圳)有限公司 Piezoelectric microphone
JP7176678B2 (en) 2019-02-15 2022-11-22 日清紡マイクロデバイス株式会社 Piezoelectric element
JP2020136385A (en) * 2019-02-15 2020-08-31 新日本無線株式会社 Piezoelectric element
JP2020178109A (en) * 2019-04-23 2020-10-29 新日本無線株式会社 Piezoelectric element
EP3745743A1 (en) * 2019-05-27 2020-12-02 STMicroelectronics S.r.l. Piezoelectric microelectromechanical acoustic transducer having improved characteristics and corresponding manufacturing process
IT201900007317A1 (en) * 2019-05-27 2020-11-27 St Microelectronics Srl MICROELECTROMECHANICAL PIEZOELECTRIC ACOUSTIC TRANSDUCER WITH IMPROVED CHARACTERISTICS AND RELATED MANUFACTURING PROCESS
US11350218B2 (en) 2019-05-27 2022-05-31 Stmicroelectronics S.R.L. Piezoelectric microelectromechanical acoustic transducer having improved characteristics and corresponding manufacturing process
US11606646B2 (en) 2019-06-05 2023-03-14 Skyworks Solutions, Inc. Method of making a piezoelectric MEMS diaphragm microphone
US11553280B2 (en) 2019-06-05 2023-01-10 Skyworks Global Pte. Ltd. Piezoelectric MEMS diaphragm microphone
US11350219B2 (en) 2019-08-13 2022-05-31 Skyworks Solutions, Inc. Piezoelectric MEMS microphone
US11832057B2 (en) 2019-08-13 2023-11-28 Skyworks Solutions, Inc. Piezoelectric MEMS microphone
US11533567B2 (en) 2019-08-13 2022-12-20 Skyworks Solutions, Inc. Method of making a piezoelectric MEMS microphone
US11605775B2 (en) 2019-08-22 2023-03-14 Murata Manufacturing Co., Ltd. Piezoelectric device
CN110475191A (en) * 2019-08-29 2019-11-19 武汉大学 A kind of low air damping MEMS piezoelectric microphone
JP2021061345A (en) * 2019-10-08 2021-04-15 新日本無線株式会社 Manufacturing method of piezoelectric element
JP7384615B2 (en) 2019-10-08 2023-11-21 日清紡マイクロデバイス株式会社 Manufacturing method of piezoelectric element
JP2022167985A (en) * 2019-12-25 2022-11-04 株式会社デンソー Piezoelectric element
JP2022173466A (en) * 2019-12-25 2022-11-18 株式会社デンソー Piezoelectric element and piezoelectric device
JP7447958B2 (en) 2019-12-25 2024-03-12 株式会社デンソー Piezoelectric element, piezoelectric device
JP7156558B2 (en) 2019-12-25 2022-10-19 株式会社デンソー Piezoelectric element, piezoelectric device, and method for manufacturing piezoelectric element
WO2021131528A1 (en) * 2019-12-25 2021-07-01 株式会社デンソー Piezoelectric element, piezoelectric device and manufacturing method of piezoelectric element
TWI795701B (en) * 2019-12-25 2023-03-11 日商電裝股份有限公司 Piezoelectric element, piezoelectric device and method for manufacturing piezoelectric element
JPWO2021131528A1 (en) * 2019-12-25 2021-07-01
WO2021131311A1 (en) * 2019-12-25 2021-07-01 株式会社デンソー Piezoelectric element, piezoelectric device, and method for manufacturing piezoelectric element
JP7420178B2 (en) 2019-12-25 2024-01-23 株式会社デンソー Piezoelectric element
EP4082961A4 (en) * 2019-12-25 2023-10-25 Denso Corporation Piezoelectric element, piezoelectric device and manufacturing method of piezoelectric element
CN113141565A (en) * 2020-01-17 2021-07-20 深圳市韶音科技有限公司 Microphone device
JP7484069B2 (en) 2020-05-26 2024-05-16 日清紡マイクロデバイス株式会社 Manufacturing method of piezoelectric element
JP7494011B2 (en) 2020-05-26 2024-06-03 日清紡マイクロデバイス株式会社 Manufacturing method of piezoelectric element
WO2022007002A1 (en) * 2020-07-06 2022-01-13 瑞声声学科技(深圳)有限公司 Piezoelectric mems microphone
CN112584289A (en) * 2020-11-30 2021-03-30 瑞声新能源发展(常州)有限公司科教城分公司 Piezoelectric microphone and manufacturing method thereof
WO2023092489A1 (en) * 2021-11-26 2023-06-01 深圳市韶音科技有限公司 Vibration assembly and voice transmission device
WO2024087648A1 (en) * 2022-10-25 2024-05-02 华为技术有限公司 Piezoelectric accelerometer, piezoelectric sensor, and smart device

Also Published As

Publication number Publication date
JP6894719B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
JP6894719B2 (en) Piezoelectric element
US10993040B2 (en) Piezoelectric microphone
US8111871B2 (en) Microphone with pressure relief
CN110392331A (en) Piezo-electric acoustical MEMS transducer and its manufacturing method
CN104333838A (en) MEMS Device
CN110099345B (en) MEMS structure
US20180002161A1 (en) Mems device and process
Stoppel et al. Novel membrane-less two-way MEMS loudspeaker based on piezoelectric dual-concentric actuators
US20180002160A1 (en) Mems device and process
JP6908322B2 (en) Piezoelectric element
JP2007228345A (en) Capacitor microphone
JP4737535B2 (en) Condenser microphone
CN110113703B (en) Preparation method of MEMS structure
JP6819002B2 (en) Piezoelectric element
JP7349090B2 (en) Piezoelectric element
JP6787553B2 (en) Piezoelectric element
CN111885471B (en) Capacitive micro-electro-mechanical system microphone, microphone monomer and electronic equipment
KR101994583B1 (en) MEMS Piezoelectric Microphone
JP2018133384A (en) Piezoelectric element
JP2008022501A (en) Capacitor microphone and its manufacturing method
Pazhooh et al. Design and Simulation of a Novel High Sensitive MEMS Microphone Based On a Spring-Supported Circular Diaphragm
CN111885470A (en) Capacitive micro-electro-mechanical system microphone, microphone monomer and electronic equipment
CN114339557B (en) MEMS microphone chip, preparation method thereof and MEMS microphone
Bosetti et al. A Novel High-SNR Full Bandwidth Piezoelectric Mems Microphone Based on a Fully Clamped Aluminum Nitride Corrugated Membrane
WO2023221069A1 (en) Vibration sensor and microphone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210604

R150 Certificate of patent or registration of utility model

Ref document number: 6894719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150