JP6787553B2 - Piezoelectric element - Google Patents

Piezoelectric element Download PDF

Info

Publication number
JP6787553B2
JP6787553B2 JP2017024729A JP2017024729A JP6787553B2 JP 6787553 B2 JP6787553 B2 JP 6787553B2 JP 2017024729 A JP2017024729 A JP 2017024729A JP 2017024729 A JP2017024729 A JP 2017024729A JP 6787553 B2 JP6787553 B2 JP 6787553B2
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric element
film
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017024729A
Other languages
Japanese (ja)
Other versions
JP2018133647A (en
Inventor
王義 山崎
王義 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2017024729A priority Critical patent/JP6787553B2/en
Publication of JP2018133647A publication Critical patent/JP2018133647A/en
Application granted granted Critical
Publication of JP6787553B2 publication Critical patent/JP6787553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は圧電素子に関し、特に、高感度、低雑音の圧電素子に関するものである。 The present invention relates to a piezoelectric element, and more particularly to a piezoelectric element having high sensitivity and low noise.

近年、急速に需要が拡大しているスマートフォンには、小型、薄型で、組立のハンダリフロー工程の高温処理耐性を有するMEMS(Micro Electro Mechanical System)技術を用いたマイクロフォンが多く使われている。また、MEMSマイクロフォンに限らず、その他のMEMS素子が様々な分野で急速に普及してきている。 In recent years, smartphones, whose demand is rapidly expanding, are often used for microphones that are small and thin and use MEMS (Micro Electro Mechanical System) technology that is resistant to high temperature processing in the solder reflow process of assembly. Further, not only MEMS microphones but also other MEMS elements are rapidly becoming widespread in various fields.

この種のMEMS素子の多くは、音響圧力等による振動板の振動変位を対向する固定板との容量変化としてとらえ、電気信号に変換して出力する容量素子である。しかし容量素子は、振動板と固定板との間隙の空気の流動によって生じる音響抵抗のために、信号雑音比の改善が限界になりつつある。 Most of these types of MEMS elements are capacitive elements that capture the vibration displacement of the diaphragm due to acoustic pressure or the like as a capacitance change with the opposing fixed plate, convert it into an electric signal, and output it. However, the improvement of the signal-to-noise ratio of the capacitive element is becoming a limit due to the acoustic resistance caused by the flow of air in the gap between the diaphragm and the fixing plate.

そこで、圧電材料からなる薄膜(圧電膜)で構成される単一の振動板の歪みにより音響圧力等を電圧変化として取り出すことができる圧電素子が注目されている。 Therefore, a piezoelectric element capable of extracting acoustic pressure or the like as a voltage change due to distortion of a single diaphragm made of a thin film (piezoelectric film) made of a piezoelectric material has been attracting attention.

ところで圧電素子では、音響圧力等がない場合に圧電膜の残留応力や温度変動が不要な信号として出力され特性を劣化させることが知られている。そこで、圧電膜の一端を自由端とする片持ち梁構造を採用することによって残留応力を解放する技術が開示されている(例えば特許文献1等)。 By the way, it is known that in a piezoelectric element, when there is no acoustic pressure or the like, the residual stress and temperature fluctuation of the piezoelectric film are output as unnecessary signals to deteriorate the characteristics. Therefore, a technique for releasing residual stress by adopting a cantilever structure having one end of a piezoelectric film as a free end is disclosed (for example, Patent Document 1 and the like).

図6に、片持ち梁構造の圧電素子の断面図を示す。図6に示すように、支持基板となるシリコン基板1に絶縁膜2を介して多層構造の圧電膜3a、3bが固定され、圧電膜3aは上下から電極4aと電極4bにより、圧電膜3bは電極4bと電極4cによりそれぞれ挟み込まれた構造となっている。圧電膜および電極はそれぞれ長方形の平面形状を有しており、一端がシリコン基板1に固定され、他端が自由端となっている。また電極4aと電極4cは一方の配線電極5aに接続し、電極4bは別の配線金属5bに接続されている。 FIG. 6 shows a cross-sectional view of the piezoelectric element having a cantilever structure. As shown in FIG. 6, the piezoelectric films 3a and 3b having a multilayer structure are fixed to the silicon substrate 1 serving as the support substrate via the insulating film 2, and the piezoelectric film 3a is formed by the electrodes 4a and 4b from above and below, and the piezoelectric film 3b is formed. The structure is sandwiched between the electrodes 4b and 4c, respectively. The piezoelectric film and the electrode each have a rectangular planar shape, one end of which is fixed to the silicon substrate 1 and the other end of which is a free end. Further, the electrode 4a and the electrode 4c are connected to one wiring electrode 5a, and the electrode 4b is connected to another wiring metal 5b.

このような圧電素子では、音響圧力等を受けて圧電膜3aが歪むとその内部に分極が起こり、電極4aに接続する配線金属5aと、電極4bに接続する配線金属5bから電圧信号を取り出すことが可能となる。同様に圧電膜3bが歪むとその内部に分極が起こり、電極4cに接続する配線金属5aと、電極4bに接続する配線金属5bから電圧信号を取り出すことが可能となる。 In such a piezoelectric element, when the piezoelectric film 3a is distorted due to acoustic pressure or the like, polarization occurs inside the piezoelectric film 3a, and a voltage signal is extracted from the wiring metal 5a connected to the electrode 4a and the wiring metal 5b connected to the electrode 4b. Is possible. Similarly, when the piezoelectric film 3b is distorted, polarization occurs inside the piezoelectric film 3b, and it becomes possible to extract a voltage signal from the wiring metal 5a connected to the electrode 4c and the wiring metal 5b connected to the electrode 4b.

ところで、この種の圧電型MEMSマイクロフォンでは、音響圧力に対する出力電圧の比、即ち感度が、容量型MEMSマイクロフォンに比べて低いことが知られている。一般的に前者の感度は、後者の感度のおよそ10分の1以下に留まる。 By the way, it is known that the ratio of the output voltage to the acoustic pressure, that is, the sensitivity of this type of piezoelectric MEMS microphone is lower than that of the capacitive MEMS microphone. In general, the sensitivity of the former is about one tenth or less of that of the latter.

そのため、増幅回路が必要となる。しかしながら、一般的なCMOS半導体装置の製造方法に従い製造される増幅回路を備える構成とすると、信号雑音比は増幅回路に制限されてしまう。また微細化に優れたCMOS技術により圧電素子を形成すると、微細化を必要としない圧電素子が占める面積が大きく、製造コストの増大を招いてしまう。そのため、圧電素子の感度向上が望まれている。 Therefore, an amplifier circuit is required. However, if the configuration includes an amplifier circuit manufactured according to a general method for manufacturing a CMOS semiconductor device, the signal-to-noise ratio is limited to the amplifier circuit. Further, when the piezoelectric element is formed by the CMOS technology having excellent miniaturization, the area occupied by the piezoelectric element that does not require miniaturization is large, which leads to an increase in manufacturing cost. Therefore, it is desired to improve the sensitivity of the piezoelectric element.

特許第5707323号公報Japanese Patent No. 5707323 特表2014−515214号公報Japanese Patent Publication No. 2014-515214

従来の圧電型MEMS素子は、容量型MEMS素子の感度と比較して感度が低いという問題点があった。本発明はこのような問題点を解消し、感度の高い圧電素子を提供することを目的とする。 The conventional piezoelectric MEMS element has a problem that the sensitivity is lower than that of the capacitive MEMS element. An object of the present invention is to solve such a problem and to provide a piezoelectric element having high sensitivity.

上記目的を達成するため、本願請求項1に係る発明は、支持基板に周囲が固定された圧電膜と、該圧電膜を挟んで配置する一対の電極とを備えた圧電素子において、前記圧電膜は、少なくとも第1の圧電膜と第2の圧電膜を含む積層構造からなることと、前記第1の圧電膜を挟んで配置する前記一対の電極を複数組備え、少なくとも第1の圧電素子および第2の圧電素子が形成されていることと、前記第2の圧電膜を挟んで配置する前記一対の電極を複数組備え、少なくとも第3の圧電素子および第4の圧電素子が形成されていることと、前記支持基板に固定された圧電膜の固定部側に、前記第1の圧電素子および前記第3の圧電素子を配置し、前記圧電膜の中心側に、前記第2の圧電素子および前記第4の圧電素子を配置していることと、前記第1の圧電素子と前記第3の圧電素子が並列に接続し、前記第2の圧電素子と前記第4の圧電素子が並列に接続し、前記第1の圧電素子と前記第2の圧電素子が直列に接続し、前記第3の圧電素子と前記第4の圧電素子が直列に接続していることと、前記第1の圧電素子と前記第3の圧電素子とが上下対称に積層形成され、前記第2の圧電素子と前記第4の圧電素子とが上下対称に積層形成されていることを特徴とする。 In order to achieve the above object, the invention according to claim 1 of the present application is a piezoelectric element provided with a piezoelectric film whose circumference is fixed to a support substrate and a pair of electrodes arranged so as to sandwich the piezoelectric film. Is composed of a laminated structure including at least a first piezoelectric film and a second piezoelectric film, and includes a plurality of sets of the pair of electrodes arranged with the first piezoelectric film interposed therebetween, and at least the first piezoelectric element and A second piezoelectric element is formed, and a plurality of sets of the pair of electrodes arranged with the second piezoelectric film interposed therebetween are provided, and at least a third piezoelectric element and a fourth piezoelectric element are formed. In addition, the first piezoelectric element and the third piezoelectric element are arranged on the fixed portion side of the piezoelectric film fixed to the support substrate, and the second piezoelectric element and the second piezoelectric element and the third piezoelectric element are arranged on the center side of the piezoelectric film. The fourth piezoelectric element is arranged, the first piezoelectric element and the third piezoelectric element are connected in parallel, and the second piezoelectric element and the fourth piezoelectric element are connected in parallel. and, connecting the before and Symbol first piezoelectric element the second piezoelectric element in series, and that said third piezoelectric element fourth piezoelectric elements are connected in series, said first piezoelectric The element and the third piezoelectric element are vertically symmetrically laminated, and the second piezoelectric element and the fourth piezoelectric element are vertically symmetrically laminated.

本願請求項2に係る発明は、請求項1記載の圧電素子において、前記第1乃至第4の圧電素子からなる圧電素子の組が、前記圧電膜の中心を通る区画線によって区画される複数の領域に、それぞれ配置していることを特徴とする。 According to the second aspect of the present application, in the piezoelectric element according to the first aspect, a plurality of sets of piezoelectric elements including the first to fourth piezoelectric elements are partitioned by a dividing line passing through the center of the piezoelectric film. It is characterized in that it is arranged in each area.

本願請求項3に係る発明は、請求項1又は2いずれか記載の圧電素子において、前記並列に接続した圧電素子の組は、前記第1の圧電膜あるいは前記第2の圧電膜の表面、裏面あるいは膜間に配置された前記圧電素子の電極から連続する延長部により接続していることを特徴とする。 The invention according to claim 3 of the present application is the piezoelectric element according to any one of claims 1 or 2, wherein the set of piezoelectric elements connected in parallel is the front surface or the back surface of the first piezoelectric film or the second piezoelectric film. Alternatively, it is characterized in that it is connected by a continuous extension portion from the electrode of the piezoelectric element arranged between the films.

本願請求項4に係る発明は、請求項1乃至3いずれか記載の圧電素子において、振動により前記圧電膜が湾曲変位した場合に、該変位の変曲点により区画される領域毎に、少なくとも前記上下対称に積層形成された前記第1の圧電素子および前記第3の圧電素子からなる圧電素子の組と、前記第2の圧電素子および前記第4の圧電素子からなる圧電素子の組のいずれかが配置されていることを特徴とする。 The invention according to claim 4 of the present application is the piezoelectric element according to any one of claims 1 to 3, wherein when the piezoelectric film is curved and displaced due to vibration, at least for each region partitioned by the bending point of the displacement. Any one of a set of piezoelectric elements composed of the first piezoelectric element and the third piezoelectric element formed vertically symmetrically, and a set of piezoelectric elements composed of the second piezoelectric element and the fourth piezoelectric element. Is arranged.

本願請求項5に係る発明は、請求項1乃至4いずれか記載の圧電素子において、前記圧電膜は、音響圧力によって振動する膜であることを特徴とする。 The invention according to claim 5 of the present application is characterized in that, in the piezoelectric element according to any one of claims 1 to 4, the piezoelectric film is a film that vibrates due to acoustic pressure.

本発明の圧電素子は、第1の圧電膜に形成する圧電素子と第2の圧電膜に形成する圧電素子とを上下対称に重なり合うように配置することで、重なり合う圧電膜の残留応力や温度変動に起因して発生する圧電電圧を相互に相殺して圧電膜の残留応力の影響を低減した上で、音響圧力等によって生じる第1の圧電膜による圧電電圧と第2の圧電膜による圧電電圧を重畳させることで出力信号のレベルを上げることを可能としている。 In the piezoelectric element of the present invention, the piezoelectric element formed on the first piezoelectric film and the piezoelectric element formed on the second piezoelectric film are arranged so as to overlap vertically symmetrically, so that the residual stress and temperature fluctuation of the overlapping piezoelectric films After canceling each other out the piezoelectric voltage generated due to the above to reduce the influence of the residual stress of the piezoelectric film, the piezoelectric voltage generated by the first piezoelectric film and the piezoelectric voltage generated by the second piezoelectric film are combined. It is possible to raise the level of the output signal by superimposing it.

特に本発明では、複数の圧電素子を接続した圧電素子の組を複数接続する構成とすることで、圧電電圧が重畳し、出力信号のレベルを上げることを可能としている。 In particular, in the present invention, the piezoelectric voltage is superimposed and the level of the output signal can be raised by connecting a plurality of sets of piezoelectric elements in which a plurality of piezoelectric elements are connected.

また本発明によれば、圧電膜が振動により湾曲変形する際、その変位の変曲点により区画される領域毎に第1の圧電膜に形成する圧電素子と第2の圧電膜に形成する圧電素子との組を配置することで、区画された領域毎に、圧電膜の延伸方向で生じる引張応力領域と圧縮応力領域とでそれぞれ圧電素子を分離し、それぞれの領域で発生する電圧信号を重畳するように接続し、効率的に電気エネルギーに変換して取り出すことが可能となる。 Further, according to the present invention, when the piezoelectric film is curved and deformed by vibration, the piezoelectric element formed on the first piezoelectric film and the piezoelectric formed on the second piezoelectric film are formed for each region defined by the bending point of the displacement. By arranging the pair with the element, the piezoelectric element is separated into the tensile stress region and the compressive stress region generated in the stretching direction of the piezoelectric film for each partitioned region, and the voltage signals generated in each region are superimposed. It is possible to connect them so that they can be efficiently converted into electrical energy and taken out.

本発明によれば、圧電素子間の接続は圧電素子の電極を延長して行うことができ、圧電膜の変位に影響を与えるスルーホール等の接続手段を必要としない点でも、効率的に電気エネルギーに変換できるという利点がある。 According to the present invention, the connection between the piezoelectric elements can be performed by extending the electrodes of the piezoelectric elements, and electricity is efficiently applied in that a connecting means such as a through hole that affects the displacement of the piezoelectric film is not required. It has the advantage of being able to be converted into energy.

特に、本発明の圧電素子の圧電膜を音響圧力によって振動する厚さに設定し、音響トランスデューサとして使用した場合、高感度で信号雑音比の改善が期待される。 In particular, when the piezoelectric film of the piezoelectric element of the present invention is set to a thickness that vibrates due to acoustic pressure and is used as an acoustic transducer, high sensitivity and improvement in the signal-to-noise ratio are expected.

本発明の第1の実施例の圧電素子の電極の平面図である。It is a top view of the electrode of the piezoelectric element of the 1st Example of this invention. 本発明の第1の実施例の圧電素子の一部断面図である。It is a partial cross-sectional view of the piezoelectric element of the 1st Example of this invention. 本発明の第1の実施例の説明図である。It is explanatory drawing of 1st Example of this invention. 本発明の第1の実施例の説明図である。It is explanatory drawing of 1st Example of this invention. 本発明の第2の実施例の圧電素子の一部断面図である。It is a partial cross-sectional view of the piezoelectric element of the 2nd Example of this invention. 従来の圧電素子の説明図である。It is explanatory drawing of the conventional piezoelectric element.

本発明の圧電素子は、支持基板に圧電膜の周囲(振動板の外周部分)を固定した構造としている。圧電膜は少なくとも2層の圧電膜を含む積層構造とする。それぞれの圧電膜には、その一部を挟み込むように電極を配置した圧電素子が複数個形成され、各圧電素子を並列あるいは直列に接続する構成としている。特に本発明では、各圧電素子は上下対称に重なり合うように配置している。本発明は上記の構成とすることで、上下対称に重なり合う圧電素子の出力により残留応力や温度変動により生じる圧電電圧が相互に相殺され、信号雑音比の向上を図っている。また、上下対称に重なり合う圧電素子の組を所定の位置に配置することにより、信号を効率的に取り出すことができる構成としている。さらに本発明では、圧電素子の組を直列に接続する構成としている。以下、本発明の圧電素子を音響トランスデューサとして構成する場合を例にとり詳細に説明する。 The piezoelectric element of the present invention has a structure in which the periphery of the piezoelectric film (the outer peripheral portion of the diaphragm) is fixed to the support substrate. The piezoelectric film has a laminated structure including at least two layers of piezoelectric films. Each piezoelectric film is formed with a plurality of piezoelectric elements in which electrodes are arranged so as to sandwich a part thereof, and each piezoelectric element is connected in parallel or in series. In particular, in the present invention, the piezoelectric elements are arranged so as to be vertically symmetrically overlapped with each other. By adopting the above configuration, the present invention aims to improve the signal-to-noise ratio by mutually canceling the piezoelectric voltage generated by the residual stress and the temperature fluctuation due to the output of the piezoelectric elements overlapping vertically. Further, by arranging a set of piezoelectric elements that are vertically symmetrically overlapped at a predetermined position, a signal can be efficiently extracted. Further, in the present invention, a set of piezoelectric elements is connected in series. Hereinafter, a case where the piezoelectric element of the present invention is configured as an acoustic transducer will be described in detail as an example.

本発明の第1の実施例について説明する。図1は第1の実施例の圧電素子の電極の平面図を、図2は図1に示す圧電素子の電極が配置される圧電素子のA面およびB面における断面図をそれぞれ模式的に示している。図1(a)に示すように、下層電極は複数の電極4a1〜4a4からなり、それぞれ隣接する2つの電極が接続した構造となっている。たとえば電極4a1は、2つの圧電素子を構成する2つの電極部分と、この電極部分を接続するための延長部とが一体となった構造となっている。同様に、図1(b)に示すように、中間層電極も複数の電極4b1〜4b5からなり、電極4b1〜4b4は隣接する2つの電極が延長部を介して接続した構造であり、電極4b5は独立した構造となっている。上層電極4c1〜4c4は、下層電極と同一の形状としている。 A first embodiment of the present invention will be described. FIG. 1 schematically shows a plan view of the electrodes of the piezoelectric element of the first embodiment, and FIG. 2 schematically shows a cross-sectional view of the piezoelectric elements A and B on which the electrodes of the piezoelectric element shown in FIG. 1 are arranged. ing. As shown in FIG. 1A, the lower layer electrode is composed of a plurality of electrodes 4a1 to 4a4, and has a structure in which two adjacent electrodes are connected to each other. For example, the electrode 4a1 has a structure in which two electrode portions constituting the two piezoelectric elements and an extension portion for connecting the electrode portions are integrated. Similarly, as shown in FIG. 1B, the intermediate layer electrode is also composed of a plurality of electrodes 4b1 to 4b5, and the electrodes 4b1 to 4b4 have a structure in which two adjacent electrodes are connected via an extension portion, and the electrodes 4b5. Has an independent structure. The upper layer electrodes 4c1 to 4c4 have the same shape as the lower layer electrodes.

図2に、圧電膜を挟んで図1に示す圧電素子の下層電極、中間層電極および上層電極を積層したA面およびB面の断面図を示す。図2に示すように、支持基板となるシリコン基板1上に、シリコン酸化膜(SiO2)からなる絶縁膜2を介して、圧電膜3a、3bが積層形成している。圧電膜3a、3bは、絶縁膜2を介してシリコン基板1に周囲が固定されており、例えば円形の振動板を構成している。圧電膜は、例えば窒化アルミニウム(AlN)を用いることができ、圧電性を示す結晶配向方向は、積層形成されたそれぞれの圧電薄膜で同一方向となるように形成している。なお、中央部にはベント穴を形成している。 FIG. 2 shows a cross-sectional view of a plane A and a plane B in which a lower layer electrode, an intermediate layer electrode, and an upper layer electrode of the piezoelectric element shown in FIG. 1 are laminated with a piezoelectric film interposed therebetween. As shown in FIG. 2, piezoelectric films 3a and 3b are laminated and formed on a silicon substrate 1 serving as a support substrate via an insulating film 2 made of a silicon oxide film (SiO 2 ). The periphery of the piezoelectric films 3a and 3b is fixed to the silicon substrate 1 via the insulating film 2, and constitutes, for example, a circular diaphragm. As the piezoelectric film, for example, aluminum nitride (AlN) can be used, and the crystal orientation directions exhibiting piezoelectricity are formed so as to be the same direction in each of the piezoelectric thin films formed in a laminated manner. A vent hole is formed in the central portion.

本実施例の圧電素子の構造について詳細に説明すると、圧電膜3aの裏面側に下層電極となる電極4a1、電極4a2、電極4a3、電極4a4が形成されている。また圧電膜3aの上面側であり圧電膜3bの下面側(膜間に相当)には、中間層電極となる電極4b1、電極4b2、電極4b3、電極4b4、電極4b5が形成されており、電極4b1は配線電極5aに、電極4b5は配線電極5bにそれぞれ接続している。さらに圧電膜3bの上面側には、上層電極となる電極4c1、電極4c2、電極4c3、電極4c4が形成されている。これらの電極は、図1(a)(b)に示すように、円形に配置されている。電極は、モリブデン(Mo)、プラチナ(Pt)、チタン(Ti)、イリジウム(Ir)、ルテニウム(Ru)等の金属薄膜で形成することができる。 Explaining the structure of the piezoelectric element of this embodiment in detail, electrodes 4a1, electrodes 4a2, electrodes 4a3, and electrodes 4a4, which are lower layer electrodes, are formed on the back surface side of the piezoelectric film 3a. Further, electrodes 4b1, electrodes 4b2, electrodes 4b3, electrodes 4b4, and electrodes 4b5, which are intermediate layer electrodes, are formed on the upper surface side of the piezoelectric film 3a and the lower surface side (corresponding to the space between the films) of the piezoelectric film 3b. 4b1 is connected to the wiring electrode 5a, and the electrode 4b5 is connected to the wiring electrode 5b. Further, electrodes 4c1, electrodes 4c2, electrodes 4c3, and electrodes 4c4, which are upper layer electrodes, are formed on the upper surface side of the piezoelectric film 3b. These electrodes are arranged in a circle as shown in FIGS. 1A and 1B. The electrode can be formed of a metal thin film such as molybdenum (Mo), platinum (Pt), titanium (Ti), iridium (Ir), and ruthenium (Ru).

このように構成すると、図2に断面図を示すように、電極4a1、圧電膜3a(第1の圧電膜に相当)および電極4b1が重なり合う領域で圧電素子C1(第1の圧電素子に相当)が形成される。同様に、電極4a1、圧電膜3aおよび電極4b2が重なり合う領域で圧電素子C2(第2の圧電素子に相当)、電極4c1、圧電膜3b(第2の圧電膜に相当)および電極4b1が重なり合う領域で圧電素子C3(第3の圧電素子に相当)が、電極4c1、圧電膜3bおよび電極4b2が重なり合う領域で圧電素子C4(第4の圧電素子に相当)が形成される。 With this configuration, as shown in the cross-sectional view in FIG. 2, the piezoelectric element C1 (corresponding to the first piezoelectric element) in the region where the electrode 4a1, the piezoelectric film 3a (corresponding to the first piezoelectric film) and the electrode 4b1 overlap each other. Is formed. Similarly, in the region where the electrode 4a1, the piezoelectric film 3a and the electrode 4b2 overlap, the piezoelectric element C2 (corresponding to the second piezoelectric element), the electrode 4c1, the piezoelectric film 3b (corresponding to the second piezoelectric film) and the region where the electrode 4b1 overlap. In the piezoelectric element C3 (corresponding to the third piezoelectric element), the piezoelectric element C4 (corresponding to the fourth piezoelectric element) is formed in the region where the electrode 4c1, the piezoelectric film 3b and the electrode 4b2 overlap.

同様に、電極4a2、圧電膜3aおよび電極4b2が重なり合う領域で圧電素子C5(図2の圧電素子C1に相当)が形成され、電極4a2、圧電膜3aおよび電極4b3が重なり合う領域で圧電素子C6(同様に圧電素子C2に相当)、電極4c2、圧電膜3bおよび電極4b2が重なり合う領域で圧電素子C7(圧電素子C3に相当)が、電極4c2、圧電膜3bおよび電極4b3が重なり合う領域で圧電素子C8(圧電素子C4に相当)が形成される。 Similarly, the piezoelectric element C5 (corresponding to the piezoelectric element C1 in FIG. 2) is formed in the region where the electrodes 4a2, the piezoelectric film 3a and the electrode 4b2 overlap, and the piezoelectric element C6 (corresponds to the piezoelectric element C1 in FIG. 2) is formed in the region where the electrodes 4a2, the piezoelectric film 3a and the electrode 4b3 overlap. Similarly, the piezoelectric element C7 (corresponding to the piezoelectric element C3) is in the region where the piezoelectric element C2), the electrode 4c2, the piezoelectric film 3b and the electrode 4b2 overlap, and the piezoelectric element C8 is in the region where the electrode 4c2, the piezoelectric film 3b and the electrode 4b3 overlap. (Corresponding to the piezoelectric element C4) is formed.

また、電極4a3、圧電膜3aおよび電極4b3が重なり合う領域で圧電素子C9(図2の圧電素子C1に相当)が形成され、電極4a3、圧電膜3aおよび電極4b4が重なり合う領域で圧電素子C10(圧電素子C2に相当)、電極4c3、圧電膜3bおよび電極4b3が重なり合う領域で圧電素子C11(圧電素子C3に相当)が、電極4c3、圧電膜3bおよび電極4b4が重なり合う領域で圧電素子C12(圧電素子C4に相当)が形成される。 Further, the piezoelectric element C9 (corresponding to the piezoelectric element C1 in FIG. 2) is formed in the region where the electrodes 4a3, the piezoelectric film 3a and the electrode 4b3 overlap, and the piezoelectric element C10 (piezoelectric) is formed in the region where the electrodes 4a3, the piezoelectric film 3a and the electrode 4b4 overlap. Piezoelectric element C11 (corresponding to piezoelectric element C3) in the region where the element C2), electrode 4c3, piezoelectric film 3b and electrode 4b3 overlap, and piezoelectric element C12 (piezoelectric element) in the region where the electrode 4c3, piezoelectric film 3b and electrode 4b4 overlap. Corresponds to C4) is formed.

さらに、電極4a4、圧電膜3aおよび電極4b4が重なり合う領域で圧電素子C13(図2の圧電素子C1に相当)が形成され、電極4a4、圧電膜3aおよび電極4b5が重なり合う領域で圧電素子C14(圧電素子C2に相当)、電極4c4、圧電膜3bおよび電極4b4が重なり合う領域で圧電素子C15(圧電素子C3に相当)が、電極4c4、圧電膜3bおよび電極4b5が重なり合う領域で圧電素子C16(圧電素子C4に相当)が形成される。 Further, the piezoelectric element C13 (corresponding to the piezoelectric element C1 in FIG. 2) is formed in the region where the electrodes 4a4, the piezoelectric film 3a and the electrode 4b4 overlap, and the piezoelectric element C14 (piezoelectric) is formed in the region where the electrodes 4a4, the piezoelectric film 3a and the electrode 4b5 overlap. Piezoelectric element C15 (corresponding to piezoelectric element C3) in the region where the element C2), electrode 4c4, piezoelectric film 3b and electrode 4b4 overlap, and piezoelectric element C16 (piezoelectric element C16) in the region where the electrode 4c4, piezoelectric film 3b and electrode 4b5 overlap. Corresponds to C4) is formed.

ここで、例えば第1の圧電素子C1と第2の圧電素子C2は、圧電素子を構成する電極4a1を共通に使用することで対向する電極(それぞれ電極4b1、電極4b2)と重なり合っていない電極4a1の領域(延長部に相当)によって接続している。同様に第3の圧電素子C3と第4の圧電素子C4は、圧電素子を構成する電極4c1を共通に使用することで、対向する電極(それぞれ電極4b1、電極4b2)と重なり合っていない電極4b1の領域(延長部に相当)によって接続している。このような接続とすることで、圧電膜内にスルーホール等の圧電素子の変位に影響を与える接続手段を形成する必要がなくなる。 Here, for example, the first piezoelectric element C1 and the second piezoelectric element C2 use the electrodes 4a1 constituting the piezoelectric element in common, so that the electrodes 4a1 do not overlap with the opposing electrodes (electrodes 4b1 and electrodes 4b2, respectively). It is connected by the area (corresponding to the extension). Similarly, the third piezoelectric element C3 and the fourth piezoelectric element C4 commonly use the electrodes 4c1 constituting the piezoelectric element, so that the electrodes 4b1 do not overlap with the opposing electrodes (electrodes 4b1 and electrodes 4b2, respectively). It is connected by an area (corresponding to an extension). With such a connection, it is not necessary to form a connecting means that affects the displacement of the piezoelectric element such as a through hole in the piezoelectric film.

その結果、第1の圧電素子C1と第2の圧電素子C2の直列接続と、第3の圧電素子C3と第4の圧電素子C4の直列接続とが並列接続する構成となる。本実施例では、この第1乃至第4の圧電素子に相当する圧電素子の組が4組直列に接続した構成となり、配線電極5aと配線金属5bとの間に、これら圧電素子C1〜C16が接続した構成となる。具体的には、図3に示す構成となる。図3において、第1の圧電素子C1、第3の圧電素子C3が圧電膜の外周側、即ち支持基板に固定されている固定部側の圧電膜上に配置され、第2の圧電素子C2、第4の圧電素子C4が圧電膜の中央側、即ち第1の圧電素子C1および第3の圧電素子C3が形成される領域と圧電膜の中心との間の圧電膜上に配置される。同様に、圧電素子C5、C7、C9、C11、C13およびC15が圧電膜の固定部側に配置され、圧電素子C6、C8、C10、C12、C14、C16が圧電膜の中心側に配置される。 As a result, the series connection of the first piezoelectric element C1 and the second piezoelectric element C2 and the series connection of the third piezoelectric element C3 and the fourth piezoelectric element C4 are connected in parallel. In this embodiment, four sets of piezoelectric elements corresponding to the first to fourth piezoelectric elements are connected in series, and these piezoelectric elements C1 to C16 are inserted between the wiring electrode 5a and the wiring metal 5b. It becomes a connected configuration. Specifically, it has the configuration shown in FIG. In FIG. 3, the first piezoelectric element C1 and the third piezoelectric element C3 are arranged on the outer peripheral side of the piezoelectric film, that is, the piezoelectric film on the fixed portion side fixed to the support substrate, and the second piezoelectric element C2, The fourth piezoelectric element C4 is arranged on the central side of the piezoelectric film, that is, on the piezoelectric film between the region where the first piezoelectric element C1 and the third piezoelectric element C3 are formed and the center of the piezoelectric film. Similarly, the piezoelectric elements C5, C7, C9, C11, C13 and C15 are arranged on the fixed portion side of the piezoelectric film, and the piezoelectric elements C6, C8, C10, C12, C14 and C16 are arranged on the center side of the piezoelectric film. ..

また図2から明らかなように、第1の圧電素子C1と第3の圧電素子C3、第2の圧電素子C2と第4の圧電素子C4は、少なくとも各圧電素子を形成するよう領域において、電極4b1、電極4b2の厚さ方向の中心を通る面に対し、上下対称となっている。 Further, as is clear from FIG. 2, the first piezoelectric element C1 and the third piezoelectric element C3, and the second piezoelectric element C2 and the fourth piezoelectric element C4 are electrodes in at least a region so as to form each piezoelectric element. It is vertically symmetrical with respect to the surface passing through the center of the 4b1 and the electrode 4b2 in the thickness direction.

本発明の圧電素子を音響トランスデューサとして構成する場合、シリコン基板1に形成された空孔6から音響圧力が加わる。音響圧力を受けた圧電膜は、上方に湾曲変位する。その結果、圧電膜を構成する窒化アルミニウムに引張応力と圧縮応力が発生することになる。 When the piezoelectric element of the present invention is configured as an acoustic transducer, acoustic pressure is applied from the pores 6 formed in the silicon substrate 1. The piezoelectric film that receives the acoustic pressure is curved and displaced upward. As a result, tensile stress and compressive stress are generated in the aluminum nitride constituting the piezoelectric film.

図4は、図2で説明した領域の圧電素子に音響圧力信号が印加され、圧電膜が上方に変位した場合の一例を示している。図4に示すように圧電膜に引張応力と圧縮応力が発生し、変位の変曲点によって圧電膜の応力の向きは2つの領域に分けられる。具体的には、円形の圧電膜が絶縁膜2を介してシリコン基板1に固定されている固定部近傍の外周部では、圧電膜3aに引張応力が発生し、圧電膜3bには圧縮応力が発生する。一方、それより内側の中央部では、圧電膜3aに圧縮応力が発生し、圧電膜3bには引張応力が発生する。このように変位の変曲点によって応力の向きが異なる2つの領域に分けられる。 FIG. 4 shows an example in which an acoustic pressure signal is applied to the piezoelectric element in the region described in FIG. 2 and the piezoelectric film is displaced upward. As shown in FIG. 4, tensile stress and compressive stress are generated in the piezoelectric film, and the stress direction of the piezoelectric film is divided into two regions depending on the inflection point of displacement. Specifically, a tensile stress is generated in the piezoelectric film 3a and a compressive stress is generated in the piezoelectric film 3b at the outer peripheral portion near the fixed portion where the circular piezoelectric film is fixed to the silicon substrate 1 via the insulating film 2. Occur. On the other hand, in the central portion inside the piezoelectric film 3a, a compressive stress is generated, and a tensile stress is generated in the piezoelectric film 3b. In this way, it is divided into two regions where the stress direction differs depending on the inflection point of displacement.

ところで、本実施例の圧電素子は、図2に示すように、圧電素子C1と圧電素子C2の直列接続と圧電素子C3と圧電素子C4の直列接続とが、並列に接続しており、さらに上下対称な構造としている。ここで、外周部で発生する電圧と中央部で発生する電圧は、それぞれ極性が逆で、同一の値とすることができ、残留応力や温度変動に起因する同相の電圧を相殺することが可能となる。 By the way, in the piezoelectric element of this embodiment, as shown in FIG. 2, the piezoelectric element C1 and the piezoelectric element C2 are connected in series, and the piezoelectric element C3 and the piezoelectric element C4 are connected in series, and further up and down. It has a symmetric structure. Here, the voltage generated in the outer peripheral portion and the voltage generated in the central portion have opposite polarities and can be set to the same value, and it is possible to cancel out the in-phase voltage caused by the residual stress and the temperature fluctuation. It becomes.

また本実施例の圧電素子は、圧電素子C1乃至圧電素子C4からなる圧電素子の組が4組直列に接続した構造となっているため、音響圧力信号が印加されることに基づく4組の各圧電素子の組の出力信号(電圧)は、残留応力や温度変動に起因する信号を含まずに重畳加算され、音響圧力(Pa)に対する出力電圧(Vout)の比(Vout/Pa)で定義される音響トランスデューサとしての感度の増大を図ることが可能となる。 Further, since the piezoelectric element of this embodiment has a structure in which four sets of piezoelectric elements composed of the piezoelectric elements C1 to C4 are connected in series, each of the four sets based on the application of an acoustic pressure signal. The output signal (voltage) of the set of piezoelectric elements is superimposed and added without including the signal due to residual stress or temperature fluctuation, and the ratio of the output voltage (V out ) to the acoustic pressure (P a ) (V out / P a). ), It is possible to increase the sensitivity as an acoustic transducer.

なお、各電極の大きさ等は信号雑音比を最大化する観点から最適化されることが望ましい。これは配線電極5a、5bから見た等価的キャパシタの容量をCoutとした場合に、この等価的キャパシタに蓄えられるエネルギー(Cout・Vout 2/2)を最大化するように各電極の大きさを決めればよい。 It is desirable that the size of each electrode is optimized from the viewpoint of maximizing the signal-to-noise ratio. This wiring electrodes 5a, the capacity of the equivalent capacitor as seen from 5b when the C out, of the electrodes so as to maximize the energy stored in the equivalent capacitor (C out · V out 2/ 2) You just have to decide the size.

具体的には、各圧電薄膜の膜厚、電極の大きさの一設計例を示す。例えば、入力する信号が人間の音声とし、振動部の共振周波数を20kHzとする。また、スマートフォンのような電子機器に搭載することを想定した平面寸法とする。振動板の直径は800μm、窒化アルミニウムからなる圧電膜3a、3bの厚さはともに0.37μm、モリブデンからなる電極4a1〜4a4、電極4b1〜4b5、電極4c1〜4c4の厚さはいずれも50nm、第1のコンデンサC1の一方の電極4b1の外周部から内側に向かう電極の寸法を75μm、さらに内側に向かって小さい扇型となっている電極4b2の一部の中心からの外側に向かう電極の寸法を230μmとする。 Specifically, a design example of the film thickness of each piezoelectric thin film and the size of the electrodes is shown. For example, the input signal is human voice, and the resonance frequency of the vibrating part is 20 kHz. In addition, the plane dimensions are set so that they can be mounted on electronic devices such as smartphones. The diameter of the vibrating plate is 800 μm, the thickness of the piezoelectric films 3a and 3b made of aluminum nitride is 0.37 μm, the thickness of the electrodes 4a1 to 4a4 made of molybdenum, the electrodes 4b1 to 4b5, and the thickness of the electrodes 4c1 to 4c4 are all 50 nm. The dimension of the electrode from the outer periphery of one electrode 4b1 of the first capacitor C1 toward the inside is 75 μm, and the dimension of the electrode toward the outside from the center of a part of the electrode 4b2 which is a small fan shape toward the inside. Is 230 μm.

このようにすると、第1の圧電素子C1と第3の圧電素子C3の組から出力される信号(容量値)と、第2の圧電素子C2と圧電素子C4の組から出力される信号(容量値)はほぼ等しくなり、さらに圧電素子C1〜C4の組からなる圧電素子の組に相当する4つの圧電素子の組についても同様となり、重畳された信号を得ることが可能となり、空孔6の容量を3mm3とした場合、10mV/Pa程度の感度となることが確認できた。 In this way, the signal (capacity value) output from the pair of the first piezoelectric element C1 and the third piezoelectric element C3 and the signal (capacity) output from the pair of the second piezoelectric element C2 and the piezoelectric element C4. The values) are almost equal, and the same applies to the set of four piezoelectric elements corresponding to the set of piezoelectric elements consisting of the set of piezoelectric elements C1 to C4, so that the superimposed signal can be obtained, and the holes 6 It was confirmed that the sensitivity was about 10 mV / Pa when the capacity was set to 3 mm 3 .

次に第2の実施例について説明する。一般的に窒化アルミニウム等の圧電膜をスパッタ法で堆積させる場合、圧電膜が堆積する表面(下地)の影響を受けることが知られている。上記第1の実施例で説明した圧電素子の場合、圧電膜3bを堆積させる際、下地表面にはモリブデンからなる電極4b1等が形成されている部分と、電極が形成されず、圧電膜3aが大きく露出している部分とがある。このような下地表面上に特性の揃った圧電膜を形成することが大変難しい。 Next, a second embodiment will be described. Generally, when a piezoelectric film such as aluminum nitride is deposited by a sputtering method, it is known that the surface (base) on which the piezoelectric film is deposited is affected. In the case of the piezoelectric element described in the first embodiment, when the piezoelectric film 3b is deposited, the portion where the electrode 4b1 or the like made of molybdenum is formed on the base surface and the electrode are not formed, and the piezoelectric film 3a is formed. There is a large exposed part. It is very difficult to form a piezoelectric film having uniform characteristics on such a base surface.

そこで、電極が形成されていない部分を電極と同一の材料で被覆すればよい。具体的には、下層電極となる電極4a1〜4a4と同時に、これらの電極が形成されていない領域に、これらの電極と接続しないダミー電極(図5に示す電極4d1を含む電極)を形成する。同様に、中間層電極となる電極4b1〜電極4b5と同時に、これらの電極が形成されていない領域に、これらの電極と接続しないダミー電極(図5に示す電極4d2を含む電極)を形成する。このように形成されたダミー電極により、特性の揃った圧電膜を形成することが可能となる。なお、上層電極となる電極4c1〜4cと同時に、これらの電極が形成されていない領域、これらの電極と接続しない電極(図5に示す電極4d3を含む電極)を形成することも可能である。このダミー電極を形成することで、中間層電極の厚さ方向の中心を通る面に対し、ほぼ上下対称となる構造とすることができ、引張と圧縮の応力がバランスして応力が零となる中央軸面を中間層電極面内とし、音響圧力を効率的に出力電圧として取り出すことが可能となる。 Therefore, the portion where the electrode is not formed may be coated with the same material as the electrode. Specifically, at the same time as the electrodes 4a1 to 4a4 to be the lower layer electrodes, a dummy electrode (an electrode including the electrode 4d1 shown in FIG. 5) that is not connected to these electrodes is formed in a region where these electrodes are not formed. Similarly, at the same time as the electrodes 4b1 to 4b5 to be the intermediate layer electrodes, a dummy electrode (an electrode including the electrode 4d2 shown in FIG. 5) that is not connected to these electrodes is formed in a region where these electrodes are not formed. The dummy electrode formed in this way makes it possible to form a piezoelectric film having uniform characteristics. At the same time as the electrodes 4c1 to 4c serving as the upper layer electrodes, it is also possible to form a region in which these electrodes are not formed and an electrode not connected to these electrodes (an electrode including the electrode 4d3 shown in FIG. 5). By forming this dummy electrode, it is possible to form a structure that is almost vertically symmetrical with respect to the surface passing through the center in the thickness direction of the intermediate layer electrode, and the stress of tension and compression is balanced and the stress becomes zero. The central axial plane is in the intermediate layer electrode plane, and the acoustic pressure can be efficiently taken out as an output voltage.

以上本発明の実施例について説明したが、本発明は上記実施例に限定されるものでないことは言うまでもない。具体的には、圧電膜として窒化アルミニウムに限定されるものでなく、窒化スカンジウムアルミニウム(Al1-xScxN)、酸化亜鉛(ZnO)、チタン酸ジルコン酸鉛(PZT)も利用することが可能である。また、各電極の形状、接続する圧電素子の数や接続は、適宜変更可能である。 Although the examples of the present invention have been described above, it goes without saying that the present invention is not limited to the above examples. Specifically, the piezoelectric film is not limited to aluminum nitride, and scandium aluminum nitride (Al 1-x Sc x N), zinc oxide (ZnO), and lead zirconate titanate (PZT) can also be used. It is possible. Further, the shape of each electrode, the number of piezoelectric elements to be connected, and the connection can be changed as appropriate.

1:シリコン基板、2:絶縁膜、3a、3b:圧電薄膜、4a、4b、4c、4d:電極、5a、5b:配線電極、6:空孔 1: Silicon substrate 2: Insulating film, 3a, 3b: Piezoelectric thin film, 4a, 4b, 4c, 4d: Electrode, 5a, 5b: Wiring electrode, 6: Vent

Claims (5)

支持基板に周囲が固定された圧電膜と、該圧電膜を挟んで配置する一対の電極とを備えた圧電素子において、
前記圧電膜は、少なくとも第1の圧電膜と第2の圧電膜を含む積層構造からなることと、
前記第1の圧電膜を挟んで配置する前記一対の電極を複数組備え、少なくとも第1の圧電素子および第2の圧電素子が形成されていることと、
前記第2の圧電膜を挟んで配置する前記一対の電極を複数組備え、少なくとも第3の圧電素子および第4の圧電素子が形成されていることと、
前記支持基板に固定された圧電膜の固定部側に、前記第1の圧電素子および前記第3の圧電素子を配置し、前記圧電膜の中心側に、前記第2の圧電素子および前記第4の圧電素子を配置していることと、
前記第1の圧電素子と前記第3の圧電素子が並列に接続し、前記第2の圧電素子と前記第4の圧電素子が並列に接続し、前記第1の圧電素子と前記第2の圧電素子が直列に接続し、前記第3の圧電素子と前記第4の圧電素子が直列に接続していることと
前記第1の圧電素子と前記第3の圧電素子とが上下対称に積層形成され、前記第2の圧電素子と前記第4の圧電素子とが上下対称に積層形成されていることを特徴とする圧電素子。
In a piezoelectric element including a piezoelectric film whose circumference is fixed to a support substrate and a pair of electrodes arranged so as to sandwich the piezoelectric film.
The piezoelectric film has a laminated structure including at least a first piezoelectric film and a second piezoelectric film.
A plurality of sets of the pair of electrodes arranged so as to sandwich the first piezoelectric film are provided, and at least the first piezoelectric element and the second piezoelectric element are formed.
A plurality of sets of the pair of electrodes arranged so as to sandwich the second piezoelectric film are provided, and at least a third piezoelectric element and a fourth piezoelectric element are formed.
The first piezoelectric element and the third piezoelectric element are arranged on the fixed portion side of the piezoelectric film fixed to the support substrate, and the second piezoelectric element and the fourth piezoelectric element are arranged on the center side of the piezoelectric film. And that the piezoelectric element of
Wherein the first piezoelectric element the third piezoelectric element is connected in parallel, wherein the second piezoelectric element fourth piezoelectric elements are connected in parallel, before Symbol said second and first piezoelectric element The piezoelectric elements are connected in series, the third piezoelectric element and the fourth piezoelectric element are connected in series, and the first piezoelectric element and the third piezoelectric element are vertically symmetrically laminated. The piezoelectric element is characterized in that the second piezoelectric element and the fourth piezoelectric element are vertically symmetrically laminated.
請求項1記載の圧電素子において、
前記第1乃至第4の圧電素子からなる圧電素子の組が、前記圧電膜の中心を通る区画線によって区画される複数の領域に、それぞれ配置していることを特徴とする圧電素子。
In the piezoelectric element according to claim 1,
A piezoelectric element, characterized in that a set of piezoelectric elements composed of the first to fourth piezoelectric elements is arranged in a plurality of regions defined by a dividing line passing through the center of the piezoelectric film.
請求項1又は2いずれか記載の圧電素子において、
前記並列に接続した圧電素子の組は、前記第1の圧電膜あるいは前記第2の圧電膜の表面、裏面あるいは膜間に配置された前記圧電素子の電極から連続する延長部により接続していることを特徴とする圧電素子。
In the piezoelectric element according to any one of claims 1 or 2.
The set of piezoelectric elements connected in parallel is connected by an extension portion continuous from the electrode of the piezoelectric element arranged on the front surface, the back surface, or between the first piezoelectric film or the second piezoelectric film. A piezoelectric element characterized by this.
請求項1乃至3いずれか記載の圧電素子において、
振動により前記圧電膜が湾曲変位した場合に、該変位の変曲点により区画される領域毎に、少なくとも前記上下対称に積層形成された前記第1の圧電素子および前記第3の圧電素子からなる圧電素子の組と、前記第2の圧電素子および前記第4の圧電素子からなる圧電素子の組のいずれかが配置されていることを特徴とする圧電素子。
In the piezoelectric element according to any one of claims 1 to 3,
When the piezoelectric film is curved and displaced due to vibration, the first piezoelectric element and the third piezoelectric element are formed by stacking at least vertically symmetrically for each region defined by the bending point of the displacement. A piezoelectric element characterized in that any one of a set of piezoelectric elements and a set of piezoelectric elements including the second piezoelectric element and the fourth piezoelectric element is arranged.
請求項1乃至4いずれか記載の圧電素子において、
前記圧電膜は、音響圧力によって振動する膜であることを特徴とする圧電素子。
In the piezoelectric element according to any one of claims 1 to 4,
The piezoelectric film is a piezoelectric element that vibrates due to acoustic pressure.
JP2017024729A 2017-02-14 2017-02-14 Piezoelectric element Active JP6787553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017024729A JP6787553B2 (en) 2017-02-14 2017-02-14 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024729A JP6787553B2 (en) 2017-02-14 2017-02-14 Piezoelectric element

Publications (2)

Publication Number Publication Date
JP2018133647A JP2018133647A (en) 2018-08-23
JP6787553B2 true JP6787553B2 (en) 2020-11-18

Family

ID=63247587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024729A Active JP6787553B2 (en) 2017-02-14 2017-02-14 Piezoelectric element

Country Status (1)

Country Link
JP (1) JP6787553B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110926590B (en) * 2019-12-06 2021-12-10 联合微电子中心有限责任公司 Piezoelectric type MEMS hydrophone
CN114746360A (en) * 2019-12-25 2022-07-12 株式会社电装 Piezoelectric element, piezoelectric device, and method for manufacturing piezoelectric element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107374A (en) * 2000-07-24 2002-04-10 Matsushita Electric Ind Co Ltd Acceleration sensor, acceleration detecting device, and positioning device
JP3966025B2 (en) * 2002-03-05 2007-08-29 株式会社村田製作所 Acceleration sensor
DE102005008514B4 (en) * 2005-02-24 2019-05-16 Tdk Corporation Microphone membrane and microphone with the microphone membrane
KR101606780B1 (en) * 2008-06-30 2016-03-28 더 리젠츠 오브 더 유니버시티 오브 미시건 Piezoelectric memes microphone
JP5407756B2 (en) * 2009-10-29 2014-02-05 株式会社村田製作所 Piezoelectric microphone and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018133647A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
US8509462B2 (en) Piezoelectric micro speaker including annular ring-shaped vibrating membranes and method of manufacturing the piezoelectric micro speaker
US8237332B2 (en) Piezoelectric acoustic transducer and method of fabricating the same
WO2010079574A1 (en) Mems device
JP6908322B2 (en) Piezoelectric element
JP2018137297A (en) Piezoelectric element
US9693149B2 (en) Microphone and method for manufacturing the same
US10343898B1 (en) MEMS microphone with tunable sensitivity
US20180139542A1 (en) Piezoelectric speaker and method for forming the same
JP6819002B2 (en) Piezoelectric element
JP6787553B2 (en) Piezoelectric element
CN108464017B (en) Microphone and method for manufacturing microphone
JP6908324B2 (en) Piezoelectric element
JP4811035B2 (en) Acoustic sensor
KR100924674B1 (en) Silicon MEMS microphone of capacitor type
JP6606439B2 (en) MEMS element
JP2021097302A (en) MEMS element
JP7143056B2 (en) capacitive transducer system, capacitive transducer and acoustic sensor
KR100941893B1 (en) Silicon MEMS microphone of capacitor type
JP7349090B2 (en) Piezoelectric element
JP6844911B2 (en) Piezoelectric element
KR101893486B1 (en) Rigid Backplate Structure Microphone and Method of Manufacturing the Same
JP2019041349A (en) MEMS element
JP6559365B2 (en) Piezoelectric microphone
CN114339557B (en) MEMS microphone chip, preparation method thereof and MEMS microphone
JP2017168945A (en) MEMS element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6787553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250