JP2018135255A - Filter for aluminum melt, and method of manufacturing the same - Google Patents

Filter for aluminum melt, and method of manufacturing the same Download PDF

Info

Publication number
JP2018135255A
JP2018135255A JP2017042364A JP2017042364A JP2018135255A JP 2018135255 A JP2018135255 A JP 2018135255A JP 2017042364 A JP2017042364 A JP 2017042364A JP 2017042364 A JP2017042364 A JP 2017042364A JP 2018135255 A JP2018135255 A JP 2018135255A
Authority
JP
Japan
Prior art keywords
oxide
filter
weight
aluminum
inorganic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017042364A
Other languages
Japanese (ja)
Other versions
JP6572250B2 (en
Inventor
辰己 津山
Tatsumi Tsuyama
辰己 津山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denkabussan Co Ltd
Original Assignee
Denkabussan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denkabussan Co Ltd filed Critical Denkabussan Co Ltd
Priority to CN201710308654.4A priority Critical patent/CN108569909B/en
Publication of JP2018135255A publication Critical patent/JP2018135255A/en
Application granted granted Critical
Publication of JP6572250B2 publication Critical patent/JP6572250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • C04B38/0041Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter the particulate matter having preselected particle sizes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a filter for aluminum melt not eluting constituents into a highly purified aluminum melt, and having a bending strength comparable to or higher than that of a conventional filter, and appropriate wettability to the aluminum melt, and a method of manufacturing the same.SOLUTION: The filter for aluminum melt is constituted by a three-dimensional network structure having a plurality of voids 3 obtained by binding an aggregate 1 having a uniform particle size with an inorganic binder 2. The aggregate 1 contains at least one kind selected from the group consisting of silicon carbide, sintered alumina, electromelting alumina, and a silicon nitride particle, and the inorganic binder 2 is mainly composed of a silicon nitride constituent. Thus, the filter for aluminum melt scarcely elutes constituents into a highly purified aluminum melt.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム及びアルミニウム合金溶湯中の固形不純物粒子を除去するためのアルミニウム溶湯用フィルター及びアルミニウム溶湯用フィルターの製造方法に関する。 The present invention relates to a molten aluminum filter for removing solid impurity particles in molten aluminum and aluminum alloy and a method for producing the molten aluminum filter.

アルミニウム製品を製造する場合、アルミニウム及びアルミニウム合金溶湯(以下アルミ溶湯という)中の固形不純物粒子(以下、不純物という)を除去する必要がある。アルミ溶湯と不純物は自然分離しないことから、フィルターを使用して物理的に不純物を取り除くことが一般的である。アルミ溶湯から不純物を取り除くことにより、アルミニウム製品における歩留の向上、最終製品の欠陥防止に寄与する。 When manufacturing an aluminum product, it is necessary to remove solid impurity particles (hereinafter referred to as impurities) in aluminum and aluminum alloy molten metal (hereinafter referred to as aluminum molten metal). Since molten aluminum and impurities are not naturally separated, it is common to physically remove impurities using a filter. By removing impurities from the molten aluminum, it contributes to improving the yield of aluminum products and preventing defects in the final products.

フィルターに関する先行技術及び関連技術としては、特許文献1〜10を挙げることができる。 Patent documents 1-10 can be mentioned as a prior art and related art about a filter.

特開平05−138339号公報JP 05-138339 A 特開平09−227238号公報JP 09-227238 A 特開2011−079045号公報JP 2011-0799045 A 特開2001−039781号公報JP 2001-039781 A 特開2001−039779号公報JP 2001-039779 A 特開平10−286416号公報JP-A-10-286416 特開平09−029423号公報JP 09-029423 A 特開平05−009610号公報JP 05-009610 A 特開2004−276047号公報JP 2004-276047 A 特開2005−272962号公報JP-A-2005-272966

特許文献1は、無機質結合材の原料組成が、酸化ホウ素15〜40重量%、酸化アルミニウム20〜45重量%、シリカ15〜25重量%、残部成分が酸化マグネシウム、酸化カルシウム及び酸化ストロンチウムの1種以上よりなり、無機質結合材中に生成する9酸化アルミニウム・2酸化ホウ素の針状結晶の長さが10μm以下であることを特徴とする。この材料は、遊離シリコンが溶出しないと謳われているが、数ppmの溶出も許されない高純度アルミ溶湯用フィルターとしては使用できない。 In Patent Document 1, the raw material composition of the inorganic binder is 15 to 40% by weight of boron oxide, 20 to 45% by weight of aluminum oxide, 15 to 25% by weight of silica, and the remaining components are one kind of magnesium oxide, calcium oxide and strontium oxide. Thus, the length of the needle-like crystal of aluminum aluminum oxide / boron dioxide generated in the inorganic binder is 10 μm or less. This material is said not to elute free silicon, but it cannot be used as a high purity aluminum melt filter that does not allow elution of several ppm.

特許文献2は、無機質結合材の原料組成が、酸化アルミニウムおよび酸化マグネシウムからなるスピネル型結晶構造を持つことを特徴とする。この材料は、遊離シリコンの溶出はないが、マグネシウム成分の溶出があるため、高純度アルミ溶湯用フィルターとしては使用できない。 Patent Document 2 is characterized in that the raw material composition of the inorganic binder has a spinel crystal structure composed of aluminum oxide and magnesium oxide. Although this material does not elute free silicon, it can not be used as a filter for high-purity molten aluminum due to the elution of magnesium components.

特許文献3は、無機質結合材の原料組成が、酸化ホウ素40〜60重量%、酸化アルミニウム5〜30重量%、シリカ7〜15重量%、残部成分が酸化ナトリウム、酸化カリウム及び酸化カルシウムよりなり、結晶粒微細化剤を適量通過させることを特徴とする。よって、溶出成分の抑制には主眼がおかれていないため、数十ppmの成分溶出があることから、高純度アルミ溶湯用フィルターとしては使用できない。 In Patent Document 3, the raw material composition of the inorganic binder is 40 to 60% by weight of boron oxide, 5 to 30% by weight of aluminum oxide, 7 to 15% by weight of silica, and the remaining components are sodium oxide, potassium oxide and calcium oxide, An appropriate amount of crystal grain refining agent is allowed to pass through. Therefore, since there is no focus on the suppression of the eluted components, there is a component elution of several tens of ppm, and therefore it cannot be used as a filter for a high purity molten aluminum.

特許文献4は、無機質結合材の原料組成が、酸化ホウ素20〜60重量%、酸化アルミニウム15〜35重量%、シリカ7〜30重量%、残部成分が酸化マグネシウムおよび酸化カルシウムの少なくとも1種以上よりなり、所定温度で加熱溶融することにより無機質結合材を形成させた後、870から750℃まで冷却し、その温度に3〜9時間保持することを特徴とする。これは、冷却中に生成される結晶量を安定させるためであるが、数十ppmの成分溶出量があるため、高純度アルミ溶湯用フィルターとして使用できない。 In Patent Document 4, the raw material composition of the inorganic binder is 20 to 60% by weight of boron oxide, 15 to 35% by weight of aluminum oxide, 7 to 30% by weight of silica, and the remaining component is at least one of magnesium oxide and calcium oxide. After forming an inorganic binder by heating and melting at a predetermined temperature, it is cooled from 870 to 750 ° C. and held at that temperature for 3 to 9 hours. This is to stabilize the amount of crystals generated during cooling, but it cannot be used as a high-purity aluminum melt filter because of the amount of elution of several tens of ppm.

特許文献5は、特許文献4と同様の原料組成でからなり、1150℃〜1400℃まで加熱して原料を溶融することにより無機質結合材を形成させた後、冷却を750℃まで1時間当たり20〜60℃の冷却速度で実施することで得られることを特徴とする。ホウ素成分及びシリコン成分の溶出が少ないとあるが、数十ppmの成分溶出量があるため、高純度アルミ溶湯用フィルターとしては使用できない。 Patent Document 5 has the same raw material composition as Patent Document 4, and is heated to 1150 ° C. to 1400 ° C. to melt the raw material to form an inorganic binder, and then cooled to 750 ° C. for 20 hours per hour. It is obtained by carrying out at a cooling rate of ˜60 ° C. Although there is little elution of a boron component and a silicon component, since there is a component elution amount of several tens of ppm, it cannot be used as a high purity aluminum melt filter.

特許文献6は、無機質結合材の原料組成が、酸化アルミニウム15〜35重量%、酸化ホウ素30〜40重量%、シリカ7〜15重量%、残部成分が酸化マグネシウムよりなり、1150℃〜1300℃で焼結することを特徴とする。シリコン、ホウ素、マグネシウムの各成分において数ppm以上の成分溶出量があるため、高純度アルミ溶湯用フィルターとしては使用できない。 In Patent Document 6, the raw material composition of the inorganic binder is 15 to 35% by weight of aluminum oxide, 30 to 40% by weight of boron oxide, 7 to 15% by weight of silica, and the remaining components are made of magnesium oxide at 1150 ° C to 1300 ° C. It is characterized by sintering. Since each component of silicon, boron, and magnesium has a component elution amount of several ppm or more, it cannot be used as a filter for high-purity molten aluminum.

特許文献7は、無機質結合材の原料組成が、シリカ25〜35重量%、酸化ホウ素20〜60重量%、酸化アルミニウム25〜35重量%、残部成分が酸化マグネシウムよりなり、焼結温度を1200℃〜1300℃として、生成する9酸化アルミニウム・2酸化ホウ素針状結晶の量と長さに特徴がある。ここでも、シリコン、ホウ素、マグネシウムの各成分において数ppm以上の成分溶出量があるため、高純度アルミ溶湯用フィルターとしては使用できない。 In Patent Document 7, the raw material composition of the inorganic binder is 25 to 35% by weight of silica, 20 to 60% by weight of boron oxide, 25 to 35% by weight of aluminum oxide, the remaining components are made of magnesium oxide, and the sintering temperature is 1200 ° C. ˜1300 ° C. is characterized by the amount and length of the produced 9 aluminum oxide / boron dioxide needle-like crystals. Again, since each component of silicon, boron, and magnesium has a component elution amount of several ppm or more, it cannot be used as a filter for high-purity molten aluminum.

特許文献8は、無機質結合材の原料組成が、酸化ホウ素5〜15重量%、酸化マグネシウム5〜50重量%、シリカ3〜10重量%、残部成分が酸化アルミニウムよりなり、実操業に十分耐え得る強度を持つものであるが、シリコン成分の溶出量は10ppm以上であり、高純度アルミ溶湯用フィルターとしては使用できない。 In Patent Document 8, the raw material composition of the inorganic binder is 5 to 15% by weight of boron oxide, 5 to 50% by weight of magnesium oxide, 3 to 10% by weight of silica, and the remaining components are made of aluminum oxide, and can sufficiently withstand actual operation. Although it has strength, the elution amount of the silicon component is 10 ppm or more, and it cannot be used as a filter for high-purity aluminum melt.

特許文献9は、無機質結合材の原料組成が、酸化ホウ素15〜80質量%、酸化アルミニウム2〜60質量%、酸化マグネシウム5〜50質量%よりなり、また、酸化カルシウムを30質量%以下の割合で含有してもよい。この無機質結合材と骨材を混錬、成形、乾燥後、焼結温度を1350℃とし、その後800℃まで、1時間当たり30〜70℃の冷却速度にて無機質結合材を結晶化させたフィルターを得る。さらに、液状のシリカ及びアルカリ成分をスプレー法やディッピング法でフィルター表面にコーティングすることにより、アルミ溶湯が浸透し易く、ろ過効率の高いフィルターを得ることができる。しかしながらこの方法においても、シリコン成分において数ppm以上の成分溶出量があるため、高純度アルミ溶湯用フィルターとしては使用できない。 In Patent Document 9, the raw material composition of the inorganic binder is 15 to 80% by mass of boron oxide, 2 to 60% by mass of aluminum oxide, 5 to 50% by mass of magnesium oxide, and 30% by mass or less of calcium oxide. You may contain. A filter in which the inorganic binder and aggregate are kneaded, molded, dried, sintered at 1350 ° C., and then crystallized at a cooling rate of 30 to 70 ° C. per hour up to 800 ° C. Get. Furthermore, by coating the filter surface with liquid silica and an alkali component by a spray method or a dipping method, it is easy for the molten aluminum to permeate and a filter with high filtration efficiency can be obtained. However, this method cannot be used as a high-purity aluminum melt filter because the silicon component has a component elution amount of several ppm or more.

特許文献10は、特許文献9の改良であり、無機質結合材の原料組成は特許文献9と同様である。特許文献9ではコーティングの焼結は言及されていなかったが、本文献では基材と同時または先に基材だけを焼結し、その後コーティングし、さらに焼結することにより、アルミ溶湯が更に浸透し易くなったことを特徴とするものである。シリコン成分の成分溶出量には言及されていないが、反応度合が極少と記載されていることから、いくらかのシリコン成分の溶出は想像できる。実際にこのフィルターは、高純度アルミ溶湯用フィルターとして使用されていない。 Patent Document 10 is an improvement of Patent Document 9, and the raw material composition of the inorganic binder is the same as that of Patent Document 9. In Patent Document 9, the sintering of the coating was not mentioned. However, in this document, only the base material is sintered at the same time as or before the base material, and then the coating is further performed to further penetrate the molten aluminum. It is easy to do. Although there is no mention of the component elution amount of the silicon component, the elution of some silicon components can be imagined because the degree of reaction is described as being minimal. Actually, this filter is not used as a filter for high-purity molten aluminum.

本発明の目的は、従来技術の無機質結合材成分とは全く違う組成成分を使うことにより、成分の溶出がなく、かつ従来のフィルターと同等以上の曲げ強度、アルミ溶湯との適度な濡れ性を有する、高純度アルミ溶湯に対して実用可能なアルミニウム溶湯用フィルター及びその製造方法を提供することにある。 The purpose of the present invention is to use a composition component that is completely different from the inorganic binder component of the prior art, so that the component does not elute, the bending strength is equal to or higher than that of the conventional filter, and the appropriate wettability with the molten aluminum. An object of the present invention is to provide a filter for molten aluminum that can be practically used for a high-purity molten aluminum and a method for producing the same.

本発明は、炭化珪素および電融アルミナ、焼結アルミナ、窒化珪素から選択される少なくとも1種類を含む骨材粒子100重量部に対して無機質結合材4〜30重量部を結合してなり、前記無機質結合材が、60〜96重量%の金属シリコン粉および窒化珪素粉から選択される少なくとも1種類を含み、残部成分が、酸化イットリウムおよび酸化アルミニウム、窒化アルミニウム、酸化マグネシウム、酸化ジルコニウム、シリカ、酸化クロム、酸化セリウム、酸化イッテルビウム、酸化ルテチウム、酸化ストロンチウム、炭化珪素、酸化カルシウム、酸化ナトリウム、酸化カリウムから選択される少なくとも1種類を含むことを特徴とするアルミニウム溶湯用フィルターである。 In the present invention, 4 to 30 parts by weight of an inorganic binder is bonded to 100 parts by weight of aggregate particles containing at least one selected from silicon carbide, fused alumina, sintered alumina, and silicon nitride, The inorganic binder includes at least one selected from 60 to 96% by weight of metal silicon powder and silicon nitride powder, and the remaining components are yttrium oxide and aluminum oxide, aluminum nitride, magnesium oxide, zirconium oxide, silica, and oxidation. A filter for molten aluminum comprising at least one selected from chromium, cerium oxide, ytterbium oxide, lutetium oxide, strontium oxide, silicon carbide, calcium oxide, sodium oxide, and potassium oxide.

また、前記骨材粒子100重量部に対して前記無機質結合材4〜30重量部を添加する工程と、有機バインダー、離型剤や水などを適量添加して混錬する工程と、成形後に焼結温度1400℃から1850℃、加熱昇温中1000℃以上の温度領域において、窒素又はアンモニアガス雰囲気中、雰囲気圧力が0.1から2.0メガパスカルで焼結する工程を含むことを特徴とするアルミニウム溶湯用フィルターの製造方法である。 Also, a step of adding 4 to 30 parts by weight of the inorganic binder with respect to 100 parts by weight of the aggregate particles, a step of adding an appropriate amount of an organic binder, a release agent, water, and the like, kneading, and baking after molding. Characterized in that it includes a step of sintering at a pressure of 0.1 to 2.0 megapascals in a nitrogen or ammonia gas atmosphere in a temperature range of 1400 ° C. to 1850 ° C. and a heating temperature of 1000 ° C. or higher. It is a manufacturing method of the filter for molten aluminum.

高純度アルミ溶湯用フィルターは、740℃の高純度アルミ溶湯中で60日間浸漬試験した結果、成分の溶出はほとんどなかった。従来技術で作られたフィルターが、同温度条件、高純度アルミ溶湯中3日間の浸漬でシリコン成分やホウ素成分が数十ppm溶出することに鑑みると、本フィルターは耐成分溶出性において優れた特性を持つのは明らかである。 As a result of a 60-day immersion test in the high-purity aluminum melt at 740 ° C., the high-purity aluminum melt filter showed almost no elution of components. In view of the fact that the filter made by the conventional technology elutes several tens of ppm of silicon and boron components when immersed in high-purity molten aluminum for 3 days under the same temperature condition, this filter has excellent characteristics in terms of resistance to component elution. It is clear to have.

また、従来技術で作られたフィルターと比較して同等以上の強度を有し、濡れ性においても十分に浸透することが確認できたことから、十分に実用可能なフィルターである。 In addition, the filter has a strength equal to or higher than that of a filter made by the prior art and has been confirmed to sufficiently penetrate in terms of wettability.

高純度アルミ溶湯だけではなく一般アルミ溶湯であってもフィルターを長期間浸漬、保持しても成分の溶出がないことから、成分再調整の必要がなく、作業効率が向上する。 Even if it is not only high-purity aluminum melt but general aluminum melt, the components do not elute even if the filter is immersed and held for a long period of time, so there is no need to readjust the components and work efficiency is improved.

高純度アルミ溶湯用フィルターの構造を示す模式図Schematic diagram showing the structure of a high purity aluminum melt filter

以下、本発明の高純度アルミ溶湯用フィルター(以下、本フィルターという)の一実施形態を説明する。なお、本発明の範囲は、この実施形態に限定されるものではない。 Hereinafter, an embodiment of the high purity aluminum melt filter (hereinafter referred to as the present filter) of the present invention will be described. The scope of the present invention is not limited to this embodiment.

本フィルターは、炭化珪素、電融アルミナ、焼結アルミナ、及び窒化珪素の1種類以上よりなる骨材粒子100重量部に対して、無機質結合材4〜30重量部にて結合してなるものである。無機質結合材2は、60〜96重量%の金属シリコン粉及び窒化珪素粉の一方又は両方からなり、残部成分が酸化イットリウム、酸化アルミニウム、窒化アルミニウム、酸化マグネシウム、酸化ジルコニウム、シリカ、酸化クロム、酸化セリウム、酸化イッテルビウム、酸化ルテチウム、酸化ストロンチウム、炭化珪素、酸化カルシウム、酸化ナトリウム、酸化カリウムの1種類以上よりなる。 This filter is formed by bonding 4 to 30 parts by weight of an inorganic binder to 100 parts by weight of aggregate particles made of one or more of silicon carbide, fused alumina, sintered alumina, and silicon nitride. is there. The inorganic binder 2 is composed of one or both of 60 to 96% by weight of metal silicon powder and silicon nitride powder, and the remaining components are yttrium oxide, aluminum oxide, aluminum nitride, magnesium oxide, zirconium oxide, silica, chromium oxide, and oxidation. It consists of one or more of cerium, ytterbium oxide, lutetium oxide, strontium oxide, silicon carbide, calcium oxide, sodium oxide, and potassium oxide.

本フィルターの構造を模式的に表したものを図1に示す。粒子径の揃った骨材1を結合材2で結合した3次元網目構造体であり、複数の空隙3を備えている。 A schematic representation of the structure of this filter is shown in FIG. This is a three-dimensional network structure in which the aggregate 1 having a uniform particle diameter is bonded by the bonding material 2, and includes a plurality of voids 3.

本フィルターは、骨材100重量部に対して、無機質結合材4〜30重量部を添加し、更に有機バインダー、離型剤や水などを適量添加して混錬し、これを成形、乾燥、焼結させて製造することができる。この焼結は、1400℃から1850℃で、加熱昇温中1000℃以上の領域で、0.1〜2.0メガパスカルの圧力の窒素雰囲気、またはアンモニアガス雰囲気中で焼結することにより得ることができる。 In this filter, 4 to 30 parts by weight of an inorganic binder is added to 100 parts by weight of the aggregate, and an appropriate amount of an organic binder, a release agent, water, etc. is added and kneaded, and this is molded, dried, It can be manufactured by sintering. This sintering is obtained by sintering in a nitrogen atmosphere or an ammonia gas atmosphere at a pressure of 0.1 to 2.0 megapascals in a region of 1400 ° C. to 1850 ° C. and 1000 ° C. or higher during heating. be able to.

以下、本発明の実施例について説明する。なお、本発明の範囲は、この実施例に限定されるものではない。 Examples of the present invention will be described below. The scope of the present invention is not limited to this example.

表1に骨材として炭化珪素を用いた実施例1〜6、比較例1〜4を示した。 Table 1 shows Examples 1 to 6 and Comparative Examples 1 to 4 using silicon carbide as an aggregate.

骨材粒子、無機質結合材、有機バインダー、離型剤と適量の水とを混合し、型に入れて成形する。乾燥後、焼結炉にて所定温度、所定圧力の窒素雰囲気または、アンモニアガス雰囲気中で焼結することにより目的のフィルターを作製した。 Aggregate particles, inorganic binder, organic binder, mold release agent and appropriate amount of water are mixed and put into a mold and molded. After drying, the desired filter was produced by sintering in a nitrogen atmosphere or ammonia gas atmosphere at a predetermined temperature and pressure in a sintering furnace.

上記の実施例、比較例の評価項目と評価方法について説明する。 Evaluation items and evaluation methods of the above-described examples and comparative examples will be described.

(室温曲げ強度)
10mm×10mm×100mmに切り出した板状試験体をアムスラー試験機により、2点支持1点荷重(支持スパン70mm)で荷重を掛け、試験体が破損する荷重を測定した。
(Room temperature bending strength)
A plate-like test body cut out to 10 mm × 10 mm × 100 mm was loaded with a 2-point support 1-point load (support span 70 mm) using an Amsler tester, and the load at which the test body was damaged was measured.

(800℃曲げ強度)
室温曲げ強度と測定方法は同様であり、試験体を800℃、10分保持後、アムスラー試験機により荷重を掛け、破損する荷重を測定した。
(800 ° C bending strength)
The room temperature bending strength and the measuring method were the same. After holding the test body at 800 ° C. for 10 minutes, a load was applied by an Amsler tester and the load to be broken was measured.

(アルミニウム含浸性)
30mm×10mm×300mmの板状試験体を容器底部に固定し、750℃、30分保持後、740℃の高純度(99.99%)アルミ溶湯を300mmの高さまで注入する。30分後に試験体を炉外に取り出し、冷却後、試験体を長さ方向に切断し、試験体空隙内部までアルミが浸透した高さを測定した。
(Aluminum impregnation)
A plate-like test body of 30 mm × 10 mm × 300 mm is fixed to the bottom of the container, held at 750 ° C. for 30 minutes, and then a high purity (99.99%) aluminum melt at 740 ° C. is poured to a height of 300 mm. After 30 minutes, the specimen was taken out of the furnace, cooled, cut into the length direction, and the height at which the aluminum penetrated into the gap of the specimen was measured.

(耐成分溶出性)
高純度(99.99%)アルミ溶湯10部に対し、試験体1部を60日浸漬し、浸漬前後の各表記成分を測定した。分析機器は、島津製作所製発光分光分析装置PDA−8000、分析方法はJIS H1305:2005に準じて行なった。本測定の測定限界は10ppmであり、測定結果が9ppm以下の場合は未溶出と表記した。
(Elution resistance)
One part of the test specimen was immersed for 60 days in 10 parts of high-purity (99.99%) molten aluminum, and each notation component before and after immersion was measured. The analytical instrument was an emission spectroscopic analyzer PDA-8000 manufactured by Shimadzu Corporation, and the analytical method was performed according to JIS H1305: 2005. The measurement limit of this measurement was 10 ppm, and when the measurement result was 9 ppm or less, it was described as not eluted.

実施例に示した通り、本フィルターは、60日間アルミ溶湯に浸漬させても、溶出の成分量が測定限界以下であり、従来技術で作られたフィルターでは対応できなかった高純度(99.99%)アルミ溶湯での使用が可能である。また、本フィルターは高純度アルミ溶湯用だけではなく、一般アルミ溶湯で使用しても成分の溶出が極めて少ないことから、成分変化を嫌う合金系でも更なる品質の安定に寄与するものである。 As shown in the examples, even when the filter was immersed in molten aluminum for 60 days, the amount of the eluted component was below the measurement limit, and the high purity (99.99) that could not be handled by the filter made by the prior art. %) Can be used in molten aluminum. In addition, this filter is not only used for high-purity aluminum melts, and even when used in general aluminum melts, the elution of components is extremely small, so that it contributes to further quality stability even in alloy systems that do not like component changes.

1 骨材
2 結合材
3 空隙
1 Aggregate 2 Binder 3 Gap

Claims (2)

炭化珪素および電融アルミナ、焼結アルミナ、窒化珪素から選択される少なくとも1種類を含む骨材粒子100重量部に対して無機質結合材4〜30重量部を結合してなり、
前記無機質結合材が、60〜96重量%の金属シリコン粉および窒化珪素粉から選択される少なくとも1種類を含み、残部成分が、酸化イットリウムおよび酸化アルミニウム、窒化アルミニウム、酸化マグネシウム、酸化ジルコニウム、シリカ、酸化クロム、酸化セリウム、酸化イッテルビウム、酸化ルテチウム、酸化ストロンチウム、炭化珪素、酸化カルシウム、酸化ナトリウム、酸化カリウムから選択される少なくとも1種類を含むことを特徴とする、
アルミニウム溶湯用フィルター。
4 to 30 parts by weight of an inorganic binder is bonded to 100 parts by weight of aggregate particles containing at least one selected from silicon carbide, fused alumina, sintered alumina, and silicon nitride,
The inorganic binder includes at least one selected from 60 to 96% by weight of metal silicon powder and silicon nitride powder, and the remaining components are yttrium oxide and aluminum oxide, aluminum nitride, magnesium oxide, zirconium oxide, silica, Including at least one selected from chromium oxide, cerium oxide, ytterbium oxide, lutetium oxide, strontium oxide, silicon carbide, calcium oxide, sodium oxide, potassium oxide,
Filter for molten aluminum.
請求項1記載のアルミニウム溶湯用フィルターにおいて、
前記骨材粒子100重量部に対して前記無機質結合材4〜30重量部を添加する工程と、
有機バインダー、離型剤や水などを適量添加して混錬する工程と、
成形後に焼結温度1400℃から1850℃、加熱昇温中1000℃以上の温度領域において、窒素又はアンモニアガス雰囲気中、雰囲気圧力が0.1から2.0メガパスカルで焼結する工程を含むことを特徴とする、
アルミニウム溶湯用フィルターの製造方法。
In the filter for molten aluminum according to claim 1,
Adding 4 to 30 parts by weight of the inorganic binder to 100 parts by weight of the aggregate particles;
A process of adding an appropriate amount of an organic binder, a release agent or water, and kneading;
Including a step of sintering after forming at a sintering temperature of 1400 ° C. to 1850 ° C. and a temperature range of 1000 ° C. or higher during heating and heating in a nitrogen or ammonia gas atmosphere at an atmospheric pressure of 0.1 to 2.0 megapascals. Characterized by the
A method for producing a filter for molten aluminum.
JP2017042364A 2017-02-23 2017-03-07 Aluminum melt filter and manufacturing method thereof Active JP6572250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710308654.4A CN108569909B (en) 2017-02-23 2017-05-04 Filter for molten aluminum and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017031617 2017-02-23
JP2017031617 2017-02-23

Publications (2)

Publication Number Publication Date
JP2018135255A true JP2018135255A (en) 2018-08-30
JP6572250B2 JP6572250B2 (en) 2019-09-04

Family

ID=63366513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042364A Active JP6572250B2 (en) 2017-02-23 2017-03-07 Aluminum melt filter and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6572250B2 (en)
CN (1) CN108569909B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745135A (en) * 2021-01-08 2021-05-04 武汉科技大学 Magnesium oxide-silicon carbide-carbon porous ceramic filter and preparation method thereof
WO2022210445A1 (en) 2021-03-30 2022-10-06 保土谷化学工業株式会社 Compound having sulfonate group, and photoelectric conversion element using said compound
WO2023054393A1 (en) 2021-09-29 2023-04-06 保土谷化学工業株式会社 Compound having sulfonate group, hole-transporting material, hole-transporting material composition for photoelectric conversion element, photoelectric conversion element and solar cell

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281738A (en) * 1990-03-30 1991-12-12 Ngk Insulators Ltd Filter material for metallic molten metal and method for filtering metallic molten metal by using the same
AU1403192A (en) * 1992-04-03 1993-11-11 Carborundum Company, The Molten metal filter
CN101264401B (en) * 2007-03-14 2013-04-03 济南圣泉倍进陶瓷过滤器有限公司 Ceramic filter containing carbonaceous material and bonded with silica adhesive and manufacturing method thereof
CN100536985C (en) * 2007-08-24 2009-09-09 晋城市富基新材料有限公司 Silicon carbide foam ceramic filter
JP4701301B2 (en) * 2009-10-09 2011-06-15 三井金属鉱業株式会社 Filtration filter for molten aluminum
CN101734928B (en) * 2009-12-24 2012-11-21 中钢集团洛阳耐火材料研究院有限公司 Preparation method of fused silica refractory casting material unwetted by aluminum liquid
CN201643837U (en) * 2010-02-01 2010-11-24 湖南金联星冶金材料技术有限公司 Molten aluminum filter
JP5673157B2 (en) * 2010-02-08 2015-02-18 日本軽金属株式会社 Ultrasonic horn and method for producing aluminum alloy using the same
AU2012101258A4 (en) * 2010-04-15 2012-09-13 Jinan Shengquan Double Surplus Ceramic Filter Co., Ltd. Filter used for filtering molten metal and preparation method thereof
CN106145969A (en) * 2016-07-04 2016-11-23 济南圣泉倍进陶瓷过滤器有限公司 Composition of ceramic powders, straight-bore ceramic filter and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745135A (en) * 2021-01-08 2021-05-04 武汉科技大学 Magnesium oxide-silicon carbide-carbon porous ceramic filter and preparation method thereof
CN112745135B (en) * 2021-01-08 2022-11-29 武汉科技大学 Magnesium oxide-silicon carbide-carbon porous ceramic filter and preparation method thereof
WO2022210445A1 (en) 2021-03-30 2022-10-06 保土谷化学工業株式会社 Compound having sulfonate group, and photoelectric conversion element using said compound
WO2023054393A1 (en) 2021-09-29 2023-04-06 保土谷化学工業株式会社 Compound having sulfonate group, hole-transporting material, hole-transporting material composition for photoelectric conversion element, photoelectric conversion element and solar cell

Also Published As

Publication number Publication date
CN108569909B (en) 2022-05-27
CN108569909A (en) 2018-09-25
JP6572250B2 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6572250B2 (en) Aluminum melt filter and manufacturing method thereof
JP2018135267A (en) Refractory object and method for forming glass sheet using the same
US10919811B2 (en) Aluminum-silicon-carbide composite and method of manufacturing same
CN107001149B (en) Boron-free aluminum alloy ceramic foam filter
JP5774135B2 (en) Sintered materials based on doped chromium oxide
CN108137412B (en) Fused zirconia-spinel particles and refractory products obtained from said particles
JP2016527083A (en) Batches for making carbon-bonded or resin-bonded shaped refractory products, methods for making the products, the products, and the use of magnesia spinel-zirconium oxide
JPH10286416A (en) Ceramic filter and its production method
KR101160531B1 (en) Filter for aluminum melt
JP7282758B2 (en) Method for producing fused block with high zirconia content
CN107805071B (en) Preparation method of titanium-trialuminum-carbon-mullite composite ceramic with low glass wettability
JP3830733B2 (en) Particle-dispersed silicon material and manufacturing method thereof
JP5785003B2 (en) Manufacturing method of composite material
Shcherbakova et al. Solution to technological problems of raising the reliability and quality of castings based on titanium alloys
JP2008231543A (en) Metal-ceramics composite material, and its production method
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP2002249832A (en) Ceramics/metal composite material and its manufacturing method
JPS6236087A (en) Granular sic-dispersed metal silicon heat-resistant material
JP7020123B2 (en) Sputtering target
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP2009190950A (en) Silicon carbide composite material and method for producing the same
JP3944700B2 (en) Rare earth alloy melting crucible and rare earth alloy
JP2000054090A (en) Metal-ceramics composite and its manufacture
JPH059610A (en) Ceramic filter for filtering molten aluminum
Wrona et al. Composite ZrO2-based cermet material modified with Mo

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190809

R150 Certificate of patent or registration of utility model

Ref document number: 6572250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250