JPH03281738A - Filter material for metallic molten metal and method for filtering metallic molten metal by using the same - Google Patents

Filter material for metallic molten metal and method for filtering metallic molten metal by using the same

Info

Publication number
JPH03281738A
JPH03281738A JP2083247A JP8324790A JPH03281738A JP H03281738 A JPH03281738 A JP H03281738A JP 2083247 A JP2083247 A JP 2083247A JP 8324790 A JP8324790 A JP 8324790A JP H03281738 A JPH03281738 A JP H03281738A
Authority
JP
Japan
Prior art keywords
molten metal
filter medium
metallic
filter material
inorganic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2083247A
Other languages
Japanese (ja)
Inventor
Hiroshi Shirakawa
浩 白川
Osamu Yamakawa
治 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N G K ADRECH KK
NGK Insulators Ltd
NGK Adrec Co Ltd
Original Assignee
N G K ADRECH KK
NGK Insulators Ltd
NGK Adrec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N G K ADRECH KK, NGK Insulators Ltd, NGK Adrec Co Ltd filed Critical N G K ADRECH KK
Priority to JP2083247A priority Critical patent/JPH03281738A/en
Publication of JPH03281738A publication Critical patent/JPH03281738A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To obtain a filter material made of ceramics having fine pores and suitable for filtering solid inclusions in molten metals by using ceramic particles as an aggregate and an inorganic binder, compacting it, drying the green compact and thereafter executing firing. CONSTITUTION:At the time of manufacturing a thin sheet material or metallic foil by subjecting the molten metal of a metal contg. solids such as metallic oxides and the fine pieces of refractories to casting and rolling, in the case the solid impurities are present, pinholes and surface flaws are generated on the metallic thin sheet or metallic foil to reduce product yield. For preventing this, 100 pts.wt. ceramic filler of Al2O3, SiC, Si3N4, ZrO2 or the like having 0.3 to 3.0mm average particle size is sufficiently mixed with 4 to 20 pts.wt. inorganic binder such as B2O3, Al2O3, MgO or the like having low content of glass or SiO2, and the mixture is mixed with an organic binder such as CMC and is kneaded. After that, the mixture is compacted into a prescribed shape and is fired at a high temp. The filter material for molten metals having 100 to 300mum average pore size and 25 to 60% void ratio and filterable molten metals at 2 to 20g/cm<2> per min under the pressure of 65mmHg can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 未発IJIは金属溶湯、特にアルミニウム溶湯中に含ま
れる不純物(介在物)を濾過するための金属溶湯用濾材
とそれを用いた金属溶湯の濾過方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] Undeveloped IJI is a molten metal filter material for filtering impurities (inclusions) contained in molten metal, especially molten aluminum, and a filter material for molten metal using the same. Relating to a filtration method.

U従来の技術] 金属の薄板や箔は金属溶湯なインゴットに鋳造し、これ
を圧延することにより製造される。ところか、金属溶湯
に含まれる金属酸化物や耐火物の微小破片等の固形不純
物かそのままインゴット中に混入すると、これを圧延し
て薄板や箔等を製造する過程てビンポール、表面欠陥が
発生することかある。これを防ぐには、溶湯中から固形
不純物を除去する必要かあり、そのために、従来、ガラ
スクロス、アルミナボーJし或はセラミックフオーム等
を溶湯濾過用のフィルターとLノで使用していた。
U Prior Art] Metal thin plates and foils are manufactured by casting a molten metal ingot and rolling it. However, if solid impurities such as metal oxides or minute fragments of refractories contained in the molten metal are mixed into the ingot, surface defects will occur during the process of rolling the ingot into thin plates, foils, etc. There is a thing. To prevent this, it is necessary to remove solid impurities from the molten metal, and for this purpose, glass cloth, alumina foam, ceramic foam, etc. have conventionally been used as a filter for filtrating the molten metal.

ところか、ガラスクロスは安価であるか早期に「1詰ま
りし易く、またアルミナボールは一旦捕獲した不純物か
流出し易いため濾過精度に劣り、更にセラミックフオー
ムは気孔径か大きいため微細な不純物な十分に濾過てき
ないという欠点かある。
On the other hand, glass cloth is cheap and tends to clog quickly, and alumina balls have poor filtration accuracy because impurities once captured tend to flow out, and ceramic foam has large pores that make it difficult to absorb fine impurities. The drawback is that it cannot be filtered.

そこで、例えば特公昭52−22327号公報に示され
るように、炭化珪素やアルミナ等の骨材粒子を無11質
結合材により結合させて骨材粒子間に無数の微細連続気
孔を形成した構成のチューブ状の濾材が使用されつつあ
る。この濾材によれば、上記した他のフィルターに比較
して濾過性能が優れており、目詰まりを長期間にわたり
防止てきまた捕獲した不純物の流出かなく、しかも気孔
径を適切になし得て精密な濾過か可能になるという利点
かある。
Therefore, as shown in Japanese Patent Publication No. 52-22327, for example, a structure in which aggregate particles such as silicon carbide or alumina are bonded with an element-free binder to form countless fine continuous pores between the aggregate particles is proposed. Tubular filter media are being used. This filter material has superior filtration performance compared to the other filters mentioned above, prevents clogging for a long time, prevents captured impurities from flowing out, and allows for precise pore size. There is an advantage in that it allows for filtration.

[発明か解決しようとする課題] しかしながら、−L述のチューブ状の濾材においても、
チューブ状濾材の機能のバラツキ、金属溶湯の濾過条件
の変化等によってそれぞれ濾過性能か一定とならないた
め、不純物捕集の信頼性か高いとはいえないという問題
かあった。
[Problem to be solved by the invention] However, even in the tubular filter medium described in -L,
There was a problem in that the reliability of impurity collection was not high because the filtration performance was not constant due to variations in the function of the tubular filter medium, changes in the filtration conditions for molten metal, etc.

[課題を解決するための手段] そこて、未発明治は上記従来の問題を解決するため種々
検討を行なったところ、気孔径と空隙率を特定の範囲と
した濾材に、特定量、の金属溶湯な通過させることによ
り、濾過性能を向1−させることかできることを見出し
1本発明に到達した。
[Means for Solving the Problems] In order to solve the above-mentioned conventional problems, Minaji conducted various studies and found that a specific amount of metal was added to a filter medium with a specific range of pore size and porosity. The present invention was achieved by discovering that the filtration performance can be improved by passing molten metal through the filter.

tillち、本発明によれば、セラミック骨材粒子な無
機質結合材により結合させた多孔質の濾材てあって、該
濾材の平均気孔径か100〜300μm空隙率か25〜
60%であり、65膳■l1g以下の圧力において1分
間当り2 g/cm2〜20 g/cm2の金属溶湯か
通過し得ることを特徴とする金属溶湯用症材、か提供さ
れる。
According to the present invention, there is provided a porous filter medium bound by an inorganic binder such as ceramic aggregate particles, and the average pore diameter of the filter medium is 100 to 300 μm, and the porosity is 25 to 300 μm.
60%, and is capable of passing 2 g/cm2 to 20 g/cm2 of molten metal per minute at a pressure of 65 g/lg or less.

さらに本発明によれば、セラミック骨材粒子を無機質結
合材により結合させた多孔質の濾材を用いて金属溶湯な
濾過する方法てあって、金属溶湯を平均気孔径か100
〜300gm、空隙率か25〜60%の濾材に、65 
+iust1g以下の圧力において1分間当り2g/c
■2〜20g/c■2の濾過速度て通過させることを特
徴とする金属溶湯の濾過方U1、か提供される。
Furthermore, according to the present invention, there is provided a method for filtering molten metal using a porous filter medium in which ceramic aggregate particles are bonded with an inorganic binder, the molten metal being filtered with an average pore diameter of 100.
~300gm, porosity of 25-60% filter media, 65
+iust2g/c per minute at pressures below 1g
(1) There is provided a method U1 for filtering molten metal, which is characterized in that the metal is passed through the metal at a filtration rate of 2 to 20 g/c.

[作用] 本発明においては、気孔径と空隙率を特定の範囲とした
濾材に、特定量の金属溶湯な通過させる濾過方〃、とそ
れに用いる濾材に特徴を有する。
[Function] The present invention is characterized by a filtration method in which a specific amount of molten metal is passed through a filter medium having a pore diameter and a porosity within a specific range, and the filter medium used therefor.

このような特定な物性を有する濾材を用いることにより
、極めて性能の良い金属溶湯の濾過を達成することかて
きる。
By using a filter medium having such specific physical properties, it is possible to achieve extremely high performance filtration of molten metal.

本発明て用いる骨材としては、金属溶湯と反応せず、適
切な粒1■のものを容易に入毛できるものであれば、特
にその種類を限定するものではないか、例えばアルミナ
質、炭化珪素質、窒化珪素質及び、ジルコニア質等のセ
ラミック骨材か上記の条件を満足するため好ましい。ま
た、用いる骨材粒子の平均粒子径は約0.3〜3.Ol
のものか濾材の上記平均気孔径範囲を得られ易いため好
ましい また、骨材粒子としては下記て定義される形状指数か1
00〜130の範囲のものを用いることか好ましい。
The type of aggregate used in the present invention is not particularly limited, as long as it does not react with the molten metal and can be easily coated with appropriate particles of 1 cm, for example, alumina, carbonized Ceramic aggregates such as silicon, silicon nitride, and zirconia are preferred because they satisfy the above conditions. Moreover, the average particle diameter of the aggregate particles used is about 0.3 to 3. Ol
It is preferable to obtain the above average pore diameter range of the filter medium, and as the aggregate particles, the shape index defined below or 1 is preferable.
It is preferable to use a number in the range of 00 to 130.

即ち、第1図に示す骨材の投影図において、その最大直
径なM、該最大直径Mに直交する径をB、投影面積なA
1円周長さをPとしたとき、形状指数(SF)は次の式
で表される。
That is, in the projected view of the aggregate shown in Figure 1, its maximum diameter is M, the diameter perpendicular to the maximum diameter M is B, and its projected area is A.
When the length of one circumference is P, the shape index (SF) is expressed by the following formula.

SF= (SF、 十SF2→−3F、)/3ここで、 SF、  =  (π/4)  X  (M”  /A
)  X  l 00SF2 =  (1/4w)x 
 (P2 /A)xloos F 3  =  (M 
/ B )  x  100である。
SF= (SF, 10SF2→-3F,)/3 where, SF, = (π/4) X (M”/A
) X l 00SF2 = (1/4w)x
(P2 /A)xloos F 3 = (M
/B) x 100.

因みに、真珠の形状指数は100となる。Incidentally, the shape index of a pearl is 100.

このような形状指数の骨材粒−rを用いた場合、均一な
気孔径を有する多孔質体か得られるため、濾材の不純物
の捕集精度か向−[、シ、好ましい。
When aggregate particles having such a shape index are used, a porous body having a uniform pore diameter can be obtained, which is preferable because it improves the accuracy of collecting impurities in the filter medium.

焦Ja、質結合材としては、金属溶湯と反応しないもの
であれば特にその種類は限定されず、ガラス質結合材や
、S 102 、B20:+ 、A!120:l、Ca
O,MgO等を含む結合材を用いることかできるか、S
iO□を10屯hi%より少ないt門1−含むホウ酸系
の結合材、例えばB2O3,An、0゜MgO$からな
る無機質結合材か好ましい。
The type of binder is not particularly limited as long as it does not react with the molten metal, such as glass binders, S102, B20:+, A! 120:l, Ca
Is it possible to use a binder containing O, MgO, etc.?
Preferred is a boric acid binder containing less than 10 tons of iO□, such as an inorganic binder made of B2O3, An, 0°MgO$.

8102含右ω−か少ないため、金属溶湯、特にアルミ
ニウム溶湯と5102との反応により生成した遊離シリ
コンの溶湯中への混入が少なくなるためである。なお、
通常骨材粒子100重量部に対し無aIj1結合材を4
〜20重量部配合して多孔質の濾材か作製される。
This is because 8102 contains less ω-, so less free silicon generated by the reaction between molten metal, especially molten aluminum, and 5102 is mixed into the molten metal. In addition,
Normally, 4 parts of non-aIj1 binder per 100 parts by weight of aggregate particles
A porous filter medium is prepared by blending ~20 parts by weight.

」−4のように作製される濾材は、その平均気孔径かl
 OO〜300 p、、 m、空隙率が25〜60%の
物性を有することか必要である。濾材の平均気孔径か1
00gmより小さいと、早期に目詰まりを起すほか、金
属溶湯が濾材に含浸し難く、一方平均気孔径か300g
、mを超えると微細な介在物を捕捉てきないという問題
かある。また濾材の空隙率か25%より低いと、早期に
11詰まりを起すほか、濾過に際しての圧力損失か大き
くなり過ぎ一方濾材の空隙率か60%を超えると濾材の
強度か不戻し、濾過に際し°C破壊が生じるおそれかあ
る。
”-4, the average pore diameter of the filter medium is 1.
It is necessary to have physical properties of OO~300 p, m, and porosity of 25~60%. The average pore diameter of the filter medium is 1
If the average pore size is less than 300 gm, clogging will occur early and the molten metal will be difficult to impregnate the filter medium.
, m, there is a problem that fine inclusions cannot be captured. Also, if the porosity of the filter medium is lower than 25%, clogging will occur early and the pressure loss during filtration will be too large, while if the porosity of the filter medium exceeds 60%, the strength of the filter medium will not return, and the filtration will not be possible. There is a risk of C-destruction.

さらに本発明の濾材は、65mmt1g以下の圧力にお
いて1分間当り2g/C112〜20 g/cgi2の
濾過速度で金属溶湯な通過させ得る機能・特性を有する
ことか心霊である。金属溶湯の濾過速度か2g/C11
2より遅いと濾過操作に時間かかかり、それを回避しよ
うとすると多大な濾材面積か必要となる。濾過速度か2
0 g/cya2より速くなると、微細な介在物か捕捉
されずに濾材を通過するという問題か生しる。
Furthermore, the filter medium of the present invention is unique in that it has the ability to pass molten metal at a filtration rate of 2 g/C112 to 20 g/cgi2 per minute at a pressure of 65 mmt1 g or less. Filtration rate of molten metal is 2g/C11
If it is slower than 2, the filtration operation will take a long time, and if you try to avoid this, a large area of filter media will be required. Filtration speed or 2
If it is faster than 0 g/cya2, a problem arises in that fine inclusions pass through the filter medium without being captured.

ここで、65 mm11g以下の圧力とはアルミニウム
に換算すると3701鳳A J−に相当するものであり
、濾材にアルミニウム溶湯等の金属溶湯を通湯させる場
合に通常使用される圧力条件を示している。従って65
 mm11gを超えて金属溶湯を通湯させると、濾材に
過大な圧力か加わり、濾材の破損に至る可能性かあり、
好ましくない。
Here, the pressure of 65 mm and 11 g or less corresponds to 3701 A J- when converted to aluminum, and indicates the pressure conditions normally used when molten metal such as molten aluminum is passed through the filter medium. . Therefore 65
If molten metal exceeds mm11g, excessive pressure will be applied to the filter medium, which may cause damage to the filter medium.
Undesirable.

なお、濾材の形状はチューフ状に限られず板状であって
もよい。また、濾材の厚さは通常15〜35m■程度あ
ればよい。
Note that the shape of the filter medium is not limited to the chew shape, but may be a plate shape. Further, the thickness of the filter medium should normally be about 15 to 35 m.

次に、上記の如き特性を有する濾材の製造方法の例を説
明する。
Next, an example of a method for manufacturing a filter medium having the above characteristics will be explained.

アルミナ質、炭化珪素質、窒化珪X質などのセラミック
骨材粒子100重礒部に対し、無機質結合材を4〜20
重−1j1−油添加し、カルボキシメチルセルロース(
CMC)、リクニンスルホン酸カルシウム、デキストリ
ン等の有機バインターと適当ωの水分を加え、混練を行
なった後所定形状で、■1つ所定のW均気孔径および空
隙率を有する成形体に成形する。次いて、得られた成形
体を乾燥後通常1ioo°C以上の温度にて焼成を行な
うことにより、未発IJIの濾材を得ることかできる。
4 to 20 parts of an inorganic binder is added to 100 parts by weight of ceramic aggregate particles such as alumina, silicon carbide, and silicon nitride.
Heavy-1j1-oil was added and carboxymethyl cellulose (
CMC), calcium ricnin sulfonate, dextrin, and other organic binders and an appropriate amount of water are added, kneaded, and then molded into a molded body having a predetermined shape and uniform pore size and porosity. . Next, the obtained molded body is dried and then fired at a temperature of usually 100° C. or higher to obtain a filter medium for ungenerated IJI.

[実施例] 以ド、本発明を実施例に基づいて更に詳細に説明するか
、本発明はそれらの実施例に限られるものてはない。
[Examples] Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited to these Examples.

(実施例1) 表1、表2および表3に示すように、形状指数か105
.120.140.165であるアルミナ99%以上の
各種粒1tjの骨材100重量部に対して、82034
0重φ%、A交、0330重量%、CaO15重量%、
Mg010重量%、5i025重是%からなる組成の結
合材を各駄添加しCMC″S−の41機バインターと適
当量の水分とともに混合、混練を行なった。
(Example 1) As shown in Tables 1, 2 and 3, the shape index was 105
.. 120.140.165 for 100 parts by weight of aggregate of 99% or more alumina of various grains 1tj, 82034
0 weight φ%, A cross, 0330 weight%, CaO 15 weight%,
A binder having a composition of 10% by weight of Mg0 and 25% by weight of 5i0 was added and mixed and kneaded with a CMC''S-41 binder and an appropriate amount of water.

次に、得られた混合物を用い、成形圧を変化させて各種
厚みの200m5X 200amの板に成形した。次い
て105°Cにて乾燥後、1350°Cて焼成した。
Next, the obtained mixture was molded into plates of 200 m x 200 am of various thicknesses by varying the molding pressure. Then, after drying at 105°C, it was fired at 1350°C.

この焼成体について、J I 5R2205−74の方
1人に従って見掛気孔(lを求め、この見掛気孔−トの
(tI′iをr/=隙率とした。又、焼成体のモ均気孔
径は水銀圧入V、により求め、3点曲げにより抗折強1
バをA一定した。
Regarding this fired body, the apparent pores (l) were determined according to one person in JI 5R2205-74, and the apparent pores (tI'i) were defined as r/=porosity. The pore diameter was determined by mercury intrusion V, and the bending strength was determined by 3-point bending.
I kept the bar constant at A.

次に、各種圧力差において、750°Cて保持したJI
S1050のアルミニウム溶湯な、」−記で得られた焼
成体たる濾材に通過させ、総通過縫と濾過前後のホウ素
(B ) raよりB除去率を求めた。測定結果および
評価結果を表1、表2および表3に示す。尚、表1〜3
中、NO,5,9,11〜13.16.19−′−20
,24〜25.32.40,44.51〜53及び56
は本発明の条件範囲外のものである。
Next, JI was held at 750°C under various pressure differences.
The molten aluminum of S1050 was passed through the filter medium, which is the fired body obtained in the above section, and the B removal rate was determined from the total passing stitch and the boron (B) ra before and after filtration. The measurement results and evaluation results are shown in Tables 1, 2 and 3. In addition, Tables 1 to 3
Medium, NO, 5, 9, 11-13.16.19-'-20
, 24-25, 32.40, 44.51-53 and 56
is outside the scope of the present invention.

(実施例2) 甘24(JIS  R6001)の炭化珪素質原料を骨
材とし、この骨材1oot’l量部に対し、結合材とし
てA2゜0325重μ%、B20−r 35重!d%、
S 1028重量%、Mg012重量%、Ca020重
量%からなる組成物を10重量部添加し、41機バイン
ター、水分を加え、混練を行なった。
(Example 2) Ama 24 (JIS R6001) silicon carbide raw material was used as the aggregate, and with respect to 1 oot'l part of this aggregate, the binding material was A2゜0325% by weight and B20-r 35% by weight! d%,
10 parts by weight of a composition consisting of 1028% by weight of S, 12% by weight of Mg, and 20% by weight of Ca were added, a 41 binder and water were added, and kneading was performed.

次に得られた混合物を用い、外[80mmφ、内115
0mmφ、長さ300mm+のバイブな成形圧(充MN
’l)を変化させなから成形し、105℃て乾燥後14
00°Cにて焼成を行ない、バイブ状の濾材を作製した
Next, using the obtained mixture, make an outer [80 mmφ, inner 115
0mmφ, length 300mm+ vibrating molding pressure (full MN
'l) was molded without changing, and dried at 105℃ for 14 hours.
Firing was performed at 00°C to produce a vibrator-shaped filter medium.

得られた濾材の平均気孔径、空隙率、抗折強度を測定す
るとともに、この吐材に1200℃の溶鋼を通過させ、
鋼中の酸化物量の分析を行ない。
The average pore diameter, porosity, and bending strength of the obtained filter medium were measured, and molten steel at 1200°C was passed through the discharge medium.
The amount of oxides in the steel was analyzed.

通過前後の変化率を求めた。その結果を表4に示す。尚
、表4中、NO,6〜10は本発明の範囲外の場合を示
す。
The rate of change before and after passing was calculated. The results are shown in Table 4. In Table 4, Nos. 6 to 10 indicate cases outside the scope of the present invention.

(実施例3) 形状指数か異なる焼結アルミナを骨材とし、そのモ均粒
子径を変化させ、これに8.0,65重Ij%、Au、
0315重量%、Ca020重M%からなるホウ酸系組
成物である結合材を表5に示すように変えて添加し、有
機バインダーおよび木とともに混練した。
(Example 3) Sintered alumina with different shape indexes was used as aggregate, and the average particle diameter was changed, and 8.0.65% Ij%, Au,
A binder, which is a boric acid composition consisting of 0.315% by weight and 20% by weight of Ca, was added as shown in Table 5 and kneaded together with the organic binder and wood.

次に、得られた混合物を用い、成形圧を変化させて厚さ
20■の200謬sX 200−鵬の板に成形した。次
いで105℃にて乾燥後1250°Cて焼成した。得ら
れた濾材の平均気孔径、空隙率、抗折強度を測定すると
ともに、この濾材に530〜550℃の亜鉛溶湯な通過
させて溶湯中の酸化物埴を分析し、その酸化物除去率を
求めた。その結果を表5に示す。尚、表5中、No、 
2、N006〜8は本発明の範囲外の場合を示す。
Next, the obtained mixture was molded into a 200 mm x 200 mm plate with a thickness of 20 mm by varying the molding pressure. Next, it was dried at 105°C and fired at 1250°C. In addition to measuring the average pore diameter, porosity, and bending strength of the filter medium obtained, molten zinc at 530 to 550°C was passed through the filter medium to analyze oxide clay in the molten metal, and the oxide removal rate was determined. I asked for it. The results are shown in Table 5. In addition, in Table 5, No.
2, N006 to 8 indicate cases outside the scope of the present invention.

実施例1〜SからIJJらかなように、気孔径と空隙4
にを特定の範囲とした濾材に、特定量の金属溶湯な通過
させるようにすると、良好な症過性能を達成てき、 −
力、本発明の範囲外の条件て諸過な行なうとその性能か
悪化することかわかる。
From Examples 1 to S, the pore diameter and void 4 are as shown in IJJ.
By allowing a specific amount of molten metal to pass through a filter medium with a specific range of
It can be seen that if the product is subjected to various conditions outside the scope of the present invention, its performance may deteriorate.

[発明の効果] 以1.説明したように、本発明は、気孔径と空隙率を特
定の範囲とした濾材を用い、この濾材に特定量の金属溶
湯な通過させるようにしたのて、通湯性および介在物の
捕集性に優れ、しかも寿命か長いという、極めて性能の
良い金属溶湯の鑓過を達成することかできる。
[Effects of the invention] Below 1. As explained above, the present invention uses a filter medium with a pore size and porosity within a specific range, and allows a specific amount of molten metal to pass through the filter medium, thereby improving the permeability and collection of inclusions. It is possible to achieve extremely high performance in filtration of molten metal, with excellent properties and long life.

【図面の簡単な説明】[Brief explanation of the drawing]

第11Mは骨材の形状指数を算出する際に用いる骨材の
投影説明図である。
11M is a projected explanatory diagram of aggregate used when calculating the shape index of aggregate.

Claims (2)

【特許請求の範囲】[Claims] (1)セラミック骨材粒子を無機質結合材により結合さ
せた多孔質の濾材であって、該濾材の平均気孔径が10
0〜300μm、空隙率が25〜60%であり、65m
mHg以下の圧力において1分間当り2g/cm^2〜
20g/cm^2の金属溶湯が通過し得ることを特徴と
する金属溶湯用濾材。
(1) A porous filter medium made by bonding ceramic aggregate particles with an inorganic binder, the average pore diameter of the filter medium being 10
0~300μm, porosity is 25~60%, 65m
2g/cm^2~ per minute at pressures below mHg
A filter medium for molten metal, characterized in that a molten metal of 20 g/cm^2 can pass therethrough.
(2)セラミック骨材粒子を無機質結合材により結合さ
せた多孔質の濾材を用いて金属溶湯を濾過する方法であ
って、金属溶湯を平均気孔径が100〜300μm、空
隙率が25〜60%の濾材に、65mmHg以下の圧力
において1分間当り2g/cm^2〜20g/cm^2
の濾過速度で通過させることを特徴とする金属溶湯の濾
過方法。
(2) A method of filtering molten metal using a porous filter medium in which ceramic aggregate particles are bonded with an inorganic binder, in which the molten metal is filtered with an average pore diameter of 100 to 300 μm and a porosity of 25 to 60%. filter media at a pressure of 2 g/cm^2 to 20 g/cm^2 per minute at a pressure of 65 mmHg or less.
A filtration method for molten metal, characterized in that the molten metal is passed through the molten metal at a filtration rate of .
JP2083247A 1990-03-30 1990-03-30 Filter material for metallic molten metal and method for filtering metallic molten metal by using the same Pending JPH03281738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2083247A JPH03281738A (en) 1990-03-30 1990-03-30 Filter material for metallic molten metal and method for filtering metallic molten metal by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2083247A JPH03281738A (en) 1990-03-30 1990-03-30 Filter material for metallic molten metal and method for filtering metallic molten metal by using the same

Publications (1)

Publication Number Publication Date
JPH03281738A true JPH03281738A (en) 1991-12-12

Family

ID=13797002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2083247A Pending JPH03281738A (en) 1990-03-30 1990-03-30 Filter material for metallic molten metal and method for filtering metallic molten metal by using the same

Country Status (1)

Country Link
JP (1) JPH03281738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108569909A (en) * 2017-02-23 2018-09-25 电化物产株式会社 Filter and its manufacturing method for aluminum melt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230944A (en) * 1984-05-01 1985-11-16 Sukai Alum Kk Treatment of molten aluminum
JPS6345684A (en) * 1986-08-12 1988-02-26 Toshiba Corp Image compressor
JPS63216933A (en) * 1987-03-04 1988-09-09 Nippon Light Metal Co Ltd Method for filtering molten aluminum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230944A (en) * 1984-05-01 1985-11-16 Sukai Alum Kk Treatment of molten aluminum
JPS6345684A (en) * 1986-08-12 1988-02-26 Toshiba Corp Image compressor
JPS63216933A (en) * 1987-03-04 1988-09-09 Nippon Light Metal Co Ltd Method for filtering molten aluminum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108569909A (en) * 2017-02-23 2018-09-25 电化物产株式会社 Filter and its manufacturing method for aluminum melt

Similar Documents

Publication Publication Date Title
US4921616A (en) Alveolar ceramic filters for high melting metals
Han et al. The effect of sintering temperatures on alumina foam strength
JP2778795B2 (en) Filter media for molten metal
EP1728775A2 (en) Silicon nitride filter and method for its production
JP2003511331A (en) Fire resistant NZP type structure and method of making and using the same
US4591383A (en) Apparatus and method of filtering molten metal using honeycomb structure of sintered alumina as filter element
CN102910930A (en) Honeycomb ceramic filter and preparation method thereof
EP1197253B1 (en) Method for producing a silicon nitride filter
EP0107345B1 (en) Improved alumina molten metal filters
JPH03281738A (en) Filter material for metallic molten metal and method for filtering metallic molten metal by using the same
EP0992467A2 (en) Production of porous mullite bodies
JP2845046B2 (en) Ceramic filter for molten stainless alloy
JPS637814A (en) Ceramic filter
US20020132720A1 (en) Refractory NZP-type structures and method of making and using same
JP2781482B2 (en) Filter media for molten aluminum
JPH03281741A (en) Filter material for metallic molten metal
JPH0551278A (en) Ceramic porous body
JPH0436424A (en) Filter medium for molten metal
JPH0779935B2 (en) Cordierite gas filter and manufacturing method thereof
JPH04236727A (en) Filter medium for molten metal
JP2801948B2 (en) Filter media for molten metal
JP2945160B2 (en) Filter media for molten metal
JP2813039B2 (en) Filter material for molten metal and method for producing the same
JPH03281739A (en) Filter material for metallic molten metal
JPH03285026A (en) Filter material for metallic molten metal